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Abstract

Traditional decoration displays usually include renderings and corresponding descriptions
to give users a deeper understanding and feeling. Nevertheless, describing massive ren-
derings undoubtedly requires a lot of manpower. Thanks to the development of artificial
intelligence, especially deep learning techniques, image captioning has been developed to
automatically generate captions for given images. However, the defect of exploring “per-
ceptive” words (e.g., bright, capacious, and comfortable, etc) is exposed when transferring
existing captioning approaches to the decoration display task. To address this issue, in this
paper, we propose a self-enhanced deep captioning model, which generates the captions
with visual perception using the designed Self-Enhanced Transformer (SET). In detail,
SET first pre-trains the scene-aware encoder, which employs the multi-task-based multi-
modal transformer to enhance the perceptive semantics of the visual representations. Then,
SET combines the pre-trained encoder with the transformer decoder for fine-tuning and
designs a knowledge-enhanced module on the top of the decoder to adaptively fuse the
decoded representations and retrieved language cues for making more suitable word pre-
diction. In experiments, we first validate SET on the MS-COCO dataset, and we achieve
at least 0.6 improvements on the CIDEr-D score. Furthermore, to address the effectiveness
of SET on the decoration display task, we collect a new dataset called DecorationCap. We
present a thorough empirical analysis to verify the generality of SET and find that SET
surpasses other comparison methods with at least 6.8 improvements on the CIDEr-D score.

Keywords: Cross-modal Learning, Image Captioning, Decoration Display, Transformer

1. Introduction

With the development of the Internet, more and more real estate users choose to browse
and shop online. Generally, to provide better user understanding and experience, compa-
nies will hire professionals to describe the renderings. However, describing a large amount
of decoration renderings will undoubtedly consume a huge number of manpower and ma-
terial resources. Fortunately, with the development of artificial intelligence, especially deep
learning techniques, image captioning has been researched. The task of image captioning
is to learn a mapping function from visual features to natural language features, thereby
automatically generating captions for the given images.
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A pure white color scheme, high ceilings, and tall

windows build an ethereal living room decor scheme. A

white living room rug underlines a curvaceous white

sofa design, which is too cushiony to resist.

Smooth creamy walls paint a restful cocoon around the

living room, where a modern modular sofa design

divides the open floor plan with a softly rounded

silhouette.

RSTNet: A living room sofa background wall is

painted white to make the space more light.

RSTNet: A living room is mainly gray, with white walls,

making the space look light.

DLCT: A living room is mainly white with white sofa,

which is simple and atmospheric.

DLCT: A living room is mainly gray and white, with

white sofa, simple and atmospheric.

Figure 1: Examples of decoration displays. The two renderings describe living rooms with different
styles. “perceptive” words are marked in red. DLCT Luo et al. (2021) is the captioning
model, and RSTNet Zhang et al. (2021b) is the captioning model considering perceptive
words.

Early image captioning methods mainly followed retrieval or template-based approaches
Gupta et al. (2012), which accomplished sentence generation by retrieving existing captions
or relying on hand-coded language structures. However, the expressiveness of these ap-
proaches is limited considering the inflexibility.

The decoration display task emphasizes the descriptions with “perceptive” words (e.g.,
bright, capacious, and comfortable, etc). Several approaches Yang et al. (2019); Zhang et al.
(2021b) attempted to introduce context knowledge to promote the generation of perceptive
words. These methods only consider additional textual knowledge to assist inference and
ignore the matching with visual priors, which is easy to cause inductive bias. For example,
when seeing the relationship “person on bike”, these methods naturally replace “on” with
“ride” and infer “person riding bike on a road”, even though the ”road” does not exist in
the image.

Considering the semantic gap between vision and language, many words have no direct
visual representation Yang et al. (2022). Therefore, traditional image captioning models
always fail to predict “perceptive” words due to the overemphasis on object description,
leading to poor prediction and understanding. For example, as shown in Figure 1, there exist
“perceptive” words such as “ethereal”, “curvaceous”, and “modern” when describing the
living rooms, but the method, i.e., DLCT Luo et al. (2021), only provides a straight caption,
rather than an understandable sentence. To address this issue, several approaches Yang
et al. (2019); Zhang et al. (2021b) attempted to introduce context knowledge to promote
the generation of perceptive words. These methods tried to integrate the context language
knowledge into the model, but they are limited to expanding perceptive words such as
“with” and “a”, leading to the monotony problem. For example, as shown in Figure 1,
RSTNet Zhang et al. (2021b) generates simple and monotonous perceptive descriptions for
different styles of living room renderings, e.g., “the white wall makes the space more light”.

To address these challenges, we propose a novel Self-Enhanced Transformer (SET),
which aims to enhance the perceptive semantics into visual embedding during encoding
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and augment the knowledge adaptively during decoding. In detail, SET includes two core
modules: 1) Scene-Aware encoder. We first pre-train a multi-modal transformer encoder
with the image-sentence pair as input, which aims to enhance the perceptive semantics into
the visual representation with the multi-task losses. 2) Knowledge-Enhanced module. We
adopt the pre-trained encoder with a decoder for fine-tuning, in which we design a novel
knowledge-enhanced module on the top of the decoder to adaptively fuse the retrieved
language cues from the constructed domain knowledge graph to obtain more accurate pre-
dictions. Consequently, the proposed SET can address the defect of exploring perceptive
words from the perceptive image encoding and knowledge-enhanced generation, which is
particularly prominent in the automatic description of decoration display and other cap-
tioning tasks.

2. RELATED WORK

2.1. Image Captioning

Image captioning aims to automatically generate natural language descriptions for images.
Early works designed template-based methods Kuznetsova et al. (2012). Inspired by the
encoder-decoder technique Ramos et al. (2023) in the NLP technique, many approaches
have designed encoder-decoder-based methods Fu et al. (2024). Furthermore, with the suc-
cess of attention mechanism, Luo et al. (2021) introduced both regional features and grid
features into the attention module to supplement fine-grained details and context informa-
tion. However, traditional image captioning models always decode based on global or local
visual representations, whereas many words have no direct visual representation Yang et al.
(2022), leading to the generation failure of perceptive words. To enhance the generation of
perceptive words, several attempts tried to introduce the context knowledge into the de-
coding Yang et al. (2019); Zhang et al. (2021b). Zhang et al. (2021b) built a BERT-based
language model to extract language context and proposed an adaptive attention module for
word prediction. However, they only focus on extending generated words, which ignores
the problem that even the same visual object can be expressed in various perceptive words
under different scenes, thus leading to the monotony problem.

2.2. Transformer Models

To process the limitation of RNN-based methods, Vaswani et al. (2017); Chen et al. (2021)
proposed the Transformer with self-attention mechanisms and acquired great success in
neural language processing NLP task. Following this idea, many attempts have transferred
transformer into computer vision Yang et al. (2023b, 2024) and multi-modal learning Yang
et al. (2023a). For example, Li et al. (2020) used object tags detected in images as anchor
points to ease the learning of alignments; Yu et al. (2021) incorporated structured knowledge
obtained from scene graphs to learn joint representations of vision and language. Mean-
while, many approaches have also adopted the transformer for image captioning tasks. For
example, Herdade et al. (2019) introduced transformer architecture into image captioning,
and used the self-attention mechanism to model the spatial relationship between regional
features; Pan et al. (2020) introduced bilinear pooling into the attention module of a base
transformer, which selectively used visual information for multi-modal reasoning; Ji et al.
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Figure 2: An illustration of SET. Considering the input, the image is represented with
region feature representations by Faster R-CNN Ren et al. (2015), and the sen-
tence is represented with word feature representations with a BERT-based lan-
guage model. SET first pre-train scene-aware encoder, which aims to enhance
the perceptive semantics of the visual representations. Then, SET adopts the
pre-trained encoder with a decoder for fine-tuning, in which a novel knowledge-
enhanced module is designed to adaptively fuse the decoded representation and
retrieved language cues. As a result, SET can get more perceptive captions.

(2021) designed a global enhancement module in the base transformer architecture, which
can capture the global features to guide the caption generation.

3. Proposed Method

3.1. Preliminaries

In an image captioning scenario, without any loss of generality, we define the image-sentence
pair as (v,w), where v denotes the image, w represents the corresponding sentence. The
image captioning task is to learn a mapping function for automatically generating sentences
using the input images, thereby the sentence acts as the supervision in the learning process.
As shown in Figure 2, SET generates image captions with visual perception by effectively
fusing perceptive information in both encoding and decoding processes. Specifically, the
framework is composed of two components: 1) Scene-Aware encoder and 2) Knowledge-
Enhanced decoder. Considering the reproducibility and effectiveness, inspired by Su et al.
(2020), the input representations of image regions and sentence words are extracted by
Faster R-CNN and BERT, respectively.
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3.2. Self-Enhanced Transformer

To further improve the visual representations containing textual semantics, we turn to
adopt the multi-modal transformer as the encoder during pre-training, and then transfer
the pre-trained encoder to the classical encoder-decoder framework for fine-tuning.

Encoder. To build the multi-modal transformer, inspire by Su et al. (2020), we con-
catenate the image-sentence pair as a long sequence x = {[IMG],Φ(v1),Φ(v2), · · · ,Φ(vSv),
[TXT ],w1,w2, · · · ,wSw} ∈ R(Sv+Sw+2)×d, where d = dw is the dimension of cross-modal
common feature space, Φ(·) ∈ Rdv×dw denotes the linear mapping function that maps the
visual representations to the common feature space. The special tokens [IMG] and [TXT ]
are defined to learn the global representations for image/text modalities. In the multi-head
attention layer, the input representations can be used to compute three matrices: Q, K, and
V corresponding to queries, keys, and values. The dot-product similarity between queries
and keys determines attention distributions:

Q = xWQ, K = xWK , V = xWV ,

A =
QK⊤
√
dM

Att(x) = softmax(A)V,
(1)

where Q ∈ R(Sv+Sw+2)×dM , K ∈ R(Sv+Sw+2)×dM , V ∈ R(Sv+Sw+2)×dM , and WQ ∈ Rd×dM ,
WK ∈ Rd×dM ,WV ∈ Rd×dM are learnable matrices. Multi-head attention comprises M
parallel heads, and dM = d/M . Results of each head are concatenated and passed through
a linear transformation to construct the output, i.e., MultiAtt(x) = [Att(x)1, · · · , Att(x)M ]
WM , where WM ∈ Rd×d is the learnable parameter. The FFN is a fully-connected network:
FFN(MultiAtt(x)) = max(0,MultiAtt(x)W1 + b1)W2 + b2, where W1 and W2 are ma-
trices for linear transformation, b1 and b2 are the bias terms. Meanwhile, each sub-layer
is followed by dropout, shortcut connection He et al. (2016), and layer normalization Ba
et al. (2016). Note that the position features of the imaging modality are designed accord-
ing to Li et al. (2020) using the location of the region, i.e., each image region position is

represented [ a1
WI ,

c1
HE , a2

WI ,
c2
HE , (c2−c1)(a2−a1)

WI×HE ]Wlo, where WI,HE are the width and height

of the input image, and the last value represents the fraction of image covered, Wlo ∈ R5×d

is the linear mapping function. The position features of the text modality are designed
according to the original method Vaswani et al. (2017). Two types of segment embedding,
i.e., SE1 ∈ Rd and SE2 ∈ Rd, are defined to separate input elements from different sources,
SE1 denotes tokens from image and SE2 denotes tokens from the sentence. The learned
segment embedding is added to every input element to indicate which segment it belongs
to. Finally, we can acquire the global representations from the [IMG] and [TXT ] token,
i.e., v̂[IMG], ŵ[TXT ], and individual representations from other tokens.

Scene-Aware Encoder. As shown in Figure 2, to improve the visual representations
containing textual semantics, we design a multi-task loss to pre-train the encoder.

L = ℓS + λ1ℓM , (2)

where ℓM employs the masking loss to constrain the cross-modal consistency, and the ℓS loss
adopts the style prediction loss to enhance the representation learning. λ1 is the balance
parameter.
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For masking loss, following Su et al. (2020), we sample image/text tokens and mask
them (i.e., using [MASK] tokens) with 15% probability. ℓM aims to predict mask token
labels (the class label of the image region is predicted by the pre-trained Faster R-CNN and
the class label of the word is constructed by the whole vocabulary as one-hot form) based
on their surrounding contexts (including the contextual image regions and words):

ℓM =
∑
(v,w)

( ∑
i∈Dv

ℓ(yi, fv(v̂
i)) +

∑
j∈Dw

ℓ(yj , fw(ŵ
j))

)
, (3)

where Dv and Dw denote the mask token set of image and sentence. v̂i and ŵj represent
the output representations of masked tokens, yi and yj denote the corresponding class
labels. ℓ utilizes the cross-entropy loss here, fv(·) and fw(·) denote the image classifier and
text classifier, respectively. Moreover, to ensure the global representations of decoration
rendering with the same style, we add a style prediction loss:

ℓS =
∑
(v,w)

ℓ(max(g(v̂[IMG]), g(ŵ[TXT ])),ys(v,w)), (4)

where ys(v,w) ∈ R14 represents the style class label, e.g., European style, Chinese style,
etc. g(·) is the style classifier.

Decoder. Considering that the parameters in the scene-aware encoder are sharable (i.e.,
we embed semantic perception into visual representations), we transfer the pre-trained en-
coder to the classical encoder-decoder framework for fine-tuning. In detail, as shown in
Figure 2 (II), we only input the image regions into the encoder and use the word repre-
sentation generated by the decoder at the last moment and visual region output represen-
tations as the input of first decoder layer. The interaction between visual and language
representations is completed by using the cross-modal multi-head attention mechanism:
ht = Decoder(v̂, ŵ<t), where v̂ = {v̂1, v̂2, · · · , v̂Sv} is the output set of transformer en-
coder, ŵ<t = {ŵ1, ŵ2, · · · , ŵt−1} is word sequence representations of the partially gener-
ated sentence. In detail, we adopt the same cross-attention mechanism as Li et al. (2021),
in which we adopt the image region output as the keys (i.e., K) and values (i.e., V), and the
partially ground-truth sentence as the queries (i.e., Q). The dot-product similarity between
queries and keys provides attention distribution for determining which visual regions to
focus on for decoding. The ht is the hidden state output by the transformer decoder to
predict the current word ŵt.

Knowledge-Enhanced Module. To further fuse the perceptive semantics in the
decoding process, we develop the knowledge-enhanced module on top of the classical trans-
former decoder. In this module, we aim to retrieve similar language cues from the con-
structed knowledge graph as the complementary information, and then adaptively fuse the
retrieved language cues and hidden state output for word prediction. In detail, as shown
in the Figure 2 (III), we construct the knowledge graph (KG) of the decoration domain
following Che et al. (2020), and initialize the entity representation through the pre-trained
scene-aware encoder. To retrieve the knowledge cues, we first embed the visual output
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representations:

Qv = htWQv , Kv = v̂WKv , Vv = v̂WVv ,

A =
QvK

⊤
v√

dM
Att(v̂) = softmax(A)Vv,

v̄ = [Att(v̂)1, · · · , Att(v̂)M ]W

(5)

where WQv ∈ Rd×dM ,WKv ∈ Rd×dM ,WVv ∈ Rd×dM ,W ∈ Rd×d are learnable matrices.
Then, we utilize v̄ to retrieved O most similar entities according to dot-product function
sc(v̄, eo), eo denotes the o−th entity in the KG, and the overall representation can be for-
mulated as êt =

∑
o∈DO

eosc(v̄, eo), DO denotes the retrieved cues set. Lastly, instead of
predicting a word using the hidden state ht directly, we combine language cue representa-
tion êt, visual output representation v̄, and the hidden state Qv together to measure the
contribution of visual signals and language signals for each word prediction:

µ = [v̄, Qv, ê
t]Wµ, ĥt = µQv + (1− µ)êt (6)

where Wµ is a fully connected network to predict µ.

Training. To train the model, we first minimize the cross-entropy loss (i.e., ℓXE) fol-
lowing a standard practice of image captioning, with ground-truth caption yw and pre-
diction ŷw: ℓXE(θ) = −

∑Sw
t=1 log pθ(y

t
w|y1:t−1

w ). Then, we directly optimize the non-
differentiable metric with self-critical sequence training Rennie et al. (2017): ℓRL(θ) =
−E

y1:Sw
w

pθ[r(y
1:Sw
w )], where y1:Sw

w denotes the target ground-truth sequence. The param-

eters θ of the network define a policy pθ. The reward r(·) is a sentence-level metric for
the generated sentence and the ground-truth, which is always represented by the score of
captioning metric (e.g., CIDEr-D Vedantam et al. (2015)).

4. Experiments

4.1. Experimental Setup

To demonstrate the effectiveness of SET, we conduct the experiments on two datasets, i.e.,
the public MS-COCO dataset Lin et al. (2014), and specifically collect the DecorationCap
dataset. We firstly adopt the popular MS-COCO dataset as most captioning methods
Huang et al. (2019); Cornia et al. (2020); Zhang et al. (2021b), we use v̂ to hierarchically
retrieve the language cue representation. DecorationCap dataset is a real-world dataset for
decoration display tasks, one of the largest residential service websites in China. In detail,
the DecorationCap dataset contains 119,789 decoration cases, in which each case includes
4 scenes (i.e., living room, kitchen, bedroom, and bathroom). Each scene contains vari-
ous rendering-description pairs with different perspectives. Therefore, the DecorationCap
dataset has entirely 838,717 rendering-description pairs, and the descriptions are Chinese.
Note that different scenes in the same case usually keep the same decoration style. Consid-
ering the DecorationCap dataset has no ground-truths of bounding boxes for each image,
we manually annotate 600 images with labelme 1, and pre-trained the Faster R-CNN with

1. http://labelme.csail.mit.edu/Release3.0/
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novel semi-supervised methods Sohn et al. (2020). Following the MS-COCO dataset, we
divide 5,000 rendering-description pairs as the validation set, 5,000 rendering-description
pairs as the test set, and the rest as the training set.

4.2. Implementations

In experiments, the Sv is set as 36 according to most traditional methods Anderson et al.
(2018). We set the maximum length of the sentence as Sw = 100, and the excessive parts
are removed. The temperature scale parameter τ = 0.5, retrieved knowledge cues O = 3,
the balance parameters λ1 is searched in {0.01, 0.1, 1, 10} to find the best settings. In all
experiments, the batch size is set to 32. The optimization method is Adaptive Moment
Estimation (Adam), with a base learning rate of 2 × 10−5, weight decay of 10−4, learning
rate warmed up over the first 8,000 steps, and linear decay of the learning rate. The ratio of
dropout is 0.1 and the maximal number of epochs is 25. We run the following experiments
on NVIDIA TITAN X GPU. We will publish the dataset sooner.

Pre-training. During pre-training, we use 838,717 rendering-description pairs, of which
5,000 are used as validation set, 5,000 were used as test set, and the rest is training set.

Pre-trained encoder transfer. In the pre-training phase, we concatenate the image-
sentence pair as a long sequential input to enhance the perceptive semantics into the visual
representation, using the multi-task loss. Then, in the fine-tuning phase, we can directly
transfer the pre-trained encoder with only the visual regions as input.

KG construction. Inspired by Zhang et al. (2021a), to introduce perceptual semantics
more accurately, we construct a knowledge graph in the decoration domain. In detail, we
construct a perceptiveness knowledge graph, which mainly includes the objects (i.e., modi-
fied words) and their attributes (i.e., perceptive words), the construction of the knowledge
graph can be summarized using three steps: 1) The tokenization step, which uses the func-
tions provided in Che et al. (2020) to tokenize each sentence description into discrete words.
2) Modification relationship extraction step, which explores the modification relationship
between discrete words, such as for “warm sofa”, the modifier is “warm” (i.e., perceptive
word), and the modified word is “sofa”. We use the dependency analysis function pro-
vided in Che et al. (2020) to extract the attributives and their headwords in each sentence
description. 3) The hierarchical construction step, which obtains the style and scenes cor-
responding to each image by exploring the given prior knowledge of the DecorationCap
dataset, such as Chinese style and living room.

The comparison models fall into three categories: 1) traditional deep supervised caption-
ing methods: SCST Rennie et al. (2017), Up-Down Anderson et al. (2018), and AoANet
Huang et al. (2019). 2) Deep captioning methods considering perceptive words: SGAE Yang
et al. (2019), RSTNet Zhang et al. (2021b). 3) Transformer based methods: ORT Herdade
et al. (2019), M2 Transformer Cornia et al. (2020), X-Transformer Pan et al. (2020) and
DLCT Luo et al. (2021) and SmallCap Ramos et al. (2023)
.

Moreover, we conduct extra ablation studies to evaluate each term in our proposed SET:
1) Transformer-based, we remove both the pre-training and knowledge-enhanced module
and only adopt the transformer-based encoder and decoder for training. 2) w/o KEM, we
remove the knowledge-enhanced module in the decoding process. 3) w/o Pre-training, we
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remove the pre-training process of the encoder. 4) w/o Pre-training+, we only pre-train the
multi-modal encoder to initialize the entity representations in the knowledge graph, without
transferring to the fine-tuning phase. 5) w/o ℓM , we remove the mask prediction loss in
L for pre-training. 6) w/o ℓS , we remove the style prediction loss in L for pre-training.
7) Hard µ, we add a sigmoid operator on µ for hard combination. For evaluation, we use
different metrics, including BLEU(B@N), METEOR(M), ROUGE-L(R), CIDEr-D(C), and
SPICE(S), to evaluate the proposed method and comparison methods.

Table 1: The performances of various methods on MS-COCO.
Cross-Entropy Loss CIDEr-D Score Optimization

B@1 B@4 M R C S B@1 B@4 M R C S
SCST - 30.0 25.9 53.4 99.4 - - 34.2 26.7 55.7 114.0 -
Up-Down 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4
AoANet 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.2 58.8 129.8 22.4
ORT - - - - - - 80.5 38.6 28.7 58.4 128.3 22.6
M2 Transformer - - - - - - 80.8 39.1 29.2 58.6 131.2 22.6
X-Transformer 77.3 37.0 28.7 57.5 120.0 21.8 80.9 39.7 29.5 59.1 132.8 23.4
DLCT - - - - - - 81.4 39.8 29.5 59.1 133.8 23.0
SmallCap - 37.2 28.3 - 121.8 21.5 - - - - - -
SGAE 77.6 36.9 27.7 57.2 116.7 20.9 80.8 38.4 28.4 58.6 127.8 22.1
RSTNet - - - - - - 81.1 39.3 29.4 58.8 133.3 23.0
Transformer based 76.5 36.0 27.1 56.5 113.2 20.3 79.2 36.4 27.8 56.9 123.0 21.1
w/o Pre-training 76.4 36.0 27.0 56.3 113.1 20.2 79.0 36.2 27.4 56.5 122.8 21.1
w/o Pre-training+ 76.9 36.6 27.5 57.0 117.3 21.0 80.1 37.4 28.7 57.2 128.5 22.1
w/o KEM 77.6 37.0 28.5 57.5 120.1 21.5 81.3 39.4 29.4 58.7 133.3 22.7
w/o ℓM 77.4 36.8 28.2 57.2 120.0 20.3 80.9 39.5 29.0 58.4 132.8 22.5
w/o ℓS 77.8 37.3 28.8 58.0 121.7 21.8 81.5 40.1 29.6 59.1 133.5 22.7
Hard µ 77.7 37.2 28.7 57.7 121.0 21.7 81.4 39.5 29.5 58.9 133.5 22.8
SET 80.0 37.8 29.2 58.4 122.6 22.0 81.8 40.5 29.7 59.5 134.4 23.1

4.3. Experimental Results

4.4. Results on MS-COCO dataset

Table 1 presents the quantitative comparison results on the MS-COCO dataset with other
methods. For fairness, all the models are first trained under cross-entropy loss and then
optimized for CIDEr-D score as Huang et al. (2019). “-” represents the results that have
not been given in the raw paper. The results reveal that: 1) The captioning models that
consider the perceptive words are competitive to or worse than transformer-based models.
There are two possible reasons: a) most sentences in the MS-COCO dataset are usually a
brief introduction to an event, without considering the visual perception. Thereby, there is
not much difference between transformer-based methods and deep captioning models con-
sidering perceptive words. b) SGAE even performs worse, because the backbones of the
encoder and decoder of SGAE are not transformer-based structures, thereby the modeling
ability is limited. 2) SET performs the best on most criteria considering various optimiza-
tion, except the SPICE on CIDEr-D Score Optimization. This phenomenon validates that
the multi-task-based pre-training and knowledge-enhanced module can not only promote
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the learning of perceptive semantics but also affect the encoding of common semantics for
visual representation, which verifies the generality of SET. 3) The performance improve-
ment of SET on the MS-COCO dataset is lower than the DecorationCap dataset. For this
reason, most sentences in the MS-COCO dataset are usually a simple introduction to an
event without considering visual perception. Meanwhile, the results of the ablation study
have a similar phenomenon with DecorationCap datasets.

Table 2: The performances of various methods on DecorationCap.
Cross-Entropy Loss CIDEr-D Score Optimization

B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S
SCST 4.9 2.4 1.2 0.6 3.9 9.3 4.1 1.2 8.1 4.0 1.9 0.9 5.1 11.1 5.6 1.7
Up-Down 5.4 2.7 1.8 0.8 4.0 9.8 4.3 1.5 8.6 4.1 1.9 1.2 5.3 11.9 5.7 1.9
AoANet 9.1 4.3 2.1 1.1 4.3 10.4 5.3 2.3 10.2 4.5 2.5 1.7 6.4 12.5 6.2 2.8
ORT 9.3 4.3 2.4 1.3 4.7 10.3 5.4 2.4 10.5 4.5 2.7 1.7 6.5 12.3 6.5 2.9
M2 Transformer 11.7 5.8 3.0 1.6 6.5 12.2 5.5 2.7 15.7 6.6 3.2 1.7 7.2 13.1 6.8 3.2
X-Transformer 11.7 5.9 3.2 1.7 6.8 12.7 5.9 2.9 15.4 6.6 3.3 1.9 7.5 13.5 7.1 3.6
DLCT 12.5 6.4 3.5 2.2 7.0 13.4 6.5 3.3 16.2 7.1 3.5 2.5 7.6 14.0 7.8 3.9
SGAE 9.5 4.5 2.6 1.5 4.7 10.9 5.7 3.2 11.0 4.8 3.0 2.0 6.8 12.7 6.7 3.5
RSTNet 13.1 6.6 3.5 2.5 7.0 13.6 7.1 3.7 16.5 7.5 3.7 2.7 7.9 14.8 8.1 4.5
Transformer based 9.0 3.5 2.0 1.2 4.2 10.2 5.1 2.3 10.1 4.0 2.4 1.5 6.1 12.3 6.0 2.7
w/o Pre-training 8.7 3.2 2.0 1.1 4.0 9.8 5.0 2.0 9.4 3.6 3.3 1.4 5.7 12.0 5.9 2.4
w/o Pre-training+ 10.4 4.6 3.6 1.9 4.8 11.2 7.6 4.1 12.5 6.3 4.1 1.8 6.5 13.1 9.5 4.8
w/o KEM 12.8 7.5 4.7 2.3 5.7 13.5 9.5 4.0 14.9 8.5 5.3 2.7 7.2 13.7 11.5 4.5
w/o ℓM 13.4 7.0 4.2 2.3 5.5 12.4 7.2 3.9 15.5 8.2 6.0 2.4 7.5 15.0 10.0 4.3
w/o ℓS 15.9 9.7 6.0 3.6 7.9 17.5 12.0 4.5 17.3 10.0 6.3 3.9 8.3 18.4 14.0 5.1
Hard µ 14.1 9.0 5.7 3.3 6.8 15.4 10.3 4.2 16.2 9.0 6.0 3.5 7.7 16.5 12.4 5.0
SET 18.2 10.7 6.9 4.5 8.5 18.9 13.4 5.1 18.9 11.4 7.2 4.8 9.2 19.7 14.9 5.7

Specific Domain DecorationCap dataset. Table 2 presents the quantitative compar-
ison results on the DecorationCap dataset with other methods. We use the code given in
the original paper to retrain the models with the DecorationCap dataset. For fairness, all
the models are also first trained under cross-entropy loss and then optimized for CIDEr-D
score as Huang et al. (2019). From the results, we find that: 1) all methods have severe
performance degradation on the DecorationCap dataset, for the reason that the sentences
in the DecorationCap dataset are longer and more complex than the MS-COCO dataset,
affecting the generations of captions. 2) Transformer-based approaches also perform better
than traditional deep supervised captioning methods, which validates the effectiveness of the
Transformer. 3) The captioning models that consider the perceptive words are competitive
with transformer-based models, especially the RSTNet performs better than transformer-
based approaches. 3) SET acquires more obvious advantages compared with state-of-the-art
baselines. The phenomenon validates that SET can well model the perceptive words.

Ablation Study. The bottom of Table 2 record the results of ablation study. The results
reveal that: 1) “w/o Pre-training+” performs better than the “w/o Pre-training” and
“Transformer based”, which validates the effectiveness of multi-modal transformer pre-
training and knowledge-enhanced module. 2) “w/o KEM” performs better than “w/o Pre-
training” and “Transformer based”, which validates that the pre-training encoder is vital
for the SET framework. Because multi-modal pre-training can not only provide a better-
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initialized encoder but also enhance the quality of the constructed knowledge graph. 3)
“Hard µ” performs worse than soft µ, which validates the effectiveness of soft adaptive
fusion. 4) SET performs the best compared with other variants, which verifies that each
module in SET can contribute to the modeling.

4.5. Diversity and Distinctiveness Properties

We conduct more experiments with the properties used in Wang et al. (2020, 2022). Ac-
cording to the original setting, we set the captioning number N=1 and neighbor number
K=5 for the DecorationCap dataset, N=5, and K=5 for the MS-COCO dataset. Note that
N=5 in the MS-COCO dataset because each image has 5 captions in MS-COCO. In result,
CIDErBtw=72.6/74.8 (i.e., the distinctiveness property), Self-CIDEr=57.1/55.2 (i.e., the
diversity property) for SET/DLCT on Decoration, and CIDErBtw =5.2/6.7 (i.e., the dis-
tinctiveness property), Self-CIDEr =21.4/13.4 (i.e., the diversity property) for SET/DLCT
on MS-COCO. Note that the smaller the distinctiveness metric, the better. The results
show that our proposed SET can also generate diverse and distinctive captions compared
with state-of-the-art captioning methods.

Table 3: Performance of SET with different values of temperature parameter on MS-COCO.

Cross-Entropy Loss CIDEr-D Score Optimization
B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

τ=0.1 79.8 61.7 48.1 37.5 29.0 58.3 122.3 21.9 81.7 66.0 51.4 40.0 29.5 59.1 133.7 22.8
τ=0.5 80.0 62.0 48.2 37.8 29.2 58.4 122.6 22.0 81.8 66.2 51.8 40.5 29.7 59.5 134.4 23.1
τ=1.0 79.7 61.8 48.0 37.3 28.9 58.1 122.1 21.6 81.5 65.7 51.0 39.6 29.2 58.7 133.1 22.5
τ=2.0 79.5 61.7 47.7 37.2 28.9 58.0 122.0 21.6 81.3 65.4 49.7 39.5 29.2 58.5 132.8 22.4
τ=5.0 79.1 61.5 47.3 37.0 28.5 57.6 121.4 21.3 81.0 65.1 49.2 39.2 29.0 58.1 132.4 22.1

Table 4: Performance of SET with different values of temperature parameter on DecorationCap.

Cross-Entropy Loss CIDEr-D Score Optimization
B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

τ=0.1 18.0 10.4 6.8 4.4 8.1 18.4 13.0 5.0 18.6 11.2 7.1 4.6 9.0 19.3 14.2 5.6
τ=0.5 18.2 10.7 6.9 4.5 8.5 18.9 13.4 5.1 18.9 11.4 7.2 4.8 9.2 19.7 14.9 5.7
τ=1.0 18.0 10.2 6.5 4.2 7.9 18.1 12.7 4.8 18.3 11.0 6.8 4.4 8.7 18.7 13.9 5.4
τ=2.0 17.7 10.0 6.1 3.9 7.6 17.9 12.5 4.6 18.0 10.8 6.6 4.3 8.6 18.4 13.7 5.2
τ=5.0 17.3 9.5 5.7 3.5 7.3 17.5 12.1 4.3 17.8 10.3 6.2 4.0 8.3 18.0 13.2 4.9

4.6. Parameter Analysis

Influence of Temperature Parameter. To explore the influence of temperature param-
eters, i.e., τ , we conduct more experiments. In detail, we tune the τ in {0.1, 0.5, 1, 2, 5}
and record the results from two datasets respectively in Table 3 and Table 4. The results
reveal that the performance of SET increases firstly, and then decreases with the increasing
of τ . The reason is that small τ makes the distribution sharper, which can help the model
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learn from hard negatives Wang and Liu (2021), but if the τ is too small (e.g., τ = 0.1),
the model will pay more attention to difficult negatives, which may cause the semantically
similar instances far away and affects the performance.

Table 5: Performance of SET with different numbers of retrieved language cues on MS-COCO.

Cross-Entropy Loss CIDEr-D Score Optimization
B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

O=1 77.9 61.7 47.8 37.5 29.0 58.1 122.3 21.9 81.7 65.7 51.3 40.2 29.6 59.2 134.1 22.9
O=2 77.9 61.8 47.9 37.7 29.1 58.2 122.5 21.9 81.8 65.9 51.5 40.4 29.7 59.4 134.3 22.9
O=3 80.0 62.0 48.2 37.8 29.2 58.4 122.6 22.0 81.8 66.2 51.8 40.5 29.7 59.5 134.4 23.1
O=4 77.8 61.5 47.6 37.4 29.0 58.1 122.1 21.8 81.5 65.4 51.0 40.0 29.5 59.0 133.7 22.8
O=5 77.6 61.3 47.2 37.1 28.7 57.8 121.8 21.7 81.2 65.0 50.7 39.7 29.0 58.8 133.4 22.5

Table 6: Performance of SET with different numbers of retrieved language cues on DecorationCap.

Cross-Entropy Loss CIDEr-D Score Optimization
B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

O=1 17.6 10.4 6.5 4.0 8.2 18.4 12.9 4.9 18.5 11.1 6.8 4.3 8.8 19.0 14.5 5.3
O=2 17.9 10.5 6.8 4.3 8.3 18.8 13.1 4.9 18.7 11.3 7.0 4.7 9.1 19.4 14.7 5.5
O=3 18.2 10.7 6.9 4.5 8.5 18.9 13.4 5.1 18.9 11.4 7.2 4.8 9.2 19.7 14.9 5.7
O=4 17.5 10.3 6.5 3.8 8.0 18.1 12.7 4.7 18.2 11.0 6.7 4.1 8.5 18.7 14.2 5.2
O=5 17.2 10.0 6.1 3.5 7.7 17.8 12.5 4.5 17.9 10.7 6.5 3.9 8.2 18.4 14.0 5.0

Influence of Retrieved Language Cues. We also conduct experiments to validate the
influence of retrieved language cues on the two datasets. In detail, we incorporate cues
with different numbers (i.e., O ∈ {1, 2, 3, 4, 5}) to empirically investigate the impact on
generation. Table 5 and Table 6 depict the results, which reveal that the performance of
SET increases firstly, and then decreases on various criteria. The reason may be that more
cues can even bring noise.

4.7. Case Study

To explore the effectiveness of SET on caption generation, we provide examples of the Dec-
orationCap dataset compared with other methods, i.e., DLCT and RSTNet. “GT” denotes
the human-annotated ground-truth. We also provide the English description for convenient
reading. Using the first case in Figure 3 as an example, the DLCT (i.e., Transformer-based
method) only describes the placement of dining room objects. The RSTNet can improve the
generation of perceptive words, but the description is inaccurate and misses the point. In
contrast, SET can not only accurately capture the layouts in the dining room, e.g., “tables”,
“chairs”, “wall”, etc, but also describe the overall understanding and feeling with suitable
perceptive words, e.g., “wooden tables”, “simple and natural”, and “gray walls make the
space feel natural”, which can well match human-annotated ground-truth.

Moreover, we provide more visualizations to validate the effectiveness of the knowledge-
enhanced module. In detail, we provide the top retrieved knowledge cues from the con-
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SPT: The floor of the bedroom is paved with wooden floors, and the warm yellow color is used to inject warmth into the space.
卧室地面通铺木质地板，以温暖的黄色为空间注入温馨。
DLCT : The bedside background wall of the master bedroom is painted gray, with gray bedding and curtains.
主卧的床头背景墙被刷成灰色，搭配灰色的床品和窗帘。
RSTNet: The background wall of the bedroom bedside is mainly gray.
卧室床头背景墙以灰色为主。
GT: The bedroom is paved with yellow wood floor, and the warm natural material brings comfort to the space.
卧室铺以黄木地板，温润的自然材质为空间带来舒适感。

SPT: In the dining room, the wooden tables and chairs are simple and natural, and the gray walls make the space exude a natural flavor.
餐厅，木质餐桌椅简洁自然，搭配灰色系的墙面，使空间散发出自然气息。
DLCT: The dining room and kitchen are separated by glass sliding doors.
餐厅和厨房以玻璃隔断隔开。
RSTNet: The dining room is interconnected with the living room to ensure the daylighting of the dining room.
餐厅与客厅互通，保证了餐厅的采光。
GT: In the dining room, the wooden tables and chairs are simple and natural, creating a warm and comfortable dining atmosphere as a whole.
餐厅，木质餐桌椅简洁自然，整体营造温馨舒适的用餐氛围。

SPT: The kitchen cabinet adopts L-shaped cabinet design, with wood colored cabinet doors and beige quartz stone countertops.
厨房的橱柜采用L型的橱柜设计，搭配原木色的柜门和米黄色的石英石台面。
DLCT : The kitchen is mainly white, with white cabinets.
厨房以白色为主，搭配白色橱柜。
RSTNet: The kitchen adopts white cabinets, which looks clean and tidy.
厨房采用白色橱柜，看起来干净整洁。
GT: The kitchen adopts the design of L-shaped cabinet, with quartz countertop and wood colored cabinet.
厨房采用的L型橱柜的设计，搭配石英石的台面和木色的橱柜。

Figure 3: Examples of captions generated by SET and baselines on DecorationCap dataset, GT
denotes ground-truth.

structed knowledge graph according to the sc(v̄, eo), the results are recorded in Figure 4.
The blue box region indicates the image region with the highest attention.

Top 3 retrieval words:

简洁的 (Simple) 0.3478

现代的 (Modern) 0.3378

大气的 (Generous) 0.3144

Top 3 retrieval words:

灰色的 (Grey) 0.3387

简洁的 (Simple) 0.3316

现代的 (Modern) 0.3297

Top 3 retrieval words:

舒服的 (Comfortable) 0.3382

舒适的 (Comfortable) 0.3365

灰色的 (Grey) 0.3253

Top 3 retrieval words:

深灰的 (Dark grey) 0.3405

现代的 (Modern) 0.3347

优雅的 (Elegant) 0.3248

Top 3 retrieval words:

清新的 (Clear) 0.3489

精致的 (Exquisite) 0.3283

绿色的 (Green) 0.3228

(a) (b) (c) (d) (e)

Figure 4: The visualization of image region retrieval perceptive words. We outline the image region
with the maximum attention weight in blue and retrieve the top-3 perceptive words with
the largest similarity.

5. Conclusion

In this paper, we focus on the decoration display task, which plays an important role in
online housing services. To solve the defect of exploring perceptive words when transferring
existing captioning approaches to the decoration display task, we propose a self-enhanced
deep captioning model, which generates the captions with visual perception using the Self-
Enhanced Transformer (SET). In detail, SET first pre-trained a scene-aware encoder with
a multi-modal transformer, which aimed to preliminarily enhance the perceptive semantics
of the visual representations. Then, SET combines the pre-trained encoder with a trans-
former decoder for fine-tuning and designs a knowledge-enhanced module on the top of the
decoder to adaptively fuse the decoded representations and retrieved language cues for word
prediction. In experiments, we validate the effectiveness of SET on both the public dataset
and a specific domain dataset DecorationCap.
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