
Unsupervised Learning of Local Updates for
Maximum Independent Set in Dynamic Graphs

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present the first unsupervised learning model for finding Maximum Indepen-1

dent Sets (MaxIS) in dynamic graphs where edges change over time. Our method2

combines structural learning from graph neural networks (GNNs) with a learned3

distributed update mechanism that, given an edge addition or deletion event, mod-4

ifies nodes’ internal memories and infers their MaxIS membership in a single,5

parallel step. We parameterize our model by the update mechanism’s radius and6

investigate the resulting performance–runtime tradeoffs for various dynamic graph7

topologies. We evaluate our model against a mixed integer programming solver8

and the state-of-the-art learning-based methods for MaxIS on static graphs (ICML9

2020; NeurIPS 2020, 2023). Across synthetic and empirical dynamic graphs of 50–10

1,000 nodes, our model achieves competitive approximation ratios with excellent11

scalability; on large graphs, it significantly outperforms the state-of-the-art learning12

methods in solution quality, runtime, and memory usage. When generalizing to13

graphs of 10,000 nodes (100x larger than the ones used for training), our model14

produces MaxIS solutions 1.05–1.18x larger than any other learning method, even15

while maintaining competitive runtimes.16

1 Introduction17

Combinatorial optimization problems on graphs (e.g., GRAPH-COLORING, TRAVELING-SALESMAN,18

VEHICLE-ROUTING, etc.) arise naturally in many practical domains [3, 33]. However, many of these19

problems are classically intractable to solve exactly, and some even resist efficient approximation.20

The situation is exacerbated by the fact that many real-world applications are dynamic, requiring21

algorithms to not only find solutions but also maintain them as the underlying structure evolves.22

While one could iteratively apply algorithms designed for static graphs at each time step, this23

approach is often computationally expensive and inefficient. Critically, this approach ignores the24

often close relationship between successive graph structures. A more effective strategy might avoid25

repeatedly recomputing solutions from scratch by instead leveraging these small structural changes to26

incrementally update an existing solution. Such update algorithms are an active area of theoretical27

algorithms research [4, 6, 11, 15, 19, 40], but no learning algorithms have yet taken this approach.28

In this paper, we consider the MAXIMUM-INDEPENDENT-SET (MaxIS) problem in a dynamic setting.29

For static graphs, MaxIS is classically known to be NP-hard [16] and hard to approximate: for general30

graphs, deterministic approximation within a constant factor is impossible [30] and within an n1−ε31

factor is NP-hard [20].32

Nevertheless, MaxIS has a diverse range of real-world applications, from identifying functional nodes33

in brain networks [1] to constructing diversified investment portfolios [21]. Our goal is to solve34

MaxIS on such dynamically evolving graphs.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Recently, the learning community has developed several methods for solving combinatorial opti-36

mization problems on static graphs [7, 24]. Central to many of these methods are Graph Neural37

Networks (GNNs) due to their efficiency in capturing the structural information present in real-world38

networks such as the Internet, social networks, and molecular interactions [36, 39]. In the dynamic39

setting, recent models such as temporal GNNs are primarily concerned with tasks such as edge40

prediction, node classification, graph classification, etc. [25, 27, 31, 34, 37]. Work considering41

combinatorial optimization problems in a dynamic setting remains limited, with few examples such42

as Gunarathna et al. [17], which is an indirect heuristic learning approach. No existing models learn43

update mechanisms comparable to theoretical, rule-based update algorithms.44

We propose a model that solves MaxIS in dynamic graphs by directly learning an update mechanism45

instead of a heuristic. We utilize the power of message-passing GNNs [5] combined with sequence46

learning to learn an update mechanism that maintains an approximate MaxIS solution as the under-47

lying graph changes. Having learned an update mechanism, the model is able to update a MaxIS48

solution following a change in the dynamic graph in a single inference step, unlike more popular49

heuristic learning methods which require multiple inference steps and thus scale poorly with graph50

size. We underscore this as a necessary shift in perspective required to address some of the common51

criticisms of learning approaches to solving combinatorial optimization problems, namely, lack of52

scalability, computation inefficiency, and huge training sample requirements.53

Contributions. We present the first unsupervised learning model for solving MAXIMUM-54

INDEPENDENT-SET (MaxIS) on dynamic graphs. The central idea of learning local, distributed55

update mechanisms for combinatorial optimization problems on dynamic graphs is novel, and we56

demonstrate its efficiency in our evaluations. Compared to a commercial mixed integer programming57

solver [18], our model maintains favorable approximation ratios across a variety of dynamic graph58

topologies and sizes. For larger datasets, our model conclusively outperforms the three prior learning59

methods for MaxIS on static graphs: the current state-of-the-art, DP-GNN [8]; a single-shot method,60

Erdős-GNN [22]; and a deep reinforcement learning method, LwDMIS [2]. Resource scaling for our61

method vs. DP-GNN is drastic; we obtain solutions up to 104x faster and use up to 27.5x less memory62

while producing up to 5.64x larger MaxIS solutions. Compared to Erdős-GNN and LwDMIS, our63

model delivers 1.07–1.22x larger MaxIS solutions than either method while also running 6.18–24.8x64

faster and saving up to 2.78–12.97x memory. These gains hold even in generalization experiments,65

where we evaluate our model on graphs 100x the size of those it was trained on.66

2 Maximum Independent Sets in Dynamic Graphs67

Consider an undirected, static graph G = (V,E) with nodes V and edges E. An independent set68

I ⊆ V of G is a set of nodes no two of which are adjacent, i.e., for all u, v ∈ I , we have (u, v) ̸∈ E.69

Its size is its number of nodes, denoted |I|. A maximum independent set (MaxIS) of G is any70

independent set I of G satisfying |I| = max{|I ′| : I ′ is an independent set of G}.71

Dynamic graphs (also called dynamic networks, temporal graphs, or evolving graphs) are graphs72

whose nodes and/or edges change over time [9, 10, 23, 31]. For this work, we consider dynamic73

graphs where at most one edge changes per time and the underlying set of nodes is fixed. Formally,74

a dynamic graph G is a finite sequence of graph snapshots (G0, G1, . . . , GT) where each snapshot75

Gt = (V,Et) is an undirected, static graph on nodes V and, for all time steps 0 < t ≤ T , we have76

|Et−1 ⊕ Et| = 1, i.e., there is exactly one edge addition or one edge deletion per time step. We77

denote the edge event at time t which transitions Gt−1 to Gt as Et. The neighborhood of a node v at78

time t isNt(v) = {u ∈ V | (u, v) ∈ Et} and its degree is denoted dt(v) = |Nt(v)|. The diameter of79

graph snapshot Gt, denoted diam(Gt), is the maximum hop-distance between any two nodes in Gt.80

We define the DYNAMIC-MAXIMUM-INDEPENDENT-SET (Dynamic MaxIS) problem as follows:81

Given a dynamic graph G = (G0, G1, . . . , GT)—or, equivalently, an initial graph snapshot G0 and82

a sequence of edge events (E1, . . . , ET)—obtain a MaxIS for each snapshot Gt. This problem is83

clearly NP-hard since it contains the NP-complete MaxIS problem as a special case (T = 0). Given84

a solution for the MaxIS problem, there exist a polynomial-time conversions to obtain solutions85

for the MINIMUM-VERTEX-COVER and MAXIMUM-CLIQUE problems; hence, achieving good86

approximations for Dynamic MaxIS can also aid in approximating these problems’ dynamic versions.87

2

edge event
at time t

training

test/inference

local aggregator
modulelosst = Σv ℓt(v)

MLP

MaxIS
estimates pt(v)

rounding &
violation
removal

node/neighborhood
information ht(v)

⋯ ⋯

v

v

signals st(·)
(α = 1)

previous node
memories mt – 1(·)

updated node
memories mt(·)

Figure 1: An overview of our unsupervised learning model for MaxIS on dynamic graphs. Nodes
maintain memories (node colors) which are updated by signals propagating in an α-radius from edge
events (orange arrows). Each node within a β-radius of the edge event then locally aggregates its
updated memory and those of its neighbors to estimate its new probability of MaxIS membership.
These estimates are then used to compute loss (during training) or to generate an integral MaxIS
solution (during testing and inference).

3 An Unsupervised Learning Model for Dynamic MaxIS88

Memory-based models such as [25, 31, 34, 38] have been quite successful in prediction and clas-89

sification tasks in dynamic graphs in recent years. Motivated by their effectiveness in predictive90

learning of dynamics, we present an unsupervised learning model focused on the MaxIS problem in91

dynamic graphs. We take inspiration from the Temporal Graph Networks (TGN) model proposed92

by Rossi et al. [31], which generalizes memory-based models by including a GNN-based graph93

embedding module. We repurpose the two key modules of TGNs, memory and graph embedding,94

to learn an update mechanism that maintains a candidate MaxIS solution as the underlying graph95

changes. Moreover, inspired by the use of messages (seen as random perturbations) to improve GNN96

performance for NP-hard problems [29], we couple node memory to an event handling module to97

inform nodes about edge events.98

Our model responds to edge events (i.e., edge additions or deletions) over time (see Figure 1). At99

each time step, the event handling module is responsible for signaling nodes within an α hop-distance100

of the edge event and memory module updates their internal representations using this signal. Finally,101

the local aggregation (graph embedding) module produces a probability of membership in the MaxIS102

solution (i.e., an estimate) based on node’s memory, its degree, and the memories of its neighbors.103

We describe each module and the training-related details of our model in the following subsections;104

pseudocode can be found in Appendix B.105

Event Handling Module. This module provides each node v within an α hop-distance of the106

edge event Et with a signal st(v) encoding the type of event (addition or deletion) and the node’s107

normalized distance from the event. Formally, the signal for node v at time t is108

st(v) = [enc(Et) || rt(v)], (1)

where enc encodes edge deletions as [0, 1] and edge additions as [1, 0], and rt(v) is the hop-distance109

from v to Et normalized by α and linearly interpolated into [−1, 1].110

Memory Module. A node’s memory is a high-dimensional representation maintained throughout111

the model’s execution that captures relevant structural changes affecting the node. At each time t,112

this module updates the memories of nodes within an α hop-distance of the edge event Et. Updates113

3

are performed using a GRU cell [12]. Formally, the memory of a node v at time t is114

mt(v) =

{
GRU

(
[mt−1(v) || st(v)]) if v is within an α hop-distance of Et;

mt−1(v) otherwise. (2)

Local Aggregation Module. This module updates the estimates—i.e., probabilities of membership115

in the MaxIS solution—of all nodes within a β hop-distance of the edge event Et. First, each node v116

aggregates its immediate neighbors’ memories:117

h̃t(v) = ReLU

 ∑
u∈Nt(v)

W1mt(u)

 , (3)

where W1 are learnable weights. Next, node v combines these aggregated memories with its own118

memory and degree information to obtain a local embedding119

ht(v) = W2

[
h̃t(v) ||mt(v) || dt(v)

]
, (4)

where again W2 are learnable weights. Finally, node v passes its embedding through a step-down120

MLP and a sigmoid function σ to obtain its estimate (probability of MaxIS membership) in [0, 1]:121

pt(v) = σ
(
MLP(ht(v))

)
. (5)

Any node v beyond the β hop-distance of Et simply retains its previous estimate, i.e., pt(v) = pt−1(v).122

Training. We first define a loss function from a node’s local perspective and then define a cumulative123

loss function from these local losses. Since the memory and local aggregation modules operate on124

individual nodes, a local loss function enables these modules to synergize and learn a distributed125

update mechanism. The loss for a node v at time t is126

ℓt(v) = −pt(v) +
c

2dt(v)

∑
u∈Nt(v)

pt(u)pt(v). (6)

The −pt(v) term rewards nodes with large estimates (i.e., probabilities of MaxIS membership closer127

to 1), aligning with the goal of finding a large independent set. This is counterbalanced by the128 ∑
u∈Nt(v)

pt(u)pt(v) term which penalizes violations of independence, i.e., when neighbors u and v129

both have large estimates. Finally, the constant c is a hyperparameter balancing the two terms’ loss130

contributions; in practice, c = 3 worked reasonably well across our evaluations (Section 4).131

The cumulative loss at time t is the sum of all local losses ℓt(v) for nodes v within a β hop-distance132

of the edge event Et (i.e., all nodes that updated their estimates at time t). This set of nodes at this one133

time step forms a single batch in our training process. The sequential processing of all edge events in134

a dynamic graph’s training set forms a single epoch in our training process.135

Model Variants. As explained above, the hop-distances α and β control which nodes utilize an edge136

event to update their memories and which nodes update their estimates and contribute to cumulative137

loss, respectively. In the bounded cascading (BCAS) model variant, we set α = β = γ · diam(G0),138

where γ ≪ 1, strictly bounding nodes’ memory and estimate updates to a local region around each139

edge event.140

In the non-cascading (No-CAS) model variant, we set α = 0 and β = diam(G0); i.e., only the two141

nodes directly involved in the edge event update their memories, but all nodes in the graph update142

their estimates and contribute to cumulative loss. In this variant, the local aggregation module is143

primarily responsible for the graph-wide learning of the update mechanism, with node memory aiding144

in the locality of the edge event.145

Initial MaxIS Generation and Unsupervised Learning. Update algorithms for MaxIS crucially146

require an existing MaxIS solution for the initial snapshot G0 which is later updated as the graph147

structure changes. We mitigate this (potentially very expensive) prerequisite by utilizing an initial148

MaxIS generation phase that efficiently produces memories for all nodes in G0 and model weights149

that training can warm-start from. The idea is to build up G0 one edge at a time (as a sequence of edge150

addition events), updating only the memories of the nodes involved in each edge addition. Once G0151

4

is fully constructed, estimates and corresponding losses are computed for all nodes. This constitutes a152

single epoch of this generation phase; in a single run of the generation phase, we execute epochs until153

the cumulative loss has stabilized. After executing multiple runs with random seeds, we extract the154

node memories and model weights from the run with the least cumulative loss to warm-start model155

training. Thus, the model as a whole learns to first find a candidate MaxIS (generation phase) and156

then maintain it (training phase) in an entirely unsupervised manner.157

Integral Solution Generation. During testing and deployment, we use a simple rounding and158

violation removal procedure to convert the model’s relaxed node estimates into a candidate MaxIS.159

Specifically, all nodes with estimates 0.5 or larger are initially included in the candidate solution;160

then, nodes violating independence are removed in decreasing order of number of violations until an161

independent set is obtained. Such a procedure is a necessary part of single-shot learning methods that162

directly use relaxation to solve optimization problems with hard constraints [14, 22, 32, 35].163

4 Experiments164

Datasets. We evaluate model performance across both synthetic and empirical dynamic graphs.165

For synthetic graphs, we consider Erdős–Rényi (ER) and Power Law (PL) graphs with randomly166

generated initial structures. For empirical graphs, we used initial structures given by GERMANY167

[28], a geographical network with a mesh topology; TWITTER [26], a social network subgraph168

with a dense small-world topology; and BRAIN [13], a biological network with a sparse small-169

world topology. Across all graphs, dynamics are produced by sampling edge additions or deletions170

according to the initial snapshot’s degree distribution for a desired number of time steps. The dynamic171

graphs we consider span a range of sizes: small (≈100 nodes, 50,000 time steps), medium (≈1,000172

nodes, 100,000 time steps), and large (≈10,000 nodes, 5,000 time steps).173

Our Model and Comparisons. We ran our complete training pipeline using the two model variants:174

BCAS and No-CAS. For the BCAS variant, we set α = β = 0.25 · diam(G0), i.e., half of the radius175

of the first snapshot of the dynamic graph. For each variant, we performed three training runs with176

different random seeds and report results for the median run. Since ours is the only learning method177

for MaxIS in the dynamic setting, we compare our method against a commercial mixed integer178

programming solver and existing learning methods for MaxIS on static graphs, where we apply them179

to each snapshot of a dynamic graph independently.180

• Gurobi [18] is the most commonly used and commercially available mixed integer program-181

ming solver. We use the default settings of branch-and-bound search for solving.182

• DP-GNN [8] is the state-of-the-art learning model for MaxIS in static graphs, combining183

dynamic programming with GNNs as comparators to form a multi-step model.184

• Erdős-GNN [22] is an earlier GNN-based, single-shot, probabilistic learning model for185

combinatorial optimization in static graphs.186

• LwDMIS [2] is a deep reinforcement learning method that adaptively adjusts its stages and187

defers decisions about nodes’ MaxIS membership to improve scalability.188

Metrics. We evaluate each method using three metrics: approximation ratio (performance), per-189

graph solution generation time (runtime), and peak memory usage. Performance refers to the mean190

ratio of a method’s candidate MaxIS size against that of Gurobi’s across all snapshots in a dynamic191

graph. Runtime refers to the mean time taken by a method to process a single snapshot and generate192

a candidate MaxIS across all snapshots in a dynamic graph (reported as seconds per graph, s/g). Peak193

memory usage denotes the maximum memory used by a method during training.194

We provide further details about the datasets and evaluation of methods in Appendix C.195

4.1 Results196

The results highlight the efficient scalability and overall performance of our model. Both the BCAS197

and No-CAS variants of our model consistently outperform other learning-based methods in terms of198

runtime and peak memory usage, while also achieving comparable or superior performance across all199

graph sizes. Surprisingly, DP-GNN—although the current state-of-the-art—performs well only on200

5

Table 1: Test dataset performance (w.r.t. Gurobi) for small-sized (left half) and medium-sized (right
half) datasets. We report the means and the std. deviations of the performance along with the runtime
(in seconds per graph), averaged across the test dataset. We report the peak memory utilized while
training by learning methods in GigaBytes (GB). We separate our model variants from other learning
based methods and highlight the methods with the best performance (bold-black) and the best runtime
(blue) for each dataset.

Dataset (→)
Method (↓)

ER
(n = 100)

PL
(n = 100)

TWITTER
(n = 119)

GERMANY
(n = 50)

ER
(n = 1,000)

PL
(n = 1,000)

BRAIN
(n = 638)

BCAS
0.82± 0.049
(0.029s/g)
(2.3 GB)

0.93± 0.029
(0.033s/g)

(3 GB)

0.94± 0.028
(0.064s/g)

(3 GB)

0.88± 0.059
(0.046s/g)

(2 GB)

0.99± 0.025
(0.024s/g)
(2.1 GB)

0.96± 0.010
(0.082s/g)
(2.2 GB)

1.41± 0.043
(0.050s/g)
(6.1 GB)

No-CAS
0.93± 0.030
(0.075s/g)
(3.5 GB)

0.79± 0.063
(0.068s/g)
(3.4 GB)

0.94± 0.030
(0.085s/g)
(2.6 GB)

0.94± 0.042
(0.062s/g)

(2 GB)

1.08± 0.025
(0.288s/g)

(3 GB)

0.99± 0.005
(0.235s/g)
(2.3 GB)

1.34± 0.047
(0.523s/g)
(4.7 GB)

DP-GNN
0.98± 0.058
(0.079s/g)
(3.7 GB)

0.99± 0.051
(0.086s/g)
(3.6 GB)

0.97± 0.036
(0.080s/g)
(6.4 GB)

0.99± 0.035
(0.071s/g)
(1.9 GB)

0.45± 0.0211

(29.51s/g)
(44 GB)

0.69± 0.0241

(44.09s/g)
(26.4 GB)

0.24± 0.0541

(11.36s/g)
(129.7 GB)

Erdos-GNN
0.88± 0.034
(0.235s/g)
(3.6 GB)

0.95± 0.026
(0.241s/g)
(3.4 GB)

0.90± 0.036
(0.248s/g)
(4.4 GB)

0.94± 0.035
(0.142s/g)
(2.6 GB)

0.95± 0.021
(1.78s/g)
(16 GB)

0.92± 0.014
(2.00s/g)
(6.4 GB)

1.15± 0.055
(1.24s/g)
(61 GB)

LwDMIS2
0.82± 0.051
(0.024s/g)

(N/A)

0.91± 0.044
(0.057s/g)

(N/A)

0.77± 0.065
(0.076s/g)

(N/A)

0.85± 0.062
(0.053s/g)

(N/A)

0.95± 0.019
(0.207s/g)

(N/A)

0.91± 0.022
(0.037s/g)

(N/A)

1.03± 0.039
(0.302s/g)

(N/A)

Table 2: Generalization results for large-sized datasets (10,000 nodes), reported similarly as Table 1.
Note, we do not specify the peak memory usage as no bespoke training was executed. Additionally,
we report performance only for those methods that could be evaluated on the entire datasets.

Method (↓) Dataset (→) ER PL

BCAS 0.63± 0.085
(0.015s/g)

0.99± 0.002
(0.679s/g)

No-CAS 1.17± 0.024
(5.349s/g)

0.99± 0.001
(3.372s/g)

DP-GNN3 N/A
(36239.508s/g)

N/A
(39994.408s/g)

Erdos-GNN 1.07± 0.023
(19.2s/g)

0.94± 0.009
(18.41s/g)

LwDMIS 0.99 ± 0.020
(0.541 s/g)

0.92 ± 0.003
(0.296s/g)

small datasets (Table 1, left half). On the medium datasets (Table 1, right half), its performance is201

1.30–4.20x worse than any next best method across datasets while running more than 1,000x slower202

and consuming up to 27.44x more memory than other methods. In contrast, earlier methods such as203

LwDMIS and Erdős-GNN exhibit better tradeoffs over different graph sizes: LwDMIS is reasonably204

fast but performs similarly or worse than Erdős-GNN, especially on small graphs, while Erdős-GNN205

achieves its stronger performance at the cost of slower speeds and worse scalability. Our model206

variants strike an effective balance between these, delivering 1.07–1.22x better performance than207

either method while also reducing runtime (6.18–24.8x faster), and saving up to 2.78–12.97x memory.208

This demonstrates the efficiency and scalability of our model when compared to any other existing209

learning method.210

Generalization. We highlight our model’s generalization ability by training our model variants on211

small synthetic datasets and then evaluating them on corresponding datasets 100x their size (Table 2).212

DP-GNN, Erdős-GNN, and LwDMIS display the same strengths and weaknesses as for the smaller213

datasets: DP-GNN scales so poorly that its runtime is four orders of magnitude worse than the others,214

Erdős-GNN achieves decent performance but is slower than the remaining methods, and LwDMIS215

runs very quickly at the cost of inferior performance. Our No-CAS variant, although not as fast as216

LwDMIS, achieves far superior performance to any other learning method and even ties Gurobi’s217

performance in a third of the runtime. On the PL dataset specifically, BCAS achieves the same great218

performance, but is 4.97x faster than No-CAS and 14.73x faster than Gurobi.219

1Restricted evaluation, 10,000 snapshots of test dataset
2LwDMIS fails to train on some graph snapshots; thus, we do not report its peak training memory usage
3Restricted evaluation, 6 snapshots of test dataset

6

References220

[1] Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, and Z. Bar-Joseph. A biological solution221

to a fundamental distributed computing problem. Science, 331(6014):183–185, Jan. 2011.222

doi:10.1126/science.1193210.223

[2] S. Ahn, Y. Seo, and J. Shin. Learning what to defer for maximum independent sets. In224

Proceedings of the 37th International Conference on Machine Learning, page 134–144. PMLR,225

Nov. 2020. URL https://proceedings.mlr.press/v119/ahn20a.html.226

[3] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling Salesman Problem: A227

Computational Study. Princeton University Press, Princeton, NJ, 2007. ISBN 9780691129938.228

[4] S. Assadi, K. Onak, B. Schieber, and S. Solomon. Fully dynamic maximal independent set229

with sublinear in n update time. In T. M. Chan, editor, Proceedings of the Thirtieth Annual230

ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,231

January 6-9, 2019, pages 1919–1936. SIAM, 2019. doi:10.1137/1.9781611975482.116. URL232

https://doi.org/10.1137/1.9781611975482.116.233

[5] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,234

A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,235

G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,236

M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning,237

and graph networks. (arXiv:1806.01261), Oct. 2018. doi:10.48550/arXiv.1806.01261. URL238

http://arxiv.org/abs/1806.01261. arXiv:1806.01261 [cs].239

[6] S. Behnezhad, M. Derakhshan, M. Hajiaghayi, C. Stein, and M. Sudan. Fully dynamic maximal240

independent set with polylogarithmic update time. In 2019 IEEE 60th Annual Symposium241

on Foundations of Computer Science (FOCS), page 382–405, Baltimore, MD, USA, Nov.242

2019. IEEE. ISBN 978-1-72814-952-3. doi:10.1109/FOCS.2019.00032. URL https://243

ieeexplore.ieee.org/document/8948654/.244

[7] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: A245

methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,246

Apr. 2021. ISSN 0377-2217. doi:10.1016/j.ejor.2020.07.063.247

[8] L. Brusca, L. C. Quaedvlieg, S. Skoulakis, G. G. Chrysos, and V. Cevher. Maximum independent248

set: self-training through dynamic programming. In Proceedings of the 37th International249

Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024.250

Curran Associates Inc.251

[9] B.-M. Bui-Xuan, A. Ferreira, and A. Jarry. Computing Shortest, Fastest, and Foremost Journeys252

in Dynamic Networks. International Journal of Foundations of Computer Science, 14(02):253

267–285, 2003. doi:10.1142/S0129054103001728.254

[10] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic255

networks. Int. J. Parallel Emerg. Distrib. Syst., 27(5):387–408, Oct. 2012. ISSN 1744-5760.256

doi:10.1080/17445760.2012.668546.257

[11] S. Chechik and T. Zhang. Fully dynamic maximal independent set in expected poly-log258

update time. (arXiv:1909.03445), Apr. 2021. doi:10.48550/arXiv.1909.03445. URL http:259

//arxiv.org/abs/1909.03445. arXiv:1909.03445 [cs].260

[12] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural261

networks on sequence modeling. (arXiv:1412.3555), Dec. 2014. doi:10.48550/arXiv.1412.3555.262

URL http://arxiv.org/abs/1412.3555. arXiv:1412.3555 [cs].263

[13] N. A. Crossley, A. Mechelli, P. E. Vértes, T. T. Winton-Brown, A. X. Patel, C. E. Ginestet,264

P. McGuire, and E. T. Bullmore. Cognitive relevance of the community structure of the human265

brain functional coactivation network. Proceedings of the National Academy of Sciences, 110266

(28):11583–11588, Jun 2013. doi:https://doi.org/10.1073/pnas.1220826110. URL https:267

//www.pnas.org/doi/10.1073/pnas.1220826110.268

7

https://doi.org/10.1126/science.1193210
https://proceedings.mlr.press/v119/ahn20a.html
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.48550/arXiv.1806.01261
http://arxiv.org/abs/1806.01261
https://doi.org/10.1109/FOCS.2019.00032
https://ieeexplore.ieee.org/document/8948654/
https://ieeexplore.ieee.org/document/8948654/
https://ieeexplore.ieee.org/document/8948654/
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.48550/arXiv.1909.03445
http://arxiv.org/abs/1909.03445
http://arxiv.org/abs/1909.03445
http://arxiv.org/abs/1909.03445
https://doi.org/10.48550/arXiv.1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/https://doi.org/10.1073/pnas.1220826110
https://www.pnas.org/doi/10.1073/pnas.1220826110
https://www.pnas.org/doi/10.1073/pnas.1220826110
https://www.pnas.org/doi/10.1073/pnas.1220826110

[14] P. L. Donti, D. Rolnick, and J. Z. Kolter. Dc3: A learning method for optimization with hard269

constraints. Oct. 2020. URL https://openreview.net/forum?id=V1ZHVxJ6dSS.270

[15] X. Gao, J. Li, and D. Miao. Dynamic approximate maximum independent set on massive graphs.271

In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pages 1835–1847,272

2022. doi:10.1109/ICDE53745.2022.00183.273

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of274

NP-Completeness. W. H. Freeman & Co., United States, 1979.275

[17] U. Gunarathna, R. Borovica-Gajic, S. Karunasekera, and E. Tanin. Dynamic graph combinatorial276

optimization with multi-attention deep reinforcement learning. In Proceedings of the 30th277

International Conference on Advances in Geographic Information Systems, SIGSPATIAL ’22,278

page 1–12, New York, NY, USA, Nov 2022. Association for Computing Machinery. ISBN279

978-1-4503-9529-8. doi:10.1145/3557915.3560956. URL https://dl.acm.org/doi/10.280

1145/3557915.3560956.281

[18] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.282

gurobi.com.283

[19] K. Hanauer, M. Henzinger, and C. Schulz. Recent advances in fully dynamic graph algorithms284

– a quick reference guide. ACM J. Exp. Algorithmics, 27:1.11:1–1.11:45, Dec. 2022. ISSN285

1084-6654. doi:10.1145/3555806.286

[20] J. Håstad. Clique is hard to approximate within n1−ε. In Proceedings of 37th Conference287

on Foundations of Computer Science, pages 627–636, Burlington, VT, USA, 1996. IEEE.288

doi:10.1109/SFCS.1996.548522.289

[21] R. Hidaka, Y. Hamakawa, J. Nakayama, and K. Tatsumura. Correlation-diversified portfolio290

construction by finding maximum independent set in large-scale market graph. IEEE Access,291

11:142979–142991, Jan 2023. doi:https://doi.org/10.1109/access.2023.3341422. URL https:292

//arxiv.org/abs/2308.04769.293

[22] N. Karalias and A. Loukas. Erdos goes neural: an unsupervised learning frame-294

work for combinatorial optimization on graphs. In Advances in Neural Infor-295

mation Processing Systems, volume 33, page 6659–6672. Curran Associates, Inc.,296

2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/hash/297

49f85a9ed090b20c8bed85a5923c669f-Abstract.html.298

[23] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart. Representation299

learning for dynamic graphs: a survey. J. Mach. Learn. Res., 21(1):70:2648–70:2720, Jan. 2020.300

ISSN 1532-4435.301

[24] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization302

algorithms over graphs. In Advances in Neural Information Processing Systems, volume 30.303

Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/304

paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.305

[25] S. Kumar, X. Zhang, and J. Leskovec. Predicting dynamic embedding trajectory in tem-306

poral interaction networks. In Proceedings of the 25th ACM SIGKDD International Con-307

ference on Knowledge Discovery & Data Mining, KDD ’19, page 1269–1278, New York,308

NY, USA, July 2019. Association for Computing Machinery. ISBN 978-1-4503-6201-309

6. doi:10.1145/3292500.3330895. URL https://dl.acm.org/doi/10.1145/3292500.310

3330895.311

[26] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http:312

//snap.stanford.edu/data, June 2014.313

[27] A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, P. Lio, F. Scarselli, and A. Passerini.314

Graph neural networks for temporal graphs: State of the art, open challenges, and opportunities.315

(arXiv:2302.01018), July 2023. doi:10.48550/arXiv.2302.01018. URL http://arxiv.org/316

abs/2302.01018. arXiv:2302.01018 [cs].317

8

https://openreview.net/forum?id=V1ZHVxJ6dSS
https://doi.org/10.1109/ICDE53745.2022.00183
https://doi.org/10.1145/3557915.3560956
https://dl.acm.org/doi/10.1145/3557915.3560956
https://dl.acm.org/doi/10.1145/3557915.3560956
https://dl.acm.org/doi/10.1145/3557915.3560956
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1145/3555806
https://doi.org/10.1109/SFCS.1996.548522
https://doi.org/https://doi.org/10.1109/access.2023.3341422
https://arxiv.org/abs/2308.04769
https://arxiv.org/abs/2308.04769
https://arxiv.org/abs/2308.04769
https://proceedings.neurips.cc/paper_files/paper/2020/hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://doi.org/10.1145/3292500.3330895
https://dl.acm.org/doi/10.1145/3292500.3330895
https://dl.acm.org/doi/10.1145/3292500.3330895
https://dl.acm.org/doi/10.1145/3292500.3330895
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.48550/arXiv.2302.01018
http://arxiv.org/abs/2302.01018
http://arxiv.org/abs/2302.01018
http://arxiv.org/abs/2302.01018

[28] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. Sndlib 1.0—survivable network318

design library. Netw., 55(3):276–286, 2010. ISSN 0028-3045.319

[29] P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer. Dropgnn: Random320

dropouts increase the expressiveness of graph neural networks. In Advances in321

Neural Information Processing Systems, volume 34, page 21997–22009. Curran As-322

sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/323

b8b2926bd27d4307569ad119b6025f94-Abstract.html.324

[30] J. Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7(3):425–440,325

1986. doi:10.1016/0196-6774(86)90032-5.326

[31] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein. Temporal graph327

networks for deep learning on dynamic graphs, 2020. URL https://arxiv.org/abs/2006.328

10637.329

[32] M. J. A. Schuetz, J. K. Brubaker, and H. G. Katzgraber. Combinatorial optimization with330

physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, Apr. 2022.331

ISSN 2522-5839. doi:10.1038/s42256-022-00468-6.332

[33] P. Toth and D. Vigo. Vehicle Routing: Problems, Methods, and Applications. Society for333

Industrial and Applied Mathematics, Philadelphia, PA, 2 edition, 2014. ISBN 9781611973594.334

[34] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. Dyrep: Learning representations over dynamic335

graphs. Sept. 2018. URL https://openreview.net/forum?id=HyePrhR5KX.336

[35] H. P. Wang, N. Wu, H. Yang, C. Hao, and P. Li. Unsupervised learning for combinatorial337

optimization with principled objective relaxation. Oct. 2022. URL https://openreview.338

net/forum?id=HjNn9oD_v47.339

[36] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph340

neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4–24,341

2021. doi:10.1109/TNNLS.2020.2978386.342

[37] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Inductive representation learning on343

temporal graphs. Sept. 2019. URL https://openreview.net/forum?id=rJeW1yHYwH.344

[38] L. Yu, L. Sun, B. Du, and W. Lv. Towards better dynamic graph learn-345

ing: New architecture and unified library. 36:67686–67700, 2023. URL346

https://proceedings.neurips.cc/paper_files/paper/2023/hash/347

d611019afba70d547bd595e8a4158f55-Abstract-Conference.html.348

[39] S. Zhang, H. Tong, J. Xu, and R. Maciejewski. Graph convolutional networks: a comprehensive349

review. Computational Social Networks, 6(1):11, 2019. ISSN 2197-4314. doi:10.1186/s40649-350

019-0069-y.351

[40] W. Zheng, C. Piao, H. Cheng, and J. X. Yu. Computing a near-maximum independent set in352

dynamic graphs. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),353

pages 76–87, 2019. doi:10.1109/ICDE.2019.00016.354

A Comparision of BCAS vs. No-CAS355

Table 3 shows correlations between our BCAS and No-CAS models’ performance and runtime vs.356

properties of the graph snapshots in the testing datasets. For performance, the same graph properties357

help and hurt both BCAS and No-CAS: both models perform better on graphs with many edges,358

high-degree nodes, and dense clustering but perform worse when diameter and node distance increase.359

This is intuitive, as both variants aggregate information from only their local neighbors and thus360

benefit from dense structure but suffer from distant changes that are not propagated. For runtime,361

there is a sharp contrast between the variants. BCAS runtimes are largely uncorrelated with graph362

properties—owing to its strictly local cascades and aggregation—exhibiting only a weak positive363

correlation with diameter and distance (stemming from the fact that α = β are set as a fixed fraction364

of diameter). No-CAS runtimes, on the other hand, are strongly determined by density (i.e., edge365

counts, degrees, and clustering), since every node in the graph must perform local aggregation at366

every time step and the complexity of local aggregation is entirely dependent on neighborhood size.367

9

https://proceedings.neurips.cc/paper/2021/hash/b8b2926bd27d4307569ad119b6025f94-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b8b2926bd27d4307569ad119b6025f94-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b8b2926bd27d4307569ad119b6025f94-Abstract.html
https://doi.org/10.1016/0196-6774(86)90032-5
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2006.10637
https://doi.org/10.1038/s42256-022-00468-6
https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=HjNn9oD_v47
https://openreview.net/forum?id=HjNn9oD_v47
https://openreview.net/forum?id=HjNn9oD_v47
https://doi.org/10.1109/TNNLS.2020.2978386
https://openreview.net/forum?id=rJeW1yHYwH
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1109/ICDE.2019.00016

Table 3: Pearson correlation for model performance and runtime vs. properties of graph snapshots.
Correlation coefficients are calculated over all 75,000 graph snapshots in the testing splits of our
medium datasets. Due to the large number of samples, we set our threshold for significance at
p < 10−10. All reported correlations are significant with p < 10−40, except the one value marked
with a (†), which has p = 0.00095.

Performance Runtime
Graph Properties BCAS No-CAS BCAS No-CAS

Edges 0.99 0.97 –0.09 0.98
Min. Degree 0.91 0.94 –0.15 0.92
Max. Degree 0.96 0.89 0.12 0.92
Ave. Degree 0.99 0.97 –0.06 0.98

Ave. Clustering Coefficient 0.99 0.95 –0.01† 0.97
Diameter –0.68 –0.79 0.43 –0.74

Ave. Node Distance –0.75 –0.85 0.39 –0.81

B Model Pseudocode368

Algorithms 1–3 show pseudocode for our model’s initial MaxIS generation procedure, update training369

process, and integral solution generation procedure, respectively. Throughout, graph snapshots Gt,370

edge events Et, signals st(·), node memories mt(·), node estimates pt(·), and node losses ℓt(·) are371

defined as they were in the main text. Bold versions of these notations refer to the vector of all node372

properties of that type (e.g., mt refers to all node memories). In a slight abuse of notation, we use373

N x
t (Et) to denote all nodes within an x hop-distance from the edge event Et; i.e., the endpoints of374

the edge event are in N 0
t (Et), those endpoints and their neighbors are in N 1

t (Et), and so on.375

Algorithm 1 Initial MaxIS Generation Epoch
1: Initialize all node memories as m0 ← 0.
2: for all edges (u, v) ∈ E0 do
3: Let E be the edge event of adding (u, v).
4: Do event handling with signal s← [enc(E) || 0] as in Eq. 1.
5: Update m0(u)← GRU([m0(u) || s]) and m0(v)← GRU([m0(v) || s]) as in Eq. 2.
6: Compute node estimates p0 from the updated node memories m0 as in Eqs. 3–5.
7: Compute node losses ℓ0 from p0 as in Eq. 6.
8: Compute cumulative loss L0 ←

∑
v∈V ℓ0(v).

Algorithm 2 Update Training Epoch
1: Initialize node memories m0 using Algorithm 1.
2: for all edge events Et ∈ (E1, E2, . . . , ET) in the training set do
3: for all nodes v ∈ Nα

t (Et) do
4: Do event handling with st(v)← [enc(Et) || rt(v)] as in Eq. 1.
5: Update mt(v) using st(v) as in Eq. 2.
6: for all nodes v ∈ N β

t (Et) do
7: Compute estimate pt(v) from mt(v) as in Eqs. 3–5.
8: for all nodes v ∈ N β

t (Et) do
9: Compute node loss ℓt(v) from pt as in Eq. 6.

10: Compute cumulative loss Lt ←
∑

v∈Nβ
t (Et)

ℓt(v).

C Experiment and Details376

Each dynamic graph is divided into its training, evaluation, and testing splits, arranged chronologically377

with increasing time steps. We use a 70:15:15 training, evaluation, testing split for small datasets and378

10

Algorithm 3 Integral Solution Generation (Testing & Inference)
1: Initialize node memories m0 using Algorithm 1.
2: for all edge events Et ∈ (E1, E2, . . . , ET) in the testing set do
3: for all nodes v ∈ Nα

t (Et) do
4: Do event handling with st(v)← [enc(Et) || rt(v)] as in Eq. 1.
5: Update mt(v) using st(v) as in Eq. 2.
6: for all nodes v ∈ N β

t (Et) do
7: Compute estimate pt(v) from mt(v) as in Eqs. 3–5.
8: for all nodes v ∈ N β

t (Et) do ▷ Estimate Rounding
9: if pt(v) ≥ 0.5 then It(v)← 1.

10: else It(v)← 0.
11: while there exists a node v ∈ N β

t (Et) with violations do ▷ Violation Removal
12: Choose the node v ∈ N β

t (Et) with the most violations.
13: Remove v from the MaxIS wtih It(v)← 0.

a 50:25:25 split for medium datasets. The large datasets only have 5,000 time steps because we use379

them solely for generalization experiments and do not train our model on them.380

All methods were trained (if applicable) and tested on a machine with an AMD EPYC 7413 CPU and381

a 20 GB slice of one NVIDIA A100 GPU. For the learning methods, training was halted after seven382

days. For Gurobi, we enforced a time limit of 1 s per snapshot; this is sufficient for producing exact383

solutions for small datasets, but yields approximations for medium and large ones.384

11

	Introduction
	Maximum Independent Sets in Dynamic Graphs
	An Unsupervised Learning Model for Dynamic MaxIS
	Experiments
	Results

	Comparision of BCAS vs. No-CAS
	Model Pseudocode
	Experiment and Details

