
Unsupervised Learning of Local Updates for
Maximum Independent Set in Dynamic Graphs

Devendra Parkar1,2∗ Anya Chaturvedi1∗ Joshua J. Daymude1,2
1 School of Computing and Augmented Intelligence

2 Biodesign Center for Biocomputing, Security and Society
Arizona State University
Tempe, AZ 85281, USA

{dparkar1, anya.chaturvedi, jdaymude}@asu.edu

Abstract

We present the first unsupervised learning model for finding Maximum Indepen-
dent Sets (MaxIS) in dynamic graphs where edges change over time. Our method
combines structural learning from graph neural networks (GNNs) with a learned
distributed update mechanism that, given an edge addition or deletion event, mod-
ifies nodes’ internal memories and infers their MaxIS membership in a single,
parallel step. We parameterize our model by the update mechanism’s radius and
investigate the resulting performance–runtime tradeoffs for various dynamic graph
topologies. We evaluate our model against a mixed integer programming solver
and the state-of-the-art learning-based methods for MaxIS on static graphs (ICML
2020; NeurIPS 2020, 2023). Across synthetic and empirical dynamic graphs of 50–
1,000 nodes, our model achieves competitive approximation ratios with excellent
scalability; on large graphs, it significantly outperforms the state-of-the-art learning
methods in solution quality, runtime, and memory usage. When generalizing to
graphs of 10,000 nodes (100x larger than the ones used for training), our model
produces MaxIS solutions 1.05–1.18x larger than any other learning method, even
while maintaining competitive runtimes.

1 Introduction

Combinatorial optimization problems on graphs (e.g., GRAPH-COLORING, TRAVELING-SALESMAN,
VEHICLE-ROUTING, etc.) arise naturally in many practical domains [3, 33]. However, many of these
problems are classically intractable to solve exactly, and some even resist efficient approximation.
The situation is exacerbated by the fact that many real-world applications are dynamic, requiring
algorithms to not only find solutions but also maintain them as the underlying structure evolves.
While one could iteratively apply algorithms designed for static graphs at each time step, this
approach is often computationally expensive and inefficient. Critically, this approach ignores the
often close relationship between successive graph structures. A more effective strategy might avoid
repeatedly recomputing solutions from scratch by instead leveraging these small structural changes to
incrementally update an existing solution. Such update algorithms are an active area of theoretical
algorithms research [4, 6, 11, 15, 19, 40], but no learning algorithms have yet taken this approach.

In this paper, we consider the MAXIMUM-INDEPENDENT-SET (MaxIS) problem in a dynamic setting.
For static graphs, MaxIS is classically known to be NP-hard [16] and hard to approximate: for general
graphs, deterministic approximation within a constant factor is impossible [30] and within an n1−ε

factor is NP-hard [20].
∗These authors contributed equally to this work.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Differentiable Learning
of Combinatorial Algorithms.

Nevertheless, MaxIS has a diverse range of real-world applications, from identifying functional nodes
in brain networks [1] to constructing diversified investment portfolios [21]. Our goal is to solve
MaxIS on such dynamically evolving graphs.

Recently, the learning community has developed several methods for solving combinatorial opti-
mization problems on static graphs [7, 24]. Central to many of these methods are Graph Neural
Networks (GNNs) due to their efficiency in capturing the structural information present in real-world
networks such as the Internet, social networks, and molecular interactions [36, 39]. In the dynamic
setting, recent models such as temporal GNNs are primarily concerned with tasks such as edge
prediction, node classification, graph classification, etc. [25, 27, 31, 34, 37]. Work considering
combinatorial optimization problems in a dynamic setting remains limited, with few examples such
as Gunarathna et al. [17], which is an indirect heuristic learning approach. No existing models learn
update mechanisms comparable to theoretical, rule-based update algorithms.

We propose a model that solves MaxIS in dynamic graphs by directly learning an update mechanism
instead of a heuristic. We utilize the power of message-passing GNNs [5] combined with sequence
learning to learn an update mechanism that maintains an approximate MaxIS solution as the under-
lying graph changes. Having learned an update mechanism, the model is able to update a MaxIS
solution following a change in the dynamic graph in a single inference step, unlike more popular
heuristic learning methods which require multiple inference steps and thus scale poorly with graph
size. We underscore this as a necessary shift in perspective required to address some of the common
criticisms of learning approaches to solving combinatorial optimization problems, namely, lack of
scalability, computation inefficiency, and huge training sample requirements.

Contributions. We present the first unsupervised learning model for solving MAXIMUM-
INDEPENDENT-SET (MaxIS) on dynamic graphs. The central idea of learning local, distributed
update mechanisms for combinatorial optimization problems on dynamic graphs is novel, and we
demonstrate its efficiency in our evaluations. Compared to a commercial mixed integer programming
solver [18], our model maintains favorable approximation ratios across a variety of dynamic graph
topologies and sizes. For larger datasets, our model conclusively outperforms the three prior learning
methods for MaxIS on static graphs: the current state-of-the-art, DP-GNN [8]; a single-shot method,
Erdős-GNN [22]; and a deep reinforcement learning method, LwDMIS [2]. Resource scaling for our
method vs. DP-GNN is drastic; we obtain solutions up to 104x faster and use up to 27.5x less memory
while producing up to 5.64x larger MaxIS solutions. Compared to Erdős-GNN and LwDMIS, our
model delivers 1.07–1.22x larger MaxIS solutions than either method while also running 6.18–24.8x
faster and saving up to 2.78–12.97x memory. These gains hold even in generalization experiments,
where we evaluate our model on graphs 100x the size of those it was trained on.

2 Maximum Independent Sets in Dynamic Graphs

Consider an undirected, static graph G = (V,E) with nodes V and edges E. An independent set
I ⊆ V of G is a set of nodes no two of which are adjacent, i.e., for all u, v ∈ I , we have (u, v) ̸∈ E.
Its size is its number of nodes, denoted |I|. A maximum independent set (MaxIS) of G is any
independent set I of G satisfying |I| = max{|I ′| : I ′ is an independent set of G}.
Dynamic graphs (also called dynamic networks, temporal graphs, or evolving graphs) are graphs
whose nodes and/or edges change over time [9, 10, 23, 31]. For this work, we consider dynamic
graphs where at most one edge changes per time and the underlying set of nodes is fixed. Formally,
a dynamic graph G is a finite sequence of graph snapshots (G0, G1, . . . , GT) where each snapshot
Gt = (V,Et) is an undirected, static graph on nodes V and, for all time steps 0 < t ≤ T , we have
|Et−1 ⊕ Et| = 1, i.e., there is exactly one edge addition or one edge deletion per time step. We
denote the edge event at time t which transitions Gt−1 to Gt as Et. The neighborhood of a node v at
time t isNt(v) = {u ∈ V | (u, v) ∈ Et} and its degree is denoted dt(v) = |Nt(v)|. The diameter of
graph snapshot Gt, denoted diam(Gt), is the maximum hop-distance between any two nodes in Gt.

We define the DYNAMIC-MAXIMUM-INDEPENDENT-SET (Dynamic MaxIS) problem as follows:
Given a dynamic graph G = (G0, G1, . . . , GT)—or, equivalently, an initial graph snapshot G0 and
a sequence of edge events (E1, . . . , ET)—obtain a MaxIS for each snapshot Gt. This problem is
clearly NP-hard since it contains the NP-complete MaxIS problem as a special case (T = 0). Given
a solution for the MaxIS problem, there exist a polynomial-time conversions to obtain solutions

2

edge event
at time t

training

test/inference

local aggregator
modulelosst = Σv ℓt(v)

MLP

MaxIS
estimates pt(v)

rounding &
violation
removal

node/neighborhood
information ht(v)

⋯ ⋯

v

v

signals st(·)
(α = 1)

previous node
memories mt – 1(·)

updated node
memories mt(·)

Figure 1: An overview of our unsupervised learning model for MaxIS on dynamic graphs. Nodes
maintain memories (node colors) which are updated by signals propagating in an α-radius from edge
events (orange arrows). Each node within a β-radius of the edge event then locally aggregates its
updated memory and those of its neighbors to estimate its new probability of MaxIS membership.
These estimates are then used to compute loss (during training) or to generate an integral MaxIS
solution (during testing and inference).

for the MINIMUM-VERTEX-COVER and MAXIMUM-CLIQUE problems; hence, achieving good
approximations for Dynamic MaxIS can also aid in approximating these problems’ dynamic versions.

3 An Unsupervised Learning Model for Dynamic MaxIS

Memory-based models such as [25, 31, 34, 38] have been quite successful in prediction and clas-
sification tasks in dynamic graphs in recent years. Motivated by their effectiveness in predictive
learning of dynamics, we present an unsupervised learning model focused on the MaxIS problem in
dynamic graphs. We take inspiration from the Temporal Graph Networks (TGN) model proposed
by Rossi et al. [31], which generalizes memory-based models by including a GNN-based graph
embedding module. We repurpose the two key modules of TGNs, memory and graph embedding,
to learn an update mechanism that maintains a candidate MaxIS solution as the underlying graph
changes. Moreover, inspired by the use of messages (seen as random perturbations) to improve GNN
performance for NP-hard problems [29], we couple node memory to an event handling module to
inform nodes about edge events.

Our model responds to edge events (i.e., edge additions or deletions) over time (see Figure 1). At
each time step, the event handling module is responsible for signaling nodes within an α hop-distance
of the edge event and memory module updates their internal representations using this signal. Finally,
the local aggregation (graph embedding) module produces a probability of membership in the MaxIS
solution (i.e., an estimate) based on node’s memory, its degree, and the memories of its neighbors.
We describe each module and the training-related details of our model in the following subsections;
pseudocode can be found in Appendix B.

Event Handling Module. This module provides each node v within an α hop-distance of the
edge event Et with a signal st(v) encoding the type of event (addition or deletion) and the node’s
normalized distance from the event. Formally, the signal for node v at time t is

st(v) = [enc(Et) || rt(v)], (1)

where enc encodes edge deletions as [0, 1] and edge additions as [1, 0], and rt(v) is the hop-distance
from v to Et normalized by α and linearly interpolated into [−1, 1].

3

Memory Module. A node’s memory is a high-dimensional representation maintained throughout
the model’s execution that captures relevant structural changes affecting the node. At each time t,
this module updates the memories of nodes within an α hop-distance of the edge event Et. Updates
are performed using a GRU cell [12]. Formally, the memory of a node v at time t is

mt(v) =

{
GRU

(
[mt−1(v) || st(v)]) if v is within an α hop-distance of Et;

mt−1(v) otherwise. (2)

Local Aggregation Module. This module updates the estimates—i.e., probabilities of membership
in the MaxIS solution—of all nodes within a β hop-distance of the edge event Et. First, each node v
aggregates its immediate neighbors’ memories:

h̃t(v) = ReLU

 ∑
u∈Nt(v)

W1mt(u)

 , (3)

where W1 are learnable weights. Next, node v combines these aggregated memories with its own
memory and degree information to obtain a local embedding

ht(v) = W2

[
h̃t(v) ||mt(v) || dt(v)

]
, (4)

where again W2 are learnable weights. Finally, node v passes its embedding through a step-down
MLP and a sigmoid function σ to obtain its estimate (probability of MaxIS membership) in [0, 1]:

pt(v) = σ
(
MLP(ht(v))

)
. (5)

Any node v beyond the β hop-distance of Et simply retains its previous estimate, i.e., pt(v) = pt−1(v).

Training. We first define a loss function from a node’s local perspective and then define a cumulative
loss function from these local losses. Since the memory and local aggregation modules operate on
individual nodes, a local loss function enables these modules to synergize and learn a distributed
update mechanism. The loss for a node v at time t is

ℓt(v) = −pt(v) +
c

2dt(v)

∑
u∈Nt(v)

pt(u)pt(v). (6)

The −pt(v) term rewards nodes with large estimates (i.e., probabilities of MaxIS membership closer
to 1), aligning with the goal of finding a large independent set. This is counterbalanced by the∑

u∈Nt(v)
pt(u)pt(v) term which penalizes violations of independence, i.e., when neighbors u and v

both have large estimates. Finally, the constant c is a hyperparameter balancing the two terms’ loss
contributions; in practice, c = 3 worked reasonably well across our evaluations (Section 4).

The cumulative loss at time t is the sum of all local losses ℓt(v) for nodes v within a β hop-distance
of the edge event Et (i.e., all nodes that updated their estimates at time t). This set of nodes at this one
time step forms a single batch in our training process. The sequential processing of all edge events in
a dynamic graph’s training set forms a single epoch in our training process.

Model Variants. As explained above, the hop-distances α and β control which nodes utilize an edge
event to update their memories and which nodes update their estimates and contribute to cumulative
loss, respectively. In the bounded cascading (BCAS) model variant, we set α = β = γ · diam(G0),
where γ ≪ 1, strictly bounding nodes’ memory and estimate updates to a local region around each
edge event.

In the non-cascading (No-CAS) model variant, we set α = 0 and β = diam(G0); i.e., only the two
nodes directly involved in the edge event update their memories, but all nodes in the graph update
their estimates and contribute to cumulative loss. In this variant, the local aggregation module is
primarily responsible for the graph-wide learning of the update mechanism, with node memory aiding
in the locality of the edge event.

Initial MaxIS Generation and Unsupervised Learning. Update algorithms for MaxIS crucially
require an existing MaxIS solution for the initial snapshot G0 which is later updated as the graph
structure changes. We mitigate this (potentially very expensive) prerequisite by utilizing an initial

4

MaxIS generation phase that efficiently produces memories for all nodes in G0 and model weights
that training can warm-start from. The idea is to build up G0 one edge at a time (as a sequence of edge
addition events), updating only the memories of the nodes involved in each edge addition. Once G0

is fully constructed, estimates and corresponding losses are computed for all nodes. This constitutes a
single epoch of this generation phase; in a single run of the generation phase, we execute epochs until
the cumulative loss has stabilized. After executing multiple runs with random seeds, we extract the
node memories and model weights from the run with the least cumulative loss to warm-start model
training. Thus, the model as a whole learns to first find a candidate MaxIS (generation phase) and
then maintain it (training phase) in an entirely unsupervised manner.

Integral Solution Generation. During testing and deployment, we use a simple rounding and
violation removal procedure to convert the model’s relaxed node estimates into a candidate MaxIS.
Specifically, all nodes with estimates 0.5 or larger are initially included in the candidate solution;
then, nodes violating independence are removed in decreasing order of number of violations until an
independent set is obtained. Such a procedure is a necessary part of single-shot learning methods that
directly use relaxation to solve optimization problems with hard constraints [14, 22, 32, 35].

4 Experiments

Datasets. We evaluate model performance across both synthetic and empirical dynamic graphs.
For synthetic graphs, we consider Erdős–Rényi (ER) and Power Law (PL) graphs with randomly
generated initial structures. For empirical graphs, we used initial structures given by GERMANY
[28], a geographical network with a mesh topology; TWITTER [26], a social network subgraph
with a dense small-world topology; and BRAIN [13], a biological network with a sparse small-
world topology. Across all graphs, dynamics are produced by sampling edge additions or deletions
according to the initial snapshot’s degree distribution for a desired number of time steps. The dynamic
graphs we consider span a range of sizes: small (≈100 nodes, 50,000 time steps), medium (≈1,000
nodes, 100,000 time steps), and large (≈10,000 nodes, 5,000 time steps).

Our Model and Comparisons. We ran our complete training pipeline using the two model variants:
BCAS and No-CAS. For the BCAS variant, we set α = β = 0.25 · diam(G0), i.e., half of the radius
of the first snapshot of the dynamic graph. For each variant, we performed three training runs with
different random seeds and report results for the median run. Since ours is the only learning method
for MaxIS in the dynamic setting, we compare our method against a commercial mixed integer
programming solver and existing learning methods for MaxIS on static graphs, where we apply them
to each snapshot of a dynamic graph independently.

• Gurobi [18] is the most commonly used and commercially available mixed integer program-
ming solver. We use the default settings of branch-and-bound search for solving.

• DP-GNN [8] is the state-of-the-art learning model for MaxIS in static graphs, combining
dynamic programming with GNNs as comparators to form a multi-step model.

• Erdős-GNN [22] is an earlier GNN-based, single-shot, probabilistic learning model for
combinatorial optimization in static graphs.

• LwDMIS [2] is a deep reinforcement learning method that adaptively adjusts its stages and
defers decisions about nodes’ MaxIS membership to improve scalability.

Metrics. We evaluate each method using three metrics: approximation ratio (performance), per-
graph solution generation time (runtime), and peak memory usage. Performance refers to the mean
ratio of a method’s candidate MaxIS size against that of Gurobi’s across all snapshots in a dynamic
graph. Runtime refers to the mean time taken by a method to process a single snapshot and generate
a candidate MaxIS across all snapshots in a dynamic graph (reported as seconds per graph, s/g). Peak
memory usage denotes the maximum memory used by a method during training.

We provide further details about the datasets and evaluation of methods in Appendix C.

5

Table 1: Test dataset performance (w.r.t. Gurobi) for small-sized (left half) and medium-sized (right
half) datasets. We report the means and the std. deviations of the performance along with the runtime
(in seconds per graph), averaged across the test dataset. We report the peak memory utilized while
training by learning methods in GigaBytes (GB). We separate our model variants from other learning
based methods and highlight the methods with the best performance (bold-black) and the best runtime
(blue) for each dataset.

Dataset (→)
Method (↓)

ER
(n = 100)

PL
(n = 100)

TWITTER
(n = 119)

GERMANY
(n = 50)

ER
(n = 1,000)

PL
(n = 1,000)

BRAIN
(n = 638)

BCAS
0.82± 0.049
(0.029s/g)
(2.3 GB)

0.93± 0.029
(0.033s/g)

(3 GB)

0.94± 0.028
(0.064s/g)

(3 GB)

0.88± 0.059
(0.046s/g)

(2 GB)

0.99± 0.025
(0.024s/g)
(2.1 GB)

0.96± 0.010
(0.082s/g)
(2.2 GB)

1.41± 0.043
(0.050s/g)
(6.1 GB)

No-CAS
0.93± 0.030
(0.075s/g)
(3.5 GB)

0.79± 0.063
(0.068s/g)
(3.4 GB)

0.94± 0.030
(0.085s/g)
(2.6 GB)

0.94± 0.042
(0.062s/g)

(2 GB)

1.08± 0.025
(0.288s/g)

(3 GB)

0.99± 0.005
(0.235s/g)
(2.3 GB)

1.34± 0.047
(0.523s/g)
(4.7 GB)

DP-GNN
0.98± 0.058
(0.079s/g)
(3.7 GB)

0.99± 0.051
(0.086s/g)
(3.6 GB)

0.97± 0.036
(0.080s/g)
(6.4 GB)

0.99± 0.035
(0.071s/g)
(1.9 GB)

0.45± 0.0212

(29.51s/g)
(44 GB)

0.69± 0.0241

(44.09s/g)
(26.4 GB)

0.24± 0.0541

(11.36s/g)
(129.7 GB)

Erdos-GNN
0.88± 0.034
(0.235s/g)
(3.6 GB)

0.95± 0.026
(0.241s/g)
(3.4 GB)

0.90± 0.036
(0.248s/g)
(4.4 GB)

0.94± 0.035
(0.142s/g)
(2.6 GB)

0.95± 0.021
(1.78s/g)
(16 GB)

0.92± 0.014
(2.00s/g)
(6.4 GB)

1.15± 0.055
(1.24s/g)
(61 GB)

LwDMIS3
0.82± 0.051
(0.024s/g)

(N/A)

0.91± 0.044
(0.057s/g)

(N/A)

0.77± 0.065
(0.076s/g)

(N/A)

0.85± 0.062
(0.053s/g)

(N/A)

0.95± 0.019
(0.207s/g)

(N/A)

0.91± 0.022
(0.037s/g)

(N/A)

1.03± 0.039
(0.302s/g)

(N/A)

4.1 Results

The results highlight the efficient scalability and overall performance of our model. Both the BCAS
and No-CAS variants of our model consistently outperform other learning-based methods in terms of
runtime and peak memory usage, while also achieving comparable or superior performance across all
graph sizes. Surprisingly, DP-GNN—although the current state-of-the-art—performs well only on
small datasets (Table 1, left half). On the medium datasets (Table 1, right half), its performance is
1.30–4.20x worse than any next best method across datasets while running more than 1,000x slower
and consuming up to 27.44x more memory than other methods. In contrast, earlier methods such as
LwDMIS and Erdős-GNN exhibit better tradeoffs over different graph sizes: LwDMIS is reasonably
fast but performs similarly or worse than Erdős-GNN, especially on small graphs, while Erdős-GNN
achieves its stronger performance at the cost of slower speeds and worse scalability. Our model
variants strike an effective balance between these, delivering 1.07–1.22x better performance than
either method while also reducing runtime (6.18–24.8x faster), and saving up to 2.78–12.97x memory.
This demonstrates the efficiency and scalability of our model when compared to any other existing
learning method.

Generalization. We highlight our model’s generalization ability by training our model variants on
small synthetic datasets and then evaluating them on corresponding datasets 100x their size (Table 2).
DP-GNN, Erdős-GNN, and LwDMIS display the same strengths and weaknesses as for the smaller
datasets: DP-GNN scales so poorly that its runtime is four orders of magnitude worse than the others,
Erdős-GNN achieves decent performance but is slower than the remaining methods, and LwDMIS
runs very quickly at the cost of inferior performance. Our No-CAS variant, although not as fast as
LwDMIS, achieves far superior performance to any other learning method and even ties Gurobi’s
performance in a third of the runtime. On the PL dataset specifically, BCAS achieves the same great
performance, but is 4.97x faster than No-CAS and 14.73x faster than Gurobi.

References

[1] Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, and Z. Bar-Joseph. A biological solution
to a fundamental distributed computing problem. Science, 331(6014):183–185, Jan. 2011.
doi:10.1126/science.1193210.

2Restricted evaluation, 10,000 snapshots of test dataset
3LwDMIS fails to train on some graph snapshots; thus, we do not report its peak training memory usage
4Restricted evaluation, 6 snapshots of test dataset

6

https://doi.org/10.1126/science.1193210

Table 2: Generalization results for large-sized datasets (10,000 nodes), reported similarly as Table 1.
Note, we do not specify the peak memory usage as no bespoke training was executed. Additionally,
we report performance only for those methods that could be evaluated on the entire datasets.

Method (↓) Dataset (→) ER PL

BCAS 0.63± 0.085
(0.015s/g)

0.99± 0.002
(0.679s/g)

No-CAS 1.17± 0.024
(5.349s/g)

0.99± 0.001
(3.372s/g)

DP-GNN4 N/A
(36239.508s/g)

N/A
(39994.408s/g)

Erdos-GNN 1.07± 0.023
(19.2s/g)

0.94± 0.009
(18.41s/g)

LwDMIS 0.99 ± 0.020
(0.541 s/g)

0.92 ± 0.003
(0.296s/g)

[2] S. Ahn, Y. Seo, and J. Shin. Learning what to defer for maximum independent sets. In
Proceedings of the 37th International Conference on Machine Learning, page 134–144. PMLR,
Nov. 2020. URL https://proceedings.mlr.press/v119/ahn20a.html.

[3] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling Salesman Problem: A
Computational Study. Princeton University Press, Princeton, NJ, 2007. ISBN 9780691129938.

[4] S. Assadi, K. Onak, B. Schieber, and S. Solomon. Fully dynamic maximal independent set
with sublinear in n update time. In T. M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 1919–1936. SIAM, 2019. doi:10.1137/1.9781611975482.116. URL
https://doi.org/10.1137/1.9781611975482.116.

[5] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,
M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning,
and graph networks. (arXiv:1806.01261), Oct. 2018. doi:10.48550/arXiv.1806.01261. URL
http://arxiv.org/abs/1806.01261. arXiv:1806.01261 [cs].

[6] S. Behnezhad, M. Derakhshan, M. Hajiaghayi, C. Stein, and M. Sudan. Fully dynamic maximal
independent set with polylogarithmic update time. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), page 382–405, Baltimore, MD, USA, Nov.
2019. IEEE. ISBN 978-1-72814-952-3. doi:10.1109/FOCS.2019.00032. URL https://
ieeexplore.ieee.org/document/8948654/.

[7] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: A
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
Apr. 2021. ISSN 0377-2217. doi:10.1016/j.ejor.2020.07.063.

[8] L. Brusca, L. C. Quaedvlieg, S. Skoulakis, G. G. Chrysos, and V. Cevher. Maximum independent
set: self-training through dynamic programming. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024.
Curran Associates Inc.

[9] B.-M. Bui-Xuan, A. Ferreira, and A. Jarry. Computing Shortest, Fastest, and Foremost Journeys
in Dynamic Networks. International Journal of Foundations of Computer Science, 14(02):
267–285, 2003. doi:10.1142/S0129054103001728.

[10] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic
networks. Int. J. Parallel Emerg. Distrib. Syst., 27(5):387–408, Oct. 2012. ISSN 1744-5760.
doi:10.1080/17445760.2012.668546.

[11] S. Chechik and T. Zhang. Fully dynamic maximal independent set in expected poly-log
update time. (arXiv:1909.03445), Apr. 2021. doi:10.48550/arXiv.1909.03445. URL http:
//arxiv.org/abs/1909.03445. arXiv:1909.03445 [cs].

7

https://proceedings.mlr.press/v119/ahn20a.html
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.48550/arXiv.1806.01261
http://arxiv.org/abs/1806.01261
https://doi.org/10.1109/FOCS.2019.00032
https://ieeexplore.ieee.org/document/8948654/
https://ieeexplore.ieee.org/document/8948654/
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.48550/arXiv.1909.03445
http://arxiv.org/abs/1909.03445
http://arxiv.org/abs/1909.03445

[12] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. (arXiv:1412.3555), Dec. 2014. doi:10.48550/arXiv.1412.3555.
URL http://arxiv.org/abs/1412.3555. arXiv:1412.3555 [cs].

[13] N. A. Crossley, A. Mechelli, P. E. Vértes, T. T. Winton-Brown, A. X. Patel, C. E. Ginestet,
P. McGuire, and E. T. Bullmore. Cognitive relevance of the community structure of the human
brain functional coactivation network. Proceedings of the National Academy of Sciences, 110
(28):11583–11588, Jun 2013. doi:https://doi.org/10.1073/pnas.1220826110. URL https:
//www.pnas.org/doi/10.1073/pnas.1220826110.

[14] P. L. Donti, D. Rolnick, and J. Z. Kolter. Dc3: A learning method for optimization with hard
constraints. Oct. 2020. URL https://openreview.net/forum?id=V1ZHVxJ6dSS.

[15] X. Gao, J. Li, and D. Miao. Dynamic approximate maximum independent set on massive graphs.
In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pages 1835–1847,
2022. doi:10.1109/ICDE53745.2022.00183.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., United States, 1979.

[17] U. Gunarathna, R. Borovica-Gajic, S. Karunasekera, and E. Tanin. Dynamic graph combinatorial
optimization with multi-attention deep reinforcement learning. In Proceedings of the 30th
International Conference on Advances in Geographic Information Systems, SIGSPATIAL ’22,
page 1–12, New York, NY, USA, Nov 2022. Association for Computing Machinery. ISBN
978-1-4503-9529-8. doi:10.1145/3557915.3560956. URL https://dl.acm.org/doi/10.
1145/3557915.3560956.

[18] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

[19] K. Hanauer, M. Henzinger, and C. Schulz. Recent advances in fully dynamic graph algorithms
– a quick reference guide. ACM J. Exp. Algorithmics, 27:1.11:1–1.11:45, Dec. 2022. ISSN
1084-6654. doi:10.1145/3555806.

[20] J. Håstad. Clique is hard to approximate within n1−ε. In Proceedings of 37th Conference
on Foundations of Computer Science, pages 627–636, Burlington, VT, USA, 1996. IEEE.
doi:10.1109/SFCS.1996.548522.

[21] R. Hidaka, Y. Hamakawa, J. Nakayama, and K. Tatsumura. Correlation-diversified portfolio
construction by finding maximum independent set in large-scale market graph. IEEE Access,
11:142979–142991, Jan 2023. doi:https://doi.org/10.1109/access.2023.3341422. URL https:
//arxiv.org/abs/2308.04769.

[22] N. Karalias and A. Loukas. Erdos goes neural: an unsupervised learning frame-
work for combinatorial optimization on graphs. In Advances in Neural Infor-
mation Processing Systems, volume 33, page 6659–6672. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/hash/
49f85a9ed090b20c8bed85a5923c669f-Abstract.html.

[23] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart. Representation
learning for dynamic graphs: a survey. J. Mach. Learn. Res., 21(1):70:2648–70:2720, Jan. 2020.
ISSN 1532-4435.

[24] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.

[25] S. Kumar, X. Zhang, and J. Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, KDD ’19, page 1269–1278, New York,
NY, USA, July 2019. Association for Computing Machinery. ISBN 978-1-4503-6201-
6. doi:10.1145/3292500.3330895. URL https://dl.acm.org/doi/10.1145/3292500.
3330895.

8

https://doi.org/10.48550/arXiv.1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/https://doi.org/10.1073/pnas.1220826110
https://www.pnas.org/doi/10.1073/pnas.1220826110
https://www.pnas.org/doi/10.1073/pnas.1220826110
https://openreview.net/forum?id=V1ZHVxJ6dSS
https://doi.org/10.1109/ICDE53745.2022.00183
https://doi.org/10.1145/3557915.3560956
https://dl.acm.org/doi/10.1145/3557915.3560956
https://dl.acm.org/doi/10.1145/3557915.3560956
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1145/3555806
https://doi.org/10.1109/SFCS.1996.548522
https://doi.org/https://doi.org/10.1109/access.2023.3341422
https://arxiv.org/abs/2308.04769
https://arxiv.org/abs/2308.04769
https://proceedings.neurips.cc/paper_files/paper/2020/hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://doi.org/10.1145/3292500.3330895
https://dl.acm.org/doi/10.1145/3292500.3330895
https://dl.acm.org/doi/10.1145/3292500.3330895

[26] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

[27] A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, P. Lio, F. Scarselli, and A. Passerini.
Graph neural networks for temporal graphs: State of the art, open challenges, and opportunities.
(arXiv:2302.01018), July 2023. doi:10.48550/arXiv.2302.01018. URL http://arxiv.org/
abs/2302.01018. arXiv:2302.01018 [cs].

[28] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. Sndlib 1.0—survivable network
design library. Netw., 55(3):276–286, 2010. ISSN 0028-3045.

[29] P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. In Advances in
Neural Information Processing Systems, volume 34, page 21997–22009. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
b8b2926bd27d4307569ad119b6025f94-Abstract.html.

[30] J. Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7(3):425–440,
1986. doi:10.1016/0196-6774(86)90032-5.

[31] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein. Temporal graph
networks for deep learning on dynamic graphs, 2020. URL https://arxiv.org/abs/2006.
10637.

[32] M. J. A. Schuetz, J. K. Brubaker, and H. G. Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, Apr. 2022.
ISSN 2522-5839. doi:10.1038/s42256-022-00468-6.

[33] P. Toth and D. Vigo. Vehicle Routing: Problems, Methods, and Applications. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2 edition, 2014. ISBN 9781611973594.

[34] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. Dyrep: Learning representations over dynamic
graphs. Sept. 2018. URL https://openreview.net/forum?id=HyePrhR5KX.

[35] H. P. Wang, N. Wu, H. Yang, C. Hao, and P. Li. Unsupervised learning for combinatorial
optimization with principled objective relaxation. Oct. 2022. URL https://openreview.
net/forum?id=HjNn9oD_v47.

[36] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4–24,
2021. doi:10.1109/TNNLS.2020.2978386.

[37] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Inductive representation learning on
temporal graphs. Sept. 2019. URL https://openreview.net/forum?id=rJeW1yHYwH.

[38] L. Yu, L. Sun, B. Du, and W. Lv. Towards better dynamic graph learn-
ing: New architecture and unified library. 36:67686–67700, 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/hash/
d611019afba70d547bd595e8a4158f55-Abstract-Conference.html.

[39] S. Zhang, H. Tong, J. Xu, and R. Maciejewski. Graph convolutional networks: a comprehensive
review. Computational Social Networks, 6(1):11, 2019. ISSN 2197-4314. doi:10.1186/s40649-
019-0069-y.

[40] W. Zheng, C. Piao, H. Cheng, and J. X. Yu. Computing a near-maximum independent set in
dynamic graphs. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 76–87, 2019. doi:10.1109/ICDE.2019.00016.

9

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.48550/arXiv.2302.01018
http://arxiv.org/abs/2302.01018
http://arxiv.org/abs/2302.01018
https://proceedings.neurips.cc/paper/2021/hash/b8b2926bd27d4307569ad119b6025f94-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b8b2926bd27d4307569ad119b6025f94-Abstract.html
https://doi.org/10.1016/0196-6774(86)90032-5
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2006.10637
https://doi.org/10.1038/s42256-022-00468-6
https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=HjNn9oD_v47
https://openreview.net/forum?id=HjNn9oD_v47
https://doi.org/10.1109/TNNLS.2020.2978386
https://openreview.net/forum?id=rJeW1yHYwH
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1109/ICDE.2019.00016

Table 3: Pearson correlation for model performance and runtime vs. properties of graph snapshots.
Correlation coefficients are calculated over all 75,000 graph snapshots in the testing splits of our
medium datasets. Due to the large number of samples, we set our threshold for significance at
p < 10−10. All reported correlations are significant with p < 10−40, except the one value marked
with a (†), which has p = 0.00095.

Performance Runtime
Graph Properties BCAS No-CAS BCAS No-CAS

Edges 0.99 0.97 –0.09 0.98
Min. Degree 0.91 0.94 –0.15 0.92
Max. Degree 0.96 0.89 0.12 0.92
Ave. Degree 0.99 0.97 –0.06 0.98

Ave. Clustering Coefficient 0.99 0.95 –0.01† 0.97
Diameter –0.68 –0.79 0.43 –0.74

Ave. Node Distance –0.75 –0.85 0.39 –0.81

A Comparision of BCAS vs. No-CAS

Table 3 shows correlations between our BCAS and No-CAS models’ performance and runtime vs.
properties of the graph snapshots in the testing datasets. For performance, the same graph properties
help and hurt both BCAS and No-CAS: both models perform better on graphs with many edges,
high-degree nodes, and dense clustering but perform worse when diameter and node distance increase.
This is intuitive, as both variants aggregate information from only their local neighbors and thus
benefit from dense structure but suffer from distant changes that are not propagated. For runtime,
there is a sharp contrast between the variants. BCAS runtimes are largely uncorrelated with graph
properties—owing to its strictly local cascades and aggregation—exhibiting only a weak positive
correlation with diameter and distance (stemming from the fact that α = β are set as a fixed fraction
of diameter). No-CAS runtimes, on the other hand, are strongly determined by density (i.e., edge
counts, degrees, and clustering), since every node in the graph must perform local aggregation at
every time step and the complexity of local aggregation is entirely dependent on neighborhood size.

B Model Pseudocode

Algorithms 1–3 show pseudocode for our model’s initial MaxIS generation procedure, update training
process, and integral solution generation procedure, respectively. Throughout, graph snapshots Gt,
edge events Et, signals st(·), node memories mt(·), node estimates pt(·), and node losses ℓt(·) are
defined as they were in the main text. Bold versions of these notations refer to the vector of all node
properties of that type (e.g., mt refers to all node memories). In a slight abuse of notation, we use
N x

t (Et) to denote all nodes within an x hop-distance from the edge event Et; i.e., the endpoints of
the edge event are in N 0

t (Et), those endpoints and their neighbors are in N 1
t (Et), and so on.

Algorithm 1 Initial MaxIS Generation Epoch
1: Initialize all node memories as m0 ← 0.
2: for all edges (u, v) ∈ E0 do
3: Let E be the edge event of adding (u, v).
4: Do event handling with signal s← [enc(E) || 0] as in Eq. 1.
5: Update m0(u)← GRU([m0(u) || s]) and m0(v)← GRU([m0(v) || s]) as in Eq. 2.
6: Compute node estimates p0 from the updated node memories m0 as in Eqs. 3–5.
7: Compute node losses ℓ0 from p0 as in Eq. 6.
8: Compute cumulative loss L0 ←

∑
v∈V ℓ0(v).

C Experiment and Details

Each dynamic graph is divided into its training, evaluation, and testing splits, arranged chronologically
with increasing time steps. We use a 70:15:15 training, evaluation, testing split for small datasets and

10

Algorithm 2 Update Training Epoch
1: Initialize node memories m0 using Algorithm 1.
2: for all edge events Et ∈ (E1, E2, . . . , ET) in the training set do
3: for all nodes v ∈ Nα

t (Et) do
4: Do event handling with st(v)← [enc(Et) || rt(v)] as in Eq. 1.
5: Update mt(v) using st(v) as in Eq. 2.
6: for all nodes v ∈ N β

t (Et) do
7: Compute estimate pt(v) from mt(v) as in Eqs. 3–5.
8: for all nodes v ∈ N β

t (Et) do
9: Compute node loss ℓt(v) from pt as in Eq. 6.

10: Compute cumulative loss Lt ←
∑

v∈Nβ
t (Et)

ℓt(v).

Algorithm 3 Integral Solution Generation (Testing & Inference)
1: Initialize node memories m0 using Algorithm 1.
2: for all edge events Et ∈ (E1, E2, . . . , ET) in the testing set do
3: for all nodes v ∈ Nα

t (Et) do
4: Do event handling with st(v)← [enc(Et) || rt(v)] as in Eq. 1.
5: Update mt(v) using st(v) as in Eq. 2.
6: for all nodes v ∈ N β

t (Et) do
7: Compute estimate pt(v) from mt(v) as in Eqs. 3–5.
8: for all nodes v ∈ N β

t (Et) do ▷ Estimate Rounding
9: if pt(v) ≥ 0.5 then It(v)← 1.

10: else It(v)← 0.
11: while there exists a node v ∈ N β

t (Et) with violations do ▷ Violation Removal
12: Choose the node v ∈ N β

t (Et) with the most violations.
13: Remove v from the MaxIS wtih It(v)← 0.

a 50:25:25 split for medium datasets. The large datasets only have 5,000 time steps because we use
them solely for generalization experiments and do not train our model on them.

All methods were trained (if applicable) and tested on a machine with an AMD EPYC 7413 CPU and
a 20 GB slice of one NVIDIA A100 GPU. For the learning methods, training was halted after seven
days. For Gurobi, we enforced a time limit of 1 s per snapshot; this is sufficient for producing exact
solutions for small datasets, but yields approximations for medium and large ones.

11

	Introduction
	Maximum Independent Sets in Dynamic Graphs
	An Unsupervised Learning Model for Dynamic MaxIS
	Experiments
	Results

	Comparision of BCAS vs. No-CAS
	Model Pseudocode
	Experiment and Details

