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Abstract

In this work, we consider the data-driven assortment optimization problem un-
der the linear multinomial logit (MNL) choice model. We first establish an im-
proved confidence region for the maximum-likelihood-estimator (MLE) of the
d-dimensional linear MNL likelihood function that removes the explicit depen-
dency on a problem-dependent parameter κ−1 in previous result [42], which scales
exponentially with the radius of the parameter set. Building on the confidence
region result, we investigate the data-driven assortment optimization problem in
both offline and online settings. In the offline setting, the previously best-known
result scales as Õ

(√
d

κnS⋆

)
, where nS⋆ denote the number of times that optimal

assortment S⋆ is observed [26]. We propose a new pessimistic-based algorithm
that, under a burn-in condition, removes the dependency on d, κ−1 in the leading
order bound and works under a more relaxed coverage condition, without requiring
the exact observation of S⋆. In the online setting, we propose the first algorithm
to achieve Õ(

√
dT ) regret without a multiplicative dependency on κ−1. In both

settings, our results nearly achieve the corresponding lower bound when reduced
to the canonical N -item MNL problem, demonstrating their optimality.

1 Introduction

In modern data-driven decision-making problems, a key challenge for sellers, often managing a
large inventory, is determining a subset of products, also referred to as an assortment, to display to
customers. For instance, when customers search for "laptops" on an e-commerce platform, the system
must select an assortment from thousands of options to present. Due to space constraints or cognitive
overload, only a limited number of items—at most K—can be displayed at a time. This motivates
the study of assortment optimization with cardinality constraints, where the seller aims to identify
the optimal assortment of K items to display in order to maximize revenue.

The revenue of an assortment S depends on both the revenue of each item i ∈ S and the final choice
made by the customer after observing S. While the revenue of individual items is often known to the
seller, the customer’s choice behavior is unknown and must be estimated from data. A large body of
work has focused on modeling customer choice behavior in the context of assortment optimization
[40, 52, 41, 7, 22, 25, 6, 12]. Among these models, the multinomial logit (MNL) model and its
linearly parametrized variant stands out as a widely used approach and serves as a foundation for
understanding more complex models due to its clear mathematical structure, computational simplicity,
and ease of calibration [11].

In the linear MNL choice model with N items, each item i ∈ [N ] is associated with an d-dimensional
feature xi, and its utility, presenting its attraction to customers, is given by vi = x⊤i θ

⋆ for some
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Offline Learning

Leading-Order Upper Bound Lower Bound Remark

[26] Õ(
√
d/(κ′nS⋆))† – nS⋆ =

∑n
m=1 1{Sm = S⋆}

[29] Õ(K/
√
n⋆) Ω(K/

√
n⋆) N -item setting, n⋆ = mini∈S⋆

∑n
m=1 1{i ∈ S⋆}

Õ
(√∑

i∈S⋆ pi(S⋆)p0(S⋆)∥xi∥2H−1
D (θ⋆)

)
Burn-in condition maxj∈∪n

m=1Sn
∥xj∥H−1

D (θ⋆) ≲
1√
dOur work

Õ
(√

d ·
∑

i∈S⋆ pi(S⋆)p0(S⋆)∥xi∥2H−1
D (θ⋆)

) Ω(
√∑

i∈S⋆ pi(S⋆)p0(S⋆)∥xi∥2H−1
D (θ⋆)

)
No burn-in condition

Online Learning

Leading-Order Upper Bound Lower Bound Remark

[5] Õ(
√
NT ) Ω(

√
NT/K) N -item setting

[17] – Ω(
√
NT ) N -item setting

[18] Õ(d
√
T ) Ω(d

√
T/K) Adversarial context with initial exploration

[42] Õ(κ−1
√
dT logN) – Adversarial context with initial exploration

[44] Õ(Kd
√
T ) – Adversarial context with uniform reward

[35] Õ(d
√
T ) Ω(d

√
T ) Adversarial context

Fixed design
Our work Õ

(√
dT logN

)
Ω(
√
dT )‡

Adversarial context with initial exploration∗

Table 1: Comparison of offline and online assortment optimization results, where pi(S) denote the
choice probability of item i under assortment S; only leading-order terms are presented for notational
simplicity.
† The κ′ notation in [26] defined in a different way as those in other works, but the still suffers from the
exponential dependency on ∥θ⋆∥ in the worst case.
‡ When consider the canonical N -item setting with xi = ei, d = N, the Ω(

√
NT ) result in [17] implies this

result.
∗ We leave the related algorithm design and proof to Appendix E.4 due to space limitation.

underlying θ⋆ ∈ Rd. After given an S, the choice of the customer then follows the standard
multinomial distribution as described as in (1). While data-driven assortment optimization with
the linear MNL model has been extensively studied [14, 46, 50, 4, 5, 19, 48], most of the existing
literature focuses on the online learning setting. The current best-known regret bounds are given as
Õ(d
√
T ∧κ−1

√
dT logN). When specialized to the canonicalN -item setting (d = N , xi = ei being

the canonical basis), the regret either exhibits an additional
√
d dependence or incurs a multiplicative

dependence on κ−1, a problem-dependent quantity defined in (2), which may scales exponentially
with ∥θ⋆∥. Besides the online setting, the only known works in the offline learning setting [26, 29]
either focus on the canonical N -item setting or rely on restrictive assumptions about the coverage of
the data.

Motivated by these gaps, we propose new algorithms in this work that achieve improved online regret
and offline sample complexity guarantees. Our methods build on a sharper analysis of the linear
MNL likelihood function, which serves as the foundation for most existing approaches under the
linear MNL model. We compare our results with previous works in Table 1 and summarize our
contributions as follows:

1.1 Our Contributions

Sharper Confidence Region result for Maximum Likelihood Estimator. Our first result is an
improved confidence region for the linear MNL maximum likelihood estimator (MLE), which
incorporates variance information and avoids explicit dependency on κ. More precisely, given
the conditional independence of the observed choice dataset D := {ik, Sk}nk=1, we show that the
corresponding maximizer θ̂ of the linear MNL likelihood function, under a burn-in condition, satisfies
that with high probability, |x⊤(θ̂ − θ⋆)| = Õ(∥x∥H−1

D (θ⋆)), ∀∥x∥ ≤ 1, with HD the Hessian
matrix of the log-likelihood function given D. Our result provides an non-asymptotic variant of the
large-sample asymptotic x⊤(θ̂− θ⋆) =⇒ N (0, ∥x∥H−1

D (θ⋆)) which holds for general M -estimators
under certain conditions [37], and improves the best previous non-asymptotic result under the same
assumptions, stated as |x⊤(θ̂−θ⋆)| = Õ(κ−1∥x∥V −1) [42], since it always holds thatHD(θ⋆) ⪰ κV.
Our improvement stems from a novel variance-aware analysis combined with a careful exploration
of the self-concordant-like properties of the MNL likelihood function, which is inspired by recent
developments for MNL likelihood with adaptively collected data [44, 3, 35].
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Offline Assortment Optimization with Item-wise Coverage. Based on the sharp confidence region
result, we then consider the offline assortment optimization problem, where the seller can access to a
dataset D = {ik, Sk}nk=1 and aim to find the assortment that maximize the revenue. In this setting,
we provide an pessimistic-based algorithm and show that under a basic coverage number of each
items, it can achieve the sub-optimality gap that scales with Õ(

∑
i∈S⋆ pi(S

⋆)p0(S
⋆)∥xi∥H−1

D (θ⋆))

in the leading-order term. Notably, we can show that pi(S⋆)p0(S
⋆)∥xi∥H−1

D (θ⋆) ≳ n
−1/2
i for

ni :=
∑n

k=1 1{i ∈ Sk}, thus it suffices for each i ∈ S⋆ to be covered by Sk sufficiently many times
in order to ensure that ∥xi∥H−1

D (θ⋆) becomes small. In contrast, the best-known result for linear MNL

model prior to ours, presented in [26], scales as Õ
(√

d
κnS⋆

)
, where nS⋆ :=

∑n
k=1 1{S⋆ = Sk}.

This result has an additional d-dependency and a multiplicative κ−1-dependency compared to
ours. More importantly, their approach requires the optimal assortment S⋆ to be exactly observed
sufficiently many times, which imposes a restrictive coverage requirement on D. Finally, we show
that, when reduced to the canonical N -item setting with uniform item-wise rewards, our result
matches the Ω

(
maxi

√
K/ni

)
lower bound recently developed in [29]. This demonstrates that

the proposed item-wise coverage measure, pi(S⋆)p0(S
⋆)∥xi∥H−1

D (θ⋆), is an appropriate metric for
sample complexity in the offline setting.

Improved Regret for Online Assortment Optimization. In the online assortment optimization
setting, where the seller starts without prior knowledge but can interact with arriving customers
over T rounds, we design an algorithm based on the SupCB framework [8] that achieves a regret of
Õ(
√
dT logN + κ−1d). This result improves upon the previous regret bound of Õ(κ−1

√
dT logN)

in [42] by reducing the dependency on κ−1. Our result also improves the Õ(d
√
T + κ−1d) result

in [44, 35] on the dependency of d when N = o(2d). Especially, our result is nearly optimal in the
sense that it nearly matches the Ω(

√
dT ) lower bound in [17] when reduced to the canonical N -item

setting .

1.2 Related Works

Data-Driven Assortment Optimization. The online assortment optimization problem under the
MNL choice model has been extensively studied in the literature [14, 46, 50, 4, 5, 19, 48]. Among
these works, [4, 5] and [17] were the first to close the Θ̃(

√
NT ) minimax optimal regret for the canon-

ical N -item setting. In the linear MNL setting, [18, 44] proposed algorithms achieving a regret of
d
√
T +Poly(κ−1, d), but these algorithms are computationally intractable. While [42] proposed com-

putationally tractable algorithms for the same setting with a regret of Õ(κ−1d
√
T ∧κ−1

√
dT logN),

their results depend on κ−1 in a multiplicative manner. The only known computationally tractable
algorithm achieving Õ(d

√
T ) regret with additive dependency on κ−1 is that of [35]1. Our result

contributes to this direction by improving the best-known regret bound with additive κ−1 dependency
from Õ(d

√
T ) to Õ(d

√
T ∧
√
dT logN). For the offline assortment optimization problem, the only

known works are [26] and [29]. [26] were the first to design a pessimistic-based algorithm for the
linear MNL setting. Their algorithm is based on the assortment-wise pessimistic principle, and its
performance bound scales to n−1/2

S⋆ , with nS⋆ the number of times the optimal assortment S⋆ is
exactly observed in the dataset. On the other hand, [29] studied the canonical N -item setting using
an item-wise pessimistic principle. They showed that the minimax rate in this setting is K√

mini∈S⋆ ni

,

where ni is the covering time of item i by the observed assortments, thus relaxing the requirement in
[26]. The algorithm design in our work can be seen as a generalization of the item-wise pessimistic
principle in [29] to the linear setting, with a new concept of item-wise covering introduced. Finally,
beyond the MNL setting, learning problems involving additional constraints [20, 10, 15] or other
choice models [43, 16, 39, 56, 55] have also been explored.

Offline Learning via Pessimistic Principle. Our design of offline algorithms follows the same
spirit as the pessimistic (conservative) methods [54, 33] in offline bandit and reinforcement learning.
The sample efficiency of pessimistic algorithms under partial coverage in the offline setting has been

1[3] also proposed a computationally tractable algorithm with a similar regret; but their proof contains a
technical error, as discussed in Appendix L of [35].
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demonstrated in a series of studies [30, 45, 57]. Unfortunately, the setting considered in these works
is not directly applicable to the assortment problem, due to differences in the feedback structure.

Online Learning with Bandit Feedback. The algorithm design in most online MNL works draws
from the optimistic principle, a concept extensively explored in online bandit learning [8, 23, 1, 51, 34].
In particular, the logistic bandit problem can be viewed as a special case of the online assortment
problem with K = 1, which faces a similar challenge of eliminating the multiplicative dependency
on a problem dependent parameter similar to κ−1, motivating a number of studies [2, 27, 28, 31]. In
particular, the confidence region result in our work can be regarded as a generalization of [31] to the
MNL setting and our improvement over [42] parallels that of [31] for [38].

2 Preliminary

Revenue Maximization under the Linear MNL Model. We study the assortment optimization
problem, which models the interaction between a seller and a customer. Let {1, . . . , N} denote the
set of N available products/items. An assortment S ⊆ {1, . . . , N} represents the subset of products
that the seller offers to the customer. When presented with assortment S, the customer chooses
a product from the choice set S+ = {0} ∪ S, where {0} represents the no-purchase option. In
the N -item MNL model, each item has an attraction value vi ≥ 0. When a customer encounters
assortment S, the probability that he/she will choose product i ∈ S+ is given by

pi(S|v) :=
vi

1 +
∑

j∈S vj
. (1)

Each item i generates a revenue ri when purchased, while the no-purchase option generates no
revenue: r0 = 0. The seller’s goal is to maximize the expected revenue from the selected assortment,
defined as

R(S|v) :=
∑
i∈S

ripi(S|v) =
∑

i∈S rivi

1 +
∑

j∈S vj
.

In the d-dimensional linear MNL model with fixed design, each item i ∈ [N ] is further associated
with a vector xi ∈ Rd, and there exists a underlying parameter θ⋆ ∈ Rd so that vi = exp(x⊤i θ

⋆).
With X := (x1, . . . , xN ) ∈ RN×d, we also abuse the notation pi(S|θ⋆) := pi(S|exp(X⊤θ⋆)) and
R(S|θ⋆) := R(S|exp(X⊤θ⋆)) to denote their dependence on θ⋆ when there is no ambiguity.

Following standard research conventions, we consider the assortments S where |S| ≤ K. In
the following context, we denote SK the set consist of all K-sized assortments and S⋆ =
argmaxS∈SK

R(S|θ⋆) the optimal assortment.

Throughout the paper, we assume that the attraction values vi and the underlying parameter norm
∥θ⋆∥ are bounded by constants V and W , respectively. We also introduce the problem parameter

κ := min
S∈SK

min
i∈S

pi(S|θ⋆)p0(S|θ⋆), (2)

it can be seen that κ−1 can scale with exp(W ) even when V is small. It is worth noting that a series
of previous works on MNL bandits [18, 44, 3, 35] focus on improving the dependency on κ−1 in the
sample complexity.

Offline Assortment Optimization. In the offline assortment optimization setting, the seller does not
know the underlying parameter θ⋆ but can access to a pre-collected dataset {it, St}nt=1 consisting of
the choice-assortment pairs, where for each given Sj , the corresponding ij is sampled independently
from the linear MNL choice model with parameter θ⋆. The seller’s goal is to approximate the optimal
assortment based on those observed data, the learning objective is the sub-optimality gap, defined as

SubOpt(S) := R(S⋆|θ⋆)−R(S|θ⋆),

which measures the gap between the revenue of assortment S and the best-possible revenue.

Online Assortment Optimization. In the online learning setting, the seller can interact with the
coming customers for T rounds. At each time step t, the seller provides an assortment St ∈ SK to
the customer and then receives a feedback it drawn according to the distribution specified in (1).
The goal of the seller is to design a policy π = (π1, . . . , πT ), where each πt adaptively selects the
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assortment St based on the historical observations, to minimize the cumulative regret over T, defined
as

Reg(T ) = E[
T∑

t=1

SubOpt(St)],

which measures the total sub-optimality of the policy π over T rounds.

Notations Through out the paper, for any real numbers a, b we use the notion a ∨ b to denote
max{a, b}, and we use the notation a ≲ b if there exists some absolute constant c > 0 so that a < cb.
For matrices and vectors, given any vector x ∈ Rd and A ∈ Rd×d, we denote ∥·∥ the ℓ2-norm, and
∥x∥A :=

√
x⊤Ax, we also denote A† the pseudo inverse of A.

3 Improved Confidence Region for the Linear MNL MLE

In this section, we present our main result on the improved confidence region for the linear MNL
MLE. While we focus on the fixed design setting in the main text, where each item’s feature xi
remains unchanged throughout t, we allow the observed feature xti to vary across rounds in the
dataset to ensure generality in this section’s result, and we denote Xt := {xti}i∈[N ] throughout this
section. Given any dataset D := {it,Xt, St}nt=1, the linear MNL log-likelihood function is defined
as

ℓD(θ) :=

n∑
t=1

∑
j∈(St)+

ytj log pj(St|exp(X⊤
t θ)),

where ytj = 1{it = j}. In the following context, for any λ ≥ 0 we denote θ̂λD the λ-regularized
MLE, i.e.,

θ̂λD = argmaxθ∈RdℓD(θ)− λ

2
∥θ∥22.

Our first result establishes a confidence interval for x⊤θ̂λD with any ∥x∥ ≤ 1 given the following
conditional independence assumption:
Assumption 1. Condition on {(Xt, St)}nt=1, the observed choices {it}nt=1 are mutually independent.

Theorem 1. Given D := {it,Xt, St}nt=1 and θ̂λD the λ-regularized MLE under D. Suppose
Assumption 1, then for any x ∈ Rd with ∥x∥ ≤ 1, if we denote HD(θ) the Hessian matrix of ℓD at θ,
Hλ

D(θ) := HD(θ) + λI , and Neff as the total number of distinct vectors appeared in {xkj}j∈Sk,k≤t,
we have condition on

64 max
k≤t,j∈Sk

∥xk,j∥Hλ
D(θ⋆)−1 ≤

1√
d log(Neff/δ)

∧ 1√
λW

,

it holds that with probability at least 1− δ
i)

1

2
Hλ

D(θ⋆) ⪯ Hλ
D(θ̂λD) ⪯ 2Hλ

D(θ⋆).

ii)

|x⊤(θ̂λD − θ⋆)| ≤ ∥x∥Hλ
D(θ⋆)−1(36

√
log(

Neff

δ
) + 64

√
λW ).

Technically, our proof of Theorem 1, detailed in Appendix B, builds on a extended framework for
proving Theorem 1 of [31]. But several new ideas that rely on the geometry and self-concordant
structure of the K-MNL loss are introduced. These structural properties have recently attracted
much attention in the theoretical study of MNL bandits and are essential to our argument. The main
technical contribution appears in Lemma 6, where we use the curvature of the MNL loss to design a
confidence region that does not depend explicitly on K or κ. This result improves upon [42], which
is the only previous work giving d-free confidence bounds under the independence condition, and
parallels the refinement technique in [36], which is developed for obtaining sharp variance-dependent
bounds.
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Comparison to Previous Dimension-Free Result. Prior to our result, the only confidence interval
for the linear MNL MLE achieving a

√
d-free rate is stated in [42]. Their confidence region result

scales as Õ(κ−1∥x∥V −1
t

) under the burn-in condition

λmin(Vt) ≥ κ−4d2, Vt =
∑
k≤t

∑
j∈Sk

xk,jx
⊤
k,j .

By the relation Ht(θ
⋆) ⪰ κVt and

max
k≤t,j∈Sk

∥xk,j∥2H−1
t (θ⋆)

≤
(
κλmin(Vt)

)−1

our result provides an improvement over [42] in both the confidence interval and the burn-in condition.

Comparison to other Confidence Bound Results. Besides [42], a line recent works have focused on
deriving confidence regions for the MLE that are independent of κ [44, 3, 35]. It is worth mentioning
that results in [44, 3, 35] no longer require the burn-in condition or the conditional independence
assumption, with a price of introducing an additional factor of

√
d in the resulting confidence interval.

The requirement of a burn-in condition to achieve sharp dependency on d first appears in the logistic
linear bandit literature, where such a condition arises as [31, 38] refine the results of [27, 2, 28] by
improving the dependency on a

√
d factor. This corresponds to a special case of our setting with

K = 1. In Appendix F.1, we present several comparison experiments to those burn-in time free
bounds to discuss the sensitivity to burn-in condition of Theorem 1.

4 Offline Assortment Optimization with Linear MNL Choices

In this section, based on the confidence interval result in Theorem 1, we present the algorithm for
offline assortment optimization problem and the corresponding theoretical guarantee.

Throughout this section, we assume W.L.O.G. that HD(θ⋆) is invertible to maintain notational clarity;
otherwise, we consider the λ-regularized MLE and its corresponding confidence region for λ very
close to 0, which does not affect the theoretical results.

4.1 The LCB-LinearMNL Algorithm

For the offline assortment optimization problem, we propose the LCB-LinearMNL algorithm, as
detailed in Algorithm 1. The design of Algorithm 1 is inspired by the lower-confidence-bound
technique, also known as the pessimistic principle, which has been shown to be theoretically effective
in the offline policy learning literature [30, 45, 57]. The LCB-LinearMNL algorithm consists of two
steps, the pessimistic estimation step and the revenue maximization step.

Algorithm 1 LCB-LinearMNL

1: Input: Dataset D = {(ij , Sj)}nj=1, feature set X
2: Compute the MLE θ̂ = argmaxθℓn(θ)
3: Compute the pessimistic value vLCB

i as in (3) for each i ∈ [N ].
4: Select the pessimistic assortment: SLCB = argmaxS∈SK

R(S|vLCB).

5: Return: SLCB

Pessimistic Estimation In the pessimistic estimation step, with the MLE θ̂D, the algorithm first
compute

uLCB
i := x⊤i θ̂D − 72∥xi∥H−1

D (θ̂)

√
log(Neff/δ)

then takes the pessimistic value estimation for each item i ∈ [N ] via

vLCB
i =

{
exp(uLCB

i ) if i ∈ ∪nj=1Sj ,

0 otherwise
. (3)

The confidence region result provided in Theorem 1 ensures the pessimistic property holds for vLCB
i

i.e. vLCB
i ≤ vi := ex

⊤
i θ⋆

for all i ∈ [N ] with high probability.
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Revenue Maximization After computing the pessimistic values for each item, the algorithm proceeds
to the revenue maximization step, where it selects the assortment that maximizes revenue under vLCB

i .
This step can be efficiently solved using several well-studied polynomial-time algorithms [46, 24, 9].

4.2 Sub-optimality Gap Guarantee

Now we present the sub-optimality gap guarantee of Algorithm 1.

Theorem 2. Suppose the burn-in condition 64maxj∈Sk,k∈[n]∥xj∥H−1
D (θ⋆) ≤

(
(d log(Neff/δ))

)−1/2

holds, then with probability at least 1− δ, we have

SubOpt(SLCB) ≤ 36

√∑
j∈S⋆

pj(S⋆|θ⋆)p0(S⋆|θ⋆)∥xj∥2H−1
D (θ⋆)

+ 36max
j∈S⋆
∥xj∥2H−1

D (θ⋆)
.

up to logarithmic factors.

Theorem 2 shows that the leading-order complexity of the sub-optimality gap depends on the
summation of pj(S⋆|θ⋆)p0(S⋆|θ⋆)∥xj∥H−1

D (θ⋆) over j ∈ S⋆, which measures how well the items
in the optimal assortment are covered by the observed assortment data. Here we provide a upper
bound of the this quantity with respect to item-wise coverage numbers to make the Theorem 2 more
transparent:
Proposition 1. Denote ni :=

∑
k∈[n] 1{i ∈ Sk} and n⋆ := mini∈S⋆ ni, then it holds that√∑

j∈S⋆

pj(S⋆|θ⋆)p0(S⋆|θ⋆)∥xj∥2H−1
D (θ⋆)

≲ max
m

1 +
∑

k∈Sm
vk√

(1 +
∑

k∈S⋆ vk)n⋆

Based on Proposition 1, we can further obtain the following sub-optimality guarantee of Algorithm 1.
Corollary 1. Denote ni :=

∑
k∈[n] 1{i ∈ Sk} and n⋆ := mini∈S⋆ ni, then it holds that under the

same condition on Theorem 2, we have with probability at least 1− δ,

SubOpt(SLCB) ≲ max
m

1 +
∑

k∈Sm
vk√

(1 +
∑

k∈S⋆ vk)n⋆
+

K

κn⋆
.

up to logarithmic factors

Results under Fixed Data Collecting Policy. In the setting that {St}nt=1 is sampled i.i.d. from some
fixed exploration policy πoff, the burn-in condition in Theorem 2 always holds as n→ +∞. Then
Theorem 2 implies the following large-sample asymptotic

SubOpt(SLCB) = Õ

(
1√

n
∑

j∈S⋆ pj(S⋆|θ⋆)p0(S⋆|θ⋆)∥xj∥2H−1
off

)

with Hoff := ES∼πoff

[∑
i∈S p0(S|θ⋆)pi(S|θ⋆)xix⊤i

]
as n→ +∞.

Comparison to Previous Results. Prior to our work, the sample complexity of offline assortment
optimization under the linear MNL model was largely unexplored. The only known result, from

[26], considers a fixed policy St ∼ πoff and yields a complexity of Õ
(√

d/K
κnπoff(S⋆)

)
, which depends

on how often the optimal assortment S⋆ is sampled. In contrast, our result avoids multiplicative
dependence on d and κ−1 in the leading term and does not require full coverage of S⋆. Instead, it
suffices for S⋆ to be explored through assortments with non-orthogonal feature overlap.

Result in the Canonical N -item setting and the Optimality. In the canonical N -item MNL setting,
a special case of the linear MNL setting with d = N and xj = ej , a very recent work [29] shows a
similar result to Corollary 1 where the coverage condition for each item is sufficient for learning of
the optimal assortment. Their algorithm design shares the same spirit as ours in employing an item-
wise pessimistic principle. However, their algorithm and analysis rely heavily on the rank-breaking
technique [48, 49, 32] , which is challenging to extend to the general linear MNL setting. More
specifically, they propose a Θ̃(K/

√
n⋆) complexity result and a Θ̃(

√
K/n⋆) complexity result in

7



the uniform reward setting (ri ≡ 1). In particular, Proposition 1 implies the same Õ(K/
√
n⋆) upper

bound in general setting and an improved O(
√
K/n⋆) bound in the uniform reward setting, since S⋆

consists of the top-K items by value. These results, together with lower bound established in [29],

suggests a corresponding lower bound of Ω
(√∑

j∈S⋆ pj(S⋆|θ⋆)p0(S⋆|θ⋆)∥xj∥2H−1
D (θ⋆)

)
for the

offline linear MNL bandits for both uniform and non-uniform reward setting.

Eliminating the Burn-in Condition. The burn-in condition in Theorem 2 stems from the confidence
region requirement in Theorem 1. The item-wise pessimistic estimation in Algorithm 1 is flexible
and can incorporate alternative confidence bounds by replacing (3). In particular, using confidence
regions for adaptively collected data (e.g., [42, 44]) yields a burn-in-free guarantee at the cost of an
additional

√
d factor. We state the main result below and defer the proof to Appendix D.2.

Proposition 2. There exists a plug-in confidence region result so that when replacing the pessimistic
estimation step in (3) by this result, the output Algorithm 1 satisfies

SubOpt(SLCB) ≲
∑
j∈S⋆

√
d · pj(S⋆|θ⋆)p0(S⋆|θ⋆)∥xj∥2H−1

D (θ⋆)
+ dmax

j∈S⋆
∥xj∥2H−1

D (θ⋆)
,

with probability at least 1− δ up to logarithmic factors.

5 Online Linear MNL Bandits

5.1 The SupLinearMNL algorithm

In this section, we propose a linear MNL bandit algorithms by leveraging the confidence region result
established in Theorem 1. A detailed description of our algorithm is provided in Algorithm 2. To
effectively balance the exploration-exploitation trade-off while keeping the independence of collected
samples, we apply the SupCB framework of [8], incorporating a sophisticated action set elimination
procedure and sample splitting procedure, as in [21, 38, 31, 13, 42]. However, several modifications
have been made to our algorithm to ensure the burn-in condition of Theorem 1 and to utilize the
first-order geometry of the revenue functions, as described below.

The SupCB Framework. Similar to the standard framework in [8], Algorithm 2 divides the collected
samples into S bins, denoted as Ψ1, . . . ,ΨM+1. To maintain independence while accounting for the
first-order geometry, we add an additional bin, ΨS+1, as in [31], which contains a rough estimator
for approximating the first-order coefficients of R. After an initial pure-exploration period of length
τ—ensuring that each bin collects sufficient samples, as explained in the next paragraph—the
algorithm enters an adaptive elimination phase conducted through a multi-layer procedure that loops
over the first S bins.

Initial Exploration Phase. The initial exploration phase is designed to ensure the burn-in condition
in Theorem 1. More precisely, the initial exploration phase ensures that maxj∈[N ]∥xj∥H†

τ,ℓ(θ
⋆) is well

controlled for every ℓ ∈ [S+1] with high probability. Note that sinceHτ,ℓ(θ
⋆) ⪰ κVτ,ℓ, with Vτ,ℓ :=∑

s≤τ,s∈Ψℓ

∑
k∈Ss

xkx
⊤
k , it suffices to ensure that maxj∈[N ] κ

−1/2∥xj∥V †
τ,ℓ

is well bounded for
every ℓ. To achieve this goal with finite sample complexity, the algorithm repeatedly taking the
exploration assortments containing uncertain items until

512κ−1/2 max
j
∥xj∥V †

τ,ℓ
≤ 1√

d log(NT )
∧ 1

W
(4)

holds for all ℓ. Careful readers may notice that to compute (4), we need prior knowledge of κ as an
input to Algorithm 2, which is a problem-dependent quantity. When the exact value of κ is unknown,
we can instead use the parameter radius W (or its upper bound) to provide a conservative estimate.
In particular, exp(−KW ) can be used as a worst-case bound for κ. It should be noted that there may
exist problem instances where κ is strictly smaller than its worst-case bound. Designing algorithms
that achieve the same regret guarantee while fully adapting to an unknown κ, as in [44, 35], is left for
future work.

Adaptive Elimination Phase. After entering the adaptive elimination phase, the algorithm stops
allocating samples to ΨS+1. The MLE

θ̂0 := argmaxθℓDτ,S+1
(θ) (5)

8



Algorithm 2 SupLinearMNL

1: Input: Time horizon T, problem-dependent factor κ.
2: initialize M = log2 T, λ = 1, τ = 1,Ψ1 = · · · = ΨM+1 = ∅.
3: while (4) is not satisfied for some ℓ ∈ [M ] and j ∈ [N ] do
4: Select arbitrary assortment that contains item j, add τ into Ψℓ

5: τ ← τ + 1
6: end while
7: Ψ0 ← ∅, compute θ̂0 as in (5)
8: for t = τ + 1, . . . , T do
9: set A1 = SK , St = ∅, ℓ = 1

10: while St = ∅ do
11: Compute W ℓ

t,S , R
UCB
t,ℓ (S),∀S ∈ Aℓ as in (7), (8).

12: if W ℓ
t,S > 2−ℓ for some S ∈ Aℓ then

13: select such S ∈ Aℓ.
14: Ψℓ ← Ψℓ ∪ {t}
15: else if W ℓ

t,S ≤ 1/T for all S ∈ Aℓ then
16: take the action St = argmaxS∈Aℓ

RUCB
t,ℓ (S)

17: Ψ0 ← Ψ0 ∪ {t}
18: else
19: R̂← maxS∈Aℓ

RUCB
t,ℓ (S)

20: Aℓ+1 ←
{
S ∈ Aℓ, R

UCB
t,ℓ (S) ≥ R̂− 2−ℓ+7

}
21: ℓ← ℓ+ 1
22: end if
23: end while
24: end for

is computed based on the data in ΨS+1 collected during the first τ rounds and is fixed in all subsequent
time steps.

At each t > τ , during the ℓ-th loop, the algorithm calculates the confidence level term

wℓ
t,i := 72∥xi∥(Hλ

t,ℓ)
−1(θ̂0)

√
log(NT ) (6)

for i ∈ ∪S∈Aℓ
S, with Dt,ℓ the data collected in the ℓ-th bin up to time t and we simply denote Hλ

Dt,ℓ

by Hλ
t,ℓ. Then, based on the value of wt,i for each i, the assortment-wise confidence level for S,

written as

W ℓ
t,S :=

∑
i∈S

√
16pi(S|θ̂0)p0(S|θ̂0)(wℓ

t,i)
2 +max

i∈S
(4wℓ

t,i)
2 (7)

is calculated for each S ∈ Aℓ. Then the algorithm takes one of the following steps based on {W ℓ
t,S},:

Step (a). Exploration of Uncertain Items: If there exists some uncertain assortment (i.e., W ℓ
t,S >

2−ℓ), the algorithm selects this assortment to explore it further.

Step (b). Output UCB Assortment: If all assortments are sufficiently certain (i.e., W ℓ
t,S < 1/T for

all S ∈ Aℓ), the algorithm outputs the assortment with highest UCB value, computed as

RUCB
t,ℓ (S) := R(S|vUCB), (8)

with vUCB
i := exp

(
x⊤i θ̂

λ
Dt,ℓ

+ wℓ
t,i

)
, ∀i ∈ [N ].

Step (c). Assortment Elimination: Otherwise, the algorithm performs assortment elimination over
Aℓ. Specifically, it first computes the maximum UCB value R̂. Next, it eliminates all assortments
S such that the UCB value gap, R̂ − RUCB

t,ℓ (S), exceeds 2−ℓ. Finally, the algorithm loops to the
(ℓ+ 1)-th bin with the eliminated item set Aℓ+1.

9



5.2 Regret Guarantee of Algorithm 2

Now we show the regret guarantee of Algorithm 2:
Theorem 3. With probability at least 1− 1/T, we have Algorithm 2 satisfies

Reg(T ) ≲
√
dT log(NT ) log(T ) + κ−1(d2 + dW ) log(dNTW ).

Theorem 3 establishes a Õ(
√
dT + κ−1d2K2) regret bound. Compared to the Õ(κ−1

√
dT ) in [42]

and Õ(d
√
T + κ−1d2) in [35], our result is the first to achieve Õ(

√
dT logN) regret in the linear

MNL setting with a second-order dependence on κ−1. However, due to the need to enumerate over
Aℓ in the elimination (Line 20) and confidence computation (Line 11) steps—each takes Ω(NK)
times of computation in worst-case, similar to [18, 42]—the algorithm is computationally inefficient2.
Thus, Theorem 3 serves primarily as a theoretical benchmark, and we leave designing efficient
algorithms with similar guarantees as a future direction.

Problem-Dependent Regret with Uniform Revenue. While above results consider the non-uniform
revenue setting for general r ∈ [0, 1]N . We can show that in the uniform revenue setting where ri ≡ 1
as in [44, 35], an improved problem-dependent rate is possible: Denote

κ⋆ :=
∑
j∈S⋆

pj(S
⋆|v)p0(S⋆|v) =

∑
j∈S⋆ vj

(1 +
∑

j∈S⋆ vj)2
,

we have the following guarantee of Algorithm 2
Theorem 4. In the uniform revenue setting ri = 1,∀i ∈ [N ], Algorithm 2 satisfies

Reg(T ) ≲
√
dTκ⋆ log(NT ) log(T ) + κ−1(d2 + dW ) log(dWNT ).

Noticing that in the good scenario where all vi = Θ(1) as in [35], we have the above bound simply
turns to a Õ(

√
dT/K) result, improving a

√
K factor than previous best known results. In Appendix,

we further show a Ω(κ⋆
√
dT ) problem-dependent lower bound for a large range of κ⋆, implying the

optimality of Theorem 4.
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A Technical Overview and Proof of Main Results

A.1 New Perturbation Results of Revenue Functions

As in previous works, to eliminate the multiplicative dependency on κ−1, we follow an improved
analysis that uses a second-order expansion of the revenue function R(S | eu) with respect to
u := X⊤θ. However, when K ≥ 2, the presence of multiple items in S introduces significant
challenges. To handle this, a careful perturbation analysis is required to bound the resulting error.
For example, as noted in [35], Equation (16) in [3] incorrectly extends the perturbation result from
the logistic bandit(K = 1) setting, causing their analysis to fail. On the other hand, [44] provides a
promising direction for handling such perturbations, though their result only applies to the uniform
revenue case where ri ≡ 1. The only promised development for non-uniform revenue setting is given
by the recent work [35], where an approach based on centralizing the context features are provided in
the proof of their Theorem 4. However, this argument is somewhat complex and requires a careful
auxiliary analysis.

In this section, we present several simpler and general perturbation results for revenue functions
for the purpose of analyzing Algorithm 1 and Algorithm 2. As a byproduct, we can show that
a straightforward plug-in argument based on our lemma allows us to extend the regret analysis
in [44]—which previously applied only to the uniform revenue case—to the general non-uniform
revenue setting, achieving the optimal Õ(d

√
T + κ−1d2) regret, we leave the detail to Section E.5.

Proposition 3. For any fixed revenue vector r and utility vectors u′ ∈ RN , denote u := log(v) and
w := u′ − u,v′ := eu

′
, then

i) it holds for any S0 ∈ SK that

|R(S0|v′)−R(S0|v)| ≤
√∑

j∈S0

vj |rj −R(S0|v)|2 ·
√∑

j∈S0

pj(S0|v)p0(S0|v)w2
j +

3

2
max
j∈S0

w2
j .

ii) In addition, if S0 satisfies rj ≥ R(S0|v) for all j ∈ S0, then

|R(S0|v′)−R(S0|v)| ≤
√∑

j∈S0

pj(S0|v)p0(S0|v)w2
j + 3max

j∈S0

w2
j .

Based on Proposition 3, we can further present the following result for the analysis of elimination-
based Algorithm 2.
Proposition 4. Suppose for some ṽ ≥ v it holds that R(S0|ṽ) ≥ R(S⋆|ṽ)− ε, then for w = ũ−u
we have

R(S⋆|v)−R(S0|v) ≤ 2

√∑
j∈S0

pj(S0|v)p0(S0|v)w2
j + 5max

j∈S0

w2
j + 2ε.

A.2 Proof of Theorem 2

Proof. Throughout the proof, we denote ξi := 72∥xi∥H−1
D (θ̂)

√
log(Neff/δ), θ̂D by θ̂ for simplicity.

With above notation, we have

RLCB(S) = R(S|vLCB) =

∑
i∈S ri exp(x

⊤
i θ̂ − ξi)

1 +
∑

i∈S exp(x⊤i θ̂ − ξi)
, ∀S ∈ SK .

Now we have for v = exp(X⊤θ⋆), it holds by Theorem 1 that with probability at least 1− δ that
vLCB ≤ v. Under such a condition, we have then

R(S⋆|θ⋆)−R(S|θ⋆) ≤(i) R(S
⋆|v)−R(S|vLCB) ≤(ii) R(S

⋆|v)−R(S⋆|vLCB)

≤(iii)

√∑
j∈S⋆

pj(S⋆|v)p0(S⋆|v)w2
j + 3max

j∈S⋆
w2

j .

Where (i) is by the monotone property of v at its the revenue maximizer(see e.g. Lemma A.3 of
[5] (ii) is by R(S⋆|vLCB) ≤ R(S|vLCB), (iii) is by the statement ii) of Proposition 3 and the fact
rj ≥ R(S⋆|v),∀j ∈ S⋆. This finishes the proof.
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A.3 Proof of Theorem 3

We first show the following exploration length upper bound result:
Lemma 1. In Algorithm 2, there exits some absolute constant c0 so that the exploration phase will
stop after at most C0Mκ−1d

(√
d log(NT ) ∨W )2 log(dNTW ) iterations, and it holds that

512 max
j∈[N ]

∥xj∥(Hλ
τ,ℓ)

−1(θ⋆) ≤
1√

d log(NT )
∧ 1

W

for every ℓ ∈ [M + 1].

In particular, Lemma 1 verifies the burn-in condition in Theorem 1 with λ = 1. Consequently, it can
be applied in subsequent time steps as long as the independence assumption is satisfied, which is
guaranteed by the SupCB elimination framework.

Based on our exploration-phase analysis in Lemma 1, we have the exploration phase incurs a regret
of order Õ(κ−1d2K2 log(NT )), and the burn-in condition in Theorem 1 is satisfied for all bins. So
it remains to bound the regret incurred from τ + 1 to T under the event

|x⊤j (θ̂λt,ℓ − θ⋆)| ≤ (72
√
log(NT ) + 128W )∥xj∥H−1

t,ℓ (θ
⋆), ∀t ≥ τ, j ∈ [N ], ℓ ∈ [M ], (9)

and
1

2
Ht,ℓ(θ

⋆) ⪯ Ht,ℓ(θ̂0) ⪯ 2Ht,ℓ(θ
⋆), ∀t ≥ τ, j ∈ [N ], ℓ ∈ [M ]. (10)

which holds with probability at least 1−O(1/T ).

We would also note that (9) and (10) together with (4) also implies

|x⊤j (θ̂0 − θ⋆)| ≤ (72
√
log(NT ) + 128W )∥xj∥H−1

τ,0(θ
⋆) ≤

72 + 128

512
≤ 1, ∀j

thus for any S and i ∈ S,

e−2pi(S|θ̂0) ≤
eûi−1

1 +
∑

j∈S e
ûj+1

≤ pi(S|v) ≤
e4eûi+1

1 +
∑

j∈S e
ûj−1

≤ e2pi(S|θ̂0),

with ûi := x⊤j θ̂0. As a result,

2−4 ≤
W ℓ

t,S√∑
j∈S pj(S|v)p0(S|v)∥xj∥2H−1

t,ℓ

≤ 24 (11)

for any ℓ, S and t ≥ τ.
Lemma 2. For every ℓ and S ∈ Aℓ it holds under (9) and (10) that

|RUCB
t,ℓ (S)−R(S|θ⋆)| ≤W ℓ

t,S + 2−ℓ+1.

Proof of Lemma 2. We divide the proof into two steps:

Step 1: S⋆ ∈ Aℓ for each ℓ. At each t ≥ τ , we first show that S⋆ ∈ Aℓ for all ℓ: The claim holds
for ℓ = 0 since A0 = SK . Now suppose S⋆ ∈ Aℓ−1 for some ℓ ≥ 1, then suppose the algorithm
enters the step (c) at the ℓ-th loop, it holds that by vUCB

t,ℓ ≥ exp(X⊤θ⋆) under (9) and (10),

RUCB
t,ℓ (S⋆) ≥ R(S⋆|θ⋆) ≥ R(Ŝℓ|θ⋆).

for Ŝℓ := argmaxS∈Aℓ
RUCB

t,ℓ (S). On the other hand, we cannot directly apply Proposition 3 to obtain
a perturbation bound for Ŝℓ, since it maximizes the optimistic revenue over an unstructured set Aℓ

rather than the structured set SK .

For Ŝℓ, it holds that by statement i) of Proposition 3,

RUCB
t,ℓ (Ŝℓ)−R(Ŝℓ|θ⋆) ≤

√∑
j∈Ŝℓ

vj |rj −R(Ŝℓ|v)|2 ·
√∑

j∈Ŝℓ

pj(Ŝℓ|v)p0(Ŝℓ|v)w2
j +

3

2
max
j∈Ŝℓ

w2
j .
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Now if we denote

Ŝ+
ℓ := {j ∈ Ŝℓ, rj ≥ R(Ŝℓ|v)}, Ŝ−

ℓ := Ŝℓ \ Ŝ+
ℓ ,

then it holds that∑
j∈Ŝℓ

vj |rj −R(Ŝℓ|v)|2 ≤
∑
j∈Ŝℓ

vj |rj −R(Ŝℓ|v)| =
∑
j∈Ŝ+

ℓ

vj(rj −R(Ŝℓ|v))−
∑
j∈Ŝ−

ℓ

vj(rj −R(Ŝℓ|v))

= 2
∑
j∈Ŝ+

ℓ

vj(rj −R(Ŝℓ|v))−R(Ŝℓ|v) ≤ 2
∑
j∈Ŝ+

ℓ

vj(rj −RUCB
t,ℓ (Ŝℓ)) + 2

∑
j∈Ŝ+

ℓ

vj(R
UCB
t,ℓ (Ŝℓ)−R(Ŝℓ|v))

≤ 2
∑
j∈Ŝ+

ℓ

vj(rj −RUCB
t,ℓ (Ŝℓ)) + 2p−1

0 (Ŝℓ|v)(RUCB
t,ℓ (Ŝℓ)−R(Ŝℓ|v))

≤ 2
∑
j∈Ŝ+

ℓ

vj(rj −R(S⋆|v)) + 2p−1
0 (Ŝℓ|v)(RUCB

t,ℓ (Ŝℓ)−R(Ŝℓ|v))

≤ 2R(S⋆|v) + 2p−1
0 (Ŝℓ|v)(RUCB

t,ℓ (Ŝℓ)−R(Ŝℓ|v)),

where in the last second inequality we have used

RUCB
t,ℓ−1(Ŝℓ) ≥ RUCB

t,ℓ−1(S
⋆) ≥ R(S⋆|θ⋆) ≥ R(Ŝℓ|θ⋆),

by S ∈ Aℓ. As a consequence, for ∆ := RUCB
t,ℓ (Ŝℓ)−R(Ŝℓ|θ⋆) we get

∆ ≤
√
2R(S⋆|v) + 2p−1

0 (Ŝℓ|v)∆ ·
√∑

j∈Ŝℓ

pj(Ŝℓ|v)p0(Ŝℓ|v)w2
j +

3

2
max
j∈Ŝℓ

w2
j ,

Using the elementary inequalities

z2 ≤ Az +B =⇒ z ≤ A+
√
A2 + 4B

2
≤ A+

√
B =⇒ z2 ≤ 2A2 + 2B

for A,B, z ≥ 0, we get then

∆ ≤ 8
∑
j∈Ŝℓ

pj(Ŝℓ|v)w2
j + 4

√∑
j∈Ŝℓ

pj(Ŝℓ|v)p0(Ŝℓ|v)w2
j + 3max

j∈Ŝℓ

w2
j ≤ 24W ℓ

t,Ŝℓ
≤ 2−ℓ+6,

where the last second inequality is by (11) and the last inequality is by Algorithm 2 does not enter
step (a) in ℓ-th loop. Now we get

RUCB
t,ℓ (S⋆) ≥ R(Ŝℓ|θ⋆) ≥ RUCB

t,ℓ (Ŝℓ)− 2−ℓ+6

thus then RUCB
t,ℓ (S⋆) ∈ Aℓ, as desired.

Step 2: Bound the regret of assortments in Aℓ Noticing that by the selection of Aℓ, we have

S ∈ Aℓ =⇒ RUCB
t,ℓ (S) ≥ RUCB

t,ℓ (Ŝℓ)− 2−ℓ+7 ≥ RUCB
t,ℓ (S⋆)− 2−ℓ+7

=⇒ R(S|v) ≥ R(S⋆|v)−W ℓ
t,S − 2−ℓ+7,

where in the last line we have used Lemma 4, as desired.

Similar to the proofs in [38, 31], we can bound the regret of Algorithm 2 in a layer-wise approach:

Lemma 3. For each round t > τ , let ℓt denote the value of ℓ when St is selected. Then, under (9)
and (10), it holds that

R(S⋆)−R(St) ≤
{
4 · 2−ℓt+8, if St is selected in step (a),
4/
√
T , if St is selected in step (b).
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Proof. We have by St ∈ Aℓt ,

R(St|θ⋆) ≥ RUCB
t,ℓt−1(St)−W ℓt−1

t,St
− 2−ℓt+8 ≥ R̂− 2−ℓt+9

≥ RUCB
t,ℓt−1(S

⋆)− 2−ℓt+9 ≥ R(S⋆|θ⋆)− 2−ℓt+9,

this shows the first inequality.

To show the second inequality, noticing that by Lemma 2, the condition of step (b) implies

|R(S)−RUCB
t,ℓt (S)| ≤ 8/T, ∀S ∈ Aℓt .

Then by

R(St) ≥ RUCB
t,ℓt (St)− 8/T ≥ RUCB

t,ℓt (S
⋆)− 8/T ≥ R(S⋆)− 1 = 8/T,

the desired result holds.

Now with Lemma 3, we can bounding the regret of Algorithm 2 for each bin Ψℓ separately. More
precisely, we have

Lemma 4. For each ℓ ∈ [S], we have condition on E1, E2,∑
t∈Ψℓ,t>τ

R(S⋆)−R(St) ≲
√
dT log(NT ) +

d

κ
log(NT ). (12)

Proof. We divide the time indices in Ψℓ into

Ta,ℓ := {t ∈ Ψℓ, t > τ, St is selected at step (a)},
Tb,ℓ := {t ∈ Ψℓ, t > τ, St is selected at step (b)}.

By Lemma 3 and 2−ℓ ≤W ℓ
t,St

for all j ∈ St and t ∈ Ta, we have∑
t∈Ta,ℓ

R(S⋆)−R(St) ≤
∑

t∈Ta,ℓ

4 · 2−ℓ+9

≲
∑

t∈Ta,ℓ

[ ∑
j∈St

√
pj(St)p0(St)∥xj∥2H−1

t,ℓ (θ
⋆)
logNT +max

j∈St

(72
√

logNT∥xj∥H−1
t,ℓ (θ

⋆))
2
] (13)

To bound the above summation over Ta,ℓ, we apply the following linear MNL version elliptical
potential lemma:

Lemma 5 (Lemma E.2 in [35]). For λ ≥ 1, it holds that
1.
∑

t∈Ta,ℓ

∑
j∈St

pj(St)p0(St)∥xj∥2H−1
t,ℓ

≤ 2d log(1 +
|Ta,ℓ|
2dλ ).

2.
∑

t∈Ta,ℓ
maxi∈St

∥xt∥2H−1
t,ℓ

≤ 2dκ−1 log(1 +
|Ta,ℓ|
dλ ).

Applying this Lemma and Cauchy-Schwartz inequality in (13) then leads to∑
t∈Ta,ℓ

R(S⋆)−R(St) ≲
√
d|Ta,ℓ| log(NT ) log(1 + T/d) +

2d

κ
log(1 + T/d) log(NT ),

this provides the regret bound for the summation over Ta,ℓ.
On the other hand, by Lemma 2 we have taking summation over t ∈ Tb,ℓ naturally leads to∑

t∈Tb,ℓ

R(S⋆)−R(St) ≤ 8 log T.

combining the upper bounds for Ta,ℓ, Tb,ℓ and taking summation over ℓ then finishes the proof.
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B Proof of Theorem 1

We begin with the following Lemma:
Lemma 6. Suppose the same independence structure as in Theorem 1 and denote

ζ := 3
√
2 max
m≤t,j∈Sm

|x⊤m,j(θ̂
λ
D − θ⋆)|, ξ := max

m≤t,j∈Sm

∥xm,j∥(Hλ
t )−1 , φ(ζ) := (

eζ − 1

ζ
− 1)(1 + ζ)

we have
|x⊤(θ̂λD − θ⋆)|
8∥x∥(Hλ

t )−1

≤
(√

log(1/δ) + ξ log(1/δ)
)
+ φ(ζ)

(√
d log(1/δ) + dK log(1/δ) · ξ +

√
λW

)
+
√
λ(1 + ζ)W.

Proof of Lemma 6. Since in this formulation the feature vector xm,j may change for each m, we
introduce the notation pmj(θ) to represent the probability that item j is chosen given Sm and xm.
We also denote Hλ

D(θ⋆) by Hλ
t , HD(θ⋆) by Ht for simplicity.

Noticing that by θ̂λD maximizes ℓλD, we have

∇ℓλD(θ̂λD) = 0 =⇒
t∑

m=1

∑
j∈Sm

xm,j

(
pmj(θ̂

λ
D)± pmj(θ

⋆)− ymj

)
+ λθ̂λD = 0 =⇒

t∑
m=1

∑
j∈Sm

xm,j

(
pmj(θ̂

λ
D)− pmj(θ

⋆)
)
+ λ(θ̂λD − θ⋆) =

t∑
m=1

∑
j∈Sm

xm,j (ymj − pmj(θ
⋆))︸ ︷︷ ︸

:=ηm,j

−λθ⋆

Now if we denote
Lm(θ) :=

∑
j∈Sm

xm,jpmj(θ),

then for any θ it holds that∑
j∈Sm

xm,j (p(j;Sm,xm, θ)− pmj(θ
⋆))

= Lm(θ)− Lm(θ⋆) =

∫ 1

0

DLm(θ⋆ + s(θ − θ⋆))(θ − θ⋆)ds

= DLm(θ⋆)(θ̂λD − θ⋆) +
(∫ 1

0

DLm(θ⋆ + s(θ − θ⋆))−DLm(θ⋆)ds

)
(θ − θ⋆),

with
DLm(θ) :=

∑
j∈Sm

pmj(θ)xmjx
⊤
mj −

∑
i∈Sm,j∈Sm

pmj(θ)pmi(θ)xmix
⊤
mj .

Now notice that Hλ
t =

∑t
m=1DLm(θ⋆) + λI and for

Et :=

t∑
m=1

∫ 1

0

DLm(θ⋆ + s(θ̂λD − θ⋆))−DLm(θ⋆)ds,

we have
x⊤(θ̂λD − θ⋆)

= x⊤(Ht + Et + λI)−1

 t∑
m=1

∑
j∈Sm

xm,jηm,j − λθ⋆


= x⊤
(
(Hλ

t )
−1 − (Hλ

t )
−1Et(H

λ
t + Et)

−1
) t∑

m=1

∑
j∈Sm

xm,jηm,j − λθ⋆


= x⊤(Hλ
t )

−1
t∑

m=1

∑
j∈Sm

xm,jηm,j︸ ︷︷ ︸
:=J1

−x⊤(Hλ
t )

−1Et(H
λ
t + Et)

−1
t∑

m=1

∑
j∈Sm

xm,jηm,j︸ ︷︷ ︸
:=J2

−λx⊤(Hλ
t + Et)

−1θ⋆︸ ︷︷ ︸
:=J3

(14)
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The first term J1

The first term can be bounded by variance-aware concentration results using conditional independence
as in previous works obtaining sharp bounds for logistic setting [31] , the main difference between
the logistic setting is the dependency across ηm,j for j ∈ Sm :

For every m, we have

Zm :=
∑
j∈Sm

x⊤(Hλ
t )

−1xm,jηm,j

is centered and bounded as

|Zm| ≤ max
j
|x⊤(Hλ

t )
−1xm,j | ·

∑
j∈Sm

|ηm,j | ≤ 2max
j
|x⊤(Hλ

t )
−1xm,j |.

With variance

E[Z2
m] =

∑
i,j∈Sm

(x⊤(Hλ
t )

−1xm,j)(x
⊤(Hλ

t )
−1xm,i)E[ηm,jηm,i].

By

E[η2m,i] = pmi(θ
⋆)(1− pmi(θ

⋆),E[ηm,iηm,j ] = −pmi(θ
⋆)pmj(θ

⋆),

we have

E[Z2
m] = x⊤(Hλ

t )
−1

∑
i∈Sm

xm,ix
⊤
m,ipmi(θ

⋆)(1− pmi(θ
⋆))−

∑
i ̸=j

xm,ix
⊤
m,jpmi(θ

⋆)pmj(θ
⋆)


︸ ︷︷ ︸

:=Um

(Hλ
t )

−1x,

now by
∑t

m=1 Um = Ht, we have
∑

m E[Z2
m] = x⊤(Hλ

t )
−1Ht(H

λ
t )

−1x ≤ x⊤(Hλ
t )

−1x, now we
can apply the following Bernstein inequality:

Lemma 7 (Bernstein’s Inequality). Let X1, . . . , Xn be independent zero-mean random variables.
Suppose that |Xi| ≤M almost surely, for all i. Then, for all positive t,

P

(
n∑

i=1

Xi ≥ u

)
≤ exp

(
−

1
2u

2∑n
i=1 E [X2

i ] +
1
3Mu

)
.

to obtain that

P (|J1| ≥ u) ≤ exp

(
− u2

2∥x∥2
(Hλ

t )−1 + 2maxm≤t maxj∈m|x⊤(Hλ
t )

−1xm,j |u

)
,

or equivalently, with probability at least 1− δ,

|J1| ≤ 2∥x∥(Hλ
t )−1

(√
log(1/δ) + max

m≤t,j∈Sm

∥xm,j∥(Hλ
t )−1 log(1/δ)

)
. (15)

The second term J2

For the second term, we have denote zt :=
∑t

m=1

∑
j∈Sm

xm,jηm,j , then

|J2| = |x⊤(Hλ
t )

−1Et(H
λ
t + Et)

−1zt|
≤ ∥x∥(Hλ

t )−1∥(Hλ
t )

−1/2Et(H
λ
t )

−1/2∥∥(Hλ
t + E)−1zt∥Hλ

t

)
.
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Bounding ∥(Hλ
t )

−1Et(H
λ
t )

−1∥. Given any vector w, if we denote

amj := x⊤mjw, bmj = x⊤mj(θ̂
λ
D − θ⋆), pmj(s) := pmj(θ

⋆ + s(θ̂λD − θ⋆)),
and

umj(s) := x⊤mj(θ
⋆ + s(θ̂λD − θ⋆)), vmj(s) := eumj(s)

for j ∈ Sm and set am0 = bm0 = um0 = 0, vm0 = 1 for convenience. Then we have as shown in
[35],

∥w∥2
DLm(θ⋆+s(θ̂λ

D−θ⋆))
=

∑
j∈Sm

∑
i∈Sm:0≤i<j(ami − amj)

2vmi(s)vmj(s)

(1 +
∑

j∈Sm
vmj(s))2

.

It can be verified by calculation that

| d
ds
∥w∥2

DLm(θ⋆+s(θ̂λ
D−θ⋆))

|

=

∣∣∣∣∣∣
∑

j∈Sm

∑
i∈(Sm)+:0≤i<j(ami − amj)

2vmi(s)vmj(s)
[∑

k∈(Sm)+
(bmi + bmj − 2bmk)vmk(s)

]
(1 +

∑
j∈Sm

vmj(s))3

∣∣∣∣∣∣
≤ 3
√
2 max
j∈Sm

|bmj | ·
∑

j∈Sm

∑
i∈(Sm)+:0≤i<j(ami − amj)

2vmi(s)vmj(s)

(1 +
∑

j∈Sm
vmj(s))2

≤ 3
√
2 max
j∈Sm

|bmj |∥w∥2DLm(θ⋆+s(θ̂λ
D−θ⋆))

.

As a result, ψ(s) := log∥w∥2
DLm(θ⋆+s(θ̂λ

D−θ⋆))
satisfies |ψ′(s)| ≤ 3

√
2maxj∈Sm

|bmj |, which then
leads to

e−3
√
2maxj∈Sm |bmj |s∥w∥DLm(θ⋆) ≤ ∥w∥DLm(θ⋆+s(θ̂λ

D−θ⋆)) ≤ e
3
√
2maxj∈Sm |bmj |s∥w∥DLm(θ⋆).

(16)

Now we have for any w ∈ Rd, by taking summation over m,

w⊤Etw = w⊤
∫ 1

0

∑
m≤t

(
DLm(θ⋆ + s(θ̂λD − θ⋆))−DLm(θ⋆)

)
dsw

≤
∫ 1

0

(eζs − 1)ds∥w∥2Ht
≤
(
eζ − 1

ζ
− 1

)
∥w∥2Ht

,

this leads to

Et ⪯
(
eζ − 1

ζ
− 1

)
Ht ⪯

(
eζ − 1

ζ
− 1

)
Hλ

t . (17)

On the other hand, we have by

Ht + Et =

∫ 1

0

∑
m≤t

DLm(θ⋆ + s(θ̂λD − θ⋆))ds

⪰
∫ 1

0

e−ζsds ·Ht ⪰
1− e−ζ

ζ
Ht ⪰

1

1 + ζ
Ht,

(18)

where the last inequality is by the elementary inequality 1−e−x

x ≥ 1
1+x , x > 0. With (17) and (18),

we arrive at

∥(Hλ
t )

−1/2Et(H
λ
t )

−1/2∥ = max
∥w∥2=1

|w⊤(Hλ
t )

−1/2Et(H
λ
t )

−1/2w|

≤
{
eζ − 1

ζ
− 1,

1

1 + ζ
− 1

}
≤ 2
(eζ − 1

ζ
− 1
)
,

and thus

J2 ≤ 2∥x∥(Hλ
t )−1

(
eζ − 1

ζ
− 1

)
∥(Hλ

t + E)−1zt∥Hλ
t
.
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Bounding ∥(Hλ
t + E)−1zt∥Hλ

t
: By (18), we have

Ht ⪯ (1 + ζ)(Ht + Et) =⇒ (Hλ
t + Et)

−1Hλ
t (H

λ
t + Et)

−1 ⪯ (1 + ζ)(Hλ
t + E)−1 ⪯ (1 + ζ)2Hλ

t .

thus it holds that
∥(Hλ

t + E)−1zt∥2Hλ
t
= z⊤t (Hλ

t + Et)
−1Hλ

t (H
λ
t + Et)

−1zt

≤ (1 + ζ)2∥zt∥2(Hλ
t )−1

To control ∥zt∥(Hλ
t )−1 , we have for any unit vector w, it holds that

w⊤(Hλ
t )

−1/2zt = ((Hλ
t )

1/2w)⊤︸ ︷︷ ︸
:=x̃⊤

(Hλ
t )

−1zt,

which has the same form as J1 when we replace x̃ by x, thus by the same argument as in bounding
J1, we have (15) still holds: with probability at least 1− δ′,

|w⊤(Hλ
t )

−1/2zt| ≤ 2 ∥x̃∥(Hλ
t )−1︸ ︷︷ ︸

=∥w∥2=1

(√
log(1/δ′) + max

m≤t,j∈Sm

∥xm,j∥(Hλ
t )−1 log(1/δ′)

)
,

now taking w over the 1/2-net of the unit ball and taking union bound with selecting δ′ ≍ 4dδ leads
to with probability at least 1− δ,

∥zt∥(Hλ
t )−1 ≤ 8

√
d log(1/δ) + 8d log(1/δ) · max

m≤t,j∈Sm

∥xm,j∥(Hλ
t )−1 .

Further introduce the notation ξ = maxm≤t,j∈Sm
∥xm,j∥(Hλ

t )−1 in Lemma 6, we have then

∥zt∥(Hλ
t )−1 ≤ (1 + ζ)(8

√
d log(1/δ) + 8dξ log(1/δ)) (19)

Now we arrive at

J2 ≤ 8∥x∥(Hλ
t )−1

(
eζ − 1

ζ
− 1

)
(1 + ζ)︸ ︷︷ ︸

=φ(ζ)

(√
d log(1/δ) + d log(1/δ) · ξ

)
.

Remark 1. In the above proof of (17), we borrow the calculation in [35], which was used to verify
the self-concordant-like property of the linear MNL-likelihood function. The key distinction in our
approach is that we retain the bmj term throughout the calculation, whereas [35] directly apply
the bound |bmj | ≲ ∥θ̂λD − θ⋆∥2. This difference allows us to derive a bound on Et that depends
only on maxm,j |x⊤mj(θ̂

λ
D − θ⋆)|, rather than on ∥θ̂λD − θ⋆∥2. It is worth noting that a very recent

work [36] also uses a similar argument to establish a refined self-concordant-like property for the
MNL likelihood function (specifically, the ℓ∞ self-concordant-like property in their Proposition B.3)
to obtain sharper confidence bounds, and the bound in (17) can also be derived from their Proposition
B.3.

While the above proof primarily focuses on the relation between HD(θ̂λD) and HD(θ⋆), the inequality
in (16) can also imply a dominance relation betweenHD(θ) andHD(θ⋆) for general θ. We summarize
this general result in the following proposition for future applications.

Proposition 5. Given any θ ∈ Rd, λ ≥ 0, denoting ζθ := 3
√
2maxm≤t,j∈Sm |x⊤m,j(θ− θ⋆)|, then it

holds that
1

1 + 2φ(ζθ)
HD(θ⋆) ⪯ HD(θ) ⪯ (1 + 2φ(ζθ))HD(θ⋆).

Proof of Proposition 5. By taking s = 1 in (16), we can get

e−ζθ∥w∥HD(θ⋆) ≤ ∥w∥HD(θ) ≤ eζθ∥w∥HD(θ⋆)

for any unit vector w, thus it holds that

e−ζθHD(θ⋆) ⪯ HD(θ) ⪯ eζθHD(θ⋆).

Now by

1 + 2φ(ζθ) = 1 + 2(1 + ζθ)(
eζθ − 1

ζθ
− 1) = eζθ + (eζθ − 1− ζθ) + 2(

eζθ − 1

ζθ
− 1− ζθ

2
) ≥ eζθ ,

the claim holds.
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The last term J3

For the last term in (14), we have by

Ht + Et + λI ⪰ 1

1 + ζ
Ht + λI ⪰ 1

1 + ζ
Hλ

t

J3 ≤ |λx⊤(Hλ
t + Et)

−1θ⋆| ≤
√
λ∥θ⋆∥∥x∥(Hλ

t +Et)−1 ≤
√
λ(1 + ζ)W∥x∥(Hλ

t )−1 .

Combining all bounds

Now combining all above bounds, we get

|x⊤(θ̂λD − θ⋆)|
8∥x∥(Hλ

t )−1

≤
(√

log(1/δ) + ξ log(1/δ)
)
+ φ(ζ)

(√
d log(1/δ) + d log(1/δ) · ξ +

√
λW

)
+
√
λ(1 + ζ)W,

as desired.

Lemma 6 provides an upper bound on the ratio between x⊤(θ̂λD − θ⋆) and ∥x∥(Hλ)−1 . However,
the upper bound involves both ξ and ζ simultaneously. Our next lemma shows that when ξ is
well-controlled, the ζ factor can be bounded by ξ.
Lemma 8. Under the condition

ξ ≤ min

{
1

64
√
d log(Neff/δ)

,
1

64
√
λW

}
,

we have

φ(ζ) ≤ ζ ≤ 16(
√
log(Neff/δ) +

√
2λW )ξ + 16ξ2 log(Neff/δ). (20)

Proof. Applying Lemma 6 to each xm,j , we have then with probability at least 1− δ,
ζ

8ξ
≤
(√

log(Neff/δ) + ξ log(Neff/δ)
)
+ φ(ζ)

(√
d log(Neff/δ) + d log(Neff/δ) · ξ +

√
λW

)
+
√
λ(1 + ζ)W

Now by the elementary inequality

ex ≤ 1 + x+
5

8
x2,∀x ∈ [0,

3

5
],

it holds that

ζ ≤ 3

5
=⇒ (1 + ζ)(

eζ − 1

ζ
− 1) ≤ 8

5
· 5ζ
8
≤ ζ,

we get when ζ ≤ 3
5 , the above inequality can be reduced to(

1− 8ξ(
√
d log(Neff/δ) + dξ log(Neff/δ) +

√
λW )

)
ζ ≤ 8(

√
log(Neff/δ) +

√
2λW )ξ + 8ξ2 log(Neff/δ).

As a result, if it holds simultaneously that

ζ ≤ 3

5
, ξ ≤ min

{
1

32
√
d log(Neff/δ)

,
1

32
√
λW

}
,

then

ζ ≤ 16(
√
log(Neff/δ) +

√
2λW )ξ + 16ξ2 log(Neff/δ).

On the other hand, by (19), it always holds that with probability at least 1− δ,

ζ ≤ ξ∥θ̂λD − θ⋆∥Hλ
t
= ξ∥(Hλ

t + E)−1(zt − λθ⋆)∥Hλ
t

≤ ξ(1 + ζ)∥(Hλ
t + E)−1(zt − λθ⋆)∥(Hλ

t )−1

≤ ξ(1 + ζ)
(
8
√
d log(1/δ) + 8dξ log(1/δ) +

√
λW

)
22



As a consequence,

ξ ≤ min

{
1

64
√
d log(1/δ)

,
1

64
√
λW

}
=⇒ ζ ≤ 16ξ(

√
d log(1/δ) + dξ log(1/δ) +

√
λW/16)

=⇒ ζ ≤ 1

4
+

1

64
+

1

4
≤ 3/5.

That verifies ξ ≤ min

{
1

64
√

d log(Neff/δ)
, 1
64

√
λW

}
is sufficient for (20) holds, as desired.

Now combining the results in Lemma 6 and Lemma 8, we have ξ ≤ min

{
1

64
√

d log(Neff/δ)
, 1
64

√
λW

}
implies that

|x⊤(θ̂λD − θ⋆)|
8∥x∥(Hλ

t )−1

≤ φ(ζ)
(√

d log(1/δ) + d log(1/δ) · ξ +
√
λW

)
+
√
λ(1 + ζ)W +

√
log(1/δ) + ξ log(1/δ)

≤ 16ξ
(
(1 +

1

64
√
d
)
√
log(Neff/δ) +

√
2λW

)
·
(√

d log(1/δ) + d log(1/δ) · ξ +
√
λW

)
+
√
2λW +

√
log(1/δ) + ξ log(1/δ)

≤
(
(1 +

1

64
√
d
)
√

log(Neff/δ) +
√
2λW

)
·
(
16 +

1

256
+

1

4

)
+
√
λ(1 + ζ)W + 2

√
log(1/δ)

≤ 18
√

2 log(Neff/δ) + 32
√
2λW.

This finishes the proof of the confidence bound result under the burn-in condition.

Moreover we have by φ(ζ) ≤ ζ ≤ 3/5, Proposition 5 implies
1

3
Hλ

t ⪯
1

1 + 2ζ
Hλ

t ⪯ Hλ
t + Et ⪯ (1 + 2φ(ζ))Hλ ⪯ 3Hλ

t .

This finishes the proof of Theorem 1.

C Perturbation Results for Revenue Functions

Before proving results in Section 4 and Section 5, we first introduce several perturbation results on
the revenue function R with respect to the utility function u.

To emphasis its dependency on the utility variable u, we use the following notation throughout this
section for given S and r:

Q(u; r, S) := R(S|eu) =
∑

j∈S rje
uj

1 +
∑

j∈S e
uj
. (21)

Since r is fixed throughout the whole paper, we denote Q(u; r, S) by Q(u;S) for simplicity. We
first recall the following first-order and second-order derivative results, originally proved in [44] and
refined in [35], we provide the detailed proof only for completeness.
Proposition 6 (Lemma E.3 of [35]). Given r ∈ [0, 1]N and S ⊂ [N ] fixed, if we denote

wS :=

{
wj , j ∈ S
0, j /∈ S (22)

for w ∈ RN . Then for any u ∈ RN , we have

⟨∇Q(u;S),w⟩ =
∑
i∈S

pi(S|eu)(ri −Q(u;S))wi, (23)∣∣w⊤∇2Q(u;S)w
∣∣ ≤ 3max

i∈S
w2

i . (24)
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Proof of Proposition 6. During the proof S is fixed, thus we simply omit the notation and simply
denote Q(u;S) as Q(u).

To prove (23), noticing that for every i /∈ S, ∂ui
Q(u) = 0 and for every i ∈ S, we have

∂ui
Q(u) =

rie
ui

1 +
∑

j∈S e
uj
−

eui
∑

j∈S rje
uj

(1 +
∑

j∈S e
uj )2

= pi(S|eu)
(
ri −Q(u)

)
Thus

⟨∇Q(u),w⟩ =
∑
i∈S

∂ui
Q(u)wi =

∑
i∈S

pi(S|eu)
(
ri −Q(u)

)
wi,

as desired.

To prove (24), noticing that ∂2ui,uj
Q(u) = 0 if i /∈ S or j /∈ S. When i, j ∈ S, we have

∂uj
∂ui

Q(u) = ∂uj

[
pi(S|eu)(ri −Q(u))

]
= ∂ujpi(S|eu)(ri −Q(u))− pi(S|eu)pj(S|eu)(rj −Q(u)).

Noticing that for i, j ∈ S,

∂uj
pi(S|eu) =

{
−pj(S|eu)pi(S|eu) if j ̸= i,

(1− pi(S|eu))pi(S|eu) if j = i.

Thus

∂2ui
Q(u) = pi(S|eu)(1− 2pi(S|eu))(ri −Q(u)),

and for j ̸= i,

∂uj
∂ui

Q(u) = −pi(S|eu)pj(S|eu)(ri + rj − 2Q(u)).

As a result,

|w⊤∇2Q(u)w| ≤
∑
i,j∈S

|wiwj ||∂ui
∂uj

Q(u)|

≤
∑
i∈S

|wi|2pi(S|eu) + 2
∑

i ̸=j,i,j∈S

|wiwj |pi(S|eu)pj(S|eu)

≤
∑
i∈S

|wi|2pi(S|eu) +
∑

i ̸=j,i,j∈S

(w2
i + w2

j )pi(S|eu)pj(S|eu)

≤ 3
∑
i∈S

|wi|2pi(S|eu) ≤ 3max
i∈S
|wi|2.

This finishes the proof.

Based on the first and second-order derivatives of Q, we now introduce the following perturbation
result:
Proposition 7 (Proposition 3, restated). For any fixed r and u,u′ ∈ RN , denote w := u′ − u, then
i) it holds for any S0 ∈ S that

|Q(u′;S0)−Q(u;S0)|

≤
√∑

j∈S0

vj |rj −Q(u;S0)|2 ·
√∑

j∈S0

pj(S0|v)p0(S0|v)w2
j +

3

2
max
j∈S0

w2
j .

ii) In addition, if S0 is the maximizer of R(S; eũ) over S for some ũ ≥ u element-wisely, then

|Q(u′;S)−Q(u;S)| ≤
√∑

j∈S0

pj(S0|eu)p0(S0|eu)w2
j + 3max

j∈S0

w2
j .

iii) In the uniform-reward setting, where ri ≡ 1,∀i ∈ [N ], we have

|Q(u′;S)−Q(u;S)| ≤
∑
j∈S0

pj(S0|eu)p0(S0|eu)|wj |+
3

2
max
j∈S0

w2
j
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Proof. We have by Proposition 6,

|Q(u′;S0)−Q(u;S0)− ⟨∇Q(u;S0),w⟩|

= |Q(u′)−Q(u;S0)− ⟨∇Q(u;S0),w⟩| ≤
3

2
max
j∈S0

w2
j .

On the other hand, we have

|⟨∇Q(u;S0),w⟩| ≤
∑
j∈S0

pj(S0|v)|rj −Q(u;S0)||wj |

≤
√∑

j∈S0

vj |rj −Q(u;S0)|2 ·

√√√√∑
j∈S0

vjw2
j

(1 +
∑

j∈S0
vj)2

≤
√∑

j∈S0

vj |rj −Q(u;S0)|2 ·
√∑

j∈S0

pj(S0|v)p0(S0|v)w2
j .

This finishes the proof of the statement (i).

To prove the second inequality, it suffices to provide upper bound of
∑

j∈S0
vj |rj −Q(u;S0)|: We

first recall the following structural result of the revenue maximizer:

Proposition 8 (Lemma A.3, [5]). For any given u denote S̄ := argmaxS∈SK
Q(u;S), then it holds

that
1. ri ≥ Q(u; S̄), ∀i ∈ S̄.
2. For any u′ ≤ u point-wisely, it holds that Q(u; S̄) ≥ Q(u′; S̄).

By S0 is the maximizer of R(S; ṽ), we have rj ≥ Q(ũ) for all j ∈ S0 by Proposition 8. We further
have

Q(u;S0) ≤ max
S

R(S;v) ≤ max
S

R(S; eũ) = Q(ũ),

thus then by

Q(u;S) =

∑
j∈S rjvj

1 +
∑

j∈S vj
=⇒

∑
j∈S

vj(rj −Q(u;S)) = Q(u;S),

we have ∑
j∈S0

vj |rj −Q(u;S0)|2 ≤
∑
j∈S0

vj(rj −Q(u;S0)) = Q(u;S0) ≤ 1.

This finishes the proof of statement (ii).

Finally for statement (iii), we have by

rj −Q(u;S0) = 1−
∑

j∈S0
vj

1 +
∑

j∈S0
vj

= p0(S0|v),

|⟨∇Q(u;S0),w⟩| ≤
∑
j∈S0

pj(S0|v)|rj −Q(u;S0)||wj |

=
∑
j∈S0

p0(S0|v)pj(S0|v)|wj |,

this finishes the proof.

The proof of the above result relies on the condition that rj ≥ R(S; eu) for all j ∈ S, which holds
only when S is the best assortment under some ũ ≥ u. However, this does not apply to Algorithm 2,
which is based on elimination. To handle this, we extend the result to a class of near-optimal
assortments, which can be applied for analyzing elimination-based algorithms.
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Proposition 9 (Proposition 4 restated). Under the same notation of Proposition 7 and suppose for
some ũ ≥ u it holds

R(S0; e
ũ) ≥ max

S∈S
R(S; eũ)− ε,

then for v = eu, w = ũ− u and S⋆ = argmaxS∈SR(S;v) we have

R(S⋆;v)−R(S0;v) ≤ 2

√∑
j∈S0

pj(S0|v)p0(S0|v)w2
j + 5max

j∈S0

w2
j + 2ε.

Proof. We have by statement (i) of Proposition 7,

R(S⋆; eu)−R(S0; e
u) = Q(u;S⋆)−Q(u;S0)

≤ Q(ũ;S⋆)−Q(ũ;S0) +Q(ũ;S0)−Q(u;S0)

≤ ε+ |Q(ũ;S0)−Q(u;S0)|

≤ ε+
√∑

j∈S0

vj(rj −Q(u;S0))2
√∑

j∈S0

pj(S0|v)p0(S0|v)w2
j +

3

2
max
j∈S0

w2
j .

(25)

Denote

S+
0 := {j ∈ S0 : rj ≥ Q(u;S0)}, S−

0 := {j ∈ S0 : rj < Q(u;S0)},
then by ∑

j∈S+
0

vj(rj −Q(u;S0)) +
∑
j∈S−

0

vj(rj −Q(u;S0)) = Q(u;S0),

we have ∑
j∈S0

vj |rj −Q(u;S0)|

=
∑
j∈S+

0

vj(rj −Q(u;S0))−
∑
j∈S−

0

(vj(rj −Q(u;S0))

= 2
∑
j∈S+

0

vj(rj −Q(u;S0))−Q(u;S0)

≤ 2
∑
j∈S+

0

vj(rj −Q(u;S⋆)) + 2
∑
j∈S+

0

vj(Q(u;S⋆)−Q(u;S0))

≤ 2Q(u;S⋆) + 2p−1
0 (S0|v)(Q(u;S⋆)−Q(u;S0)),

where in the last line we have used

Q(u;S⋆) = argmaxS∈SK

∑
j∈S

vj(rj −Q(u;S))

and vj ≤ 1 +
∑

i∈S0
vi = p−1

0 (S0|v).

Denoting ∆ := (Q(u;S⋆)−Q(u;S0)), we have then (25) reduces to

∆ ≤ ε+
√
2 + 2p−1

0 (S0|v)∆ ·
√∑

j∈S0

pj(S0|v)p0(S0|v)w2
j +

3

2
max
j∈S0

w2
j

≤
√∑

j∈S0

pj(S0|v)p0(S0|v)w2
j +

3

2
max
j∈S0

w2
j + ε

︸ ︷︷ ︸
:=A

+

√∑
j∈S0

pj(S0|v)w2
j︸ ︷︷ ︸

:=B

√
∆.

Now using the elementary inequality for quadratic equation solutions:

x2 ≤ A+Bx =⇒ x ≤ B +
√
B2 + 4A

2

=⇒ x ≤ B +
√
A =⇒ x2 ≤ 2B2 + 2A
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for all x ≥ 0. We have

∆ ≤ 2B2 + 2A ≤ 2

√∑
j∈S0

pj(S0|v)p0(S0|v)w2
j + 5max

j∈S0

w2
j + 2ε,

as desired.

D Proof of Results in Section 4

D.1 Proof of Proposition 1 and Corollary 1

Proof. For each j ∈ S⋆ and any λ > 0, assume W.L.O.G. that j is exactly contained in S1, . . . , Snj ,
then by

H⋆ + λI ⪰
n∑

m=1

∑
k∈Sm

pk(Sm)p0(Sm)xkx
⊤
k + λI

⪰
n∑

m>nj

∑
k∈Sm

pk(Sm)p0(Sm)xkx
⊤
k + λI

︸ ︷︷ ︸
:=Zj

+
∑

m≤nj

pj(Sm)p0(Sm)

︸ ︷︷ ︸
:=γj

xjx
⊤
j ,

we have then

∥xj∥2(H⋆+λI)−1 = x⊤j
(
Zj + γjxjx

⊤
j

)−1
xj

= x⊤j Z
−1
j xj

(
1−

x⊤j Z
−1
j xj

1 + γjx⊤j Zjxj

)
=

1

γj

(
1− 1

γjx⊤j Zjxj

)
≤ 1/γj .

Taking limit as λj → 0 and using the continuity of ∥xj∥2(HD(θ⋆)+λI)−1 leads to ∥xj∥2H−1
D (θ⋆)

≤ γ−1
j .

Finally, by∑
j∈S⋆

pj(S
⋆)p0(S

⋆)∥xj∥2H−1
D (θ⋆)

≤
∑
j∈S⋆

pj(S
⋆)p0(S

⋆)γ−1
j

≤
∑
j∈S⋆

vj
(1 +

∑
k∈S⋆ vk)2

·

[∑
m

1{j ∈ Sm} ·
vj

(1 +
∑

k∈Sm
vk)2

]−1

≤
∑
j∈S⋆

vj
(1 +

∑
k∈S⋆ vk)2

·

[∑
m

1{j ∈ Sm} ·
vj

(1 +
∑

k∈Sm
vk)2

]−1

≤
∑
j∈S⋆

vj ·maxj∈Sm
(1 +

∑
k∈Sm

vk)
2

nj(1 +
∑

k∈S⋆ vk)2

≤
maxm(1 +

∑
k∈Sm

vk)
2

minj nj(1 +
∑

k∈S⋆ vk)
.

This finishes the proof of Corollary 1, and the second inequality implies Proposition 1.

D.2 Details of Proposition 2

In this section we provide the detail on how to plug other confidence region results in Algorithm 1 to
achieve a burn-in-free offline learning guarantee. In [44], confidence region results with the radius
Õ(
√
d∥xj∥H−1

D (θ⋆)) are available3, and we take the result in [44] to establish the confidence region
for example. Here we first restate the confidence region bound of [44]:

3It should be noted that the original result in [44] includes an additional K-dependency due to the self-
concordant coefficient they established for the MNL likelihood function. This coefficient was later refined by
[35], and incorporating their result eliminates the K-dependency in [44].
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Lemma 9 (Proposition 3.3 and Lemma C.4 in [44]). With the selection λ =
√
d/W and denoting

θ̂λD,j := argmin{x⊤j θ : ∥∇ℓλD(θ)−∇ℓλD(θ̂λD)∥(HD(θ)+λI)−1 ≤ 4
√
d(1 +W ) log(4Knd/δ)},

(26)
it holds that with probability at least 1− δ,

∥θ̂λD,j − θ⋆∥HD(θ⋆)+λI ≤ 4
√
d(1 +W )3 log(4Knd/δ).

With Lemma 9 and (26), we now assign the LCB values for each j ∈ [N ] as

ũLCB
j := x⊤j θ̂

λ
D,j , ṽLCB

j = exp(ũLCB
j ) if j ∈ ∪nk=1Sk, ṽLCB

j = 0 otherwise.
It can be seen from Lemma 9 that with probability at least 1− δ,

0 ≤ u⋆j − ũLCB
j ≲

√
d(1 +W )3 log(4Knd/δ)∥xj∥HD(θ⋆)+λI .

Now replacing the term u⋆ − ûj by u⋆j − ũLCB
j the right-hand-side upper bound our analysis in

Section A.3 leads to Proposition 2, as desired.

E Proof of Results in Section 5

E.1 Proof of Lemma 1

Lemma 1 is a direct corollary of the following result from [47, 53]:
Lemma 10. For any given X ⊂ {x ∈ Rd : ∥x∥2 ≤ 1} threshold µ > 0 and regularizer λ > 0, the
following procedure starting with C = ∅:

while ∃x ∈ X so that ∥x∥2
(V λ

C )−1 > µ for V λ
C :=

∑
z∈C zz

⊤ + λI do: add this x to C.

will stop in at most

Cmax :=
e

e− 1

1 + µ

µ
d

(
log

(
1 +

1

µ

)
+ log

(
1 +

1

λ

))
.

steps.

Applying this lemma with

λ = 1, µ =

(
1

64
√
d log(NT )

∧ 1

64W

)2

to each ℓ separately then leads to the desired result.

E.2 Proof of Theorem 4

Based on the burn-in condition established in Lemma 1, which incurs at most poly-logarithmic regret
in T , it remains to bound the regret incurred from τ + 1 to T.

Again, it suffices to perform regret analysis under the inequalities (9) and (10), under which we can
show that

2−8 ≤
W̃ ℓ

t,S√∑
j∈S pj(S|v)p0(S|v) ·

√∑
j∈S pj(S|v)p0(S|v)∥xj∥2H−1

t,ℓ

≤ 28

holds using the same argument for establishing (11).

Now noticing that with the uniform revenue assumption ri ≡ r̄ for some 0 ≤ r̄ ≤ 1, statement i) in
Proposition 3 can be refined to

|R(S0|v′)−R(S0|v)| ≤
√∑

j∈S0

vj |rj −R(S0|v)|2 ·
√∑

j∈S0

pj(S0|v)p0(S0|v)w2
j +

3

2
max
j∈S0

w2
j

≤
√∑

j∈S0

p0(S0|v)pj(S0|v) ·
√∑

j∈S0

pj(S0|v)p0(S0|v)w2
j +

3

2
max
j∈S0

w2
j ,

28



where the last inequality is by∑
j∈S0

vj |rj −R(S0|v)|2 =
∑
j∈S0

r̄2vj

(
1−

∑
j∈S0

vj

1 +
∑

j∈S0
vj

)2

=
r̄2
∑

j∈S0
vj

(1 +
∑

j∈S0
vj)2

≤
∑
j∈S0

p0(S0|v)pj(S0|v).

With this result, we have the following analogue of Lemma 2 directly in this setting: For every ℓ and
S ∈ Aℓ it holds under (9) and (10) that

|RUCB
t,ℓ (S)−R(S|θ⋆)| ≤ 28W̃ ℓ

t,S . (27)

Plugging (27) to the subsequent analysis in the proof of Theorem 3 then leads to∑
t∈Ta,ℓ

R(S⋆)−R(St) ≲
∑

t∈Ta,ℓ

√∑
j∈St

p0(St|v)pj(St|v) ·
√∑

j∈St

pj(St|v)p0(St|v)(wℓ
tj)

2 +
3

2
max
j∈St

(wℓ
tj)

2,

≲
√ ∑

t∈Ta,ℓ

∑
j∈St

p0(St|v)pj(St|v) ·
√ ∑

t∈Ta,ℓ

∑
j∈St

pj(St|v)p0(St|v)(wℓ
tj)

2 +
∑

t∈Ta,ℓ

max
j∈St

(wℓ
tj)

2

≲
√ ∑

t∈Ta,ℓ

∑
j∈St

p0(St|v)pj(St|v) · (d+W ) log(NT ) +
d log(NT )

κ

≲
√(

κ⋆T +
∑

t∈Ta,ℓ

R(S⋆)−R(St)
)
· (d+W ) log(NT ) +

d log(NT )

κ
,

where the last line is by Lemma 11 of [44]. Now if we denote ∆ :=
∑

t∈Ta,ℓ
R(S⋆)− R(St) and

apply the fact

∆ ≲ A
√
∆+B =⇒ ∆ ≲ A2 +B

with A = (d + W ) log(NT ) and B =
√
κ⋆(d+W )T log(NT ) + d log(NT )

κ , the desired result
holds.

E.3 Proof of Theorem 5

In this section, we show the following problem-dependent lower bound result:
Theorem 5 (Problem-Dependent Lower Bound). For any given 0 < κ̄ < 1, we can find a class of
problem instances V with uniform revenue and d-dimensional linear MNL choice feedback so that
for any instance in V the corresponding parameter κ⋆ ≤ κ̄ and for any policy π, there exists some
instance in V so that

Reg(T ) ≳
√
κ̄dT

over such instance.

The construction of hard instance for proving Theorem 5 relies only on a minor modification of the
proof in [17], and we just provide the detailed proof here for completeness.

Step 1: Construction of Hard Instances. We let r1 = · · · = rN = 1 for all instances constructed
later, and given anyK-sized assortment S,we consider the corresponding attraction value construction
as

vS
.
=

{
κ⋆

K (1 + ε) if i ∈ S,
κ⋆

K otherwise.

And we define the problem instance set as

VK
.
= {vS : S ∈ SK}.

It can be seen that we always have S⋆(vS) = S for every v, and

κ⋆

9
≤
∑
i∈S⋆

pi(S
⋆)p0(S

⋆) =
κ⋆(1 + ε)

(1 + κ⋆(1 + ε))2
≤ 2κ⋆
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holds for every vS by definition.

Since there exists a one-to-one correspondence between SK and VK via S → vS , we interchangeably
use the notations vS and S for convenience.

Step 2: Verifying the Separation Condition. We have the following separation result over S
Proposition 10. For every fixed S0 ∈ S and corresponding vS0 ∈ VK , it holds for any S ∈ S that

SubOpt(S|vS0) ≥ (K − |S ∩ S0|)κ⋆ε
9K

,

as desired.

Proof of Proposition 10. Denoting R(·|vS0) by R(·) thorough the proof for simplicity, we have

R(S0) =
κ⋆(1 + ε)

1 + κ⋆(1 + ε)

and for any S,

R(S) =
κ⋆(1 + |S ∩ S0|ε/K)

1 + κ⋆(1 + |S ∩ S0|ε/K︸ ︷︷ ︸
.
=ε′

)
,

thus

R(S0)−R(S) =
κ⋆(1 + ε)(1 + κ⋆(1 + ε′))− κ⋆(1 + ε′)(1 + κ⋆(1 + ε))(

1 + κ⋆(1 + ε)
)(
1 + κ⋆(1 + ε′)

)
=

κ⋆(ε− ε′)(
1 + κ⋆(1 + ε)

)(
1 + κ⋆(1 + ε′)

) ≥ κ⋆(ε− ε′)
9

=
κ⋆(K − |S ∩ S0|)ε

9K

Step 3: Decomposing the Regret. Based on Proposition 10, we have

max
v∈VK

Regπ(T ;v) ≥
1

|SK |
∑

v∈VK

T∑
t=1

Ev[SubOpt(St;v)]

≥ κ⋆ε

9K|SK |
∑

S∈SK

T∑
t=1

ES [K − |St ∩ S⋆(v)|]

=
κ⋆ε

9|SK |
∑

S∈SK

(
T − 1

K

∑
i∈S

T∑
t=1

ES [1{i ∈ St}]
)

=
κ⋆ε

9

(
T − 1

K|SK |
∑

S∈SK

∑
i∈S

ES [Ni]
)
.

Now for each i, we define S(i)K−1
.
= SK−1 ∩ {S ⊂ [N ] : i /∈ S}, then it holds that

∑
S∈SK

∑
i∈S

ES [Ni] =

N∑
i=1

∑
S∈SK :i∈S

ES [Ni] =

N∑
i=1

∑
S′∈S(i)

K−1

ES′∪{i}[Ni]

=

N∑
i=1

∑
S′∈S(i)

K−1

(
ES′∪{i}[Ni]− ES′ [Ni]

)
+

N∑
i=1

∑
S′∈S(i)

K−1

ES′ [Ni].
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Now for the second term, we have
N∑
i=1

∑
S′∈S(i)

K−1

ES′ [Ni] =
∑

S′∈SK−1

∑
i/∈S′

ES′ [Ni] ≤ KT |SK−1|.

For the first term, by Pinsker’s inequality, denoting the probability induced by environment S′ ∪ {i}
as P and induced by S′ as Q, then

|ES′∪{i}[Ni]− ES′ [Ni]| ≤
T∑

t=1

t|PS′(Ni = t)−QS′(Ni = t)|

≤ T
√

1

2
KL(P∥Q).

As a result, we have

max
v∈VK

Regπ(T ;v) ≥
κ⋆ε

9

(
T − 1

K|SK |
∑

S∈SK

∑
i∈S

ES [Ni]
)

≥ κ⋆ε

9

(
T − T |SK−1|

|SK |
− T√

2K|SK |

N∑
i=1

∑
S′∈S(i)

K−1

√
KL(PS′∥QS′)

)

≥ κ⋆εT

9

(2
3
− 1

K|SK |

N∑
i=1

∑
S′∈S(i)

K−1

√
1

2
KL(PS′∥QS′)

)
.

Where the last line is by

|SK−1|
|SK |

=

(
N

K−1

)(
N
K

) =
K

N −K + 1
≤ 1

3

when 4K ≤ N.

Step 4: Upper Bounding the KL Divergence. We have for every S′ ∈ S(i)K−1, it holds that

KL(PS′∥QS′) ≤
∑
S̄∈S

ES′ [N(S̄)]KL
(
PS′(·|S̄)∥QS′(·|S̄)

)
≤

∑
S̄∈S:i∈S̄

ES′ [N(S̄)]KL
(
PS′(·|S̄)∥QS′(·|S̄)

)
Where the last line is by KL

(
PS′(·|S̄)∥QS′(·|S̄)

)
= 0 as long as i /∈ S̄.

For every S̄ containing i, we have denote K ′ = |S̄| and pj
.
= PS′(j|S̄), qj

.
= QS′(j|S̄) for j ∈ S̄+,

then
i) For j = 0,

|p0 − q0| =
K

K + κ⋆
(
K ′ + |S̄ ∩ S′|ε

) − K

K + κ⋆
(
K ′ + (|S̄ ∩ S′|+ 1)ε

)
≤ Kκ⋆[

K + κ⋆
(
K ′ + |S̄ ∩ S′|ε

)]2 ≤ κ⋆ε

K
.

ii) For j ̸= i,

|pj − qj | ≤
κ⋆(1 + ε)

K
|p0 − q0| ≤

2(κ⋆)2ε

K2
.

iii) For j = i,

|pi − qi| =
κ⋆(1 + ε)

K + κ⋆
(
K ′ + (|S̄ ∩ S′|+ 1)ε

) − κ⋆

K + κ⋆
(
K ′ + |S̄ ∩ S′|ε

)
≤ εκ⋆(K + κ⋆(K ′ + |S̄ ∩ S′|ε))− κ⋆ε

K2
≤ 2εκ⋆

K
,

Now applying the following Proposition from [17]:
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Proposition 11. Let P andQ be two categorical distributions on J items, with parameters p1, · · · , pJ
and q1, · · · , qJ respectively. Denote also εj

.
= pj − qj . Then KL(P∥Q) ≤

∑J
j=1 ε

2
j/qj .

we get ∑
S̄∈S:i∈S̄

ES′ [N(S̄)]KL
(
PS′(·|S̄)∥QS′(·|S̄)

)
≤ ES′ [Ni]

(κ2ε2
K

+
2K ′(κ⋆)4ε2

κ⋆K4
+

4ε2(κ⋆)2

κ⋆K

)
≤ ES′ [Ni]

24ε2κ⋆

K
.

Final Step: Putting All Together. Using the above upper bound of KL divergence, we get

κ⋆εT

9

(2
3
− 1

K|SK |

N∑
i=1

∑
S′∈S(i)

K−1

√
1

2
KL(PS′∥QS′)

)

≥ κ⋆εT

9

(2
3
− 1

K|SK |

N∑
i=1

∑
S′∈S(i)

K−1

√
1

2
ES′ [Ni]

24ε2κ⋆

K

)

≥ κ⋆εT

9

(2
3
− 1

K|SK |
∑

S′∈SK−1

∑
i/∈S′

√
1

2
ES′ [Ni]

24ε2κ⋆

K

)
≥ κ⋆εT

9

(2
3
− 1

K|SK |
∑

S′∈SK−1

√
N

√∑
i/∈S′

1

2
ES′ [Ni]

24ε2κ⋆

K

)
≥ κ⋆εT

9

(2
3
− |SK−1|
K|SK |

√
12NTε2κ⋆

)
≥ κ⋆εT

9

(2
3
− 1

N −K + 1

√
12NTε2κ⋆

)
≥ κ⋆εT

9

(2
3
−
√

48Tε2κ⋆/N
)
.

Selecting ε2 = 1
512

√
N

Tκ⋆ then leads to the Ω(
√
κ⋆NT ) lower bound, as desired.

E.4 Extension to Time-Varying Contexts

Another problem setting widely adopted in linear MNL and generalized linear bandit frameworks
is the adversarial context setting with an initial exploration period [38, 18, 31, 42]. In this setting,
instead of always using the same feature map xj , we allow the feature vector xt,j to vary with t.
Furthermore, during the initial exploration period, the observed features xt,j are drawn i.i.d. from
some distribution P0 with λmin(Ex∼P0

[xx⊤]) ≥ σ0 for some σ0 > 0. In general, The fixed action
setting does not fit this framework as it violates the eigenvalue lower bound assumption, making
previous exploration-phase designs inapplicable. While our algorithmic description focuses on the
fixed feature set setting, it can be readily extended to the time-varying context setting, achieving a
regret of Õ(

√
dT + κ−1d2K). This holds under the same stochastic context assumption during the

initial exploration phase and allows for an even simpler design in the exploration phase, thanks to the
generality of Theorem 1.

In this section, we extend Algorithm 2 to the setting that the observed context at each round can
be different vectors in Rd, more precisely, at each time t, the i-th item is associated with a feature
map xt,i ∈ Rd. And we impose the following eigenvalue assumption in the exploration phase, as in
[42, 18]:
Assumption 2. For some given t0, {xt,i}i∈[N ],t∈[t0] are generated i.i.d. from some unknown distri-
bution P supported on the d-dimensional unit ball, with λmin(Ex∼P [xx

⊤]) ≥ σ0 for some σ0 > 0.

We first present the modified algorithm for time-varying contexts in Algorithm 3, with modifications
highlighted in blue. In the elimination phase, the only change is that item-wise uncertainty levels are
computed over xt,i instead of xi for each i, which then affects W ℓ

t,S and the UCB revenues. Thus the
same analysis as in Section A.3 can be conducted to derive the same regret bound once the burn-in
condition can be verified.
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The main difference lies in the initial exploration phase, where any K-sized assortment can be
selected for efficient exploration due to Assumption 2.

Algorithm 3 SupLinearMNL with Time-Varying Contexts

1: Input: Time horizon T, exploration length n0,τ .
initialize S = log T, ,Ψ1 = · · · = ΨS+1 = ∅.

2: for t = 1, . . . , (S + 1)τ do
3: Select arbitrary assortment in SK , add t into Ψ⌈t/τ⌉
4: end for
5: Ψ0 ← ∅, compute θ̂0 as in (5).
6: for t = (S + 1)τ + 1, . . . , T do
7: set A1 = SK , St = ∅, ℓ = 1
8: while St = ∅ do
9: ComputeW ℓ

t,S , R
UCB
t,ℓ (S),∀S ∈ Aℓ as in (7), (8) , withwℓ

t,i := 72∥xt,i∥H−1
t,ℓ (θ̂0)

√
log(NT )

10: if W ℓ
t,S > 2−ℓ for some S ∈ Aℓ then

11: select such S ∈ Aℓ.
12: Ψℓ ← Ψℓ ∪ {t}
13: else if W ℓ

t,S ≤ 1/
√
T for all S ∈ Aℓ then

14: take the action St = argmaxS∈Aℓ
RUCB

t,ℓ (S)

15: Ψ0 ← Ψ0 ∪ {t}
16: else
17: R̂← maxS∈Aℓ

RUCB
t,ℓ (S)

18: Aℓ+1 ←
{
S ∈ Aℓ, R

UCB
t,ℓ (S) ≥ R̂− 2−ℓ+2

}
19: ℓ← ℓ+ 1
20: end if
21: end while
22: end for

Now it sufficient to prove the following burn-in condition guarantee:

Lemma 11. With the selection τ = Ω(σ−1
0 [d log T/σ0 +

√
d log(NT ) ∨K−1

√
W ), it holds that

with probability at least 1− 2/T , the event Ẽ1 ∩ Ẽ2, with

Ẽ1 : = {1
2
Ht,ℓ(θ

⋆) ⪯ Ht,ℓ(θ̂0) ⪯ 2Ht,ℓ(θ
⋆), ∀t > τ, ℓ ∈ [S]},

Ẽ2 : = {|x⊤t,j(θ̂λt,ℓ − θ⋆)| ≤ 72
√

log(NT )∥xt,j∥(Hλ
t,ℓ(θ̂0))

−1 , ∀t > τ, j ∈ [N ], ℓ ∈ [S]},

holds.

Proof. We need only show that with probability at least 1− 1/T, after the exploration phase, it holds
for every ℓ that

λmin(Ht,ℓ(θ
⋆)) ≥ 64K

√
d log(NT ) ∨ 64

√
W, (28)

From this, we obtain

∥x∥Ht,ℓ(θ⋆) ≲
1

64K
√
d log(NT )

∧ 1

64
√
W
, ∀∥x∥2 ≤ 1,

which then allows the result to follow naturally from Theorem 1 and Proposition 5.

Now to prove (28), we simply recall the following result in [42] and [38]:

Proposition 12 (Proposition 1 in [42]& Proposition 1 in [38]). For any constant B > 0, there exists
some absolute constant c1, c2 > 0 so that with the selection

κτ ≥ 1

K

(
c1
√
d+ c2

√
2 log T

σ0

)2

+
2B

Kσ0
,

it holds with probability at least 1− 1/T 2 that Ht,ℓ(θ
⋆) ⪰ BI.
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Now selecting τ as in Proposition 12 with B = 64K
√
d log(NT ) ∨ 64

√
W then finishes our

proof.

E.5 Extension of OFU-MNL [44]

In this section, we show that a simple plug-in argument based on the developed perturbation result
Proposition 3 can extend the result in Theorem 3.4 of [44] for uniform revenue setting to the general
revenue setting:
Theorem 6. The OFU-MNL algorithm (Algorithm 2, [44]) satisfies the regret

Reg(T ) ≲ d
√
T + κ−1d2

up to logarithmic factors.

Proof of Theorem 6. Simply noticing that the OFU-MNL algorithm always taking the optimistic
action

St := argmaxS∈SK
R(S|vUCB

t )

for

vUCB
ti := max

θ∈Θ
exp(x⊤tiθ) ∀i ∈ [N ],

with Ct specified as in Lemma 9.

Proposition 3.3 in [44] has shown that vUCB
t ≥ v,∀t ∈ [T ] with probability at least 1 − O(1/T ),

thus then we have under such event, it holds that rj ≥ R(St|vUCB
t ) ≥ R(S⋆|v). Now denote

wtj := vUCB
tj − vtj , we have then

Reg(T ) =
T∑

t=1

R(S⋆|v)−R(St|v) ≤
T∑

t=1

R(S⋆|vUCB
t )−R(St|v)

≤
T∑

t=1

R(St|vUCB
t )−R(St|v) ≤(i)

√∑
j∈St

pj(St|v)p0(St|v)w2
tj + 3max

j∈St

w2
tj

≲(ii)

√
d
∑
j∈St

pj(St|v)p0(St|v)∥xtj∥2H−1
t (θ⋆)

+ 3dmax
j∈St

∥xtj∥2H−1
t (θ⋆)

.

where (i) is by statement ii) of Proposition 3, (ii) is by Proposition 3.3 and Lemma 9. Finally, applying
the elliptic potential lemma presented in Lemma 5 leads to the desired result.

F Experiment Results

In this section, we present additional numerical results to illustrate the effect of the burn-in condition
and to compare Algorithm 1 with existing offline assortment optimization benchmarks.

F.1 Sensitivity to Burn-in Condition

To better understand the trade-off between the tightness of our confidence intervals (CIs) and the
burn-in condition, we conduct a set of numerical experiments comparing our bound in Theorem 2 with
that of [44]. Our CIs are theoretically tighter than those in [44, 35, 3] in that the confidence radius is
smaller by a

√
d factor, but requires an additional burn-in condition and a conditional independence

assumption. The following simulation demonstrates how violating the burn-in condition may lead to
the failure of our CI guarantee, while satisfying it yields improved tightness.

F.1.1 Evaluation and Results

We compare the empirical tightness of the two confidence bounds using the following ratio:

CI Ratio := max
i

|θ̂i − θ⋆i |
CI at ei

,
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where the denominator corresponds to the theoretical confidence radius at coordinate ei. A smaller
CI ratio indicates a tighter alignment between the theoretical CI and the actual estimation error, and
thus a lower likelihood of CI violation.

We evaluate the CI ratio under different burn-in constants, defined as

ζ := max
k≤n, j∈Sk

∥xkj∥H−1(θ⋆).

Theoretically, our CI guarantee in Theorem 2 requires ζ ≲ 1/
√
d, whereas the bound in [44] imposes

no such restriction.

Value of ζ 0.130 0.134 0.141 0.160 0.335

CI ratio (Theorem 1) 2.563 2.831 3.147 4.052 5.617
CI ratio ([44]) 3.495 3.480 3.420 3.270 2.852

Table 2: Comparison of CI ratios under varying burn-in constants.

We present the result in Table 2, and defer the detailed experiment setup in the next section. As ζ
increases, our CI ratio grows noticeably, reflecting a higher risk of CI violation when the burn-in
condition is not met. In contrast, the ratio for [42] remains stable across ζ, consistent with its
theory-independent nature. This comparison highlights a fundamental trade-off: our CI achieves
tighter bounds under well-conditioned data but is more sensitive to initialization.

F.1.2 Experimental Setup

We describe below how the feature map, parameter, and assortment sets are constructed to obtain
results in Table 2.

Feature Set and Parameters. For given (d,K) (assuming d even) and a parameter radius W > 0,
we define the item features as follows:

• Type-1 items: For i ≤ d− 1, xi = ei (canonical basis vectors).

• Type-2 item: xd = (1, 1, . . . , 1)/
√
d.

The true parameter is set as θ⋆ = (W,W, . . . ,W )/
√
d.

Assortment Sets. We consider two types of assortments:

• Type-1 assortment: S0 = {d}, containing only the Type-2 item.

• Type-2 assortments: Let m = ⌈d/K⌉. For each 1 ≤ k ≤ m, define

Sk = {(m− 1)K + 1, (m− 1)K + 2, . . . ,min(mK, d)}.

Observed Data. Given integers n1, n2, we generate n1 copies of S1, . . . , Sm and n2 copies of S0,
with choices sampled under the linear MNL model parameterized by (X, θ⋆) as above.

Relation Between W and Burn-in Constant. Under this construction, ζ increases monotonically
with W . The mapping between W and ζ used in our experiments is shown below.

Value of W 0.5 0.841 1.41 2.37 4.0

Value of ζ 0.130 0.134 0.141 0.160 0.335

Table 3: Mapping between W and burn-in constant ζ.

All results reported in Table 2 are based on d = 6, K = 3, and n1 = n2 = 500. This setup allows us
to systematically vary W and thus ζ, thereby illustrating the relationship between burn-in strength
and confidence interval validity.
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F.2 Results for Offline Assortment Optimization

Since in online setting, Algorithm 2 is computationally inefficient. We focus on Algorithm 1
in the offline setting. We consider two variants of our approach based on different confidence
intervals: one derived from Theorem 2 and the other from Lemma 9, denoted by LCB-MLE and
LCB-MLE-v2, respectively. These experiments are designed to examine the trade-off between
statistical conservativeness and empirical performance, and to compare our results with the PASTA
algorithm [26].

We evaluate the empirical performance of our proposed confidence-based algorithms under four
representative settings that differ in coverage and model specification conditions. Settings 1 and 2
examine performance under varying coverage levels in the standard linear MNL model, while
Settings 3 and 4 study robustness under misspecified mixture-MNL environments.

Setting 1: Full Coverage. In this setting, both the item features X and the true parameter θ⋆ are
independently drawn from spherical uniform distributions. The observed assortments are uniformly
sampled from all K-sized subsets of [N ], ensuring that every item is well covered. The experimental
parameters are N = 30, d = K = 10, and W = 1, and results are averaged over 10 repetitions.

n LCB-MLE LCB-MLE-v2 PASTA

100 0.0073 0.0087 0.0077
300 0.0056 0.0088 0.0048
500 0.0051 0.0082 0.0041

1000 0.0051 0.0069 0.0046

Table 4: Comparison of SubOpt Gap (smaller is better) under full coverage, N = 30, d = K = 10,
W = 1, over 10 repetitions.

Under full coverage, PASTA slightly outperforms both LCB-MLE variants. Moreover, LCB-MLE-
v2—with its larger lower-confidence penalty—shows higher conservativeness and thus lower empiri-
cal efficiency. This observation aligns with our theoretical insight: when all items are well explored,
excessive conservativeness can lead to under-selection and higher SubOpt gaps.

Setting 2: Partial Coverage. We next consider a setting with partial coverage to examine robustness
when the observation set does not fully span the item space. We use the same setup for (X, θ⋆), N , K,
and d as in Setting 1, and fix the total number of observations at n = 500. For each n⋆, assortments
are constructed by including n⋆ items from the optimal set and filling the remaining K − n⋆ items
with randomly sampled non-optimal ones. Increasing n⋆ therefore improves the effective coverage of
the optimal set.

n⋆ per S LCB-MLE LCB-MLE-v2 PASTA

2 0.0050 0.0057 0.0047
4 0.0004 0.0004 0.0021
6 0.0007 0.0000 0.0022
8 0.0003 0.0000 0.0019

Table 5: Comparison of SubOpt Gap (smaller is better) under partial coverage.

Under partial coverage, both LCB-MLE variants consistently outperform PASTA. In particular,
LCB-MLE-v2 achieves the smallest SubOpt Gap, suggesting that stronger conservativeness improves
robustness when data coverage is limited. These results reveal a complementary pattern: LCB-MLE
performs well in well-covered settings, whereas LCB-MLE-v2 is more effective in partially observed
regimes.

Setting 3: Misspecification under mixture of MNL I. In this setting, we consider a mixture
MNL model with two subgroups, where the second subgroup is selected with probability µ, and the
total sample size is fixed at n = 500. The generation of (X, θ⋆) and parameters (N,K, d) follows
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µ LCB-MLE LCB-MLE-v2 PASTA

0.05 0.9312 0.9280 0.9316
0.20 0.9279 0.9248 0.9277
0.50 0.9246 0.9234 0.9246
0.70 0.9263 0.9267 0.9262
0.90 0.9312 0.9312 0.9309

Table 6: Comparison of Expected Revenue (larger is better) under mixed MNL model I.

the same configuration as in Setting 1. Each assortment consists of 5 items sampled from the first
subgroup’s optimal set and 5 from the rest.

Since computing the true optimal assortment under a mixture MNL is intractable, we evaluate
performance using the expected revenue instead of SubOpt Gap. As µ approaches 0.5, model
misspecification becomes more severe and the performance of all methods slightly degrades. Overall,
all three algorithms perform comparably, showing that our confidence-based methods remain stable
under mild model mismatch.

δ LCB-MLE LCB-MLE-v2 PASTA

0.1 0.9332 0.9338 0.9326
0.2 0.9328 0.9330 0.9322
0.5 0.9313 0.9316 0.9308
0.7 0.9311 0.9314 0.9307

Table 7: Comparison of Expected Revenue (larger is better) under mixed MNL model II.

Setting 4: Misspecification under mixture of MNL II. This experiment uses the same parameter
setup as in Setting 3, with the mixing probability fixed at µ = 0.5. The distance between the two
subgroups’ parameters θ⋆ is controlled by a parameter δ. As δ increases, model misspecification
becomes more pronounced and overall performance declines. In this case, LCB-MLE-v2 slightly out-
performs LCB-MLE and PASTA, indicating that stronger conservativeness may improve robustness
under severe model mismatch.
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