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DIAGRAMDIFF:A DIAGRAM RECONSTRUCTION AND
RECOGNITION METHOD TO ENHANCE LARGE LAN-
GUAGE MODELS’ DIAGRAM UNDERSTANDING

Anonymous authors
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Figure 1: The user provides the offline map image and request to both LLMs and DiagramDiff. Our
method, through diagram reconstruction and recognition, provides standardized diagram data to the
LLMs. As a result, LLMs show significant back-and-forth route issues and offer longer incorrect
routes, while our method provides a more reasonable route that meets the user’s requirements.

ABSTRACT

Diagrams are widely used in daily life. However, offline diagrams usually exist as
images, lacking structured data representation, which limits their reusability and
editability. Current research mainly supports basic query tasks for online diagrams
and does not meet semantic understanding or interaction needs for complex offline
diagrams. Although large language models (LLMs) possess strong reasoning and
knowledge integration abilities, their performance on offline diagrams is unsatis-
factory due to difficulty in accurately understanding their structure and content. To
address these issues, we propose DiagramDiff, a framework with a high-precision
diagram reconstruction model and an instance-level diagram element recognition
model. The framework converts offline diagrams into standardized structures, en-
abling LLMs to move from limited understanding to intelligent assistants capable
of semantic reasoning, logical validation, and efficient editing. We also built a
dataset with diagrams and corresponding Q&A and editing tasks. Experiments
show DiagramDiff achieves state-of-the-art performance, significantly enhancing
LLMs’ diagram understanding and interaction.
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1 INTRODUCTION

Diagrams serve as essential tools for conveying information in scientific research education, and
software development (Ma’ayan et al., 2020), providing intuitive representations of complex mod-
els’ structures and logic. However, offline diagrams, often existing in image form, lack structured
data representations, severely limiting their reusability and editability. Manual diagram redrawing is
typically required for modifications, a process that is both operation-intensive and error-prone. Fur-
thermore, current interactive methods for offline diagrams are limited. Existing studies focus primar-
ily on simple Q&A for online diagrams and lack support for semantic understanding and interactive
operations for complex offline diagrams. LLMs excel at reasoning and knowledge integration tasks,
including image semantic understanding, logical query resolution, and structured data processing.
However, when applied to complex diagram images, LLMs like GPT-4o(OpenAI, 2023) struggle
with precise diagram understanding, leading to reduced accuracy in Q&A and editing tasks. Exist-
ing studies have yet to integrate LLMs effectively into offline diagram interactions. Current methods
primarily rely on pre-constructed knowledge bases for diagram Q&A, using natural language inter-
faces for information retrieval or content highlighting.Therefore, enhancing the ability of LLMs to
understand and interact with offline diagrams is of significant importance. By constructing standard-
ized and structured diagram data, LLMs can be transformed from tools limited to answering simple
questions into intelligent assistants capable of supporting complex semantic reasoning, logical vali-
dation, and efficient content editing. Achieving this objective requires high-precision stroke recon-
struction and recognition methods to enable instance-level stroke identification and the construction
of standardized diagram data structures. Existing stroke reconstruction methods for diagram images
face significant limitations. Methods like pixel search and template matching are primarily designed
for character recognition and cannot handle the complexities of diagram strokes. Region-based seg-
mentation and instance segmentation methods struggle with challenges such as stroke breakage and
fuzzy intersections, resulting in reduced accuracy in semantic understanding and structural analysis.
Current offline diagram recognition methods are restricted to region-level identification and fail to
achieve the precision required for instance-level stroke recognition. Moreover, reconstructed strokes
often exhibit deviations in attributes features, such as inaccurate classifications, with no existing
methods addressing these issues effectively.

To address these challenges, we propose DiagramDiff, a novel framework for offline diagram recon-
struction and recognition that enhances LLMs’ diagram comprehension capabilities, bridging the
gap between offline diagrams and LLMs. As shown in Figure 1, when users require Q&A and edit-
ing on complex diagram images, existing LLMs are unable to accurately comprehend and provide
the necessary services. The main contributions are summarized as follows:

• We propose a novel stroke reconstruction method for offline diagrams, enhancing their
reusability and achieving state-of-the-art reconstruction accuracy.

• We introduce a novel diagram recognition method that integrates diffusion model into the
GTN framework to address stroke attribute inaccuracies and generate standardized data,
enabling LLMs to provide effective intelligent services for offline diagrams.

• We propose DiagramQAE, the first offline diagram Q&A and editing dataset to validate
the effectiveness of our method. User experiments show that DiagramDiff significantly
enhances LLMs’ understanding of diagrams.

2 RELATED WORK

2.1 OFFLINE STROKE RECONSTRUCTION METHODS

Researchers have developed various offline stroke reconstruction techniques. Path-based methods
(Song et al., 2022b) assess connections by exploring possible trajectories, necessitating assumptions
about line positions and shapes, thus restricting their use to standardized diagrams. Semantic seg-
mentation (Song et al., 2022a) can outline line regions but often produce broken lines and struggle
with intersections common in diagrams. Similarly, edge detection (Canny, 1986) can capture curves
but fail to reliably reconstruct intersecting lines. In handwriting analysis, stroke reconstruction aims
to derive continuous stroke data, such as coordinate sequences, from static images to facilitate tasks
like character recognition. Pixel-based search approaches (Chan, 2020) enhance formula recognition

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) The framework of Diagram Reconstruction Model

(b) The framework of Diagram Recognition Model

Figure 2: (a)The Diagram Reconstruction Model converts offline diagrams into online strokes for
stroke-level recognition, employing endpoint-based segment searching, classification, grouping, and
reconnection, followed by split point detection to distinguish separate elements. (b)The Diagram
Recognition Model integrates the Diffusion Model with the GTN and employs a multi-sample at-
tention mechanism to address attribute bias in offline diagram instance recognition.

accuracy by utilizing stroke information, while template matching methods (Li et al., 2023; Wang
et al., 2022) and pen trajectory prediction (Mohamed Moussa et al., 2023) improve stroke extraction
for specific languages. Nonetheless, current methods primarily address text-level strokes, lacking
the capability to incorporate diagram semantics, templates, or establish connection relationships
necessary for comprehensive diagram editing.

2.2 DIAGRAM RECOGNITION ALGORITHMS

Offline diagram recognition methods recognize diagrams in image form.such as Faster R-CNN
(Montellano et al., 2022)(Julca-Aguilar & Hirata, 2018) and Arrow R-CNN (Schäfer et al., 2021),
can identify elements in flowcharts but cannot achieve stroke-level instance segmentation, their accu-
racy drops significantly when handling complex diagrams with many nodes or overlapping connec-
tions (Song et al., 2023). Online diagram recognition methods can support stroke-level recognition,
such as Instance GNN (Yun et al., 2022), DyGAT (Yang et al., 2023) and SpaceGTN (Hu et al.,
2024), but these online methods cannot be applied to offline diagram recognition.

3 METHOD

3.1 OFFLINE DIAGRAM RECONSTRUCTION

In this part, we extract strokes from diagram images (offline diagrams), encompassing both node
strokes, connector lines and handwritten text, which collectively describe the structural information
of the diagram. Existing works have studied stroke extraction from handwritten characters(Chan,
2020; Mohamed Moussa et al., 2023). They usually reconstruct the handwriting based on template
matching or predicting the writing direction, but may require domain prior knowledge or training
on different data. As illustrated in Figure 2a, we proposed a more general language-independent
method that processes diagrams and handwritten text to reconstruct the diagram structure and stroke
categories. To achieve this, we implement decomposition and recombination by segmenting strokes
and selectively connecting segments to obtain complete strokes. and develop an innovative split
point detection module that distinguishes between separate instances of identical strokes, thereby

3
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enhancing the accuracy of stroke classification and diagram recognition. Images with dense and
fuzzy crossings are not specially addressed in our method as they tend to be less readable and may
need tailored visualization or interactive tools for effective analysis.

3.1.1 SEGMENTS CLASSIFICATION

We utilize the Guo-Hall algorithm(Guo & Hall, 1989) to refine the image and partition it into stroke
segments, which defined as continuous stroke sequences without bifurcations. Strokes are binarized
for simplicity, since diagrams typically show clear contrast, which also supports processing of im-
ages with colors and additional elements. Specifically, we identify joint points within the diagram
by categorizing pixels into background, stroke points, and joint points. Background points refer
to points in areas without strokes and joint points are potential intersection points where multiple
strokes may converge, but not necessarily indicate actual stroke intersections, implying that stroke
segments might not always be maximally delineated. We first label stroke points and then identify
joint points by examining whether a stroke pixel’s neighboring regions separate the background into
three or more distinct areas. This can be calculated by 8-connected component of the background:

C(p) =
∑

S⊆B(p)

{
1, if S is 8-connected and maximal,
0, otherwise.

(1)

where B(p) is the set of background pixels, p denotes a stroke point and C(p) counts background
areas around p. The maximal condition prevents background areas from connecting. To suppress
noise, a pixel-response value R(p) is integrated, yielding the joint-point probability

Pj(p) = σ
(
η C(p) + (1− η) R̂(p)

)
, (2)

where R̂(p) = R(p)/maxq∈S R(q), η∈ [0, 1] balances the two terms, and σ is the sigmoid. A pixel
is marked as a joint point when Pj(p) > τj . Stroke segments are classified into three categories:
(1) segments with both ends as joint points, (2) segments with one end as a joint point and the other
end open (not connected to other segments), and (3) segments with both ends open. For (3) each
stroke segment is considered complete and isolated, and the remaining stroke segments should be
combined to form complete strokes, addressing the inevitable intersections present in diagrams.

3.1.2 STROKE RECONSTRUCTION

We merge adjacent joint points to form groups of stroke segments, where two or more segments
may be contiguous near a joint point. Since strokes may intersect in X- or T-shaped forms, we
assume that a stroke preserves its continuity through the intersection, while different strokes remain
separate, in line with human sketch perception. By iterating through pairs within each group, we
calculate the degree of connectivity between stroke segments. The connectivity Ci,j between two
stroke segments Si and Sj is evaluated by considering their spatial proximity, angular alignment,
and curvature similarity. It is defined by the following equation:

Ci,j = αe−λdmin + β cos(∆θ) + γe−µ|ki−kj | (3)

where dmin is the minimum Euclidean distance between the endpoints of Si and Sj . ∆θ is the ab-
solute difference in orientation angles of Si and Sj . ki and kj represent the average curvatures of
Si and Sj , respectively. α, β, γ are weighting coefficients that balance the influence of each factor.
λ and µ are scaling parameters controlling the sensitivity to distance and curvature differences.This
formula integrates the closeness of the stroke segments, their directional alignment, and the simi-
larity in their curvature to quantify the likelihood that Si and Sj are connected within the diagram.
Since every primitive segment has only two endpoints and each endpoint must be used at most once
in the iteration, selecting connections is formulated as a matching problem:

M⋆ = argmax
M⊆E

∑
(i,j)∈M

Ci,j s.t. degM(i) ≤ 1, ∀ i. (4)

Distinct from stroke extraction methods tailored for character recognition, our method necessitates
the categorization of each stroke to differentiate between various diagram elements. A challenge
arises as traditional stroke extraction methods might erroneously merge distinct strokes into a single
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(a) (b)
(c)

Figure 3: (a) shows two single strokes each representing a line linking two circles, (b) shows the
expected stroke splitting result, and (c) shows an example of the online and reconstructed offline
diagrams with a magnified comparison of regions.

entity. Consider the example shown in Figure 3aFigure 3b, a diagram where a user draws two circles
and a connecting line in one continuous stroke might be incorrectly interpreted as a single stroke,
whereas it should be recognized as three separate strokes. To address this, we implement split-point
detection for all extracted strokes, identifying points at local sharp angles as potential split locations.
We perform corner detection on strokes by applying a sliding window to evaluate the angles between
the central point and its endpoints within the window. Different from a fixed angular threshold, a
length-aware window threshold is used:

θthr(ℓ) = θ0 + ρ e−ℓ/ℓ0 , (5)

where ℓ is the current window length, θ0 the minimum angle, and ρ the decay rate. When the ob-
served angle θ < θthr(ℓ), the window centre is a candidate split point. Curvature is then estimated
with the three-point circle method

κ =
2
∣∣x1∆y23 + x2∆y31 + x3∆y12

∣∣√
∆x2

23 +∆y223
√
∆x2

13 +∆y213
√
∆x2

12 +∆y212
, (6)

where ∆xij = xi − xj and ∆yij = yi − yj . To obtain a consistent split–merge decision, the
candidates are optimised in a graph-cut framework. Let es∈{0, 1} denote whether a candidate split
point s is cut (1) or kept (0), the global energy is

E(e) =
∑
s∈E

(
λs es +

∑
t∈N (s)

ϕs,t |es − et|
)
, (7)

where λs ∝ κs penalises redundant cuts and ϕs,t enforces local consistency. The optimal configura-
tion e⋆ is obtained with α–β swap, producing globally optimised split points. The detailed algorithm
process can be found in Appendix A.

3.2 DIAGRAM RECOGNITION MODEL

We propose a novel framework that integrates a Diffusion Model (Rombach et al., 2022) into a
Graph Transformer Network (GTN) (Ying et al., 2021) to address attribute bias in offline diagram
instance segmentation. As illustrated in Figure 3c, a key challenge is that stroke reconstruction intro-
duces inaccuracies (e.g., jagged edges), leading to biased attributes such as curvature and thickness,
which degrade the performance of existing methods. Conventional GTN-based approaches often rely
on simple concatenation of stroke image features and attribute features. This naive fusion strategy
struggles with biased attributes, as it fails to differentiate the primary role of reliable image features
from the auxiliary role of potentially inaccurate attribute features. To overcome this limitation, our
framework employs a novel feature fusion mechanism. The Diffusion Model treats image features
as the core input, providing fine-grained structural detail, while incorporating attribute features as
conditional inputs to guide the semantic generation process. Through its iterative denoising process,
the Diffusion Model deeply fuses these two feature types, generating high-quality latent represen-
tations. This approach allows the robust image features to compensate for information loss caused
by attribute bias, thereby effectively mitigating the impact of inaccurate attributes on recognition
performance. Details on the graph building process are provided in Appendix B.
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3.2.1 FEATURE EXTRACTION

We propose a dual-channel framework to capture both geometric attributes and deep image features
of strokes, scaling them for the pre-trained diffusion model. The first channel uses GCN (Kipf &
Welling, 2016) to aggregate spatial features F a, capturing geometric and contextual information,
with a scaling layer for dimension alignment. The second channel extracts deep image features F i

using a depthwise separable convolution (DWConv) module, incorporating a scaling layer to match
the diffusion model’s input dimensions.

3.2.2 FEATURE ENHANCEMENT WITH DIFFUSION MODEL

We propose a novel framework that integrates Diffusion Model into the Graph Transformer Net-
work to enhance the performance of offline diagram instance segmentation. Specifically, during the
sampling process, the intermediate denoising results generated by the diffusion model are utilized
to provide additional feature representations for each stroke node, which complement the stroke at-
tribute features and stroke image features. To reduce computational overhead, the DDIM sampling
strategy (Song et al., 2020) is adopted. Meanwhile, considering the inherent randomness of the diffu-
sion model’s generated results, robustness is enhanced by performing three independent samplings.
Through a single-step denoising process, three intermediate sampling results are extracted for each
node j in the graph. These feature representations are formally expressed as:

{s1,j , s2,j , s3,j} for j = 1, . . . , n (8)

where s1,j , s2,j , and s3,j represent the features generated by the diffusion model for the j-th node.
These sampling results are subsequently used as the Query (Q), Key (K), and Value (V ) inputs
in the attention mechanism of the GTN, enabling the computation of attention weights and feature
aggregation. The attention mechanism is formulated as:

Oj = softmax

(
s1,js

T
2,j√
d

)
· s3,j ⊕GCN(F a

j )⊕DWConv(F i
j ) (9)

where Oj represents the updated feature of the j-th node, F a
j denotes the attribute feature of the j-th

node, and F i
j refers to the image feature of the j-th node.

3.3 STANDARDIZED DATA STRUCTURE FOR DIAGRAM

We propose a standardized data structure that categorizes reconstructed diagram elements into two
classes: nodes and edges. Table 1 details the attributes of each class. We have converted offline di-
agrams, which were previously incomprehensible to LLMs, into a standard data structure that can
be accurately comprehended by LLMs, through the Diagram Reconstruction Model and Diagram
Recognition Model. Our method enhances the LLMs diagram comprehension ability by feeding di-
agram image and standardized diagram data, and providing the LLMs with the standardized diagram
data structure we designed.

Nodes Edges

Attribute Description Attribute Description

ID Unique identifier ID Unique identifier
Text Node label or content Text Edge label or content
Type Node category Type Edge category
Size Node dimensions Length Edge length

Incoming Edges Incoming edge list Direction Flow direction
Outgoing Edges Outgoing edge list Weight Connection strength

Child Nodes Subordinate nodes Start Points Starting points
Parent Nodes Superior nodes End Points Ending points

Table 1: Detailed Node and Edge Attributes

4 DIAGRAMQAE DATASET

We propose DiagramQAE, the first offline diagram Q&A and editing dataset designed to evalu-
ate the effectiveness of our method in enhancing the question-answering and editing capabilities of

6
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LLMs. This dataset comprises 100 manually created diagrams, including handwritten and digital
diagrams, with three categories: flowcharts, mind maps, and state machine diagrams, containing a
total of 3,186 symbols. Each diagram contains more than 10 symbols, and across the dataset, there
are 20 different types of diagram symbols, highlighting the structural complexity of the data. The
dataset was collaboratively created by 20 contributors. This includes stroke categories and their cor-
responding diagram elements, enabling a fine-grained analysis of handwriting patterns and diagram
construction processes. Each diagram is paired with five carefully designed tasks, three for ques-
tion answering and two for editing, resulting in a total of 500 diagram-related tasks. For each task,
correct answers and corresponding correct editing results are provided, ensuring consistency and
facilitating quantitative evaluation. As illustrated in Figure 4, these tasks are intentionally designed
with varying levels of complexity, covering sophisticated diagram-based Q&A scenarios (such as
reasoning and semantic understanding of complex diagrams.) and editing operations (such as mod-
ifying node connections, adjusting attribute information, or identifying errors in the diagram based
on the order and correcting them). This comprehensive dataset not only supports the assessment of
LLMs’ abilities in understanding diagrams, but also provides a valuable resource for future research
in diagram understanding, multimodal learning, and human-computer interaction. The categories of
diagram elements included in the dataset can be found in Appendix C. The detailed contents of the
dataset can be found in the supplementary materials.

(a) (b)

Figure 4: (a) shows two Q&A examples and (b) shows an editing example.

5 EXPERIMENTS

5.1 DIAGRAM RECONSTRUCTION

5.1.1 EXPERIMENT DESIGN

We evaluated the model using the CASIA-OHFC and OHSD (Hu et al., 2024) datasets. We generated
the test images from the online data. We leveraged and compared with methods of ( Liu et al. (2001),
Chan (2020), Mohamed Moussa et al. (2023)), including the latest method in the field. We evaluate
the performance of the model using intersection-over-union (IoU), stroke reconstruct rate (SRR) and
Hausdorff distance (HD), defined as follows:

IoU = |P∩T |
|P∪T | , SRR = |{c(s)≥50%, s∈S}|

|S| , HD = max{sup
p∈P

inf
t∈T

d(p, t), sup
t∈T

inf
p∈P

d(t, p)} (10)

where t represents the pixel in the ground-truth image T , p represents the pixel in the predicted image
P , s represents the stroke in strokes S, and c(s) is the covered rate of s. HD quantifies the shape
discrepancy between the ground truth and predicted images, with a smaller HD value indicating a
more accurate reconstruction of the strokes.

CASIA-OHFC OHSD

Method IoU(%) SRR(%) HD IoU(%) SRR(%) HD

Liu et al. 36.0 78.3 4.62 30.9 74.7 4.75
Chan et al. 50.4 89.2 3.75 48 89.1 3.89

Mouss et al. 50.5 92.3 3.71 49.9 91.8 3.77
Ours 55.6 96.5 3.61 53.9 96.2 3.69

Table 2: Comparison of state-of-the-art methods
for diagram reconstruction.

Editting Task Q&A Task

Method Original Ours Original Ours

GPT 4o 71% 90% 77% 92%
Claude 3.7 50.5% 61% 54% 68.5%
DeepSeek 62% 85% 69% 80%
GPT 4.5 69% 86% 77.5% 93%

Table 3: DiagramDiff performance on differ-
ent LLMs
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Method CASIA-OHFC OHSD FC A FC B

SCA SCP SCA SCP SCA SCP SCA SCP

DETR 49.74 51.45 46.73 45.26 46.32 52.19 66.49 63.09
DeDETR 50.56 58.16 55.49 60.45 54.11 54.98 62.75 65.87

FasterRCNN 69.18 71.28 65.37 67.41 69.42 67.38 72.56 76.36
MaskRCNN 69.17 67.53 74.11 69.53 75.34 72.13 76.25 70.41

ORSAD 85.24 81.99 83.29 79.91 92.99 90.12 94.89 93.46
EGAT 83.26 83.45 83.59 81.62 92.51 91.12 93.24 92.12

InstGNN 87.23 87.10 91.24 90.23 94.78 93.65 95.04 94.81
SpaceGTN 89.56 89.34 93.21 92.18 96.12 95.43 96.72 96.48

Ours 94.64 93.41 98.39 96.31 97.24 96.60 97.92 97.24

Table 4: Comparative experiments (%) with state-of-the-art offline and online recognition methods.

CASIA-OHFC OHSD

Method Original Reconstructed Original Reconstructed

SCA SCP SCA SCP SCA SCP SCA SCP

ORSAD 91.31 91.04 85.24 81.99 86.65 84.36 83.29 79.91
EGAT 92.76 92.01 83.26 83.45 92.82 90.46 83.59 79.91

InstGNN 95.81 95.42 87.23 87.10 96.89 95.44 91.24 90.23
SpaceGTN 98.13 97.93 89.56 89.34 99.78 99.32 93.21 92.18

Ours (w/o FE) - - 90.56 90.42 - - 94.33 93.20
Ours (with FE) - - 94.64 93.41 - - 98.39 96.31

Table 5: The performance (%) of online recognition methods on original and reconstructed diagrams.

5.1.2 RESULTS AND ANALYSIS

As shown in Table 2, our method achieved state-of-the-art performance in this field, realizing high-
precision stroke reconstruction for diagrams.

5.2 DIAGRAM RECOGNITION

5.2.1 EXPERIMENT DESIGN

We conducted a comprehensive evaluation of the model using the FC A (Awal et al., 2011),
FC B (Bresler et al., 2016), CASIA-OHFC, and OHSD datasets. The experiments primarily consist
of comparative experiments and ablation studies. In the comparative experiments, we implemented
four offline methods (DETR (Carion et al., 2020), Deformable DETR (Zhu et al., 2020), Mask
R-CNN, and Faster R-CNN) and four online methods (Inst-GNN, ORSAD (Bresler et al., 2016),
EGAT (Ye et al., 2019), and SpaceGTN). These methods were tested across multiple datasets and
compared with the DiagramDiff method. It is important to note that all testing and training were con-
ducted based on stroke datasets reconstructed from offline diagrams. For offline recognition meth-
ods, the recognized bounding boxes were used to segment the diagram into regions covered by these
bounding boxes. In the ablation studies, we explored the impact of the FE module on performance
and tested the recognition performance of existing methods when identifying strokes recovered from
diagram images, compared to real strokes.We evaluate the performance of the model using Stroke
Classification Accuracy (SCA) and Stroke Classification Precision (SCP), defined as follows:

SCA =

∑N
i=1 Ci∑N
i=1 Ti

, SCP =

N∑
i=1

Ti∑N
i=1 Ti

× Pi (11)

where Ci represents the number of correctly classified strokes in category i, Ti denotes the total
number of strokes in category i, and N is the total number of categories.

5.2.2 RESULTS AND ANALYSIS

As shown in Table 4, our method achieved state-of-the-art performance in this field. As also illus-
trated in Table 5, the inevitable errors in the stroke attribute information in reconstructed strokes
lead to varying degrees of accuracy degradation for all methods when recognizing reconstructed
strokes. Our approach leverages the FE module to effectively supplement image features with stroke
attribute features rather than direct integration, significantly enhancing recognition accuracy. Using
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Order: Replace the email confirmation step with SMS
confirmation, as SMS is more immediate. After sending the
SMS, add a step to record the registration event for analytics.

Order: Add a step to check if the meeting
room is available after checking organizer
availability. If the room is not available,
propose alternative times.

Table 6: Representative examples of diagram editing tasks in user experiments

the pre-trained diffusion model for multimodal feature fusion, our training requires only 23,134 MB
of GPU memory. The average inference time per diagram is 25.2 ms, with a real-time Q&A response
time of 2.7 s. The main delay comes from LLM computation, but it supports real-time interaction.

6 USER STUDY

Experiments are based on a dataset of 500 Q&A and editing tasks, aiming to validate the effective-
ness of DiagramDiff in enhancing the diagram understanding capabilities of LLMs. The experiment
uses the DiagramQAE dataset and selects LLMs including GPT-4o, Claude 3.7, DeepSeek R1 and
GPT 4.5, the current advanced LLMs for diagram image understanding. Experiments divided into
two groups: Baseline Group, where LLMs are directly used to perform the offline diagram Q&A
and editing tasks, and Comparison Group, where DiagramDiff is applied to standardize the in-
put offline diagram before LLMs perform the same tasks. The experiment was conducted with 10
participants, consisting of 5 males and 5 females. All participants were regular users of LLMs and
had prior experience in diagram editing. Each participant randomly selected 10 diagrams from the
dataset and performed 1 randomly selected Q&A task and 1 editing task for each diagram. As shown
in Table 3, our method significantly outperformed the Baseline Group (direct use of LLMs) in both
diagram Q&A and editing tasks. Some examples of the editing tasks performed in the user study are
shown in Table 6. More examples and questionnaire outcomes can be found in Appendix D and E.

7 CONCLUSION

We propose DiagramDiff, an innovative framework designed to enhance the offline diagram un-
derstanding capability of LLMs. This framework overcomes the limitations of LLMs that can only
address simple diagram-related questions, enabling them to support complex semantic reasoning,
logical validation, and offline diagram editing. We introduce a state-of-the-art diagram stroke re-
construction method that significantly improves the reusability of offline diagrams. Additionally,
we design a novel diagram recognition framework that employs a diffusion model in stroke-level
diagram recognition, addressing the issue of decreased recognition accuracy in diagrams recovered
from offline charts and generating standardized diagram data structures to enhance the diagram
understanding capability of LLMs. Furthermore, we construct a dataset comprising 100 diagrams
and 500 question-answering and editing tasks to validate the effectiveness of our method. Results
demonstrate that DiagramDiff significantly enhances LLMs’ Q&A and editing capabilities on com-
plex offline diagrams
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