
LogSpecT: Feasible Graph Learning Model from
Stationary Signals with Recovery Guarantees

Shangyuan Liu
The Chinese University of Hong Kong
shangyuanliu@link.cuhk.edu.hk

Linglingzhi Zhu
The Chinese University of Hong Kong

llzzhu@se.cuhk.edu.hk

Anthony Man-Cho So
The Chinese University of Hong Kong

manchoso@se.cuhk.edu.hk

Abstract

Graph learning from signals is a core task in graph signal processing (GSP).
A significant subclass of graph signals called the stationary graph signals that
broadens the concept of stationarity of data defined on regular domains to signals
on graphs is gaining increasing popularity in the GSP community [10, 20, 25]. The
most commonly used model to learn graphs from these stationary signals is SpecT
[31], which forms the foundation for nearly all the subsequent, more advanced
models. Despite its strengths, the practical formulation of the model, known as
rSpecT, has been identified to be susceptible to the choice of hyperparameters.
More critically, it may suffer from infeasibility as an optimization problem. In
this paper, we introduce the first condition that ensures the infeasibility of rSpecT
and design a novel model called LogSpecT, along with its practical formulation
rLogSpecT to overcome this issue. Contrary to rSpecT, our novel practical model
rLogSpecT is always feasible. Furthermore, we provide recovery guarantees of
rLogSpecT from modern optimization tools related to epi-convergence, which
could be of independent interest and significant for various learning problems. To
demonstrate the practical advantages of rLogSpecT, a highly efficient algorithm
based on the linearized alternating direction method of multipliers (L-ADMM) that
allows closed-form solutions for each subproblem is proposed with convergence
guarantees. Extensive numerical results on both synthetic and real networks not
only corroborate the stability of our proposed methods, but also highlight their
comparable and even superior performance than existing models.

1 Introduction

Learning with graphs has proved its relevance in many practical areas, such as life science [36, 37],
signal processing [13, 14, 38, 39], and financial engineering [1, 21], to just name a few. However,
there are many cases that the graphs are not readily prepared and only the data closely related to
the graphs can be observed. Hence, a core task in Graph Signal Processing (GSP) is to learn the
underlying graph topology based on the interplay between data and graphs [22].

Among these commonly used data properties, an assumption that is referred to as the graph signal
stationarity [10] is gaining attention [30, 20, 25]. Graph signal stationarity is the extension of the
notion of stationarity from the regular space/time domain to the irregular domain (i.e. graphs).
The latter is a traditional hypothesis in signal processing to capture a special type of statistical
relationship between samples of a temporal signal. It is a cornerstone of many signal processing
methods. Although the graph signal stationarity property is proposed more from a theoretic end, the

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

techniques based on this idealistic assumption pave the way for the development of the following
more advanced and applicable models [35, 34]. Furthermore, several works have shown that some
real datasets can be approximately viewed as stationary or partially explained by the stationarity
assumption. For instance, [25] revealed that the well-known USPS dataset and the CMUPIE set of
cropped faces exhibit near stationarity. [10] found that certain weather data could be explained by
stationary graph signals. Additionally, [31] highlighted the relevance of the stationarity assumption
in learning protein structure. [43] applied the stationary assumption to US Senate Roll Calls and
achieved good performance.

The predominant methods to process stationary graph signals and learn topology under the stationarity
assumption are the spectral-template-based models. The start of this line of works is [31], which
proposed a vanilla model called SpecT [31] to learn graphs from stationary graph signals. Many
extensions of this fundamental model have been made since then to accommodate the more realistic
and complicated settings, e.g. joint inference of multiple graphs [32, 27], learning with streaming
graph signals [33], learning with hidden nodes [4], learning from both smooth and stationary graph
signals [5]. In practice, SpecT requires the unknown data covariance matrix. Hence, a robust
formulation called rSpecT is proposed [31], which replaces the unknown covariance matrix with
its estimate and introduces a hyperparameter to reflect the estimation inaccuracy. Unfortunately,
the model is sensitive to this hyperparameter and improper tuning of it may jeopardize the model
performance or lead to model infeasibility.

The current approach to selecting an appropriate value is heuristic. It finds the smallest one that
allows for a feasible solution. This method has two shortcomings. On one hand, It is computationally
costly. The smallest value is the exact solution to a second-order conic programming, which is solved
approximately with computational methods. Any approximate solution that is smaller than the exact
one will make rSpecT infeasible. On the other hand, such an approach lacks theoretical guarantees as
how the smallest value behaves as the number of observations increases is unknown. This issue makes
the existing recovery guarantees invalid. To the best of our knowledge, only a few works have focused
on how to understand the performance of the robust formulation rSpecT. [24] empirically showed that
the feasible set of the robust formulation approximates the original one as more samples are collected.
[23] provided the first recovery guarantee for rSpecT. Their work exploits the fact that the objective is
the ℓ1-norm and the constraints are linear [44]. However, the conditions needed in their work are not
only restrictive but also hard to check, as they require the full rankness of a large-scale matrix related
to random samples. Another model [34] tries to circumvent the model infeasibility issue by turning a
constraint into a penalty. However, this approach introduces another hyperparameter that is neither
easy to tune nor amenable to theoretical analysis. Also, this hyperparameter should go to infinity
heuristically when more and more samples are collected, which may exacerbate model instability.

In this paper, we propose an alternative formulation of SpecT that can bypass the aforementioned
issues. We first provide a condition that ensures the infeasibility of the fundamental model rSpecT.
Then, we propose a novel formulation called LogSpecT and its practical formulation rLogSpecT
based on the spectral template and incorporating a log barrier. The inclusion of a log barrier as a
regularizer on the degrees is inspired by its extensive application in graph learning from smooth
graph signals [15, 16, 19, 47] and the discussion in [7] emphasizing that restricting the degrees to
preclude isolated nodes is crucial to learning graphs with special structures. It is worth noting that
the approach in [7], which directly imposes constraints, may exacerbate the infeasibility issue in our
problem. Although rLogSpecT still requires a parameter to reflect the estimation error of the unknown
covariance matrix, it no longer suffers from the infeasibility issue associated with the improper choice
of the parameter. Furthermore, we provide the decaying rate of the parameter that can guarantee the
recovery of rLogSpecT. This not only aids in the parameter tuning, but also establishes a connection
between rLogSpecT and LogSpecT through non-asymptotic recovery analysis. These theoretical
results are derived using contemporary optimization tools related to epi-convergence [29]. Unlike
the current guarantees for rSpecT that are built on an ℓ1 analysis model [44], our approach based on
epi-convergence is not confined to the specific types of optimization problems (e.g. the combination
of the ℓ1-norm and log barrier in the objective function) and consequently admits broader applications
that can be of independent interest.

In the algorithmic aspect, we design a linearized alternating direction method of multipliers (L-
ADMM) to solve rLogSpecT. The subproblems of L-ADMM admit closed-form solutions and can
be implemented efficiently due to the linearization technique. Also, we provide the convergence
result of the proposed method. Finally, we conduct extensive experiments on both synthetic data and

2

real networks. Notably, the infeasibility issue of rSpecT frequently occurs in experiments on real
networks, thereby emphasizing its practical significance beyond theoretical concerns. Furthermore,
we observe that even when the classical models are set to be feasible, our novel models (LogSpecT
and rLogSpecT) exhibit improved accuracy and stability, particularly in the case of synthetic BA
graphs. This empirically illustrates that although our models are initially proposed to circumvent the
infeasibility issue, they are superior alternatives to classical methods in the general cases.

1.1 Notation

The notation we use in this paper is standard. We use [m] to denote the set {1, 2, . . . ,m} for any
positive integer m. Let the Euclidean space of all real matrices be equipped with the inner product
⟨X,Y ⟩ := tr(X⊤Y) for any matrices X,Y and denote the induced Frobenius norm by ∥ · ∥F (or
∥ · ∥2 when the argument is a vector). For any X ∈ Rm×n, we use B(X, ρ) to denote the closed
Euclidean ball centering at X with radius ρ. Let ∥ · ∥ be the operator norm, ∥X∥1,1 :=

∑
i,j |Xij |,

∥X∥∞,∞ := maxi,j |Xij |, and let diag(X) be vector formed by the diagonal entries of X . For a
column vector x, let Diag(x) be the diagonal matrix whose diagonal elements are given by x. Given
a closed and convex set C, we use ΠC(w) := argminv∈C ∥v −w∥2 to denote the projection of the
point w onto the set C. We use 1 (resp. 0) to denote an all-one vector (resp. all-zero vector) whose
dimension will be clear from the context. For a set S and any real number α, let αS := {αx | x ∈ S},
S1 := {x1 | x ∈ S}, and ιS(·) be the indicator function of S . For two non-empty and compact sets
X and Y , the distance between them is defined as dist(X ,Y) := supX∈X infY ∈Y ∥X − Y ∥F 1.

2 Preliminaries

Let G = (V, E) be a graph, where V = [m] is the set of nodes and E ⊂ V×V is the set of edges. Let S
be the weight matrix associated with the graph G, where Sij represents the weight of the edge between
nodes i and j. In this paper, we consider undirected graphs without self-loops. The set of adjacency
matrices for such graphs is S := {S ∈ Rm×m | S = S⊤, diag(S) = 0, S ≥ 0}. Suppose that the
adjacency matrix S admits the eigen-decomposition S = UΛU⊤, where Λ is a diagonal matrix
and U is an orthogonal matrix. A graph filter is a linear operator h : Rm×m → Rm×m defined
as h(S) =

∑p
i=0 hiS

i = U
(∑p

i=0 hiΛ
i
)
U⊤, where p > 0 is the order of the graph filter and

{hi}pi=0 are the filter coefficients. According to the convention, we have S0 = I .

A graph signal can be represented by a vector x ∈ Rm, where the i-th element xi is the signal value
associated with node i. A signal x is said to be stationary if it is generated from

x = h(S)w, (1)

where w satisfies E[w] = 0 and E[w⊤w] = I . Simple calculations give that the covariance matrix
of x, which is denoted by C∞, shares the same eigenvectors with S. Hence, we have the constraint

C∞S = SC∞. (2)

Based on this, the following fundamental model SpecT is proposed to learn graphs from stationary
signals without the knowledge of graph filters [31, 34]:

min
S

∥S∥1,1, s.t. C∞S = SC∞, S ∈ S ∩
{
S ∈ Rm×m :

∑m

j=1
S1j = 1

}
, (SpecT)

where the constraint
∑m

j=1 S1j = 1 is used to preclude the trivial optimal solution S∗ = 0. When
C∞ is unknown and only n i.i.d samples of {xi} from (1) are available, the robust formulation,
which is based on the estimate Cn of C∞ and called rSpecT, is used:

min
S

∥S∥1,1, s.t. ∥CnS − SCn∥F ≤ δ, S ∈ S ∩
{
S ∈ Rm×m :

∑m

j=1
S1j = 1

}
. (rSpecT)

For this robust formulation, the recovery guarantee is studied empirically in [24] and theoretically in
[23] under some conditions that are restrictive and hard to check.

1It reduces to the classic point-to-set (resp. point-to-point) distance when Y (resp. X and Y) is a singleton.

3

3 Infeasibility of rSpecT and Novel Models

Even though rSpecT has gained much popularity, there are few works that discuss the choice of the
hyperparameter δ and how it affects the model feasibility. In this section, we present a condition
under which rSpecT is always infeasible and then propose an alternative formulation. To motivate
our results, let us consider the following 2-node example.
Example 3.1. Consider a simple graph containing 2 nodes. Then, the set given by the second
constraint of rSpecT is S ∩ {S ∈ Rm×m :

∑m
j=1 S1j = 1} = [0, 1; 1, 0], which is a singleton.

Suppose that the sample covariance matrix is Cn = [h11, h12;h12, h22]. Then, the constraint
∥CnS − SCn∥F ≤ δ is reduced to 2(h11 − h22)

2 ≤ δ2. Hence, when h11 ̸= h22 and δ <√
2 |h11 − h22|, rSpecT has no feasible solution.

Before delving into the general case, we introduce a linear operator B ∈ Rm2×m(m−1)/2 that maps
the vector x ∈ R(m−1)m/2

+ to the vectorization of an adjacency matrix S ∈ S of a simple, undirected
graph:

(Bx)m(i−1)+j =


xi−j+ j−1

2 (2m−j), if i > j,

0, if i = j,

xj−i+ i−1
2 (2m−i), if i < j,

(3)

where i, j ∈ [m]. We also define An := I ⊗Cn −Cn ⊗ I ∈ Rm2×m2

, so that the first constraint
of rSpecT can be rewritten as ∥CnS − SCn∥F ≤ δ ⇐⇒ ∥Anvec(S)∥2 ≤ δ, where vec(·) is the
vectorization operator. We now give a condition that guarantees the infeasibility of rSpecT.
Theorem 3.2. Consider the linear system

AnBy = 0, y ≤ 0,
∑m−1

i=1
yi ̸= 0, (4)

where y ∈ R
m(m−1)

2 . If (4) has no feasible solution, then there exists a δ̄n > 0 such that rSpecT is
infeasible for all δn ∈ [0, δ̄n).
Remark 3.3. From Theorem 3.2 we can infer that for any fixed n, the linear system (4) has no
solution when AnB has full column rank (e.g., Example 3.1). This leads to the infeasibility of rSpecT
with δn ∈ [0, δ̄n). As remarked in [31], one should tackle the feasibility issue of rSpecT with caution.

The failure of rSpecT (SpecT) lies in the existence of the constraint (S1)1 = 1, which is used
to preclude the trivial solution S∗ = 0. For this reason, we resort to an alternative approach to
bypassing the trivial solution. When the graphs are assumed to have no isolated node, the log barrier
is commonly applied [15]. In these cases, the zero solution is naturally precluded. This observation
inspires us to propose the following novel formulation, which combines the log barrier with the
spectral template (2) to learn graphs without isolated nodes from stationary signals:

min
S

∥S∥1,1 − α1⊤ log(S1)

s.t. S ∈ S, SC∞ = C∞S,
(LogSpecT)

where ∥ · ∥1,1 is a convex relaxation of ∥ · ∥0 promoting graph sparsity, 1⊤ log(S1) is the penalty to
guarantee the nonexistence of isolated nodes, and α is the tuning parameter. As can be seen from
the following proposition, the hyperparameter α in LogSpecT only affects the scale of edge weights
instead of the graph connectivity structure.
Proposition 3.4. Let Opt(C, α) be the optimal solution set of LogSpecT with input covariance
matrix C and parameter α > 0. Then, for any γ > 0, it follows that

Opt(C, α) = γOpt(C, α/γ) = αOpt(C, 1).

Remark 3.5. The result of Proposition 3.4 spares us from tuning the hyperparameter α when we are
coping with binary graphs. In fact, certain normalization will eliminate the impact of different values
of α and preserve the connectivity information. Hence, we may simply set α = 1 in implementation.

Note that the true covariance matrix C∞ in LogSpecT is usually unknown and an estimate Cn from
n i.i.d samples is available. To tackle the estimation inaccuracy, we introduce the following robust

4

formulation:

min
S

∥S∥1,1 − α1⊤ log(S1)

s.t. S ∈ S, ∥SCn −CnS∥2F ≤ δ2n.
(rLogSpecT)

This formulation substitutes C∞ with Cn and relaxes the equality constraint to an inequality con-
straint with a tolerance threshold δn. Contrary to rSpecT, we prove that rLogSpecT is always
feasible.
Proposition 3.6. For δn > 0 and Cn with any fixed n, rLogSpecT always has a nontrivial feasible
solution.

4 Recovery Guarantee of rLogSpecT

In this section, we investigate the non-asymptotic behavior of rLogSpecT when more and more i.i.d
samples are collected. For the sake of brevity, we denote f := ∥ · ∥1,1−α1⊤ log (·1). The theoretical
recovery guarantee is as follows:
Theorem 4.1. If δn ≥ 2ρ∥Cn −C∞∥ with given ρ := max{f∗, αm, αm(logα − 1)}, then there
exist constants c1, c̃1, c̃2 > 0 such that

(i) |f∗
n − f∗| ≤ εn; (ii) dist(Sn,∗,S∗

2εn) ≤ εn; (iii) dist(Sn,∗1,S∗
01) ≤ c̃1εn + c̃2

√
εn,

where εn := c1(δn + 2ρ∥Cn −C∞∥), Sn,∗ is the optimal solution set of rLogSpecT, f∗ (resp. f∗
n)

denotes the optimal value of LogSpecT (resp. rLogSpecT), and

S∗
ε := {S ∈ S | SC∞ = C∞S, f(S) ≤ f∗ + ε}

is the ε-suboptimal solution set of LogSpecT.
Remark 4.2. (i) Compared with the conclusion (ii) in the Theorem 4.1, the conclusion (iii) links the
optimal solution sets of rLogSpecT and LogSpecT instead of the sub-optimal solutions.
(ii) A byproduct of the proof (see Appendix E.2 for details) shows that the optimal node degree vector
set (S∗

01) is a singleton. However, there is no guarantee of the uniqueness of S∗ itself. We will discuss
the impact of such non-uniqueness on model performance in Section 6.4.
Remark 4.3. The proof of Theorem 4.1 relies on two important optimization concepts: Epi-
convergence and truncated Hausdorff distance. Epi-convergence is closely related to the asymptotic
solution behavior of approximate minimization problems, and the truncated Hausdorff distance is
used to characterize the epi-convergence non-asymptotically. With the help of the Kenmochi condition,
which allows us to explicitly calculate the truncated Hausdorff distance, we are able to study the
non-asymptotic behavior of the optimal value and optimal solutions of the models. We refer the
reader to Appendix E and also [28, Chapter 7], [29, Chapter 6.J] for more details.
Corollary 4.4. Under the assumptions in Theorem 4.1, it follows that if δn → 0, then

lim
n→∞

dist(Sn,∗,S∗
0) = 0. (5)

Remark 4.5. From the strong law of large numbers, if we choose δn = O(∥Cn−C∞∥), then almost
surely one has limn→∞ ∥Cn −C∞∥ = 0 and consequently δn → 0. Hence, Corollary 4.4 shows
that (5) holds almost surely.

For the remaining part of this section, we study the choice of δn under certain statistical assumptions.
A large number of distributions (e.g., Gaussian distributions, exponential distributions and any
bounded distributions) can be covered by the sub-Gaussian distribution (cf. [41, Section 2.5]), whose
formal definition is as follows.
Definition 4.6 (Sub-Gaussian Distributions). The probability distribution of a random vector w is
called sub-Gaussian if there are C, v > 0 such that for every t > 0, P(∥w∥2 > t) ≤ Ce−vt2 .

Consider the case that w in the generative model (1) follows a sub-Gaussian distribution. The
following result is adapted from [40, Proposition 2.1].
Lemma 4.7. Suppose that w in the generative model (1) follows a sub-Gaussian distribution.
Then, x follows a sub-Gaussian distribution, and with probability larger than 1 −O(1n), one has
∥Cn −C∞∥ ≤ O(

√
log n/n).

5

Equipped with non-asymptotic results in Theorem 4.1, we choose δn with a specific decaying rate.

Corollary 4.8. If the input w in (1) follows a sub-Gaussian distribution and δn = O(
√
log n/n),

then the assumptions in Theorem 4.1 hold with probability larger than 1−O(1n).

Corollary 4.8 together with Theorem 4.1 illustrates the non-asymptotic convergence of optimal
function value/suboptimal solution set/optimal node degree vector of rLogSpect from n i.i.d
samples to the ideal model LogSpect with the convergence rate O(εn)/O(εn)/O(

√
εn), where

εn = O(|Cn −C∞|) ≤ O(
√
log n/n) for sub-Gaussian ω. This matches the convergence rate

O(
√
log n/n) of classic spectral template models, e.g., Proposition 2 in [31] and Theorem 2 in [23]

for the SpecT model, which shows that LogSpecT is also competitive on recovery rate.

5 Linearized ADMM for Solving rLogSpecT

In this section, we design a linearized ADMM algorithm to solve rLogSpecT that admits closed-form
solutions for the subproblems. The ADMM-type algorithms have been successfully applied to tackle
various graph learning tasks [46, 42].

Firstly, we reformulate rLogSpecT such that it fits the ADMM scheme:

min
S,Z,q

⟨S,11⊤⟩ − α1⊤ log q + ιS(S) + ιB(0,δn)(Z)

s.t. CnS − SCn = Z, q = S1.
(6)

The augmented Lagrangian function of problem (6) is

L(S,Z, q,Λ,λ2) = ⟨11⊤,S⟩ − α1⊤ log q + ιS(S) + ιB(0,δn)(Z) + ⟨Λ,CnS − SCn −Z⟩

+ λ⊤
2 (q − S1) +

ρ

2
∥CnS − SCn −Z∥2F +

ρ

2
∥q − S1∥22.

Update of primal variables Z and q Since Z and q are separable given S, we update the primal
variables in two blocks: S and (Z, q). More specifically, the update of (Z, q) in the k-th iteration is

(Z(k+1), q(k+1)) := argmin(Z,q) L(S
(k),Z, q,Λ(k),λ

(k)
2), (7)

which admits the following closed-form solution:
Proposition 5.1. The update (7) can be explicitly rewritten as

Z(k+1) = min

{
1,

δn

∥Z̃∥F

}
Z̃, q(k+1) =

q̃ +
√
q̃2 + 4α/ρ1

2
,

where Z̃ = CnS
(k) − S(k)Cn + Λ(k)

ρ , q̃ = S(k)1− 1
ρλ

(k)
2 .

Update of primal variables S The ADMM update of S does not admit a closed-form solution.
Hence, we solve the linearized version L̂k of the augmented Lagrangian function L when all the
variables except S are fixed. It is given by

L̂k(S) = ⟨C(k),S⟩+ ρτ

2
∥S − S(k)∥2F + ιS(S),

where C(k) := 11⊤ + CnΛ
(k) − Λ(k)Cn − λ

(k)
2 1⊤ + ρ(S(k)C2

n + C2
nS

(k) − 2CnS
(k)Cn +

Z(k+1)Cn−CnZ
(k+1)−q(k+1)1⊤+S(k)11⊤) and τ is the parameter for linearization. Therefore,

the update of S in the k-th iteration is

S(k+1) := argminS∈SL̂k(S) = ΠS(S
(k) −C(k)/ρτ), (8)

where ΠS(X) is the projection of X onto the closed and convex set S and can be computed by

(ΠS(X))ij =


1

2
max{0, Xij +Xji}, if i ̸= j,

0, if i = j.

6

Update of dual variables and parameters Finally, we update the dual variables Λ and λ2 via
gradient ascent steps of the augmented Lagrangian function:

Λ(k+1) := Λ(k) + ρ(CnS
(k+1) − S(k+1)Cn −Z(k+1)), (9)

λ
(k+1)
2 := λ

(k)
2 + ρ(q(k+1) − S(k+1)1). (10)

Together with the updating rule for the augmented parameter ρ, we complete the whole algorithm.
The details are presented in Appendix F.

Complexity of each iteration To illustrate the efficiency of L-ADMM, we calculate the complexity
of each subproblem. In the update of Z and q, the most time consuming part is to calculate
CnS

(k). When the number of nodes m is larger than the sample size n, we rewrite CnS
(k) as

(1/nX)(X⊤S(k)), where X ∈ Rm×n is the data matrix. In this case, the complexity is in the order
of O(nm2). When m is smaller than n, we first calculate Cn and then multiply it with S(k). This
gives the complexity O(nm2). Similarly, the complexity needed to update S is O(nm2+mn2). The
update of the dual variables can be decomposed as the summation of components calculated when
updating the primal variables. In summary, the total complexity of each iteration is O(nm2 +mn2).

Convergence of L-ADMM For the convergence analysis of L-ADMM, we treat (Z, q) as one
variable, and the two constraints CnS − SCn = Z and q = S1 can be written into a single one:

[I ⊗Cn −Cn ⊗ I; I ⊗ 1⊤] vec(S) = [vec(Z); q].

Then we can apply a two-block proximal ADMM (i.e., L-ADMM) to the problem by alternatingly
updating S (see details in Appendix F.4 for this part) and (Z, q). Consequently, the convergence
result in [45, Theorem 4.2] can be invoked directly to derive the following theorem.
Theorem 5.2. If τ > m+ ∥Cn ⊗ Im − Im ⊗Cn∥2, then limk→∞ f(S(k)) = f∗

n.

6 Experiments

In this section, we evaluate our proposed algorithm and models via numerical experiments. The
experiments are conducted on both synthetic and real networks. We apply the standard metrics [18]:
F-measure, Precision, and Recall to assess the quality of learned graphs. The source code is available
at: https://github.com/StevenSYL/NeurIPS2023-LogSpecT.

6.1 Data Generation

Random Graphs. In the experiments, we consider two types of synthetic graphs, namely, the
Erdős-Rényi (ER) graph [9] and the Barabasi-Albert model graph (BA) [2]. The ER graphs are
generated by placing an edge between each pair of nodes independently with probability p = 0.2 and
the weight on each edge is set to 1. The BA graphs are generated by having two connected nodes
initially and then adding new nodes one at a time, where each new node is connected to exactly one
previous node that is randomly chosen with a probability proportional to its degree at the time.

Graph Filters and Signals. Three graph filters are used in the experiments. The first one is the
low-pass graph filter (lowpass-EXP) h(S) = exp(12S). The second one is the high-pass graph filter
(highpass-EXP) h(S) = exp(−S). The last one is a quadratic graph filter (QUA) h(S) = S2+S+I .
Note that the quadratic graph filter is neither low-pass nor high-pass. We will also use random graph
filters developed from the above ones for experiments on real networks. They will be introduced
when applied. The stationary graph signals are generated from the generative model (1). The input
graph signal w ∼ N (0, Im) is a random vector following the normal distribution.

6.2 How to Infer Binary Graphs

Many practical tasks require binary graphs instead of weighted graphs. However, the results from
LogSpect and rLogSpecT are generally weighted. In this section, we tackle the issue of how to
convert a weighted graph to a binary one. Firstly, we normalize each edge in the graph W by dividing
it over the maximal weight, which yields a collection of values ranging from 0 to 1. Our task is then
to select a threshold ε to round these values to 0 or 1 and construct a binary graph W ∗ accordingly.
Mathematically, this procedure is captured by the formula:

7

https://github.com/StevenSYL/NeurIPS2023-LogSpecT

(W ∗)ij =

{
1, if Wij/max{Wi′j′} ≥ ε,

0, if Wij/max{Wi′j′} < ε.

To choose the threshold ε, we either use a training-based strategy or a searching-based strategy. The
training-based one searches the best ε on k graphs and applies the value to the newly learned graph.
The searching-based one simply searches for ε that yields the best performance for a graph.

6.3 Convergence of L-ADMM

We present the convergence performance of L-ADMM in this section. Since there does not literally
exist customized algorithm for rLogSpecT, we compare our L-ADMM with CVXPY [8]. The
solver used in CVXPY is MOSEK. We conduct the experiments on 100-node BA graphs with
10000 stationary graph signals generated from low-pass EXP graph filter. The parameter δ is set
as 10

√
log n/n. For L-ADMM algorithm, the target accuracy is set as 10−6 and the initialization

is set as zero. The running time for L-ADMM takes around 20 seconds while the solver takes over
110 seconds. The primal residual and dual residual of L-ADMM in each iteration are plot in Figure
1. The results corroborate the efficiency of our proposed algorithm. Furthermore, the locally linear
convergence can be observed from the experiment. This implies that L-ADMM converges with fast
speed to high accuracy. It remains an open question to prove the property theoretically.

0 500 1000 1500 2000 2500 3000
iteration

10−5

10−3

10−1

101

103

Residuals
primal residual
dual residual

Figure 1: L-ADMM residual on 100-node graph

101 102 103 104 105 106
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

F-
m
ea
su
re

rLogSpecT Performance

lowpass-EXP
highpass-EXP
QUA

Figure 2: rLogSpecT with δn = 0.2
√
log n/n

20 30 40 50 60
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

F-
m

ea
su

re

LogSpecT performance

20 30 40 50 60
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

F-
m

ea
su

re

SpecT performance

ER-lowpass-EXP
ER-highpass-EXP

ER-QUA
BA-lowpass-EXP

BA-highpass-EXP
BA-QUA

Figure 3: Comparison of LogSpecT & SpecT on Synthetic Data

6.4 Experiments on Synthetic Networks

To evaluate the efficacy of LogSpecT and rLogSpecT, we compare them with SpecT and rSpecT on
synthetic data. Notice that the prior of no isolated nodes has been incorporated in practice by adding
restrictions on the smallest degree. This approach introduces an additional hyperparameter and may
exacerbate the infeasibility issue in robust formulation. Also, no recovery guarantees are developed
for this trick. For these reasons, we still compare LogSpect & rLogSpecT with SpecT & rSpecT.

8

Performance of LogSpecT. We first compare the performance of the ideal models: LogSpecT
and SpecT on the two types of random graphs with three graph filters. We conduct experiments
on graphs with nodes ranging from 20 to 60 and use the searching-based strategy to set threshold
ε∗. After 10 repetitions, we report the average results in Figure 3. The left column presents the
performance of LogSpecT and the right column presents that of SpecT. Firstly, we observe that
on ER graphs, both models achieve good performance. They nearly recover the graphs perfectly.
However, the performance on BA graphs differs. In this case, LogSpecT can work efficiently. The
learned graphs from LogSpecT enjoy much higher F-measure values than those from SpecT. Secondly,
the comparison between different graph filters shows that different graph filters have few impacts
on recovery performance for both LogSpecT and SpecT. Finally, we observe that the outputs of
LogSpecT on BA graphs tend to possess higher F-measure when the number of nodes increases. This
suggests that LogSpecT may behave better on larger networks. However, such phenomena cannot be
observed from SpecT results.

Performance of rLogSpecT. Since LogSpecT persuasively outperforms SpecT, we only present
the performance of rLogSpecT when more samples are collected. As we have mentioned before,
the optimal solution to LogSpecT is not necessarily unique. Thus, we do not expect to be able to
show how rLogSpecT’s optimal solution converges to LogSpecT’s optimal solution. Moreover, the
non-uniqueness may jeopardize the performance of rLogSpecT intuitively. However, the following
experiment on BA graphs shows that the learned graphs from rLogSpecT with the binary-graph-
transforming strategy tend to approach the ground truth when enough samples are collected.

In this experiment, the sample size n is chosen from 10 to 106 and δn is set as 0.2
√

log n/n. We
rely on the training-based strategy to obtain the best threshold ε∗ from 10 randomly chosen training
graphs. We then calculate the F-measure of the learned binary graph in the testing set. The result
is reported in Figure 2. It shows that rLogSpecT works for all three graph filters on BA graphs and
tends to possess higher F-measure values when more and more signals are collected. This indicates
that similar to LogSpecT, rLogSpecT is efficient for different types of graph filters on BA graphs,
including the high-pass ones. For more experiments and discussions, we refer readers to Appendix G.

6.5 Experiments on Real Networks

In this set of experiments, we compare the performance of LogSpecT (resp. rLogSpecT) with SpecT
(resp. rSpecT) and other methods from the statistics and GSP communities on Protein database
and Reddit database from [6]. The Protein database is a Bioinformatics dataset, where nodes are
secondary structure elements (SSEs) and there is an edge between two nodes if they are neighbors
in the amino-acid sequence or in 3D space. The Reddit database is a social network dataset. In this
dataset, each graph corresponds to an online discussion thread, where nodes correspond to users,
and there is an edge between two nodes if at least one of them responds to another’s comments. We
choose graphs in databases whose numbers of nodes are smaller than 50 and generate stationary
graph signals from the generative model (1), with the graph filtering chosen as H(S) = exp 1

2S. Our
experiments include in total 871 testing graphs in the Protein database and 309 in Reddit database.

Infeasibility of rSpecT. For these real networks, we first check whether the infeasibility issue
encountered by rSpecT is significant. To this end, we adopt the random graph filters t1S2+t2S+t3I ,
where ti, i = 1, 2, 3 are random variables following a Gaussian distribution with µ = 0 and σ = 2.
Then, we calculate the smallest δn such that rSpecT is feasible. If the smallest δn > 0, rSpecT is
likely to be encountered with the infeasibility issue. The results with different numbers of graph
signals observed are shown in Table 1.

Table 1: Likelihood of infeasibility
Protein Reddit

sample size 10 100 1000 10 100 1000
frequency 0.980 0.999 0.994 0.984 1 1

mean of δmin 38.514 26.012 14.813 1094.788 830.642 531.006

The experiment results present a decrease in the mean value of δmin when more samples are used.
However, a high frequency of the infeasibility issue occurring in these real datasets cannot be
mitigated by the increasing sample size. These observations highlight the necessity of the careful
treatment for choosing δ in rSpecT again.

9

Performance of different graph learning models. In this section, the stationary graph signals are
generated by the low-pass-EXP filter. We choose the famous statistical method called (thresholded)
correlation [17] and the first GSP method that applies the log barrier to graph inference [15] as
the baselines. The optimal threshold for the correlation method is selected from 0.1 to 0.6 and we
search in {0.01, 0.1, 1, 10, 100, 1000} to obtain the best hyperparameter in Kalofolias’ model. The
parameter δn in rLogSpecT is set as 10

√
log n/n and in rSpecT it is set as the smallest value that

allows a feasible solution [31]. We also rely on the searching-based strategy to convert the learned
weighted graphs from (r)SpecT & (r)LogSpecT.

The results of the ideal models with the true covariance matrix C∞ applied are collected in Figure 4.
We observe that on the real graphs, LogSpecT achieves the best performance on average (median
represented by the red line). Also, compared with SpecT, LogSpecT performs more stably. We
remark that since the graph signals are not necessarily smooth, Kalofolias’ model cannot provide
guaranteed performance, especially on the Reddit networks.

LogSpecT SpecT Correlation Kalofolias
0.0

0.2

0.4

0.6

0.8

1.0

F-
m
ea

su
re

Protein Networks

LogSpecT SpecT Correlation Kalofolias
0.0

0.2

0.4

0.6

0.8

1.0

F-
m
ea

su
re

Reddit Networks

Figure 4: Performance of LogSpecT and SpecT

101 102 103 104 105 106
Sample Size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Av
er
ag
e
F-
m
ea
su
re

Protein Networks
rLogSpecT rSpecT Correlation Kalofolias

101 102 103 104 105 106
Sample Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er
ag
e
F-
m
ea
su
re

Reddit Network

Figure 5: Asymptotic behavior of rLogSpecT and
rSpecT.

Figure 5 compares the performance of four different methods when different numbers of signals
are observed.2 When the sample size increases, the models focusing on stationarity property can
recover the graphs more accurately while correlation method and Kalofolias’ method fail to exploit
the signal information. This can also be inferred from the experiment results in Figure 4 since the
models fail to achieve good performance from full information, let alone from partial information.
The experiment also shows that when a fixed number of samples are observed, the learned graphs
from rLogSpecT approximate the ground truth better than rSpecT. This further corroborates the
superiority of rLogSpecT on graph learning from stationary signals.

7 Conclusion

In this paper, we directly tackle the infeasibility issue encountered in graph learning from stationary
graph signals [31] and propose the first condition that guarantees the model infeasibility. To overcome
this, we propose an efficient alternative. The recovery guarantees of its robust formulation are
analyzed with advanced optimization tools, which may find broader applications in learning tasks.
Compared with current literature [23], these theoretical results require less stringent conditions.
We also design an L-ADMM algorithm that allows for efficient implementation and theoretical
convergence. Extensive experiments on both synthetic and real data are conducted in this paper. The
results show that our proposed model can significantly outperform the existing ones.

We believe this work represents an important step beyond the fundamental model SpecT. Its general
formulation allows for the transfer of the current extensions made on SpecT. Testing our proposed
models with these extensions is one future direction. Also, we notice that although the recovery
guarantees for robust formulations are clear, the estimation performance analysis for the ideal-case
models (i.e. SpecT and LogSpecT) is still incomplete. Investigating the exact recovery conditions is
another future direction.

2The model in [34] is a substitute of rSpecT to approximate SpecT and its hyperparameter is hard to determine.
Hence, we omit the performance of that model.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by the Hong Kong Research Grants Council (RGC) General Research
Fund (GRF) Project CUHK 14203920.

References
[1] Daron Acemoglu, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. Systemic risk and stability in

financial networks. American Economic Review, 105(2):564–608, 2015.

[2] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[3] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers. Foundations
and Trends® in Machine learning, 3(1):1–122, 2011.

[4] Andrei Buciulea, Samuel Rey, Cristobal Cabrera, and Antonio G Marques. Network reconstruc-
tion from graph-stationary signals with hidden variables. In Proceedings of the 53rd Asilomar
Conference on Signals, Systems, and Computers, pages 56–60. IEEE, 2019.

[5] Andrei Buciulea, Samuel Rey, and Antonio G Marques. Learning graphs from smooth and
graph-stationary signals with hidden variables. IEEE Transactions on Signal and Information
Processing over Networks, 8:273–287, 2022.

[6] Samir Chowdhury and Tom Needham. Generalized spectral clustering via gromov-wasserstein
learning. In Proceedings of the 24th International Conference on Artificial Intelligence and
Statistics (AISTATS 2021), pages 712–720. PMLR, 2021.

[7] Jose Vinicius de Miranda Cardoso, Jiaxi Ying, and Daniel Palomar. Graphical models in
heavy-tailed markets. Advances in Neural Information Processing Systems, 34:19989–20001,
2021.

[8] Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex
optimization. The Journal of Machine Learning Research, 17(1):2909–2913, 2016.

[9] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, 5(1):17–60, 1960.

[10] Benjamin Girault. Stationary graph signals using an isometric graph translation. In Proceedings
of the 23rd European Signal Processing Conference (EUSIPCO 2015), pages 1516–1520. IEEE,
2015.

[11] Yiran He and Hoi-To Wai. Detecting central nodes from low-rank excited graph signals via
structured factor analysis. IEEE Transactions on Signal Processing, 70:2416–2430, 2022.

[12] Alan J Hoffman. On approximate solutions of systems of linear inequalities. Journal of Research
of the National Bureau of Standards, 49(4):263–265, 1952.

[13] Alexander Jung, Alfred O Hero III, Alexandru Cristian Mara, Saeed Jahromi, Ayelet Heimowitz,
and Yonina C Eldar. Semi-supervised learning in network-structured data via total variation
minimization. IEEE Transactions on Signal Processing, 67(24):6256–6269, 2019.

[14] Alexander Jung and Nguyen Tran. Localized linear regression in networked data. IEEE Signal
Processing Letters, 26(7):1090–1094, 2019.

[15] Vassilis Kalofolias. How to learn a graph from smooth signals. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics (AISTATS 2016), pages 920–
929. PMLR, 2016.

[16] Vassilis Kalofolias, Andreas Loukas, Dorina Thanou, and Pascal Frossard. Learning time
varying graphs. In Proceedings of 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2017), pages 2826–2830. IEEE, 2017.

11

[17] Eric D. Kolaczyk. Statistical Analysis of Network Data: Methods and Models. Springer-Verlag,
New York, NY, USA, 2009.

[18] D. Christopher Manning, Hinrich Schütze, and Prabhakar Raghavan. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[19] Hermina Petric Maretic and Pascal Frossard. Graph laplacian mixture model. IEEE Transactions
on Signal and Information Processing over Networks, 6:261–270, 2020.

[20] Antonio G Marques, Santiago Segarra, Geert Leus, and Alejandro Ribeiro. Stationary graph
processes and spectral estimation. IEEE Transactions on Signal Processing, 65(22):5911–5926,
2017.

[21] Gautier Marti, Frank Nielsen, Mikołaj Bińkowski, and Philippe Donnat. A review of two
decades of correlations, hierarchies, networks and clustering in financial markets. Progress in
Information Geometry, pages 245–274, 2021.

[22] Gonzalo Mateos, Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. Connecting
the dots: Identifying network structure via graph signal processing. IEEE Signal Processing
Magazine, 36(3):16–43, 2019.

[23] Madeline Navarro, Yuhao Wang, Antonio G Marques, Caroline Uhler, and Santiago Segarra.
Joint inference of multiple graphs from matrix polynomials. Journal of Machine Learning
Research, 23(76):1–35, 2022.

[24] Bastien Pasdeloup, Vincent Gripon, Grégoire Mercier, Dominique Pastor, and Michael G Rabbat.
Characterization and inference of graph diffusion processes from observations of stationary
signals. IEEE transactions on Signal and Information Processing over Networks, 4(3):481–496,
2017.

[25] Nathanaël Perraudin and Pierre Vandergheynst. Stationary signal processing on graphs. IEEE
Transactions on Signal Processing, 65(13):3462–3477, 2017.

[26] Raksha Ramakrishna, Hoi-To Wai, and Anna Scaglione. A user guide to low-pass graph signal
processing and its applications: Tools and applications. IEEE Signal Processing Magazine,
37(6):74–85, 2020.

[27] Samuel Rey, Andrei Buciulea, Madeline Navarro, Santiago Segarra, and Antonio G Marques.
Joint inference of multiple graphs with hidden variables from stationary graph signals. In
Proceedings of 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2022), pages 5817–5821. IEEE, 2022.

[28] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science
& Business Media, 2009.

[29] Johannes O Royset and Roger JB Wets. An Optimization Primer. Springer, 2021.

[30] Santiago Segarra, Sundeep Prabhakar Chepuri, Antonio G Marques, and Geert Leus. Statistical
graph signal processing: Stationarity and spectral estimation. Cooperative and Graph Signal
Processing, pages 325–347, 2018.

[31] Santiago Segarra, Antonio G Marques, Gonzalo Mateos, and Alejandro Ribeiro. Network
topology inference from spectral templates. IEEE Transactions on Signal and Information
Processing over Networks, 3(3):467–483, 2017.

[32] Santiago Segarra, Yuhao Wang, Caroline Uhler, and Antonio G Marques. Joint inference of
networks from stationary graph signals. In Proceedings of the 51st Asilomar Conference on
Signals, Systems, and Computers, pages 975–979. IEEE, 2017.

[33] Rasoul Shafipour, Abolfazl Hashemi, Gonzalo Mateos, and Haris Vikalo. Online topology
inference from streaming stationary graph signals. In 2019 IEEE Data Science Workshop
(DSW), pages 140–144. IEEE, 2019.

[34] Rasoul Shafipour and Gonzalo Mateos. Online topology inference from streaming stationary
graph signals with partial connectivity information. Algorithms, 13(9):228, 2020.

12

[35] Rasoul Shafipour, Santiago Segarra, Antonio G Marques, and Gonzalo Mateos. Network
topology inference from non-stationary graph signals. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5870–5874. IEEE, 2017.

[36] Stephen M Smith, Karla L Miller, Gholamreza Salimi-Khorshidi, Matthew Webster, Christian F
Beckmann, Thomas E Nichols, Joseph D Ramsey, and Mark W Woolrich. Network modelling
methods for fmri. Neuroimage, 54(2):875–891, 2011.

[37] Oliver Stegle, Sarah A Teichmann, and John C Marioni. Computational and analytical challenges
in single-cell transcriptomics. Nature Reviews Genetics, 16(3):133–145, 2015.

[38] Yuichi Tanaka and Yonina C Eldar. Generalized sampling on graphs with subspace and
smoothness priors. IEEE Transactions on Signal Processing, 68:2272–2286, 2020.

[39] Yuichi Tanaka, Yonina C Eldar, Antonio Ortega, and Gene Cheung. Sampling signals on graphs:
From theory to applications. IEEE Signal Processing Magazine, 37(6):14–30, 2020.

[40] Roman Vershynin. How close is the sample covariance matrix to the actual covariance matrix?
Journal of Theoretical Probability, 25(3):655–686, 2012.

[41] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge University Press, 2018.

[42] Xiaolu Wang, Chaorui Yao, Haoyu Lei, and Anthony Man-Cho So. An efficient alternating
direction method for graph learning from smooth signals. In Proceedings of 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021), pages
5380–5384. IEEE, 2021.

[43] Chenyue Zhang, Yiran He, and Hoi-To Wai. Product graph learning from multi-attribute graph
signals with inter-layer coupling. In Proceedings of 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2023), pages 1–5. IEEE, 2023.

[44] Hui Zhang, Ming Yan, and Wotao Yin. One condition for solution uniqueness and robustness
of both l1-synthesis and l1-analysis minimizations. Advances in Computational Mathematics,
42(6):1381–1399, 2016.

[45] Xiaoqun Zhang, Martin Burger, and Stanley Osher. A unified primal-dual algorithm framework
based on bregman iteration. Journal of Scientific Computing, 46(1):20–46, 2011.

[46] Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P Palomar. Optimization algorithms
for graph laplacian estimation via admm and mm. IEEE Transactions on Signal Processing,
67(16):4231–4244, 2019.

[47] Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Zhenyu Guo, Yang Liu, Yuchen Yang, and Yao Zhao.
Multi-modal graph learning for disease prediction. IEEE Transactions on Medical Imaging,
41(9):2207–2216, 2022.

13

A Organization of the Appendix

The appendix includes the missing proofs, detailed discussions of some argument in the main body
and more numerical experiments. We organize the appendix as follows:

• The proof of infeasibility condition (Theorem 3.2) is provided in Section B.

• Explanations on conditions derived in Theorem 3.2 are included in Section C.

• The proof of properties of the proposed model (r)LogSpecT (Proposition 3.4 & 3.6) is given
in Section D and some additional properties are discussed.

• The truncated Hausdorff distance based proof details of Theorem 4.1 and Corollary 4.4 are
given in Section E.

• Details of L-ADMM and its convergence analysis are in Section F.

• Additional experiments and discussions on synthetic and real data are included in Section G.

B Proof of Theorem 3.2

Since the linear system (4) has no solution, we know from Farkas’ lemma that the following system
has solutions: 

[
Im−1 0 (m−1)(m−2)

2

]
B⊤A⊤

nx < 0(m−1)×1,[
0 (m−1)(m−2)

2 ×(m−1)
I (m−1)(m−2)

2

]
B⊤A⊤

nx ≤ 0 (m−1)(m−2)
2 ×1

.
(11)

Let x∗ ∈ Rm2

be a solution to (11). Denote x+ := max{x∗,0}, x− := max{−x∗,0}. Then, there
exists c ∈ (0, 1] such that

B⊤A⊤
n (x+ − x−) + c1⊤

m2(x+ + x−)[1m−1;0 (m−1)(m−2)
2

] ≤ 0.

Define y := −1⊤
m2(x++x−), z := c1⊤

m2(x++x−) and set δ̄ = c. For all δ ∈ [0, δ̄), (x+,x−, y, z)
is a solution to the following linear system:

B⊤A⊤
n (x+ − x−) + z[1m−1;0 (m−1)(m−2)

2
] ≤ 0,

1⊤
m2(x+ + x−) + y ≤ 0,

δy + z > 0,

x+,x−,−y ≥ 0.

Again, from Farkas’ lemma, this implies that the following linear system does not have a solution:
AnBs+ t1m2 ≥ 0,

AnBs− t1m2 ≤ 0,

t ≤ δ,[
1m−1 0 (m−1)(m−2)

2

]
s = 1,

(12)

where s ∈ Rm(m−1)/2 and t ∈ R. Since (12) is equivalent to:
∥CnS − SCn∥∞,∞ ≤ δ,

(S1)1 = 1,

S ∈ S,
(13)

the above argument indicates that (13) does not have a solution. Suppose rSpecT has a feasible
solution S′, then

∥CnS
′ − S′Cn∥∞,∞ ≤ ∥CnS

′ − S′Cn∥F ≤ δ.

Hence, S′ is also a solution to (13). However, (13) does not have a solution. We can conclude that
rSpecT is infeasible in this case.

14

C Explanations on Sufficient Conditions in Theorem 3.2

We elaborate more on the infeasibility condition thatAnB has full column rank. An application of
the condition is Example 3.1. Specifically, we know that in this case,

B =


0

1

1

0

 and An =

 0 h12 −h12 0
h12 h22 − h11 0 −h12

−h12 0 h11 − h22 h12

0 −h12 h12 0

 .

This implies that

AnB =

 0
h22 − h11

h11 − h22

0

 .

Hence, when h11 ̸= h22, AnB has full column rank. This means that when δ is small enough (from
Example 3.1 we know δ̃ =

√
2|h11 − h22|), the model rSpecT is infeasible.

D Proofs of Properties of (r)LogSpecT

D.1 Proof of Proposition 3.4

Since the constraint set S is a cone, it follows that for all γ > 0, γS = S. Then, we know that

Opt(C, α) = argmin
S∈S,CS=SC

∥S∥1,1 − α1⊤ log(S1)

= γ · argmin
γS∈S,CγS=γSC

∥γS∥1,1 − α1⊤ log(γS1)

= γ · argmin
S∈ 1

γ S,CS=SC

γ∥S∥1,1 − α1⊤ log(S1)

= γ · argmin
S∈S,CS=SC

∥S∥1,1 −
α

γ
1⊤ log(S1)

= γOpt(C, α/γ),

where the third equality is from the basic calculus rule of the logarithm function. Set γ = α and then
Opt(C, α) = αOpt(C, 1), which completes the proof.

D.2 Proof of Proposition 3.6

The proof will be conducted by constructing a feasible solution for rLogSpecT. Recall that An =

I ⊗ Cn − Cn ⊗ I and the matrix B ∈ Rm2×m(m−1)/2 that maps a non-negative vector to the
vectorization of a valid adjacency matrix. Let S = min{ δ

∥AnBs∥2
, 1}·mat(Bs) with s ∈ R(m−1)m/2

being a non-negative vector, where mat(·) is the matricization operator. Note that

vec(CnS − SCn) = (I ⊗Cn −Cn ⊗ I) vec(S) = Anvec(S).

Then, we know that

∥CnS − SCn∥F = ∥vec(CnS − SCn)∥2 = min

{
δ

∥AnBs∥2
, 1

}
· ∥AnBs∥2 ≤ δ.

Thus, the given S is a feasible solution for rLogSpecT and it completes the proof.

D.3 Properties of optimal solutions and values of (r)LogSpecT

In this section, we further discuss some properties of the optimal solutions/value of the proposed
models, which are useful for deriving the recovery guarantee. More specifically, we obtain an upper
bound on the optimal solutions (which may not be unique) independent of the sample size n and the
inaccuracy parameter δn. Also, a lower bound of optimal values follows.

15

Proposition D.1. The following statements hold:

• For an optimal solution S∗ (resp. S∗
n) to LogSpecT (resp. rLogSpecT with any given sample

size n), it follows that

∥S∗∥1,1 = αm and ∥S∗
n∥1,1 ≤ αm, ∀δn > 0.

• If δn ≥ 2αm∥Cn −C∞∥, then

αm(1− logα) ≤ f∗
n ≤ f∗, ∀n,

where f∗ (resp. f∗
n) denotes the optimal value of LogSpecT (resp. rLogSpecT).

For the first statement, let us consider the Karush-Kuhn-Tucker (KKT) conditions of LogSpecT and
rLogSpecT. Since the LogSpecT is a convex problem and Slater’s condition holds, the KKT conditions
are necessary and sufficient for the optimality, i.e., there exists (Λ1,Λ2) ∈ Rm×m ×NS(S

∗) such
that 

∇S(∥S∗∥1,1 − α1⊤ log(S∗1)) +C∞Λ1 −Λ1C∞ +Λ2 = 0,

C∞S∗ = S∗C∞,

S∗ ∈ S,
(14)

where NS(S
∗) := {N ∈ Rm×m : supX∈S ⟨X − S∗,N⟩ ≤ 0} is the normal cone of S at S∗, and

∇∥S∗∥1,1 is well-defined since ∥ · ∥1,1 = ⟨·,11⊤⟩ at S∗ ≥ 0, which is differentiable. Taking further
calculation gives that

∇∥S∗∥1,1 = 11⊤, (∇S1
⊤ log(S∗1))ij =

1

(S∗1)i
.

Combining this with (14) by taking inner product of both sides with S∗, we obtain that∑
i,j

(S∗)ij − α
∑
i,j

(S∗)ij
(S∗1)i

+ ⟨Λ1,C∞S∗ − S∗C∞⟩+ ⟨Λ2,S
∗⟩ = 0. (15)

From the structure of S and the fact that Λ2 ∈ NS(S
∗), one has that ⟨Λ2,S

∗⟩ = 0. Also, note that
C∞S∗ = S∗C∞. Hence, the equation (15) can be simplified as the desired result:

∥S∗∥1,1 =
∑
i,j

(S∗)ij = α
∑
i,j

(S∗)ij
(S∗1)i

= α

m∑
i=1

m∑
j=1

(S∗)ij
(S∗1)i

= αm.

The KKT conditions of rLogSpecT indicate that there exist λ1 ≥ 0, Λ2 ∈ NS(S
∗
n) and Q ∈

∂∥CnS
∗
n − S∗

nCn∥F (i.e., the subgradient of the function S 7→ ∥CnS − SCn∥F at S∗
n) such that

∇S(∥S∗
n∥1,1 − α1⊤ log(S∗

n1)) + λ1Q+Λ2 = 0,

λ1(∥CnS
∗
n − S∗

nCn∥F − δn) = 0,

S∗
n ∈ S.

(16)

Moreover, from the definition of the convex subdifferential we know that 0 ≥ ∥CnS
∗
n − S∗

nCn∥F −
⟨Q,S∗

n⟩. Thus, after taking inner product of both sides of the equation (16) with S∗
n, it follows that:

0 =
∑
i,j

(S∗
n)ij − αm+ λ1⟨Q,S∗

n⟩+ ⟨Λ2,S
∗
n⟩

≥
∑
i,j

(S∗
n)ij − αm+ λ1∥CnS

∗
n − S∗

nCn∥F + ⟨Λ2,S
∗
n⟩

=
∑
i,j

(S∗
n)ij − αm+ λ1δn,

which implies that
∑

i,j(S
∗
n)ij ≤ αm− λ1δn ≤ αm. This completes the proof of the first statement.

16

For the second statement, we first prove that v∗n and v∗ are larger than αm(1− logα). Define the
auxiliary function g : R → R such that g(x) := x − α log x for any x ∈ R+, whose minimum is
attained at α. Since for any S ∈ S,

f(S) =

m∑
i=1

g

 m∑
j=1

Sij

 ,

where f is the objective in LogSpecT, it follows that

f(S) ≥
m∑
i=1

g(α) = αm(1− logα).

This implies that v∗n and v∗ are larger than αm(1− logα). Next, we will show v∗n ≤ v∗. Consider
any optimal solution S∗ to LogSpecT. We show that it is feasible for rLogSpecT.

∥CnS
∗ − S∗Cn∥ = ∥CnS

∗ −C∞S∗ + S∗C∞ − S∗Cn∥
≤ 2∥S∗∥1,1∥Cn −C∞∥ ≤ 2αm∥Cn −C∞∥ ≤ δn,

where the equality comes from C∞S∗ = S∗C∞, the first inequality comes from the fact that
∥XY ∥ ≤ ∥X∥F ∥Y ∥ ≤ ∥X∥1,1∥Y ∥, the second one comes from the first statement and the last
one is due to δn ≥ 2αm∥Cn − C∞∥. Hence, S∗ is feasible for rLogSpecT, which indicates that
v∗n ≤ v∗. The proof is completed.

E Proof of Theorem 4.1 & Corollary 4.4

E.1 Truncated Hausdorff distance

In this section, we introduce an advanced technique in optimization that is efficient in analyzing
the recovery guarantee of robust formulations. Before that, we introduce the concept of truncated
Hausdorff distance between two sets.
Definition E.1 (Truncated Hausdorff Distance [29, 6.J]). For any ρ ≥ 0, the truncated Hausdorff
distance between two sets C and D is defined as:

d̂ρ(C,D) = max{dist(C ∩ B(0, ρ),D),dist(D ∩ B(0, ρ), C)}.

It turns out that the distance between the optimum of two minimization problems can be bounded
with the truncated Hausdorff distance of the epigraphs under some conditions. The result is captured
in the following lemma.
Lemma E.2 ([29, Theorem 6.56]). Let ρ ∈ [0,∞). Suppose that the extended-real-valued lower
semicontinuous functions f, g : Rn → R satisfy

• inf f, inf g ∈ [−ρ, ρ],

• argmin f, argmin g ⊆ B(0, ρ).

Then, it follows that
| inf f − inf g| ≤ d̂ρ(epi f, epi g).

3 (17)

Suppose further that ε ≥ 2 d̂ρ(epi f, epi g), then one has

dist(x∗
g, ε- argmin f) ≤ d̂ρ(epi f, epi g), (18)

where ε-argmin f is the ε-suboptimal solution set of f that is defined as ε-argmin f := {x ∈
dom f : f(x) ≤ inf f + ε}, and x∗

g is a minimizer of g.

From the above lemma, we know that if two optimization problems are close enough (in the sense
of truncated Hausdorff distance), then the optimum of them should be close to each other. Hence,
in order to apply this result, we need to bound the truncated Hausdorff distance in an explicit way,
which is solved by the following Kenmochi condition.

3For a function f : Rn → R, its epigraph is defined as epi f := {(x, y) | y ≥ f(x)}.

17

Lemma E.3 (Kenmochi Condition [29, Proposition 6.58]). Let ρ ∈ [0,∞). Then, for f, g : Rn → R
with nonempty epigraphs, one has that

d̂ρ(epi f, epi g) = inf

η > 0 :

inf
B(x,η)

g ≤ max{f(x),−ρ}+ η, ∀x ∈ [f ≤ ρ] ∩ B(0, ρ)

inf
B(x,η)

f ≤ max{g(x),−ρ}+ η, ∀x ∈ [g ≤ ρ] ∩ B(0, ρ)

 ,

where [f ≤ ρ] := {x ∈ Rn : f(x) ≤ ρ}.

E.2 Proof of Theorem 4.1

Before presenting the proof, we first introduce the following lemma.

Lemma E.4 (Hoffman’s Error Bound [12]). Consider the set S := {x ∈ Rn : Ax ≤ b}. There
exists C > 0 such that for any x ∈ Rn, one has

dist(x,S) ≤ C · ∥(Ax− b)+∥2.

For the sake of brevity, we denote

f̄n(S) := ∥S∥1,1 − α1⊤ log(S1) + ιR−(∥CnS − SCn∥F − δn) + ιS(S),

f̄(S) := ∥S∥1,1 − α1⊤ log(S1) + ι{0}(∥C∞S − SC∞∥F) + ιS(S).

Hence, the optimization problem LogSpecT (resp. rLogSpecT) is equivalent to inf f̄ (resp. inf f̄n).

Now, we aim to use Lemma E.3 to bound d̂ρ(epi f̄ , epi f̄n). Let S ∈ S ∩ B(0, ρ) satisfy

f̄(S) ≤ ρ and SC∞ = C∞S.

Then, we know that

∥SCn −CnS∥F ≤ 2∥S∥F ∥Cn −C∞∥ ≤ 2ρ∥Cn −C∞∥ ≤ δn,

and consequently S is in the domain of f̄n. Then, it follows that for any η > 0, we have

inf
B(S,η)

f̄n ≤ f̄n(S) = f̄(S) ≤ max{f̄(S),−ρ}, ∀S ∈ [f̄ ≤ ρ] ∩ B(0, ρ). (19)

Before verifying the reverse side of the Kenmochi condition, we first consider the non-emptiness of
[f̄n ≤ ρ] ∩ B(0, ρ). Since

δn ≥ 2ρ∥Cn −C∞∥ ≥ 2αm∥Cn −C∞∥,

it follows from Proposition D.1 that ∥S∗
n∥1,1 ≤ αm ≤ ρ and f∗

n ≤ f∗ ≤ ρ, which implies that
[f̄n ≤ ρ] ∩ B(0, ρ) is nonempty. Let Sn ∈ [f̄n ≤ ρ] ∩ B(0, ρ). Then, one has that

Sn ∈ S and ∥CnSn − SnCn∥F ≤ δn.

Hence, it follows that

∥C∞Sn − SnC∞∥ ≤ 2∥Sn∥F ∥C∞ −Cn∥+ ∥CnSn − SnCn∥F ≤ 2ρ∥C∞ −Cn∥+ δn.

Also, note that there exists β > 0 such that (Sn1)i ≥ β for all i ∈ [m] as f̄n ≤ ρ and ∥Sn∥1,1 −
α1⊤ log(Sn1) → ∞ when Sn → 0. Thus, applying Lemma E.4 to the linear system

S̃ := {S ∈ Rm×m : SC∞ = C∞S, S ∈ S, (S1)i ≥ β, ∀i ∈ [m]}

yields that there exists c̃ > 0 such that

dist(Sn, S̃) ≤ c̃ · (2ρ∥C∞ −Cn∥+ δn).

Hence, there exists S̃ in the domain of f̄ such that

∥Sn − S̃∥F ≤ c̃ · (2ρ∥C∞ −Cn∥+ δn) and (S̃1)i ≥ β, ∀i ∈ [m].

18

Since the function S 7→ ∥S∥1,1 − α1⊤ log(S1) is locally Lipschitz continuous when (S1)i ≥ β,
there exists L > 0 such that

f̄(S̃) = ∥S̃∥1,1 − α1⊤ log(S̃1) ≤ ∥Sn∥1,1 − α1⊤ log(Sn1) + L∥Sn − S̃∥F
= f̄n(Sn) + L∥Sn − S̃∥F
≤ f̄n(Sn) + Lc̃ · (2ρ∥C∞ −Cn∥+ δn).

Setting c1 ≥ max{1, L} · c̃, one can obtain that for any Sn ∈ [f̄n ≤ ρ] ∩ B(0, ρ)

inf
B(Sn,η)

f̄ ≤ f̄(S̃) ≤ f̄n(Sn) + c1 · (2ρ∥C∞ −Cn∥+ δn) ≤ max{f̄n(Sn),−ρ}+ η, (20)

where η := c1 · (2ρ∥C∞ −Cn∥+ δn). Combining inequality (19) and (20), we can conclude that

d̂ρ(epi f̄ , epi f̄n) ≤ c1 · (2ρ∥C∞ −Cn∥+ δn). (21)

In order to derive the conclusion (i) and (ii), it remains to check the requirements in Lemma E.2.
Since ρ ≥ αm, the first statement of Proposition D.1 shows that the optimal solutions to inf f̄ and
inf f̄n lie in B(0, ρ). Since ρ ≥ f∗ and −ρ ≤ αm(1− logα), the second statement of the proposition
shows that inf f̄ , inf f̄n ∈ [−ρ, ρ]. Hence, applying Lemma E.2 completes the proof of the first two
statements.

To prove conclusion (iii), we first make the following two claims:

(a) S∗
01 is a singleton, whose element is denoted by S∗1,

(b) For any ε̄ ∈ [0,∞), there exists a δ(ε̄) > 0 such that for all 0 ≤ ε ≤ ε̄ and Sε ∈ S∗
ε , one

has that
∥Sε1− S∗1∥2 ≤ δ(ε̄) ·

√
ε. (22)

Granting these and with the help of Theorem 4.1 (ii), we can derive that for all S∗
n ∈ Sn,∗

dist(S∗
n1,S∗

01) = ∥S∗
n1− S∗1∥2 ≤ ∥S∗

n1− S2εn1∥2 + ∥S2εn1− S∗1∥2
≤

√
m dist(S∗

n,S∗
2εn) + ∥S2εn1− S∗1∥2

≤ c̃1εn + c̃2
√
εn,

where c̃1, c̃2 are positive constants, and S2εn ∈ S∗
2εn satisfies ∥S∗

n − S2εn∥F = dist(S∗
n,S∗

2εn)
(whose existence is guaranteed since S∗

ε is convex and compact). Hence,

dist(Sn,∗1,S∗
01) ≤ c̃1εn + c̃2

√
εn.

To proceed, it remains to prove the claims. Define an auxiliary function h : Rm → R as h(x) =∑m
i=1 xi − α

∑m
i=1 log xi for each x ∈ Rm

+ . Consider the following optimization problem:

min
x

h(x)

s.t. x ∈ {S1 ∈ Rm | S that is feasible for LogSpecT}.
(23)

For the sake of brevity, denote the ε-suboptimal solution set of (23) as H∗
ε . In the remaining part, we

will first show that S∗
ε1 = H∗

ε and then, by the strict convexity of h, the desired two claims hold.

The first step is to show that the optimal function value of the problem (23) satisfies h∗ = f∗. Since
it is obvious that x̃ = S∗1 is feasible for (23), h∗ ≤ h(x̃) = f(S∗) = f∗. Suppose to the contrary
that h∗ < f∗, from the fact that the objective function is coercive and continuous and the feasible set
is closed, there exists S̃ such that it is feasible for LogSpecT and x∗ = S̃1, where x∗ is an optimal
solution to (23). Since h∗ = h(x∗) = h(S̃1) = f(S̃), this contradicts the fact that f(S̃) ≥ f∗.
Hence, h∗ = f∗. Next, we will show that S∗

ε1 = H∗
ε . Consider any ε-suboptimal solution S ∈ S∗

ε ,
i.e.,

h(S1) = f(S) ≤ f∗ + ε = h∗ + ε.

Hence, S1 ∈ H∗
ε and it implies that S∗

ε1 ⊆ H∗
ε . On the other hand, for any ε-suboptimal solution

x ∈ H∗
ε , there exists S that is feasible for LogSpecT such that x = S1. Thus,

f(S) = h(x) ≤ h∗ + ε = f∗ + ε.

19

This implies that S ∈ S∗
ε and consequently H∗

ε ⊆ S∗
ε1. Hence, H∗

ε = S∗
ε1.

Since h is strictly convex, its optimal solution set H∗
0 is a singleton. Then, S∗

01 = H∗
0 is a singleton,

which proves the first claim. For the second claim, we know that for any Sε ∈ S∗
ε there exists

xε ∈ H∗
ε such that

∥Sε1− S∗1∥2 = ∥xε − x∗∥2, (24)
where x∗ ∈ H∗

0. The coerciveness of h asserts that xε and x∗ are bounded. This together with the
fact that h is strongly convex on any bounded set, illustrates that there exists µ > 0 such that

h(xε) ≥ h(x∗) + ⟨∇h(x∗),xε − x∗⟩+ 1

µ
∥xε − x∗∥22 ≥ h(x∗) +

1

µ
∥xε − x∗∥22, (25)

where the second inequality comes from the global optimality of x∗. Combining (24) and (25) gives
that

∥Sε1− S∗1∥2 = ∥xε − x∗∥2 ≤
√
µ(h(xε)− h(x∗)) ≤ √

µε.

This completes the proof of the claims.

E.3 Proof of Corollary 4.4

Suppose to the contrary that there exists a sequence {S∗
n}n, where the nth element is an optimal

solution to rLogSpecT with sample size n, such that

dist(S∗
n,S∗

0) ̸→ 0.

From Proposition D.1, we know that {S∗
n}n is bounded, and consequently, has a convergent subse-

quence. Without loss of generality, we may assume that the sequence itself is convergent and the
limiting point is S∗. Note that

∥CnS
∗
n − S∗

nCn∥F ≤ δn, Cn → C∞ and δn → 0.

Hence, C∞S∗ = S∗C∞. This indicates that S∗ is feasible for LogSpecT. Then, from Theorem 4.1,
we know that f(S∗

n) = f∗
n → f∗, which leads to f(S∗) = f∗ since f(·) = ∥ · ∥1,1 − α1⊤ log(·1) is

continuous. Together with the fact that S∗ is feasible, we conclude that S∗ is an optimal solution to
LogSpecT. This further implies that dist(S∗

n,S∗
0) → 0, which is a contradiction.

E.4 Proof of Lemma 4.7

Recall the generative model (1). Since w follows a sub-Gaussian distribution, it can be shown that
for every t > 0,

P(∥x∥2 > t) ≤ P
(
∥w∥2 >

t

∥H(S)∥

)
≤ Ce−v′t2 ,

for some positive constant v′, which means that x also follows a sub-Gaussian distribution. Thus,
due to the sub-Gaussian property, ∥Cn −C∞∥ can be explictly bounded by the following lemma.
Lemma E.5 ([40, Proposition 2.1]). Consider sub-Gaussian, identical, independent random vectors
x1,x2, . . . ,xn ∈ Rm with n > m. Then for all ε > 0, it follows that

P

(∥∥∥∥∥ 1n
n∑

i=1

xix
⊤
i − E[xx⊤]

∥∥∥∥∥
2

≤ ε

)
≥ 1− 2e2m−lε2n,

for some constant l > 0.

Setting ε2 = (4/l) log(2n)m/n, Lemma E.5 indicates that with high probability (lower bounded by
1− n−1),

∥Cn −C∞∥ ≤ O

(√
log n

n

)
.

F Derivations of L-ADMM and Convergence Analysis

This section includes the details of L-ADMM for rLogSpecT.

20

F.1 Proof of Proposition 5.1

Note that the minimization problem (7) is separable for Z and q, and can be split into two subprob-
lems:

min
Z∈B(0,δn)

∥CnS
(k) − S(k)Cn +Λ(k)/ρ−Z∥2F , (26)

min
q

−α1⊤ log q + λ
(k)⊤
2 (q − S(k)1) +

ρ

2
∥q − S(k)1∥22. (27)

For problem (26), the optimal solution is the projection of CnS
(k)−S(k)Cn+Λ(k)/ρ onto B(0, δn),

which is given by

Z(k+1) = min

{
1,

δn

∥Z̃∥F

}
Z̃ with Z̃ = CnS

(k) − S(k)Cn +Λ(k)/ρ.

For problem (27), the first-order optimality condition gives

− α1/q + λ
(k)
2 + ρ(q − S(k)1) = 0.

This together with the fact that the objective function is convex implies that

q(k+1) =
q̃ +

√
q̃2 + 4α/ρ1

2
with q̃ =

1

ρ
(ρS(k)1− λ

(k)
2).

F.2 Calculation of ΠS(·)

The projection of X to S can be calculated via an optimization problem:

min
S

∥X − S∥2F

s.t. S⊤ = S,

Sii = 0, i = 1, 2, . . . ,m,

Sij ≥ 0, ∀i, j,
which is equivalent to

min
∑
i<j

(
(Xij − Sij)

2 + (Xji − Sij)
2
)

s.t. Sij ≥ 0, ∀i < j,

Sii = 0, ∀i.
Hence

(ΠS(X))ij =


1

2
max{0, Xij +Xji}, i ̸= j,

0, i = j.

F.3 Stopping criterion and updating rule of ρ

We follow the procedures in [3] to update ρ in each iteration. Similarly, we define the primal residual
and dual residual as follows:

p(k+1)
res =

√
∥Z(k+1) −CnS(k+1) + S(k+1)Cn∥2F + ∥q(k+1) − S(k+1)1∥22,

d(k+1)
res = ρ(k)

(
Cn(S

(k+1) − S(k))− (S(k+1) − S(k))Cn + 1⊤(S(k+1) − S(k))1
)
.

The aim of updating ρ is to control the decaying speed of pres and dres such that their difference is
not too large. To this end, we update ρ adaptively following the scheme:

ρ(k+1) :=


2ρ(k), if p(k+1)

res > 5d(k+1)
res ,

ρ(k)/2, if d(k+1)
res > 5p(k+1)

res ,

ρ(k), otherwise.

When pres and dres are both smaller than the threshold ε = 10−5, we stop the algorithm.

21

F.4 Convergence analysis

Define D := Diag(1⊤
m, . . . ,1⊤

m) ∈ Rm×m2

. Then, D satisfies Dvec(S) = S1 and ∥D⊤D∥ = m.
Denote

Q := τI −D⊤D −A⊤
nAn.

Then the linearized ADMM update (8) of S can be written as:

min
S

L(S) +
ρ

2
∥vec(S)− vec(S(k))∥Q,

where ∥x∥Q := x⊤Qx. Since τ > m+∥An∥2, we know that Q is positively definite. Consequently,
by treating (Z, q) as one variable, we can apply Theorem 4.2 in [45] and directly obtain the result.

G More Experiments and Discussions on Synthetic and Real Data

G.1 Influence of graph filters

To make a fair comparison between rSpecT and rLogSpecT, we test rSpecT on BA graphs with the
same graph filters and the results are reported in Figure 6. It is obvious that rSpecT fails in these
cases and cannot benefit from the increase in sample size. This is reasonable since SpecT fails on BA
graphs as indicated in Figure 3, let alone the approximation formulation rSpecT.

101 102 103 104 105 106

Sample Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F-
m

ea
su

re

rSpecT Performance
lowpass-EXP
highpass-EXP
QUA

Figure 6: Performance of rSpecT on BA graphs.

101 102 103 104 105 106
Sample Size

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m
ea
su
re

rLogSpecT Performance
lowpass-EXP
highpass-EXP
QUA

Figure 7: rLogSpecT on ER graphs with δn =

20
√

log n/n.

We further test rLogSpecT on ER graphs with different numbers of signals observed. The parameter
δn is set as 20

√
log n/n and the results are reported in Figure 7. The figure shows that for graph

filters that are not high-pass, rLogSpecT can achieve nearly perfect recovery when the sample size is
large enough. Also, compared with the performance on BA graphs, rLogSpecT works better on ER
graphs. This observation is in accordance with the conclusion from Figure 3 that LogSpecT performs
better on ER graphs than BA ones. We further notice that the difference between the low-pass graph
filter and the high-pass one is huge. To check the conjecture that rLogSpecT generally performs
better on low-pass graph filters, we choose different graph filters exp(tS) with t ranging from −2
to 2 and conduct the experiments on ER graphs. When the graph shifting operator is the adjacency
matrix, the positive low-pass parameter t corresponds to low-pass graph filters and the negative t
corresponds to the high-pass ones [26, 11]. We omit the case when t = 0 since this filter does not
contain any graph information (note that exp(0S) = I).

We then repeat the experiments for 50 times and report the average results in Figure 8. The comparison
between the performance of low-pass graph filters and high-pass graph filters indicates that the low-
pass graph filters generally outperforms the high-pass ones. A closer look at the results shows that
the performance grows faster when the absolute value of t is smaller. And eventually, the graph filter
with smaller absolute value of t prevails. This observation is interesting since Figure 3 indicates that
the choice of graph filters has few impacts on the model performance. One explanation is that both
low-pass graph filters and high-pass graph filters attenuate some frequencies of the graph and the
larger absolute value of t leads to the more loss of information carried by finite signals.

22

101 102 103 104 105 106
Sample Size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er
ag

e
F-
m
ea

su
re

low-pass parameter = -2
low-pass parameter = -1.5

low-pass parameter = -1
low-pass parameter = -0.5

low-pass parameter = 0.5
low-pass parameter = 1

low-pass parameter = 1.5
low-pass parameter = 2

Figure 8: Effect of Low-Pass Parameter: different performance of graph filters exp(tS) with t
ranging from −2 to 2.

G.2 Experiments on USPS dataset

USPS dataset is a handwritten digit dataset. As shown in [25], it is nearly stationary with respect to
the nearest neighbour graph. This dataset collects images of handwritten digits. In the experiment,
each pixel is viewed as a node and the value on the pixel is view as the graph signal. We follow
the approach in [25] to construct the 20 nearest neighbour graph, on which the data is verified to
be nearly stationary. More specifically, we pick the 1296 digit 1 images. The weights between two
nodes are decided by the Gaussian radial basis function. It turns out that the stationarity measure
s := ∥ diag(U⊤CnU)∥2/∥U⊤CnU∥F equals 0.78 in this dataset. Here U is the eigen-matrix of
the constructed graph and Cn is the covariance matrix of the observed graph signals. We view the 20
nearest neighbour graph as the groundtruth and compare the learned graph from rLogSpecT with it.
We present the subgraphs consisting of the top 10 nodes with the largest degrees in the two graphs
respectively in Figure 9. The F-measure of these two subgraphs is 0.96. This result corroborates the
efficiency of our proposed rLogSpecT model.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
GroundTruth graph,10 nodes,42 edges

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
LearnedGraph,10 nodes, 45 edges

Figure 9: Graph Learning on USPS dataset. (Left: subgraph of the symmetric 20 nearest neighbour
graph. Right: subgraph of the learned graph from rLogSpecT. The F-measure is 0.96)

23

	Introduction
	Notation

	Preliminaries
	Infeasibility of rSpecT and Novel Models
	Recovery Guarantee of rLogSpecT
	Linearized ADMM for Solving rLogSpecT
	Experiments
	Data Generation
	How to Infer Binary Graphs
	Convergence of L-ADMM
	Experiments on Synthetic Networks
	Experiments on Real Networks

	Conclusion
	Organization of the Appendix
	Proof of Theorem 3.2
	Explanations on Sufficient Conditions in Theorem 3.2
	Proofs of Properties of (r)LogSpecT
	Proof of Proposition 3.4
	Proof of Proposition 3.6
	Properties of optimal solutions and values of (r)LogSpecT

	Proof of Theorem 4.1 & Corollary 4.4
	Truncated Hausdorff distance
	Proof of Theorem 4.1
	Proof of Corollary 4.4
	Proof of Lemma 4.7

	Derivations of L-ADMM and Convergence Analysis
	Proof of Proposition 5.1
	Calculation of S ()
	Stopping criterion and updating rule of
	Convergence analysis

	More Experiments and Discussions on Synthetic and Real Data
	Influence of graph filters
	Experiments on USPS dataset

