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Abstract

Recent advancements in Text-to-Speech (TTS) systems have enabled the generation
of natural and expressive speech from textual input. Accented TTS aims to enhance
user experience by making the synthesized speech more relatable to minority group
listeners, and useful across various applications and context. Speech synthesis
can further be made more flexible by allowing users to choose any combination
of speaker identity and accent, resulting in a wide range of personalized speech
outputs. Current models struggle to disentangle speaker and accent representation,
making it difficult to accurately imitate different accents while maintaining the
same speaker characteristics. We propose a novel approach to disentangle speaker
and accent representations using multi-level variational autoencoders (ML-VAE)
and vector quantization (VQ) to improve flexibility and enhance personalization
in speech synthesis. Our proposed method addresses the challenge of effectively
separating speaker and accent characteristics, enabling more fine-grained control
over the synthesized speech. Code and speech samples are publicly available1.

1 Introduction

In recent years, Text-to-Speech (TTS) technology has advanced significantly, allowing high audio
quality synthesis in multiple voices for applications such as voice assistants, audiobooks, and enter-
tainment [1]. Despite their advancements, a significant challenge remains: effectively disentangling
speaker identity and accent representations to achieve precise and personalized speech synthesis.
With globalization, accents in speech technology are vital for effective communication, since a
listener’s ability to understand a speaker is determined by both the speaker’s accent and the listener’s
familiarity with that particular accent [2]. However, expecting everyone to learn a single standard
accent is impractical. Instead, we should focus on developing technologies that can generate accents
according to the user’s needs. Accents involve phonetic and prosodic variations influenced by factors
like mother tongue or region [2, 3]. Since accent forms a part of one’s idiolect, it may often overlap
with speaker identity [2], which makes the disentanglement a challenge. Successfully disentangling
the two elements would allow for personalized speech synthesis, improving user experiences for
minorities by aligning the system’s accent with their own to promote intelligibility, thus enhancing
interaction with TTS voice assistants and audiobook narrators.

The introduction of deep learning to TTS pushed the research forward with models like WaveNet [4],
Tacotron [5, 6], and Fastspeech2 [7]. Multi-speaker TTS systems have advanced this field further,
enabling speech synthesis in different voices and styles by training on diverse datasets with recordings
from multiple speakers [8, 9, 10]. These systems can mimic accents [11, 12, 13] and emotional
expressions [14, 15]. Continued research in multi-speaker TTS is expected to enhance synthesized

1https://amaai-lab.github.io/DART/

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: Architecture of DART including encoder, the ML-VAE, VQ, variance adapter, and decoder.

speech quality and versatility. However, previous studies (for related works, please see A.1) have
not thoroughly explored disentangling accent and speaker representation, which could unlock the
potential to further improve personalization level and help promote underrepresented foreign accents.
In similar work, Melechovsky et. al. [16] proposed ML-VAE along with Tacotron2 to disentangle
speakers and accents. However, the resulting accent similarity was not shown to be overwhelming
and experiments were done on native accents of English only. Inspired by this work, we aim to
expand on this idea to strive for even better disentanglement with focus on foreign accents.

In this paper, we propose Disentanglement of Accent and Speaker RepresenTation DART, which
combines Multi-Level Variational Autoencoders (ML-VAE) [17] and Vector Quantization (VQ)
[18] to learn meaningful disentangled latent representations for speaker and accent. The ML-VAE
architecture forms the core of accent and speaker identity disentanglement. Through this variational
framework, the model learns a latent space to represent the two, offering precise control during speech
synthesis. Furthermore, VQ discretizes the continuous latent variables obtained from the ML-VAE.
This discretization maps the continuous latent space into a predefined codebook of discrete vectors,
reducing the complexity of the latent space and promoting better separation of speaker and accent
embeddings. Through extensive experiments on diverse accented speech data [19], we evaluate the
effectiveness of our proposed approach. Our major contributions are as follows: (1) We propose
a novel architecture for disentangling speaker and accent representation using ML-VAE and VQ.
(2) Through comprehensive experiments, we demonstrate the critical role of pre-training the TTS
backbone on a multi-speaker English corpus for effective accent conversion and speaker/accent
disentanglement.

2 DART

2.1 Backbone TTS Model

The first component of DART is the TTS backbone, which closely resembles Fastspeech2 architecture,
comprising of phoneme encoder, Variance Adapter, and Mel-Decoder, as depicted in Figure 1. To
initialize the backbone, we perform pre-training on LibriTTS, an extensive multi-speaker dataset.
The model is trained using the reconstruction loss between the predicted mel spectrogram X̂ and the
ground truth mel spectrogram X is computed using Eq 1, where ||.||2 denotes L2 norm.

Lrecon = ||X̂ −X||2 (1)

2.2 ML-VAE Encoder

ML-VAE [17] leverage the hierarchical structure of data to model the joint distribution of observed
data and latent variables across multiple levels. This allows to encode dependencies among latent
variables and disentangle different factors of variation in data generation. Additionally, it can
utilize grouping information from real-world datasets, identifying shared variations and learning
group-specific factors. This makes it ideal for datasets with natural grouping or clustering, such as
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categorical images or multi-sensor time series data. The architecture is based on variational inference
techniques, which enable the learning of model parameters and efficient posterior inference. ML-
VAE encodes disentangled representations of grouped observations characterized by different accents,
examining their influence on underlying speech factors. To achieve latent representation separation,
we utilize two variables: zs for speaker-related variation and zga for accent-related variation, where
the superscript g denotes speaker grouping based on accent. These variables allow us to disentangle
distinct factors of variation in speech data. During ML-VAE training, we optimize an objective
function similar to previous work [16]. The ML-VAE effectively captures salient variation factors in
speech while disregarding irrelevant factors. Interested readers can refer to [17] for detail analysis of
the ML-VAE architecture, implementation, and experimental setup. The KL loss Lkl is computed by
maximizing the group ELBO over mini-batches.

2.3 Vector Quantization

We extend the ML-VAE framework from [16] by integrating VQ into a unified architecture, DART.
Our design incorporates separate VQ modules for accent and speaker in the ML-VAE encoder
(Figure 1, with codebook dimensions di for speaker (s) and accent (a). The reparametrized speaker
zs and grouped accent zga representations pass through the VQ layer, acting as a bottleneck [18],
filtering out irrelevant information. This integration improves accent conversion and preserves key
information by effectively disentangling speaker and accent attributes. The VQ block incorporates an
information bottleneck, ensuring effective utilization of codebooks. We define a latent embedding
space ei ∈ Rdi ×D, where di represents the size of the discrete latent space, i ∈ {s, a} denotes
speaker and accent, and D corresponds to the dimensionality of each latent embedding vector ei. It is
important to note that within this space, di embedding vectors eij ∈ RD exist, where j ranges from 1
to di. To ensure that the representation sequence effectively commits to an embedding and to prevent
its output from growing, we incorporate a commitment loss, following prior research [18], for each
VQ module. This loss helps in stabilizing the training process:

Lc = ||zei(x)− sg[ei]||22 (2)

where zei(x) is the output of the ith vector quantization block ( i ∈ {s, a}), and sg stands for the
stop gradient operator. Finally, by adding the KL loss multiplied by coefficient β, the total loss for
training is computed as:

Ltotal = Lrecon + βLkl + Lc (3)

3 Experimental Setup and Results

3.1 Datasets and Baselines

We use two datasets for training: the train-clean-100 subset of LibriTTS [20] (LTS), and the L2-
ARCTIC dataset [19]. LTS includes 247 English speakers, whereas the L2-ARCTIC dataset comprises
24 L2 (second-language) speakers representing 6 accents, with each accent having 4 speakers (two
females and two males). The evaluation is conducted on the L2-ARCTIC validation set.

We train the baselines and the proposed model using two strategies. First, we train the TTS system
from scratch with accented data. Second, a two-step process where the TTS backbone is initially
trained on an English-only corpus, yielding a pre-trained multispeaker backbone model which uses
GE2E speaker embeddings [21], and then fine-tuned with accented data. In this case, if the model uses
GST or ML-VAE modules, they replace the GE2E speaker embeddings from pre-training. Details
on training parameters and procedure can be found in A.2. We then evaluate and compare DART’s
performance against various TTS architectures with both autoregressive and non-autoregressive
frameworks. We define the baselines and different variants of the proposed model as follows:

Baselines: MLVAE-TACO represents the TTS architecture proposed in [16]. It consists of Tacotron2
with ML-VAE and is trained with L2-ARCTIC. MULTISPK-FS2 is our pre-trained multispeaker
FastSpeech2 backbone model, pre-trained on LTS, fine-tuned on L2-ARCTIC. GST-FS2 is a pre-
trained multispeaker FastSpeech2 model with a GST to model speakers/accents. GST-GE2E-FS2 is
a pre-trained multispeaker FastSpeech2 model with a GST to model accents and GE2E embeddings
to model speakers.
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DART versions: DARTscratch represents the proposed architecture, however, the entire model is
trained from scratch on L2-ARCTIC. DARTw/o V Q denotes the DART architecture that uses pre-
trained multispeaker TTS as a backbone with ML-VAE but without Vector Quantization modules in
ML-VAE. DART leverages a pre-trained multi-speaker TTS system as its foundational architecture,
enhanced by the ML-VAE and a Vector Quantization module, as illustrated in Figure 1. To thoroughly
assess the efficacy of our proposed approach, we also explored various versions of DART with
differing codebook sizes di of 512, 128, and 64. Based on the objective results and human evaluation,
we chose the size of 512 for further experiments. More details in A.3.

3.2 Objective & Subjective Evaluation

We evaluate timbre and prosody similarity between synthesized and reference audio using Cosine
Similarity (CS) [22] and F0 Frame Error (FFE) [23], calculating average CS between embeddings
from synthesized and ground truth data for speaker similarity, while FFE captures fundamental
frequency information by combining voicing decision error and F0 error metrics. To assess perceptual
dissimilarities, we use Mel Cepstral Distortion (MCD) [24], which measures the divergence between
the MFCCs of synthesized and original speech, and compute the WER [25] to measure speech
intelligibility using enterprise-grade, pre-trained Silero speech-to-text.

To assess speech quality and accent-speaker disentanglement, we conducted subjective listening
tests with two groups: AR and NAR. In the AR group, we compared different variants of DART
with ground truth and speech generated from an autoregressive model (MLVAE-TACO). In the
NAR group, we compared different variants of DART with ground truth and speech generated from
non-autoregressive models (GST-FS2, GST-GE2E-FS2). In each group, we evaluated naturalness
through the Mean Opinion Score (MOS). Additionally, we aimed to evaluate the accent-speaker
disentanglement by asking listeners to rate accent-converted samples on both speaker and accent
similarity metrics. For this purpose, we performed Best-Worst Scaling (BWS) tests [26] in each
group. The samples in the AR group are evaluated by 11 listeners, whereas 12 listeners evaluated the
samples in the NAR group2.

Table 1: Objective & Subjective evaluation. GT represents the ground truth.

Objective Evaluation Subjective Evaluation
Metric MCD ↓ CS ↑ FFE ↓ WER ↓ MOS 95% CI MOS 95% CI

GT - - - 0.137 4.510 0.154 4.498 0.219

Autoregressive DART vs AR
MLVAE-TACO 6.952 0.785 0.490 0.216 2.556 0.213 - -

Non-Autoregressive DART vs NAR
MULTISPK-FS2 6.952 0.850 0.426 0.174 - - 3.335 0.297
GST-FS2 6.731 0.841 0.438 0.184 - - 3.286 0.246
GST-GE2E-FS2 6.571 0.828 0.449 0.187 - - 3.615 0.185

DARTw/o V Q 6.731 0.841 0.426 0.186 3.389 0.189 - -
DART512 6.934 0.842 0.431 0.164 3.150 0.162 3.346 0.133
DARTscratch 6.669 0.859 0.409 0.169 3.484 0.214 - -

3.3 Results and Discussion

Objective Evaluation: Table 1 presents the objective evaluation results for various baselines and
DART. In both autoregressive (AR) and non-autoregressive (NAR) baselines, DART demonstrates
improvement across all metrics. Furthermore, DARTscratch achieves the best overall scores in
various objective metrics, e.g., the highest speaker cosine similarity score of 0.859, demonstrating
the effectiveness of the proposed architecture in multispeaker speech synthesis.

Subjective Evaluation: We perform comprehensive subjective evaluation as discussed in Section 3.2
to assess the effectiveness of DART for accent conversion. In the subjective evaluation results for
AR group (Table 1, Fig. 2), we can observe that all variants of DART outperform MLVAE-TACO in
naturalness and in speaker and accent similarity. Interestingly, among the different variants, DART512

exhibits a slightly lower MOS score of 3.150 compared to both DARTscratch and DARTw/o V Q.

2The evaluators are NLP and speech processing researchers, who are familiar with subjective evaluation.
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(a) Accent similarity: DART vs AR (b) Speaker similarity: DART vs AR.

(c) Accent similarity: DART vs NAR (d) Speaker similarity: DART vs NAR.

Figure 2: Subjective evaluation: Best-Worst-Scaling (BWS).

Further analysis of the results reveals that DARTscratch and DARTw/o V Q perform poorly in
accent similarity, they achieve higher speaker similarity than DART512 (Figure 2(a) & 2(b)). This
observation supports our hypothesis that leveraging a pretrained TTS backbone and VQ aids in the
disentanglement with slight dip in overall naturalness.

Similarly, the MOS (Table 1) and BWS (Figures 2(c) & 2(d)) results for the NAR group further
validate our claim that DART512 effectively disentangles accent and speaker representation. This
is evident in Figure 2(c), where speech samples generated using DART512 are preferred 45.0%
of the time for accent similarity over GST-FS2 and GST-GE2E-FS2. It is important to note
that the higher speaker similarity score of GST-GE2E-FS2 is due to its use of state-of-the-art
speaker embedding [21] for generating speech samples. Additionally, GST-FS2 fails to effectively
capture both accent and speaker characteristics, as highlighted by the results in Figures 2(c) & 2(d).
Furthermore, we want to highlight that the lower performance in the MOS score for DART512 can be
attributed to several factors related to the trade-offs between accent and speaker similarity. Achieving
a perfect balance between maintaining speaker identity and accurately converting the accent may
result in slightly compromised overall naturalness, as reflected in the MOS.

Importance of pre-training: We observe that DARTscratch and DART512 share the same ar-
chitecture but differ in training strategy. DARTscratch is trained from scratch (Backbone & ML-
VAE), while in DART512, the backbone TTS was first pre-trained on a multi-speaker English
corpus, followed by training the ML-VAE with accent data alongside the TTS backbone. Although
DARTscratch demonstrates better performance in objective metrics, DART512 performs significantly
better in accent conversion. We attribute this to DART512’s prior knowledge of many different voices,
gained through pre-training, as accent-converted voices represent new, unseen voices. Thus, there is a
trade-off in designing speech synthesis systems that specifically account for accents. Pre-training can
enhance accent conversion at the cost of a slight reduction in perceived identity. In future work, we
aim to bridge this gap and simultaneously improve both accent conversion and perceived identity.

4 Conclusion

Our proposed approach significantly enhances the capabilities of multispeaker TTS models by effec-
tively disentangling speaker and accent representations, resulting in more flexible and personalized
speech synthesis. This has broad applications in entertainment; personalization of virtual assistants,
narrators; and more. By utilizing ML-VAE and VQ, our proposed method achieves superior accent
conversion. In future work, we will focus on further advancing the disentanglement between speaker
and accent in multispeaker TTS. This includes addressing the trade-off between disentanglement and
naturalness, expanding datasets and exploring real-time zero-shot adaptation techniques.

Acknowledgments and Disclosure of Funding

This project has received funding from SUTD Kickstarter Initiative no. SKI 2021_04_06.
The work by Berrak Sisman was funded by NSF CAREER award IIS-2338979.

5



References
[1] Ambuj Mehrish, Navonil Majumder, Rishabh Bharadwaj, Rada Mihalcea, and Soujanya Poria.

A review of deep learning techniques for speech processing. Information Fusion, page 101869,
2023.

[2] John C Wells and John Corson Wells. Accents of English: Volume 1. Cambridge University
Press, 1982.

[3] Rosina Lippi-Green. English with an accent: Language, ideology, and discrimination in the US.
Routledge, 2012.

[4] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. In 9th ISCA Speech Synthesis Workshop, pages 125–125.

[5] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-to-end
speech synthesis. arXiv preprint arXiv:1703.10135, 2017.

[6] Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang,
Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al. Natural tts synthesis by
conditioning wavenet on mel spectrogram predictions. In 2018 IEEE international conference
on acoustics, speech and signal processing (ICASSP), pages 4779–4783. IEEE, 2018.

[7] Yi Ren, Chenxu Hu, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech 2: Fast
and high-quality end-to-end text-to-speech. arXiv preprint arXiv:2006.04558, 2020.

[8] Andrew Gibiansky, Sercan Arik, Gregory Diamos, John Miller, Kainan Peng, Wei Ping, Jonathan
Raiman, and Yanqi Zhou. Deep voice 2: Multi-speaker neural text-to-speech. NeurIPS, 30,
2017.

[9] Jinlong Xue, Yayue Deng, Yichen Han, Ya Li, Jianqing Sun, and Jiaen Liang. Ecapa-tdnn for
multi-speaker text-to-speech synthesis. In 2022 13th ISCSLP, pages 230–234. IEEE, 2022.

[10] Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational autoencoder with adversar-
ial learning for end-to-end text-to-speech. In ICML, pages 5530–5540. PMLR, 2021.

[11] Rui Liu, Berrak Sisman, Guanglai Gao, and Haizhou Li. Controllable accented text-to-speech
synthesis with fine and coarse-grained intensity rendering. IEEE/ACM TASLP, 2024.

[12] Jan Melechovsky, Ambuj Mehrish, Berrak Sisman, and Dorien Herremans. Accented text-to-
speech synthesis with a conditional variational autoencoder. arXiv preprint arXiv:2211.03316,
2022.

[13] Yi Zhou, Zhizheng Wu, Mingyang Zhang, Xiaohai Tian, and Haizhou Li. Tts-guided training
for accent conversion without parallel data. IEEE Signal Processing Letters, 2023.

[14] Chae-Bin Im, Sang-Hoon Lee, Seung-Bin Kim, and Seong-Whan Lee. Emoq-tts: Emotion
intensity quantization for fine-grained controllable emotional text-to-speech. In ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 6317–6321. IEEE, 2022.

[15] Yi Lei, Shan Yang, Xinsheng Wang, and Lei Xie. Msemotts: Multi-scale emotion transfer,
prediction, and control for emotional speech synthesis. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 30:853–864, 2022.

[16] Jan Melechovsky, Ambuj Mehrish, Dorien Herremans, and Berrak Sisman. Learning accent
representation with multi-level vae towards controllable speech synthesis. In 2022 IEEE Spoken
Language Technology Workshop (SLT), pages 928–935. IEEE, 2023.

[17] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational autoen-
coder: Learning disentangled representations from grouped observations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[18] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[19] Guanlong Zhao, Sinem Sonsaat, Alif Silpachai, Ivana Lucic, Evgeny Chukharev, John Levis,
and Ricardo Gutierrez. L2-arctic: A non-native english speech corpus. In INTERSPEECH,
pages 2783–2787, 2018.

6



[20] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and
Yonghui Wu. Libritts: A corpus derived from librispeech for text-to-speech. arXiv preprint
arXiv:1904.02882, 2019.

[21] Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez Moreno. Generalized end-to-end loss for
speaker verification. In 2018 IEEE ICASSP, pages 4879–4883. IEEE, 2018.

[22] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet. Front-end
factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language
Processing, 19(4):788–798, 2010.

[23] David Talkin and W Bastiaan Kleijn. A robust algorithm for pitch tracking (rapt). Speech
coding and synthesis, 495:518, 1995.

[24] R. Kubichek. Mel-cepstral distance measure for objective speech quality assessment. Commu-
nications, Computers and Signal Processing, pages 125–128, 1993.

[25] Silero models:pre-trained enterprise-grade stt/tts models and benchmarks. Accessed: 2022-07-
10.

[26] Jordan J Louviere, Terry N Flynn, and Anthony Alfred John Marley. Best-worst scaling: Theory,
methods and applications. Cambridge University Press, 2015.

[27] Berrak Sisman, Junichi Yamagishi, Simon King, and Haizhou Li. An overview of voice conver-
sion and its challenges: From statistical modeling to deep learning. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:132–157, 2020.

[28] Xuexue Zang, Fei Xie, and Fuliang Weng. Foreign accent conversion using concentrated
attention. In 2022 IEEE International Conference on Knowledge Graph (ICKG), pages 386–
391, 2022.

[29] Daniel Felps, Heather Bortfeld, and Ricardo Gutierrez-Osuna. Foreign accent conversion in
computer assisted pronunciation training. Speech communication, 51(10):920–932, 2009.

[30] Pamela M Rogerson-Revell. Computer-assisted pronunciation training (capt): Current issues
and future directions. RELC Journal, 52(1):189–205, 2021.

[31] Sandesh Aryal, Daniel Felps, and Ricardo Gutierrez-Osuna. Foreign accent conversion through
voice morphing. In Interspeech, pages 3077–3081, 2013.

[32] Daniel Felps and Ricardo Gutierrez-Osuna. Developing objective measures of foreign-accent
conversion. IEEE Transactions on Audio, Speech, and Language Processing, 18(5):1030–1040,
2010.

[33] Mark Huckvale and Kayoko Yanagisawa. Spoken language conversion with accent morphing.
2007.

[34] Lifa Sun, Kun Li, Hao Wang, Shiyin Kang, and Helen Meng. Phonetic posteriorgrams for many-
to-one voice conversion without parallel data training. In 2016 IEEE International Conference
on Multimedia and Expo (ICME), pages 1–6. IEEE, 2016.

[35] Guanlong Zhao, Shaojin Ding, and Ricardo Gutierrez-Osuna. Foreign accent conversion by
synthesizing speech from phonetic posteriorgrams. In Interspeech, pages 2843–2847, 2019.

[36] Zhichao Wang, Wenshuo Ge, Xiong Wang, Shan Yang, Wendong Gan, Haitao Chen, Hai Li,
Lei Xie, and Xiulin Li. Accent and speaker disentanglement in many-to-many voice conversion.
In 2021 12th ISCSLP, pages 1–5. IEEE, 2021.

[37] Shaojin Ding, G Zhao, and Ricardo Gutierrez-Osuna. Accentron: Foreign accent conversion
to arbitrary non-native speakers using zero-shot learning. Computer Speech & Language,
72:101302, 2022.

[38] Wei-Ning Hsu, Yu Zhang, Ron J Weiss, Heiga Zen, Yonghui Wu, Yuxuan Wang, Yuan Cao,
Ye Jia, Zhifeng Chen, Jonathan Shen, et al. Hierarchical generative modeling for controllable
speech synthesis. arXiv preprint arXiv:1810.07217, 2018.

[39] Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ-Skerry Ryan, Eric Battenberg, Joel Shor, Ying
Xiao, Ye Jia, Fei Ren, and Rif A Saurous. Style tokens: Unsupervised style modeling, control
and transfer in end-to-end speech synthesis. In International Conference on Machine Learning,
pages 5180–5189. PMLR, 2018.

[40] Ping Liang Tan and Robert Peharz. Hierarchical decompositional mixtures of variational
autoencoders. In ICML, pages 6115–6124. PMLR, 2019.

7



[41] Mingyang Zhang, Xuehao Zhou, Zhizheng Wu, and Haizhou Li. Towards zero-shot multi-
speaker multi-accent text-to-speech synthesis. IEEE Signal Processing Letters, pages 1–5,
2023.

[42] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech 2:
Fast and high-quality end-to-end text to speech. arXiv preprint arXiv:2006.04558, 2020.

[43] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 5206–5210. IEEE, 2015.

[44] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: a large-scale speaker
identification dataset. Telephony, 3:33–039, 2017.

8



A Appendix / supplemental material

A.1 Related works in accented speech synthesis

There are a few related works in accented speech synthesis. In Voice Conversion (VC) [27, 28],
the sub-field of Foreign Accent Conversion (FAC) focuses on transforming L2 speaker’s voice to
an L1 native accent. It is oftentimes used for applications like Computer-Assisted Pronunciation
Training (CAPT) [29, 30], which aims to help L2 speakers improve their pronunciation towards a
more native-sounding one. Early FAC methods used spectral or cepstral features from native and
non-native speakers [31, 32, 29, 33], while others incorporated phonetic posteriorgrams (PPGs) to
capture phonetic variations [34, 28, 35]. Recent advancements leverage deep learning; Wang et al.
used adversarial learning to disentangle accent and speaker identity [36], and Accentron employed
ResNet-34 classifiers for accent and speaker recognition [37]. In TTS, some approaches treat accent
as a style component, as seen in GMVAE-Tacotron [38] and GST-Tacotron [39]. Liu et al. improved
L2 accent intensity using a variance adaptor [11]. Melechovsky et al. proposed disentangling accent
and speaker with ML-VAE and Tacotron2 [12, 16], achieving results comparable to GMVAE [40, 38],
while other works [41] enhanced encoder-decoder frameworks with accent ID conditioning for varied
phoneme representations.

A.2 Training parameters

Here, we brielfy describe the training parameters used in our experiments. The FastSpeech2 [42] TTS
backbone follows the original architecture with a hidden state dimension of 256. During training, the
speaker embeddings are added to the text representation in the variance adapter. Speaker embeddings
are computed using a speaker verification model trained with the GE2E loss [21], incorporating
LibriSpeech (train-other-500), Voxceleb1, and Voxceleb2 datasets [43], Voxceleb1, and Voxceleb2
[44]. To improve model convergence for unsupervised duration modeling, variance adapter training
begins at 50K steps. All speech samples are downsampled to 16 kHz. The models are trained using
the Adam optimizer with 4K warmup steps, followed by annealing at 300K, 400K, and 500K steps,
and a total training duration of 600K steps.

The ML-VAE along with the TTS backbone is fine-tuned using L2-ARCTIC [19], with the text
encoder frozen while updating the weights of the variance adapter, mel-decoder, and ML-VAE
module. KL loss coefficient β in Eq 3 is set to 10−4. The fine-tuned models, including DART and
DARTw/o V Q, undergo training for 100K steps to achieve convergence. Meanwhile, the baseline
models MLVAE-TACO and DARTscratch, constructed from scratch, are trained for 200K steps to
reach convergence.

Table 2: Comparative analysis of codebook sizes.

Metric MCD ↓ CS ↑ FFE ↓ WER ↓
DART64 6.972 0.842 0.425 0.161
DART128 7.019 0.842 0.427 0.168
DART512 6.934 0.842 0.431 0.164

A.3 Effect of VQ codebook size

Here, we present the objective results for our VQ codebook size experiment, as seen in Table 2. We
observe that while DART512 achieves the best performance in MCD and CS, DART64 demonstrates
superior performance in FFE and WER. This indicates that the choice of codebook size involves
balancing various objective metrics, with smaller sizes favoring some metrics and larger sizes favoring
others. Since the differences in FFE and WER were negligible and we aimed to select a model with
low distortion and high speaker similarity, we used DART512 for subjective evaluation.

A.4 Plottings of accent and speaker embeddings

The t-SNE plots for accent and speaker embeddings from DART512, shown in Figures 3 (a) and
(b), further illustrate the effectiveness of the ML-VAE and VQ modules in capturing and clustering
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accent representations across various speakers. Furthermore, Figure 3 (c) visualizes the model’s
capability to disentangle accent (depicted by different colors) and speaker attributes, resulting in
enhanced accent conversion and robust accent representation.

(a) Accent embeddings without grouping
za

(b) Accent embeddings with grouping zga

(c) Speaker embeddings zs

Figure 3: The t-SNE plot demonstrating effective clustering and disentanglement of accent and
speaker embeddings.
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