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Abstract
The success of deep learning is greatly attributed
to stochastic gradient descent (SGD), yet it re-
mains unclear how SGD finds well-generalized
models. We demonstrate that SGD has an implicit
regularization effect on the logit-weight Jacobian
norm of neural networks. This regularization ef-
fect is weighted with the impurity of the probabil-
ity output, and thus it is active in a certain phase
of training. Moreover, based on these findings, we
propose a novel optimization method that explic-
itly regularizes the Jacobian norm, which leads
to similar performance as other state-of-the-art
sharpness-aware optimization methods.

1. Introduction
Deep learning has shown to great promise for many learning
tasks in various areas. Numerous studies have aimed to
understand how learning algorithms lead to the successful
training of deep neural networks. In particular, it is crucial
to understand the geometric properties of the loss landscape
of neural networks and their interaction with gradient-based
optimization methods, including stochastic gradient descent
(SGD), along the training trajectory. These properties have
been studied from the perspectives of both optimization
(Gur-Ari et al., 2018; Jastrzębski et al., 2019; Ghorbani
et al., 2019; Liu et al., 2020; Lewkowycz et al., 2020; Cohen
et al., 2021) and generalization (Hochreiter & Schmidhuber,
1997; Keskar et al., 2017; Dinh et al., 2017; Jastrzębski et al.,
2017; Wang et al., 2018; Chaudhari et al., 2019; Jiang et al.,
2020; Barrett & Dherin, 2021; Smith et al., 2021).

We investigate the Hessian of the training loss (with respect
to the model parameters) and its top eigenvalue (also called
sharpness). The sharpness characterizes the dynamics of
neural network training along the optimization trajectory
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and appears to be correlated with the generalization capa-
bility. To be specific, the sharpness initially increases, and
after reaching a certain value, the training dynamics become
unstable and the iterate oscillates along the top eigenvector
of the Hessian (Jastrzębski et al., 2019; 2020; Cohen et al.,
2021). Moreover, the rapid increase in the sharpness during
the early phase significantly impacts the final generalization
performance (Achille et al., 2019; Golatkar et al., 2019;
Jastrzębski et al., 2020; 2021; Lewkowycz et al., 2020; Fort
et al., 2020). However, the Hessian of a deep neural network
is high-dimensional which makes it difficult to analyze its
eigensystem and the sharpness.

In this paper, we investigate the Hessian through two low-
dimensional matrices: the logit Hessian and the logit-weight
Jacobian (defined in Definition 3.1). Especially, we analyze
the top eigenvalue of the logit Hessian. By doing so, we
can provide a simple and intuitive explanation of the rela-
tion between the sharpness, the probability output of the
classification model, and the Jacobian matrix. This enables
us to understand how the sharpness of the loss landscape
influences the learning dynamics and the generalization per-
formance. We summarize the main contributions as follows:

• We provide connections between the top eigenvalue of
the logit Hessian and the impurity of the probability
output (Theorem 4.1 in Section 4.1 and 4.2).

• We derive a relation between the sharpness, the top
eigenvalue of the logit Hessian, and the Jacobian norm
(Theorem 5.1 in Section 5.1), which we call sharpness-
impurity-Jacobian relation.

• We describe how the sharpness of the loss landscape in-
fluences the learning dynamics and the generalization
performance (Section 5.2). In particular, we demon-
strate that SGD has implicit effects on penalizing the
Jacobian norm (Implicit Jacobian Regularization) dur-
ing a certain phase of training (Active Regularization
Period).

• We also evaluate the Explicit Jacobian Regularization,
which outperforms state-of-the-art sharpness-aware
optimization methods, SAM (Foret et al., 2021) and
ASAM (Kwon et al., 2021) (Table 1 in Section 5.3).
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2. Related Work
We summarize some previous studies on the Hessian, learn-
ing dynamics, and generalization of neural networks.

Decomposition of the Hessian LeCun et al. (2012);
Dauphin et al. (2014); Sagun et al. (2016; 2017) empirically
found that the eigenvalue spectrum of the Hessian during
training is composed of two parts: the bulk (concentrated
around zero) and the outliers (scattered positively away from
zero). Further, Papyan (2019; 2020) proposed a three-level
hierarchical decomposition of the Hessian according to each
label, logit coordinate, and example, using a well-known
Gauss-Newton decomposition. Although we also use the
Gauss-Newton decomposition, we focus on the top eigen-
value of the logit Hessian for which the predicted class is
more important than the true label (detailed in Section 4.2).

Issues with the SDE modeling of SGD In many studies,
SGD has been understood as a stochastic differential equa-
tion (SDE) in the limit of vanishing learning rate (Mandt
et al., 2016; 2017; Hu et al., 2019; Li et al., 2017; 2019a;
Smith & Le, 2018; Chaudhari & Soatto, 2018; Jastrzębski
et al., 2017; Zhu et al., 2019; Park et al., 2019). How-
ever, Yaida (2019, Section 2.3.3) raised some theoretical
concerns for such approximations, and Li et al. (2021) de-
rived a sufficient condition for the SDE modeling to fail.
Moreover, Barrett & Dherin (2021) argued that the SDE
analysis within the limit of vanishing learning rate cannot
explain the generalization benefits of finite learning rates,
and proposed a modified gradient flow for finite learning
rates. However, they still consider a continuous flow, which
has a fundamental limitation in explaining the (discrete)
oscillatory behavior with iterative catapult in a practical
learning rate regime (Smith et al., 2021), as shown in the
following paragraph.

Oscillatory catapult and the plateau of sharpness Xing
et al. (2018) investigated the roles of the learning rate and
batch size in the SGD dynamics. The authors observed
that SGD explores the parameter space, bouncing between
walls of valley-like regions. A large learning rate maintains
a high valley height, and a small batch size induces gra-
dient stochasticity. Both of them help exploring through
the parameter space with different roles in the training dy-
namics. Jastrzębski et al. (2019) empirically investigated
the evolution of the sharpness along the whole training tra-
jectory of SGD. They observed the initial growth of the
sharpness (dubbed progressive sharpening in Cohen et al.
(2021)) as the loss decreases, reaching a maximum sharp-
ness determined by learning rate and batch size, which then
decreases towards the end of the training. Due to the pro-
gressive sharpening, the SGD step becomes excessively
large compared to the shape of the loss landscape. This

is consistent with the valley-like structure shown in Xing
et al. (2018). Lewkowycz et al. (2020) investigated simple
theoretical models with solvable training dynamics. They
showed that, in their setup with a large learning rate, the loss
initially increases whereas the sharpness decreases, converg-
ing at a flat minimum. This mechanism is called catapult
mechanism. Recently, Cohen et al. (2021) found that full-
batch GD typically operates in a regime called the Edge of
Stability where the sharpness can no longer increase and
stays near a certain value, and the training loss behaves non-
monotonically but decreases globally. This optimization
behavior at the Edge of Stability can be seen as repeated
catapult mechanisms. The authors explicitly marked the
limit of the sharpness with 2/η where η is a learning rate.
To describe the aforementioned evolution of the sharpness,
Fort & Ganguli (2019) developed a theoretical model based
on a random matrix modelling. To build a simple random
model, they introduced assumptions regarding the gradients
and Hessians, which are i.i.d. isotropic Gaussian with zero
mean and varying variance during training. Whereas they
focus on building a random model based on observation, we
aim to explain the underlying mechanisms.

Implicit bias of SGD There have been many studies on
the implicit bias of SGD (Neyshabur, 2017; Zhang et al.,
2021; Soudry et al., 2018; Jastrzębski et al., 2020). Jastrzęb-
ski et al. (2021) empirically showed that SGD implicitly
penalizes the trace of the Fisher Information Matrix (FIM).
They also showed that the trace of FIM explodes during
the early phase of training when using a small learning rate,
which they call catastrophic Fisher explosion. Barrett &
Dherin (2021) and Smith et al. (2021) demonstrated that
SGD implicitly penalizes the norm of the total gradient and
the non-uniformity of the mini-batch gradients. We demon-
strate that the (logit-weight) Jacobian plays an important
role in the generalization in each case.

3. Background
In this section, we provide some notations, basic equations,
and definitions for the following sections. In this paper, we
use the denominator layout notation for the vector deriva-
tives, i.e., ∇vu ≡

(
∂uj

∂vi

)
ij
∈ Rv×u, where u : Rv → Ru

and v ∈ Rv .

We consider a problem of learning a C-class classifier that
maps an input x ∈ X ⊂ Rd to a target label y ∈ [C] =
{1, 2, · · · , C}. To this end, we build a parameterized model
fθ : X → Z ⊂ RC with a model parameter θ ∈ Θ ⊂
Rm that outputs a logit vector z ≡ fθ(x) ∈ Z ⊂ RC

(we often omit the dependence on x and θ). The logit
vector z is then given as an input to the softmax function
to yield a probability output p ≡ softmax(z) ∈ ∆C−1,
where ∆C−1 ≡ {p ∈ [0, 1]C : 1Tp = 1,p ≥ 0}. We want
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the model to match the most probable class c1 to the true
label y, where c(x) ≡ arg sort(p) in descending order. We
exchangeably denote the probability value corresponding to
the true label y as p ≡ py ∈ [0, 1]. The cross-entropy loss,
l = l(z, y) ∈ R, is equivalent to the negative log-likelihood
l ≡ − log p. We use the notations ∥v∥ for the Euclidean
norm of a vector v and ∥A∥ ≡ max∥v∥=1 ∥Av∥ for the

Euclidean operator norm, ∥A∥F ≡
√∑

i,j |Aij |2 for the

Frobenius norm of a matrix A, and the spectral norm ∥S∥σ
and the trace tr(S) ≡

∑
i Sii of a square matrix S.

Starting with a simple computation of the derivatives of the
softmax function in (1) (see Appendix C.1), we can easily
derive the following equations in order:

∇zp = diag(p)− ppT ∈ RC×C (1)

∇zp = [∇zp]:,y = p(ey − p) ∈ RC (2)

∇zl = ∇zp
∂l

∂p
= p(ey − p) · −1

p
= p− ey ∈ RC (3)

∇2
zl = ∇z(∇zl) = ∇z(p− ey) = diag(p)− ppT (4)

where diag(p) ≡ (δijpi)ij ∈ RC×C is a diagonal matrix
with p as its diagonal entries, and ei ≡ (δij)j ∈ RC is a
one-hot vector with the i-th element as 1.

Next, the Hessian of the loss function l for the given example
x with respect to the model parameter can be expressed as
follows:

∇2
θl = ∇θz∇2

zl∇θz
T +

∑C

c=1
∇2

θzc∇zc
l (5)

≈ ∇θz∇2
zl∇θz

T ∈ Rm×m (6)

using the well-known Gauss-Newton approximation (see
Appendix C.2).

Now, we are ready to consider the training loss for the
training set D. We compute the total training loss over D
as L ≡ ⟨l⟩ which yields ∇L = ⟨∇l⟩ and ∇2L = ⟨∇2l⟩,
where ⟨·⟩ is the expectation over the empirical measure of
the training set D, i.e., ⟨·⟩ ≡ ÊD[·]. We use the notation
⟨·⟩B when averaging over a mini-batch B, i.e., ⟨·⟩B ≡ ÊB[·].
Following from (4) and (6), we define the Hessian H for
the total loss and its Gauss-Newton approximation matrix
G with matrices M and J as follows:

Definition 3.1. We call M the logit Hessian, J the Jacobian
(of the logit function with respect to the model parameter),
H the Hessian, and G the Gauss-Newton approximation,
which are defined as follows:

M ≡ ∇2
zl = diag(p)− ppT ∈ RC×C (7)

J ≡ ∇θz ∈ Rm×C (8)

H ≡ ⟨∇2
θl⟩ ≈ ⟨JMJT ⟩ ≡ G ∈ Rm×m (9)

It is interesting to note that while l is dependent on the true
label y, the logit Hessian M = ∇2

zl is independent of y, as
are J , JMJT , and G. From (9), although we often use
the approximation ∥H∥σ ≈ ∥G∥σ as justified by Sagun
et al. (2017) and Fort & Ganguli (2019), this approximation
occasionally fails during the later phase of training when
the top eigenvalues of the Gauss-Newton matrix are insuffi-
ciently isolated from the bulk near 0 (Papyan, 2018). Thus,
we mainly focus on the early phase of training.

4. Logit Hessian and Impurity
In the previous section, we introduced the Gauss-Newton
approximation G of the Hessian H , and decomposition
of G with the Jacobian J and the logit Hessian M , i.e.,
G = ⟨JMJT ⟩. Now, we focus on the logit Hessian M
and its eigendecomposition, estimate the top eigenvalue of
M with upper/lower bounds (Section 4.1), and explore the
evolution of the top eigenvalue during training (Section 4.2).

4.1. Bounds on the Eigenvalues of the Logit Hessian

The lower-dimensional logit Hessian matrix M ∈ RC×C is
simple and fully characterized by only the probability vec-
tor p as M = diag(p) − ppT in (7), however it turns
out to be important for understanding the much higher-
dimensional matrix G ∈ Rm×m (C ≪ m). Because
M = diag(p)− ppT is a rank-one modification of a sim-
ple diagonal matrix diag(p), we can obtain its eigenvalues
{λ(i)}Ci=1 and eigenvectors {q(i)}Ci=1 from the theory of the
rank-one modification of the eigenproblem (see, for exam-
ple, Bunch et al. (1978); Golub (1973); Golub & Van Loan
(2013)) where λ(i) ∈ R is the i-th largest eigenvalue of M
and q(i) ∈ RC is its corresponding eigenvector. We also
use the same ordered index of (i) ∈ [C] with parentheses
for the probability output p ∈ ∆C−1, i.e., ci = (i) and
p(1) ≥ p(2) ≥ · · · ≥ p(C), because this ordering is re-
lated to the eigenvalues {λ(i)}Ci=1 as shown in the following
theorem.

Theorem 4.1 (Eigensystem of the logit Hessian M ). The
eigenvalues λ(i) (λ(1) ≥ λ(2) ≥ · · · ≥ λ(C)) and the
corresponding eigenvectors q(i) of the logit Hessian M =
∇2

zl = diag(p)− ppT satisfy the following properties:

(a) The eigenvalue λ(i) is the i-th largest solution of the
following equation:

v(λ) = 1−
∑C

i=1
p2
i (pi − λ)−1 = 0 (10)

(b) The eigenvector q(i) is aligned with the direction of
(diag(p)− λ(i)I)−1p

(c) p(i+1) ≤ λ(i) ≤ p(i) for 1 ≤ i ≤ C−1, and λ(C) = 0
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(d) 1
2Gini(p(1)) ≤ λ(1) ≤ Gini(p(1)), where Gini(q) =
2q(1− q) is the Gini impurity for the binary (q, 1− q).

We defer the proof to Appendix C.3. In the main text, we
mainly focus on investigating the top eigenvalue λ(1) of
M by utilizing Theorem 4.1 (c) and (d), which provide the
upper/lower bounds on λ(1) (Theorem 4.1 (a) and (b) are
applied in Appendix). To be specific, the top eigenvalue
λ(1) is bounded by 1

2Gini(p(1)) ≤ λ(1) ≤ Gini(p(1)), and
thus we call λ(1) the impurity (of the probability output).
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Figure 1: Impurity λ(1) increases and then decreases
as p(1) increases during training. Top: The impu-
rity is plotted against p(1) for a fixed example during
training (from blue to red). We plot the upper bound
min{p(1), Gini(p(1))} (black solid line) and lower bound
1
2Gini(p(1)) (black dashed line) from Theorem 4.1 (c) and
(d). Bottom: The impurity is plotted against the training
step. The blue curve indicates its mean value ⟨λ(1)⟩ and
sky-blue area shows the 25%-75% quantile range for the
training data. See Appendix E for detailed settings.

4.2. Evolution of Impurity

We explore the top eigenvalue λ(1) of M (also referred
to as impurity) during training. Figure 1 demonstrates the
n-shaped evolution of the impurity, which increases in the
beginning and then decreases in the later phase of training.
We trained a model to zero training loss, and thus, for most
of the examples, the probability py for the true class y even-
tually becomes the highest probability p(1). As the top prob-
ability p(1) increases from 1/C to 1 during training, the im-
purity starts from λ(1) ≈ 1

C ∈ [ 12Gini( 1
C ), 1

C ] = [C−1
C2 , 1

C ]
(Theorem 4.1 (c) and (d)), and increases at the initial phase
of the training, being lower bounded by 1

2Gini(p(1)) =

p(1)(1 − p(1)), which increases for p(1) ∈ [0, 0.5]. Then,
λ(1) decreases as p(1) becomes larger than 0.5, which leads
λ(1) to reach nearly 0 at the later phase because it is upper
bounded by Gini(p(1)) = 2p(1)(1−p(1)), which decreases
for p(1) ∈ [0.5, 1]. Note that Cohen et al. (2021) tried to
estimate a similar value, but they use py , not p(1). Similarly,
Papyan (2019) decomposed G into components using the
label class information y. Thus, at the beginning of the train-
ing, the cluster members are not well-separated according
to the true label y. We again emphasize that M is inde-
pendent of the label y, and the bounds on impurity λ(1) are
well-described by the probability p(1) of the predicted class.

5. Implicit/Explicit Jacobian Regularization
In this section, based on the results of the previous sec-
tions, we aim to derive a relation between the sharpness, the
impurity, and the Jacobian (Section 5.1), and answer how
the sharpness of the loss landscape influences the learning
dynamics and the generalization performance (Section 5.2
and 5.3). Detailed experimental settings for each figure and
table are described in Appendix E.
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Figure 2: Sharpness ∥H∥σ and Jacobian norm ∥⟨J⟩∥2.
The graphs show similar oscillating behaviors up to a factor
λ̂∗ which is locally constant and slowly changes during
training (CIFAR-10, η = 0.04, |B| = 128; Left: 0-200,
Right: 1000-1200 steps). See Appendix I for more details.
We highlighted ∥H∥σ = 2/η with a dashed horizontal line.

5.1. Sharpness-Impurity-Jacobian Relation

We first take a closer look at the sharpness of the loss land-
scape during training and build a relation between the sharp-
ness ∥H∥σ , the impurity λ(1), and the Jacobian J . Because
the Gauss-Newton matrix G is known to approximate the
true Hessian H well, especially for the top eigenspace (Sa-
gun et al., 2017; Fort & Ganguli, 2019; Papyan, 2019),
we can write the sharpness ∥H∥σ as ∥H∥σ ≈ ∥G∥σ =
∥⟨JMJT ⟩∥σ. This implies that the impurity ∥M∥σ and
squared Jacobian norm ∥J∥2 are highly correlated with the
sharpness ∥H∥σ , as demonstrated in the following theorem.
We defer the proof to Appendix C.4.
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Theorem 5.1 (Sharpness-Impurity-Jacobian Relation). For
some lower bound 0 ≤ λ∗ ≤ λ(1) of the impurity for each
x ∈ D, we have ∥G∥σ = ⟨λ∗∥J∥2⟩.

In the next section, we will demonstrate that the sharpness
is implicitly upper bounded (Proposition 5.2), and so is the
per-example λ∗∥J∥2. Therefore, with a large λ∗, the Ja-
cobian norm ∥J∥2 is strongly regularized to a small value,
i.e., λ∗ in λ∗∥J∥2 acts as an adaptive regularization weight.
Moreover, as the impurity λ(1) decreases, so does the lower
bound λ∗, and the regularization effect diminishes. Now,
because it is computationally inefficient to track ∥J∥2 for
every x ∈ D, we instead investigate ∥⟨J⟩∥2. We expect
∥H∥σ = λ̂∗∥⟨J⟩∥2 for some λ̂∗. Figure 2 shows that
∥H∥σ and ∥⟨J⟩∥2 have almost identical oscillating behav-
iors up to a factor λ̂∗ which is locally constant and slowly
changes during training (see Appendix I for further details).
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Figure 3: Oscillatory catapult in the optimization tra-
jectory {θ(t)} (from blue to red) of full-batch GD. Left:
UMAP (McInnes et al., 2018) of the model parameters
trained on CIFAR-10 for the first 500 steps. Right: Zoom-in
of the oscillatory steps [100, 300]. After a few steps (∼100),
the sharpness reaches a threshold (see Figure 2) and the iter-
ate shows an oscillatory behavior with an iterative catapult.

5.2. Implicit Jacobian Regularization

Now, we are ready to answer how the sharpness of the loss
landscape influences the learning dynamics and generaliza-
tion performance of neural networks.

Growing Jacobian and progressive sharpening during
the early phase of training The weight norm ∥θ∥ in-
creases, increasing the logit norm ∥z∥ and minimizing the
cross-entropy loss during training (Soudry et al., 2018) (see
Appendix F for details). We hypothesise that this is one of
the factors leading to an increase in the layerwise weight
norms and the Jacobian norm. Thus, the progressive sharp-
ening can be mainly attributed to the increase of the Jacobian
norm (Theorem 5.1). For the MSE loss, Wang et al. (2022)
proved the progressive sharpening along with the increase in
the (squared) Jacobian norm for a two-layer neural network.
We emphasize that the rate of increase in the Jacobian norm,
however, varies throughout the training.

Oscillatory catapult and the plateau of sharpness As
the sharpness increases in the beginning, the width of the
valley of the loss landscape becomes narrower than the dis-
crete step size of the SGD. After the sharpness reaches this
threshold, the iterate starts to bounce off from one side of
the valley to the other, which is then repeated (Xing et al.,
2018; Jastrzębski et al., 2019). Figure 3 shows this oscilla-
tory behavior with an iterative catapult after the sharpness
reaches the threshold, using UMAP (McInnes et al., 2018).
Owing to the catapult, the iterate cannot remain in a sharper
area and returns to stability after the sharpness goes below
the threshold (Lewkowycz et al., 2020; Damian et al., 2022).
This oscillatory catapult and the plateau of the sharpness
are attributed to the discrete dynamics of the gradient-based
optimization with a finite learning rate and cannot be de-
scribed through a continuous gradient flow. Figure 2 shows
fine-grained patterns that the sharpness oscillates up and
down around the threshold by the two conflicting effects:
the Jacobian norm tends to increase the sharpness, and the
self-stabilization reduces it again when the sharpness is over
the threshold. Therefore, we can observe the plateau of the
sharpness in a coarser scale (see Figure 4). We derive the
threshold of the sharpness according to learning rate and
batch size in the following proposition.

Proposition 5.2. For SGD with a quadratic loss, the ex-
pected loss decreases when ∥H∥σ ≤ 2ρB

η , where η is learn-

ing rate, B is batch size and ρB ≡ ∥⟨∇θl⟩∥2

E|B|=B [∥⟨∇θl⟩B∥2] ≤ 1.

The proof is deferred to Appendix C.5 with further dis-
cussion below. We suggest Proposition 5.2 as a modified
version of the Edge of Stability proposed in Cohen et al.
(2021) (ρB = 1 for full-batch), which generalizes to mini-
batch SGD. As shown in Figure 2, this also approximately
holds for the cross-entropy loss. Note that the threshold
value 2ρB/η depends on learning rate η and batch size B,
which is consistent with the results shown in Figure 5. To be
specific, batch gradients ⟨∇θl⟩B are more scattered if B is
smaller, which leads to a smaller ρB . Therefore, a smaller B
and a larger η (dotted line) tend to lead to a lower threshold
2ρB/η (see the three purple lines of ∥H∥σ for different η
and B in Figure 5).

Implicit Jacobian Regularization (IJR) Due to the cat-
apult effect, the rate of increase in the Jacobian norm de-
creases. In other words, SGD implicitly penalizes the Jaco-
bian norm since ⟨λ∗∥J∥2⟩ ≈ ∥H∥σ ≤ 2ρB

η . This implicit
Jacobian regularization (IJR) effect begins after the sharp-
ness reaches the threshold. In addition, because the lower
bound λ∗ ≤ λ(1) acts as a regularization coefficient, the
effect diminishes as the impurity λ(1) decreases with in-
creasing p(1) ≥ 0.5 during the later phase (see Figures 1,
4, and 5). This explains why the behavior of the sharpness
in the early phase of the training (where λ(1) is not small)
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Figure 4: Three phases of Implicit Jacobian Regularization (IJR). The Jacobian norm (red) (I) initially rapidly increases
before the sharpness (purple) reaches near the threshold, (II) is actively regularized with a gentle slope, and (III) again
increases quickly as the regularization effect diminishes (as the regularization weight λ∗ ≤ λ(1) decreases) with the slope
being gradually steeper. We call phase II the Active Regularization Period (ARP). SGD gradually progresses from phase II
to phase III (strong regularization with a high ⟨λ(1)⟩ indicated with a dark orange color). Thus, we do not explicitly separate
these two phases, but we may arbitrarily mark the end of the ARP when ⟨λ(1)⟩ decreases below a certain value (e.g., 0.25).
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Figure 5: The effect of IJR varies depending on (η,B).
We used SGD (solid/dashed/dotted lines) with fixed B =
128 and different η = 0.01/0.02/0.03 (Top), and with
fixed η = 0.01 and different B = 128/64/32 (Bottom) on
CIFAR-10. We arbitrarily mark the end of the ARP (where
⟨λ(1)⟩ = 0.25) and the corresponding Jacobian norm with
"x". Training with a large learning rate and a small batch
size (dotted lines) penalizes the Jacobian norm (red) more
strongly with lower limits of the sharpness (purple) in the
ARP. The curves are smoothed for visual clarity. See Figure
2 for a finer structure.

seems to highly impact the final generalization (Achille
et al., 2019; Golatkar et al., 2019; Jastrzębski et al., 2020;
2021; Lewkowycz et al., 2020; Fort et al., 2020).

Figure 4 shows that SGD has implicit regularization effects
on the Jacobian norm in a certain period. There are three
phases in which the Jacobian norm (I) initially rapidly in-
creases before the sharpness reaches near the threshold, (II)
is actively regularized with a gentle slope, and (III) again
increases fast as the regularization effect diminishes (as the
implicit regularization weight λ∗ ≤ λ(1) decreases) with
the slope becoming gradually steeper. We call the second
phase Active Regularization Period (ARP).

The evolution of the sharpness is highly affected by
learning rate and batch size (Jastrzębski et al., 2019;
2020; Lewkowycz et al., 2020; Cohen et al., 2021).
As Figure 5 shows, when comparing the three red
lines (solid/dashed/dotted) with different learning rates
(0.01/0.02/0.03) and batch sizes (128/64/32), training with
a larger learning rate and a smaller batch size (dotted lines)
encourages a stronger implicit regularization on the Jaco-
bian norm (see the red "x" marks) with a lower threshold
2ρB/η of the sharpness in the ARP. This could explain why
training with a large learning rate and a small batch size
yields a better generalization (Keskar et al., 2017; Hoffer
et al., 2017; Li et al., 2019b; Jastrzębski et al., 2020).

Jacobian norm and Generalization There has been a
line of work on the norm-based capacity control and gen-
eralization (Neyshabur et al., 2014; 2015a;b; 2017; 2018;
Bartlett et al., 2017; Dziugaite & Roy, 2017; Nagarajan &
Kolter, 2019). Similarly, IJR in SGD controls the Jacobian
norm and the capacity of the model. Moreover, as the Jaco-
bian norm is directly related to the sharpness (Theorem 5.1),

6



Implicit Jacobian regularization weighted with impurity of probability output

Table 1: Explicit Jacobian Regularization (EJR) enhances the test accuracy under various settings. We report the
improvement (∆Acc.) and Error Reduction Rate (ERR) when trained with EJR, in comparison to the standard SGD. First,
we train a simple 6-layer CNN (SimpleCNN) on CIFAR-10 without data augmentation until convergence. Second, we train
WRN-28-2 and WRN-28-10 with an efficient variant of EJR and compare it with the state-of-the-art methods, SAM (Foret
et al., 2021) and ASAM (Kwon et al., 2021). We use different settings for SimpleCNN and WRN (see Appendix E for
details). We report the mean±std of three independent runs. ASAM does not work under the full-batch setting (test accuracy
around 20%). More results are found in Appendix Q.

Dataset Model Hyperparameters Test Accuracy ∆Acc.
(%p)

ERR
(%)B η λreg/ρreg SGD SAM ASAM EJR

CIFAR-10 SimpleCNN

128

0.003

λreg = 0.01

68.92±0.13 74.15±0.01 69.41±0.03 75.61±0.03 +6.69 21.53
0.01 71.08±0.21 74.18±0.08 70.84±0.29 75.64±0.02 +4.56 15.77
0.03 72.16±0.36 74.10±0.13 71.51±0.22 75.71±0.10 +3.55 12.75
0.1 72.59±0.29 74.94±0.29 72.65±0.18 75.49±0.05 +2.90 10.58
0.3 69.17±0.75 71.09±0.06 70.91±0.43 74.98±0.64 +5.81 18.85

50000

0.01

λreg = 0.001

69.10±0.05 64.80±0.06 - 73.99±0.01 +4.89 15.83
0.03 69.72±0.07 64.80±0.07 - 74.19±0.03 +4.47 14.76
0.1 69.34±0.39 65.28±0.04 - 73.88±0.11 +4.54 14.81
0.3 64.54±0.39 66.26±0.11 - 71.86±0.20 +7.32 20.64

WRN-28-2 256
0.1 ρreg = 2

95.46±0.03 96.17±0.06 96.16±0.14 96.25±0.04 +0.79 17.40
WRN-28-10 128 96.21±0.03 96.98±0.06 97.13±0.06 97.21±0.04 +1.00 26.39

CIFAR-100
WRN-28-2 256

0.1 ρreg = 4
75.32±0.17 78.12±0.31 78.93±0.16 79.15±0.39 +3.83 15.52

WRN-28-10 128 80.72±0.28 83.23±0.17 83.65±0.09 83.94±0.10 +3.22 16.70

it can provide connections between the sharpness and the
norm-based capacity control. We argue that IJR is one of
the main reasons why SGD finds well-generalized minima.

5.3. Explicit Jacobian Regularization (EJR)

To further investigate and boost the effectiveness of IJR, we
explicitly regularize the Jacobian norm. We expect improve-
ments in the generalization when introducing EJR. This sup-
ports the effectiveness of IJR in that it efficiently controls the
capacity of the model and helps find better-generalized min-
ima. However, it is computationally hard to back-propagate
through the computation graph of the operator norm ∥⟨J⟩∥2
for a practical neural network even with a simple iterative
method (see Algorithm 2 in Appendix E). Thus, we in-
stead penalize an upper bound, that is, the Frobenius norm
∥⟨J⟩∥2F (≥ ∥⟨J⟩∥2), with the regularization coefficient
λreg/C, i.e., we minimize L+ λreg∥⟨J⟩∥2F /C. The Frobe-
nius regularization term can be efficiently computed with an
unbiased estimator ∥⟨J⟩∥2F = CEu∼U(SC−1)[∥⟨J⟩u∥2] =
CEu∼U(SC−1)[∥∇θ⟨uTz⟩∥2], where u is randomly drawn
from the unit hypersphere SC−1. Because the batch-size
is large enough, we efficiently use a single sample u ∼
U(SC−1) for each batch, as suggested in Hoffman et al.
(2019). Table 1 (SimpleCNN) shows clear improvements
in the test accuracy of a simple 6-layer CNN (SimpleCNN)
when introducing EJR. We follow a similar setting to Jas-
trzębski et al. (2021).

Furthermore, we also propose an efficient variant of EJR for

larger networks with another regularization coefficient ρreg ,
which update the model parameter θ(t) using two gradient
steps like SAM (Foret et al., 2021) as follows:

θ(t+1) = θ(t) − η∇θL(θ̂
(t)), (11)

where

θ̂(t) ≡ θ(t) + ρregδ
(t)/∥δ(t)∥, (12)

δ(t) ≡ ⟨J⟩u(t) = ∇θ⟨z⊤u(t)⟩. (13)

Here, J and z are evaluated at θ(t), and u(t) ∼ U(SC−1)
is randomly sampled for each step. If we use the gra-
dient ascent step δ(t) = ∇θL(θ

(t)) = ⟨J(p − ey)⟩ =
∇θ⟨z⊤(p− ey)⟩ instead of (13), we can obtain SAM. We
will shortly show that EJR is comparable to SAM, which im-
plies that a random direction u(t) is as good as the specific
direction of p− ey , if not better. Note that our perturbation
δ(t) in (13) has a 1/2 chance of increasing the loss (u and
−u have the same probability to be sampled). Therefore, we
may conclude that SAM is successful not because it solves a
minimax problem, but its ascent step is in the column space
of the Jacobian, thereby regularizing the Jacobian norm. See
Appendix Q for the details.

Figure 6 shows that the efficient version of EJR (dotted line)
successfully mitigates overfitting of the model, especially
after each learning rate decay. Table 1 (WRN) shows that it
outperforms the state-of-the-art sharpness-aware optimiza-
tion methods such as SAM (Foret et al., 2021) and ASAM
(Kwon et al., 2021) on WideResNet (WRN) (Zagoruyko
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Figure 6: Efficient EJR (dashed lines) in comparision to
SGD (solid lines) for WRN-28-10 on CIFAR-10/CIFAR-
100 (Top/Bottom). EJR effectively mitigates the over-
fitting, especially after each learning rate decay (unde-
sirable decrease/increase of test accuracy/loss) at steps =
⌈50k/128⌉ × 400× [0.3, 0.6, 0.8].

& Komodakis, 2016) with the same computational com-
plexity (we run SGD for twice longer epochs than the oth-
ers). We follow a similar setting to Kwon et al. (2021).
We also evaluate the results of Smith et al. (2021) (regu-
larization on ∥⟨∇θl⟩B∥2) and Hoffman et al. (2019) (reg-
ularization on ∥∇xz∥2F ) on WRN, but their performance
is about 95.4-95.6/96.2-96.3 (WRN-28-2/WRN-28-10) on
CIFAR-10, which is similar to SGD (95.46/96.21), but is not
competitive with SAM (96.17/96.98), ASAM (96.16/97.13),
and EJR (96.25/97.21). Note that the logit-input Jacobian
(Novak et al., 2018; Hoffman et al., 2019) has nothing to do
with the implicit bias of SGD in terms of the sharpness and
the Edge of Stability, unlike the logit-weight Jacobian.

Connections between the Jacobian and Fisher/Gradient
Penalty Our explanation of the implicit bias of SGD may
extend to the catastrophic Fisher explosion (Jastrzębski
et al., 2021) with G instead of the Fisher Information Matrix
(FIM). The trace of G can be written as follows:

tr(G) = ⟨tr(JMJT )⟩ = ⟨
∑C−1

i=1
λ(i)∥Jq(i)∥2⟩

≈ ⟨tr(M)∥J∥2F ⟩/C (14)

where we assume ∥Jq(i)∥2 ≈ ∥J∥2F /C since∑C
i=1 ∥Jq(i)∥2 = ∥J∥2F (see Figure 11 (left) in Ap-

pendix D for empirical evidence). Here, the trace of
the logit Hessian M can be equivalently written as a C-
class Gini impurity, i.e., tr(M) =

∑C
i=1 pi(1 − pi) =

1 −
∑C

i=1 p
2
i ≡ GiniC(p), which is C−1

C for the ini-
tial uniform distribution and zero for a one-hot probabil-

ity. Thus, penalizing tr(G) induces the effect of penaliz-
ing ∥J∥F , especially in the early phase of training with
large C-class impurity GiniC(p). Thus, as Jastrzębski
et al. (2021) argued, Fisher Penalty on the trace of the
FIM improves the generalization performance by limit-
ing the memorization, and thus the Jacobian regularization
may have similar effects. Moreover, because∇θl(z, ŷ) =
∇θz∇zl(z, ŷ) = J(p − eŷ), the trace of the FIM
they approximated is simply ∥Êx∼BEŷ∼p[∇θl(z, ŷ)]∥2 =

∥Êx∼BEŷ∼p[J(p− eŷ)]∥2 with a single sample ŷ, the gra-
dient norm penalty (Barrett & Dherin, 2021; Smith et al.,
2021) is ∥Ê(x,y)∼B[J(p− ey)]∥2, and the EJR regularizer
is ∥J∥2F = CEu∼U(SC−1)∥Ê(x,y)∼B[Ju]∥2. In each case,
the Jacobian J plays an important role in the generalization.

Adversarially robust generalization We also apply EJR
to train a model that is robust to adversarial attacks (Szegedy
et al., 2013). Adversarially robust training suffers from
robust overfitting (Rice et al., 2020) and we expect EJR to
help improve robust generalization. We test the effectiveness
of EJR with AT (Madry et al., 2018) and TRADES (Zhang
et al., 2019). Table 2 shows that the proposed method can
obtain better robust generalization against the adversarial
attacks. We report the best results with the regularization
parameter tuning. We follow a similar setting to Pang et al.
(2020). It outperforms the baselines (Madry et al., 2018;
Zhang et al., 2019) in terms of the robust accuracy against
AA (Croce & Hein, 2020). See Appendix R for details.

Table 2: Adversarial training with efficient EJR on
CIFAR-10 compared with AT (Madry et al., 2018) and
TRADES (Zhang et al., 2019). We report standard accu-
racy (Std) and robust accuracy (ϵ = 8/255) against PGD-20
and AutoAttack (AA) (Croce & Hein, 2020).

Method PreAct ResNet-18 WRN-34-10
Std PGD-20 AA Std PGD-20 AA

AT 82.45 52.85 48.76 86.99 52.20 49.83
AT-EJR 82.32 53.58 49.14 86.85 57.82 53.73
TRADES 82.34 52.83 49.06 83.62 57.08 53.29
TRADES-EJR 81.56 53.05 49.56 83.97 57.48 53.85

6. Conclusion
We investigated the Hessian using the Jacobian and the top
eigenvalue of the logit Hessian. By doing so, we provided a
simple and intuitive explanation on the relation between the
sharpness of the loss landscape, the learning dynamics of the
gradient-based optimization methods, and the generalization
performance of neural networks. We hope this research can
help answer other intriguing questions regarding SGD.
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Jastrzębski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer,
A., Bengio, Y., and Storkey, A. Three factors influencing
minima in sgd. arXiv preprint arXiv:1711.04623, 2017.
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A. Notations
We summarize the notations for a quick reference.

x ∈ X ⊂ Rd input
y ∈ [C] = {1, 2, · · · , C} the corresponding label

fθ : X → Z ⊂ RC parameterized model
θ ∈ Θ ⊂ Rm model parameter

z = fθ(x) ∈ Z ⊂ RC logit vector

p = softmax(z) ∈ ∆C−1 probability output

∆C−1 = {p ∈ [0, 1]C : 1Tp = 1,p ≥ 0} probability simplex
p = py probability value
c = arg sort(p) class output
ℓ = ℓ(z, y) ∈ R cross-entropy loss

∥v∥ =
√∑

i

v2
i Euclidean norm of a vector v

∥A∥ = max
∥v∥=1

∥Av∥ Euclidean operator norm of a matrix A

∥A∥F =

√∑
i,j

|Aij |2 Frobenius norm of a matrix A

∥S∥σ spectral norm of a square matrix S

tr(S) =
∑
i

Sii trace of a square matrix S

diag(v) = (δijvi)ij diagonal matrix with v as its diagonal entries

ei = (δij)j one-hot vector with the i-th element as 1
D training set
L = ⟨ℓ⟩ total training loss

⟨·⟩ = ⟨·⟩D = ÊD[·] expectation over D

⟨·⟩B = ÊB[·] expectation over B
B mini-batch

H = ⟨∇2
θℓ⟩ ∈ Rm×m Hessian

M = ∇2
zℓ ∈ RC×C logit Hessian

J = ∇θz ∈ Rm×C (logit-weight) Jacobian

G = ⟨JMJT ⟩ ∈ Rm×m Gauss-Newton approximation

λ(i) the i-th largest eigenvalues of M

q(i) the corresponding eigenvector
(i) = ci ∈ [C] the ordered index
Gini(q) = 2q(1− q) (binary) Gini impurity

GiniC(p) = 1−
C∑
i=1

p2
i (C-ary) Gini impurity

η > 0 learning rate
B = |B| batch size

13
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B. Summary
The concepts in the paper, weight Hessisan H , logit Hessian M , impurity λ(1) ≡ ∥M∥σ , sharpness ∥H∥σ , logit Jacobian
J and Gauss-Newton matrix G, connect with each other as follows:

∥H∥σ
(i)
≈ ∥G∥σ

(ii)
= ⟨λ∗∥J∥2⟩

(iii)
≤ ⟨λ(1)∥J∥2⟩ (iv)

= ⟨∥M∥σ∥J∥2⟩,

where (i), (ii), (iii), (iv) come from the Gauss-Newton approximation, Theorem 5.1, λ∗ ≤ λ(1), and λ(1) ≡ ∥M∥σ,
respectively.

C. Proofs
C.1. Proof of (1)

∇zp = diag(p)− ppT ∈ RC×C (1)

Proof. By definition of the softmax function,

pj = [softmax(z)]j =
exp(zj)∑
k exp(zk)

= exp(zj)s
−1 (15)

where s =
∑

k exp(zk), we have

∇zipj =

{
−exp(zj)s−2exp(zi) = −pipj , if i ̸= j

−exp(zi)s−2exp(zi) + exp(zi)s
−1 = −p2

i + pi, if i = j
(16)

which leads to∇zp = (∇zipj)ij = −ppT + diag(p).

C.2. Proof of (6)

We provide a self-contained proof of the first part (6) (see, for example, Schraudolph (2002) for more).

∇2
θl = ∇θz∇2

zl∇θz
T +

∑C

c=1
∇2

θzc∇zc l (6)

Proof. We apply the chain rule to obtain the following equations:

(∇2
θl)i,j =

∂

∂θj

∂l

∂θi
=

∂

∂θj

(
C∑

c=1

∂l

∂zc

∂zc
∂θi

)
(17)

=

C∑
c=1

∂

∂θj

(
∂l

∂zc

∂zc
∂θi

)
(18)

=

C∑
c=1

∂

∂θj

(
∂l

∂zc

)
∂zc
∂θi

+

C∑
c=1

∂l

∂zc

∂2zc
∂θj∂θi

(19)

=

C∑
c=1

(
C∑

k=1

∂zc
∂θj

∂2l

∂zc∂zk

)
∂zc
∂θi

+

C∑
c=1

∂2zc
∂θj∂θi

∂l

∂zc
(20)

which leads to the conclusion.

Remark C.1. Assuming∇zc
l are uncorrelated with∇θzc

2, we can approximate∇2
θl ≈ ∇θz

T∇2
zl∇θz (Sagun et al., 2017;

Fort & Ganguli, 2019).
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Figure 7: Graph of secular function v(λ) (blue curves) in (10) for some p having zeros at the eigenvalues {λ(i)}Ci=1 of
M = ∇2

zl. We highlighted the singularities λ = p(i) with red vertical lines. The figure illustrates Theorem 4.1 (a) and (c).

C.3. Proof of Theorem 4.1

Theorem 4.1 (restated). The eigenvalues λ(i) (λ(1) ≥ λ(2) ≥ · · · ≥ λ(C)) and the corresponding eigenvectors q(i) of the
logit Hessian M = ∇2

zl = diag(p)− ppT satisfy the following properties:

(a) The eigenvalue λ(i) is the i-th largest solution of the following equation:

v(λ) = 1−
∑C

i=1

p2
i

pi − λ
= 0 (21)

(b) The eigenvector q(i) is aligned with the direction of (diag(p)− λ(i)I)−1p

(c) p(i+1) ≤ λ(i) ≤ p(i) for 1 ≤ i ≤ C − 1, and λ(C) = 0

(d) 1
2Gini(p(1)) ≤ λ(1) ≤ Gini(p(1)) where Gini(q) = 2q(1− q) is the Gini impurity for the binary case (q, 1− q).

Proof. The eigenvalues λ(i) of M = diag(p)− ppT are the zeros of the following characteristic polynomial:

ϕM (λ) = det(diag(p)− ppT − λI) (22)

= det(diag(p)− λI) det(I − (diag(p)− λI)−1ppT ) (23)

=

C∏
i=1

(pi − λ)

1−
C∑

j=1

p2
j

pj − λ

 (24)

where the second equality follows from A− ppT = A(I −A−1ppT ) with the matrix A = diag(p)− λI , and the third
inequality holds because det(I + uvT ) = 1 + uTv for vectors u and v. Then it is equivalent to solving the following
equation:

v(λ) = 1−
C∑
i=1

p2
i

pi − λ
= 0 (25)

which implies (a). Note that this result also implies (c).

Next, to prove (b), put A ≡ diag(p)−λI and q ≡ A−1p. Then it is required to show that (M −λI)q = (A−ppT )q = 0
for the eigenvalues λ = λ(i). We have

(A− ppT )q = (A− ppT )A−1p = p− ppTA−1p (26)

Here, (ppTA−1p)i =
∑

j,k pipjA
−1
jk pk =

∑
j,k pipjδjk(pj − λ)−1pk =

∑
k pipk(pk − λ)−1pk = pi

∑
k p

2
k/(pk −

λ) = pi. The last equality holds for the eigenvalues λ = λ(i) which follows from (a).
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Now, we want to prove the statement (c). Since

λ(i)(C) ≤ λ(j)(A) + λ(k)(B) if k + j − i = 1 (27)

λ(i)(C) ≥ λ(j)(A) + λ(k)(B) if k + j − i = C (28)

for C = A+B ∈ RC×C where λ(i)(D) is the i-th largest eigenvalue of a matrix D (Weyl, 1912; Fulton, 2000), we can
get λ(i)(C) ≤ λ(i)(A) + λ(1)(B) and λ(i)(C) ≥ λ(i+1)(A) + λ(C−1)(B). Thus, for A = diag(p) and B = −ppT , we
can get

p(i+1) ≤ λ(i)(M) ≤ p(i) for 1 ≤ i ≤ C − 1 (29)

since λ(i)(A) = p(i), λ(i+1)(A) = p(i+1) and λ(1)(B) = λ(C−1)(B) = 0. Moreover, since M1 = p − ppT1 =

p− p
∑

i pi = 0, the smallest eigenvalue is λ(C) = 0.

Lastly, we prove the statement (d). From the Gershgorin circle theorem (Gershgorin, 1931), we have

λ(1) ∈
⋃
i

B(Mii,
∑
j ̸=i

|Mij |) = B(p(1)(1− p(1)),p(1)(1− p(1))) = [0, 2p(1)(1− p(1))] (30)

which implies λ(1) ≤ 2p(1)(1 − p(1)). Note that p(1)(1 − p(1)) ≥ p(i)(1 − p(i)) since g(t) = t(1 − t) is increasing for
0 ≤ t ≤ 0.5. In detail, if p(1) ≥ 0.5, since p(i) ≤ 1− p(1) ≤ 0.5, we have g(p(i)) ≤ g(1− p(1)) = g(p(1)). Otherwise
(p(1) < 0.5), since p(i) ≤ p(1), it leads to the same inequality g(p(i)) ≤ g(p(1)). With the Rayleigh principle, we can
express the largest eigenvalue as λ(1) = max∥u∥2=1 u

TMu, and thus e(1)TMe(1) = M(1)(1) = p(1)(1 − p(1)) ≤
λ(1).

C.4. Proof of Theorem 5.1

Theorem 5.1 (restated). For some lower bound 0 ≤ λ∗ ≤ λ(1) of the impurity for each x ∈ D, we have

∥G∥σ = ⟨λ∗∥J∥2⟩. (31)

Proof. We start with the Rayleigh principle:

∥⟨JMJT ⟩∥σ = max
∥q∥=1

qT ⟨JMJT ⟩q = max
∥q∥=1

⟨qTJMJTq⟩ (32)

Since M =
∑

i λ
(i)q(i)q(i)T , we can continue by putting v = JTq, and then

(32) = max
∥q∥=1

⟨vTMv⟩ = max
∥q∥=1

⟨
∑
i

λ(i)(q(i)Tv)2⟩ (33)

Then by putting λ̃ =
∑

i γ
(i)λ(i) with γ(i) = (q(i)Tv)2/

∑
i(q

(i)Tv)2 ≥ 0 (
∑

i γi = 1),

(33) = max
∥q∥=1

⟨λ̃
∑
i

(q(i)Tv)2⟩ = max
∥q∥=1

⟨λ̃
∑
i

(q(i)TJTq)2⟩ (34)

= max
∥q∥=1

⟨λ̃
∑
i

(q(i)T (JTq))2⟩ (35)

Since {q(i)}Ci=1 is an orthonormal basis of RC (eigenvectors of a symmetric matrix M ), we have the following by putting
λ∗ = ∥JT q∗∥2

∥J∥2 λ̃ with q∗ = argmax∥q∥=1⟨λ̃∥JTq∥2⟩,

(35) = max
∥q∥=1

⟨λ̃∥JTq∥2⟩ = ⟨λ̃∥JTq∗∥2⟩ = ⟨λ∗∥J∥2⟩ (36)

Because of the definition of λ∗ and λ̃ with ∥q∗∥ = 1 and
∑

i γ
(i) = 1 (γ(i) ≥ 0), we have

λ∗ ≤ λ̃ ≤ λ(1). (37)
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C.5. Proof of Proposition 5.2

Proposition 5.2 (restated). For SGD with a quadratic loss, the expected loss decreases when ∥H∥σ ≤ 2ρB

η , where η is

learning rate, B is batch size and ρB ≡ ∥⟨∇θl⟩∥2

E|B|=B [∥⟨∇θl⟩B∥2] ≤ 1.

Proof. Put g = ∇θl(θ). With SGD update θ′ = θ − η⟨g⟩B and L′ = L(θ′), we can obtain

L′ = L− η∇LT ⟨g⟩B +
η2

2
⟨g⟩TBH⟨g⟩B (38)

Therefore, the expected loss at the next step is

E[L′] = L− η∇LTE[⟨g⟩B] +
η2

2
E[⟨g⟩TBH⟨g⟩B] (39)

≤ L− η∥∇L∥2 + η2

2
E[∥⟨g⟩B∥2]∥H∥σ (40)

When ∥H∥σ ≤ 2
η

∥∇L∥2

E[∥⟨g⟩B∥2] =
2ρB

η , i.e., −η∥∇L∥2 + η2

2 E[∥⟨g⟩B∥2∥H∥σ ≤ 0, the expected loss decreases, and the iterate
stays within the quadratic basin and does not diverge.

Remark C.2. A necessary and sufficient condition for the expected loss to decrease is that−η∥∇L∥2+ η2

2 E[⟨g⟩TBH⟨g⟩B] ≤ 0

from (39), i.e., E[⟨g⟩TBH⟨g⟩B]
E[∥⟨g⟩B∥2] ≤

2ρB

η . Thus, when the batch gradients are aligned with the sharpest direction, the condition is

equivalent to ∥H∥σ ≤ 2ρB

η .

Remark C.3. We can qualitatively analyze the norm of the batch gradient ⟨g⟩B and the ratio ρB with respect to the batch
size B. First, if B = N = |D| (full-batch), then ρB = 1 by definition. Second, if B is large enough, then ρB ≈ 1 since
E|B|=B [∥⟨g⟩B∥2] ≈ ∥⟨g⟩∥2 (cf. B = 512 in Figure 24). Now, we consider the third case of B ≪ N . Put gB = ⟨g⟩B and
gD = ⟨g⟩. Then, we have

E[∥gB − gD∥2] = E[(gB − gD)
T (gB − gD)] = E[gT

BgB − gT
BgD − gT

DgB + gT
DgD] = E[∥gB∥2]− ∥gD∥2 (41)

and

E[∥gB − gD∥2] =
1

B

N −B

N − 1
E[∥g − gD∥2] (42)

(see Appendix A in Smith et al. (2021) for the detailed proof). Therefore,

E[∥⟨g⟩B∥2]
∥⟨g⟩∥2

=
E[∥gB∥2]
∥gD∥2

=
∥gD∥2 + E[∥gB − gD∥2]

∥gD∥2
= 1 +

E[∥gB − gD∥2]
∥gD∥2

(43)

= 1 +
1

B

N −B

N − 1

E[∥g − gD∥2]
∥gD∥2

= 1 +
1

B
A =

A+B

B
≥ 1 (44)

which becomes larger as B decreases (B ≪ N ) where A = N−B
N−1

E[∥g−gD∥2]
∥gD∥2 > 0. In other words, the smaller the batch

size B, the smaller the ratio ρB = ∥⟨g⟩∥2

E[∥⟨g⟩B∥2] =
B

A+B Thus, if the batch gradients are diverse such that E[∥g−gD∥2]
∥gD∥2 ≫ B

and A≫ B, then we have ρB ∝∼ B which leads to the sharpness ∝∼
B
η , a similar result with the linear scaling rule (Goyal

et al., 2017). We refer the readers to Lee & Jang (2023) for further detailed analysis.
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D. Gradient descent in the top Hessian subspace
Gur-Ari et al. (2018) showed that the gradient of the loss quickly converges to a tiny subspace spanned by a few top
eigenvectors of the Hessian after a short training. Then, the top Hessian subspace does not evolve much, which implies
gradient descent happens in a tiny subspace. However, the underlying mechanism has not been fully understood.

Direction of q(i) and two salient elements We investigate the direction of the eigenvector q(i) (1 ≤ i ≤ C − 1) of M .
The eigenvector

q(i) = α

(
pj

pj − λ(i)

)
j

(45)

can be obtained from Theorem 4.1 (b) for some α > 0. Here, the magnitude of the denominator |pj − λ(i)| is small for the
two indices j = (i), (i + 1), and is large for the others. This is because the eigenvalue λ(i) lies between p(i+1) and p(i)

(Theorem 4.1 (c)). Therefore, the eigenvector q(i) has a relatively large positive value in q
(i)
(i) and a large negative value in

q
(i)
(i+1) compared to the other components.

(1) q(1)
(2) q(2)

(C
1) q(C

1) 0

(1)
(2)

(C-1)
(C)

0.44 0.10 0.05 0.03 0.02 0.01 0.01 0.01 0.00 0.00
-0.27 0.25 0.07 0.03 0.02 0.01 0.01 0.01 0.00 0.00
-0.08 -0.23 0.17 0.05 0.02 0.01 0.01 0.01 0.00 0.00
-0.04 -0.05 -0.18 0.13 0.04 0.02 0.01 0.01 0.00 0.00
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Figure 8: Heatmap of the matrix QΛ1/2 = [
√
λ(1)q(1); · · · ;

√
λ(C−1)q(C−1);0] averaged over the training set D where

M = QΛQT . Each column of QΛ1/2 visualizes the color-encoded direction of q(i) multiplied by
√
λ(i). We highlighted

the elements q(i)
(i) and q

(i)
(i+1) with the dashed boxes for 0 ≤ i ≤ C − 1 (see Theorem 4.1 (b)).

Figure 8 shows the directions of q(i) with the heatmap of the matrix QΛ1/2 where QΛ1/2 =

[
√
λ(1)q(1); · · · ;

√
λ(C−1)q(C−1);0] ∈ RC×C for M = QΛQT . As expected, considering each column of

QΛ1/2, the eigenvector q(i) is colored in red (+) at q(i)
(i) and in blue (−) at q(i)

(i+1) for 1 ≤ i ≤ C − 1. The two salient
elements are highlighted with the dashed boxes.

Direction of Jq(i) and margin maximization In light of the previous discussion, the direction of

Jq(i) = (Jq(i))|θ=θ(t) = ∇θ

(
q(i)(θ(t))Tz(θ)

) ∣∣
θ=θ(t) ∈ Rm (46)

is approximately a direction maximizing q
(i)
(i)z(i) + q

(i)
(i+1)z(i+1) at the current parameter θ(t) ∈ Θ because the other terms

are relatively small. In other words, it tends to maximize the margin z(i) − z(i+1) in the logit space Z between the two
classes (i) and (i+ 1) (see Figure 8). In particular, Jq(1) is approximately a direction that maximizes the margin between
the most likely class and the second most likely class.
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Figure 9: There are C clusters of m =
√
λ(1)Jq(1) according to the most likely class (not the true class). Left:

(Within-class similarity) Directional data of m from Di and Dj for the two classes, dog (blue) and automobile (red).
They are projected onto the 2D-plane spanned by the two mean vectors indicated with the arrows. We highlight the
MRL ρ for each class. The directional data of m are concentrated within the class but separated from each other. Right:
(Between-class dissimilarity) Cosine similarities between each pair of {mi}. They are mostly orthogonal, but some pairs
are even negatively aligned, for example, automobile and truck. This is because the examples predicted to be automobile
mostly have the second most probable class as truck.

Clustering of Jq(1) and the most probable class We first define following subsets of the training set according to the
most probable class (and the second most one): Di = {x ∈ D : c1(x) = i} ⊂ D and Dij = {x ∈ D : c1(x) = i, c2(x) =
j} ⊂ D for i ̸= j ∈ [C]. Note that Di =

⋃
j ̸=iDij . Given two examples from Dij , their Jq(1) are expected to be highly

aligned to each other. This is because the direction of Jq(1) is approximately a direction of maximizing the margin and of
learning the features to discriminate the class i from the class j. Moreover, two examples from Di also have highly-aligned
Jq(1). Figure 9 (Left) shows the concentration of the directional data of Jq(1) fromDi. We also compute the mean resultant
length (MRL) to measure the concentration. The MRL ρ of the directional variable V ∈ Sm−1 ≡ {v ∈ Rm : ∥v∥ = 1}
defined as ρ ≡ ∥E[V ]∥ ∈ [0, 1] indicates how V is distributed (the higher, the more concentrated).

Now, we focus on m ≡
√
λ(1)Jq(1) as the other λ(i)-terms are dominated by the λ(1)-term after a few epochs (see Appendix

M for details). Then, we follow a similar approach from Papyan (2019) and provide the following equation:

⟨mmT ⟩ =
∑C

i=1
γi⟨mmT ⟩Di

=
∑C

i=1
γi(m

imiT + ⟨(m−mi)(m−mi)T ⟩Di
) (47)

where γi = |Di|/|D| and mi = ⟨m⟩Di
. Here, the covariance term ⟨(m−mi)(m−mi)T ⟩Di

is weak as m is concentrated
within Di, and thus we can roughly approximate G with

∑C
i=1 γim

imiT . This implies that the top eigensubspace of the
Hessian highly overlaps with the at most C-dimensional subspace spanned by {mi}Ci=1. Figure 9 (Right) demonstrates that
the mean vectors {mi}Ci=1 are well separated from each other. This also implies the outliers in the Hessian spectrum (Sagun
et al., 2016; 2017).

Why gradient descent happens mostly in the top Hessian subspace? Given input x, after the model becomes to
correctly predict the true label y, the gradient descent direction −g = J(ey − p) used in the training tends to be highly
aligned with Jq(1). This is because ey − p and q(1) both have similar direction. They have positive values 1 − py and
q
(1)
(1) in y(= (1))-th element, negative value −pi and q

(1)
i in the others, and especially large negative value for the second

most probable class i = (2). Figure 10 (Middle) shows the cosine similarity between the gradient descent direction −g and
Jq(1). As expected, they are highly aligned with the cosine similarity near 1 as the two vectors ey − p and q(1) become
more aligned to each other.

Next, we move on to the subspace S ≡ span({mi}Ci=1) spanned by {mi}Ci=1. As each m =
√
λ(1)Jq(1) is highly aligned

with −g, it is reasonably expected that the total gradient gD lies in the subspace S . To measure how much the vector v ̸= 0

19



Implicit Jacobian regularization weighted with impurity of probability output

0 1000 2000 3000 4000
Step

0.0

0.5

1.0

1.5

2.0

Lo
ss

Train Loss

0.0

0.2

0.4

0.6

0.8

1.0

co
sin

e

|cos(g , r)|

0 1000 2000 3000 4000
Step

0.0

0.2

0.4

0.6

0.8

1.0

co
sin

e

|cos(g, Jq(1))|

0 1000 2000 3000 4000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Su
bs

pa
ce

 A
lig

nm
en

t

AS(gD) AS(r)

Figure 10: Left: Total gradient gD = ⟨g⟩ is aligned with the top eigenvector r of the Hessian H at each step during
training (Jastrzębski et al., 2019; Gur-Ari et al., 2018). They have large cosine similarities considering that they are
very high-dimensional. We highlighted the cosine value for random m-dimensional vectors in Θ with the dashed horizontal
line (about 1e-3). Middle: Jq(1) (or m) is highly aligned with the gradient g for given example at each step during
training. They have cosine similarities near 1 as the model becomes to correctly predict the true label. See Figure 1
(Right) together. Right: Total gradient gD and the top eigenvector r of the Hessian H mostly lie in the at most
C-dimensional subspace S spanned by {mi}Ci=1. The subspace alignment measure AS is defined in (48).

is aligned with the subspace S, we define the cosine similarity between the vector v and its projection PS(v) onto the
subspace S as follows:

AS(v) ≡ cos(v, PS(v)) = ∥PS(v)∥/∥v∥ (48)

In particular, AS(v) = 0 means v ∈ S⊥ and AS(v) = 1 means v ∈ S. Figure 10 (Right) shows the high alignment of the
total gradient gD in the subspace S ≡ span({mi}Ci=1) although the subspace S is of dimension at most C ≪ m. Moreover,
since G can be roughly approximated by

∑C
i=1 γ

imimiT , the top eigenvector r of the Hessian H is also highly aligned
with the subspace S.
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Figure 11: Histograms of ∥Jq(i)∥∑
j ∥Jq(j)∥/C and cos2(Jq(i),Jq(j)).
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E. Experimental settings
We summarize the experimental settings for each Figure and Table in the main text in Table 3 and 4.

E.1. Data

We use the CIFAR-10 dataset ((Krizhevsky & Hinton, 2009), https://www.cs.toronto.edu/~kriz/cifar.
html) and the MNIST dataset which have C = 10 number of classes. We also conduct some experiments on the CIFAR-100
dataset with the number of classes C = 100. We sometimes do not use the data augmentation for training (1) not to introduce
the randomness in the training loss and (2) to allow the training loss to converge to a small value.

E.2. Network architectures

We use the following models: VGG-11 (VGG) (Simonyan & Zisserman, 2015) without batch-normalization, VGG for
CIFAR-100 (VGG-CIFAR-100), ResNet-20 (ResNet) (He et al., 2016) wihtout batch-normalization, a 6-layer CNN (6CNN),
SimpleCNN used in Jastrzębski et al. (2021) (SimpleCNN) two 3-layer fully-connected networks (3FCN-CIFAR and
3FCN-MNIST), and two WRNs (WRN-28-2/WRN-28-10) for CIFAR-10 and CIFAR-100 with the number of model
parameters, m = 9750922, 9797092, 268346, 511926, 361706, 656810, 199210, 1467610/36479194, 1479220/36536884,
respectively.

We use a modified version of the implementation of VGG-11 from https://github.com/chengyangfu/
pytorch-vgg-cifar10/blob/master/vgg.py without the dropout layers and ResNet-20 from https://
github.com/locuslab/edge-of-stability/blob/github/src/resnet_cifar.py. We change the
last linear layer for the CIFAR-100 dataset. The 6CNN model can be expressed in the Pytorch code as follows:
nn.Sequential(

nn.Conv2d(3, 32, 3, stride=1, padding=1, bias=False)
nn.ReLU(),
nn.Conv2d(32, 32, 4, stride=2, padding=1, bias=False)
nn.ReLU(),
nn.Conv2d(32, 64, 3, stride=1, padding=1, bias=False)
nn.ReLU(),
nn.Conv2d(64, 64, 4, stride=2, padding=1, bias=False)
nn.ReLU(),
nn.Flatten(),
nn.Linear(4096, 100, bias=True),
nn.ReLU(),
nn.Linear(100, 10, bias=True),

)

and the 3FCN architecture is as follows:
nn.Sequential(

nn.Flatten(),
nn.Linear(n, 200, bias=True),
nn.ReLU(),
nn.Linear(200, 200, bias=True),
nn.ReLU(),
nn.Linear(200, 10, bias=True),

)

where n=784 for 3FCN-MNIST, and n=3072 for 3FCN-CIFAR (the same one used in Cohen et al. (2021)).

E.3. Hyperparameters

SGD (Robbins & Monro, 1951) with the learning rate η can be expressed as follows:

θ(t+1) = θ(t) − η⟨g(θ(t))⟩B(t) (49)
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where θ(t) is the model parameter, B(t) ⊂ D is the training batch at t-th step, and g(θ) = ∇θl. For a simple CNN, we use
the simplest form of SGD as described in (49) without momentum, weight decay, and learning rate decay. However, for
a larger network, we use the momentum of 0.9, the weight decay of 0.0005, and two types of learning rate schedule, the
multi-step scheduler with the learning rate decay of 0.2 in [30%, 60%, 80%] of the whole training epochs and the cosine
annealing (Loshchilov & Hutter, 2016).

E.4. Hessian

When computing the top eigenvalue ∥H∥σ and the corresponding eigenvector r of the Hessian H , we use the tool
developed in PyHessian ((Yao et al., 2020), https://github.com/amirgholami/PyHessian, MIT License)
based on power iteration method using a small subset (5-25%) of training dataset D.

E.5. Power iteration algorithm

Even though we have the secular function v(λ) in (10) and the algorithms for computing the eigenvectors (Bunch et al.,
1978), we use the power iteration in Algorithm 1 to get the top eigenvalue λ(1) of the logit Hessian M ∈ RC×C since we
can run the algorithm for a mini-batch in parallel. Then, we can compute the corresponding top eigenvector q(1) from
Theorem 4.1 (b). To compute the second largest eigenvalue, we apply the power iteration to M ′ ≡M − λ(1)q(1)q(1)T

instead of M after computing λ(1) and q(1).

Algorithm 1 Power iteration

input matrix M , maximum iteration nmax, tolerance bound ϵ
output the spectral norm λ(1) = ∥M∥σ of the matrix M

Initialize u ∈ RC with a random vector.
i← 0
repeat
v ←Mu/∥Mu∥
u←MTv/∥MTv∥
i← i+ 1

until it converges within the tolerance bound ϵ or i ≥ nmax
return vTMu

We also compute the operator norm of the Jacobian ∥⟨J⟩∥with the power iteration as in Algorithm 2. It requires(C+1)-times
scalar function differentiations with respect to θ for each iteration.

Algorithm 2 Power iteration for the Jacobian

input logit function zθ (not matrix ⟨J⟩), maximum iteration nmax, tolerance bound ϵ
output the operator norm ∥⟨J⟩∥ of the Jacobian

Initialize u ∈ RC with a random vector.
i← 0
repeat

Compute ⟨J⟩u = ∇θ⟨uTz⟩ (1× scalar function differentiation)
v ← ⟨J⟩u/∥⟨J⟩u∥
Compute ⟨J⟩Tv = (vT ⟨J⟩)T = [vT∇θ⟨z1⟩, · · · ,vT∇θ⟨zC⟩]T (C× scalar function differentiations)
u← ⟨J⟩Tv/∥⟨J⟩Tv∥
i← i+ 1

until it converges within the tolerance bound ϵ or i ≥ nmax
return vT (⟨J⟩u)
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Table 3: Experimental settings for each Figure and Table in the main text (see Table 4 together)

Figure/Table Dataset Model Batch Size Initial lr Others
Figure 1 CIFAR-10 6CNN 50000 0.04 Setting 1
Figure 2 CIFAR-10 6CNN 128 0.04 Setting 1
Figure 3 CIFAR-10 6CNN 50000 0.04 Setting 1
Figure 4 CIFAR-10 6CNN 128 0.01 Setting 1
Figure 5 CIFAR-10 6CNN - - Setting 1
Figure 6 (Left) CIFAR-10 WRN-28-10 128 0.1 Setting 2
Figure 6 (Right) CIFAR-100 WRN-28-10 128 0.1 Setting 2
Table 1 CIFAR-10 SimpleCNN - - Setting 1
Table 1a - WRN-28-10/WRN-28-2b 128/256 0.1 Setting 3
Table 2 CIFAR-10 PreAct ResNet-18/WRN-34-10c 128 0.1 Setting 4
a For SAM, we use ρ = 0.05/0.1 for CIFAR-10/100.

For ASAM, we use ρ = 0.5/1 and η = 0.01 for CIFAR-10/100.
For EJR, we use ρ = 2/4 for CIFAR-10/100.

b For WRN-28-2, we use a different setting from Kwon et al. (2021) that B = 256 and epochs of 1600 (not B = 128
and epochs of 200).

b For PreAct ResNet-18, we train the model for 110 epochs.
For WRN-34-10, we train the model for 120 epochs.

Table 4: Additional experimental settings for each Figure and Table in the main text (see Table 3 together)

Settings Data
Aug.

Label Smoothing
(Müller et al., 2019) Epochs lr scheduler Momentum Weight

Decay Description

Setting 1 None None until convergence (< 100k) constant None None Simple SGD
Setting 2 Basica 0.1 400 multi-step decayb 0.9 0.0005 used in SAM implementationc

Setting 3 Basic 0.1 200/1600 cosine annealing 0.9 0.0005 used in ASAM (Kwon et al., 2021)
Setting 4 Basic None 110/120 multi-step decayd 0.9 0.0005 used in Pang et al. (2020)e,f

a random crop (with 4-pixel padding) and random horizontal flip
b lr decay of 0.2 at [0.3, 0.6, 0.8]×epochs
c https://github.com/davda54/sam
d lr decay of 0.1 at [100, 105] for 110 epochs

lr decay of 0.1 at [100, 110] for 120 epochs
e BN mode when crafting adversarial examples for training: train for AT and eval for TRADES
f ReLU activation
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F. The tendency of the Jacobian norm to increase
The weight norm ∥θ(t)∥ increases (Figure 12 (the third one)) in order to increase the logit norm ∥z(θ(t))∥ (Figure 12 (the
leftmost figure)) and to minimize the cross-entropy loss during training (Soudry et al., 2018). This also leads to the increase
in the layerwise weight norms (Figure 14) and the Jacobian norm (Figure 5). We ran the experiments on the CIFAR-10
dataset and 6CNN with learning rate η = 0.04 and batch size 50000 (full-batch).
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Figure 12: (Left to Right): the logit norm ⟨∥z(θ(t))∥⟩, the absolute value of the logit sum ⟨|1̂Tz(θ(t))|⟩, the weight
norm θ(t), the distance from the initial weight ∥θ(t) − θ(0)∥ during training (every 10 steps). See together with Figure
5 (Left, solid red line) and Figure 4.
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Figure 14: The layerwise weight norms (6 layers from left to right and from top to bottom) of the 6CNN model in the
early phase of training (every 10 step).
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G. ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2

Surprisingly, we empirically observed that ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2 during training where 1̂ = 1/
√
C ∈ RC . Since it

requires further theoretical grounding, we left it as future work. We observe this relation for a variety of learning rates
(Figure 15), network architectures (Figure 16 and 17), batch sizes (Figure 18 and 19), and datasets (Figure 20 and 21). At
least, ∥H∥σ and ⟨λ(1)⟩∥⟨J⟩1̂∥2, they increase and decrease together. We emphasize that Figure 21 shows the case when
the sharpness did not reach the limit 2/η. This is because the learning rate is relatively low and it is easy to train a model for
the MNIST dataset, and thus ⟨λ(1)⟩ decreases before the sharpness reaches the limit.
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Figure 15: The relation ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2 on the CIFAR-10 dataset and the 6CNN model trained using full-
batch GD with different learning rates η = 0.02/0.04/0.08 (from left to right). Bottom figures are plotted for the early
phase of training. Top figure is plotted for η = 0.02. Curves are plotted for every step.
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Figure 16: The relation ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2 on the CIFAR-10 dataset and the VGG model trained using full-batch
GD with different learning rates η = 0.04/0.08 (left/right) in the early phase of training. Curves are plotted for every
step (Top: 0-1000 stpes and Bottom: 500-1000 stpes).
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Figure 17: The relation ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2 on the CIFAR-10 dataset and the ResNet model trained using SGD
with learning rate η = 0.04 and batch sizes |B(t)| = 128 during training (0-1000 steps). Curves are plotted for every
step.
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Figure 18: The relation ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2 on the CIFAR-10 dataset and the 6CNN model trained using SGD
with fixed learning rate η = 0.04 and different batch sizes |B(t)| = 512/128/32 (from left to right) in the initial phase
(0-500 steps). Note that the proportionality constant may change according to the batch size (the smaller the batch size, the
larger the proportionality constant). Curves are plotted for every step.
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Figure 19: The relation ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2 on the CIFAR-10 dataset and the VGG model trained using SGD
with fixed learning rate η = 0.04 and different batch sizes |B(t)| = 512/128/32 (from left to right) during training
(0-100 epochs). Curves are plotted for every n steps (n = 97/388/1552) where 97 = ⌊50000/512⌋.
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Figure 20: The relation ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2 on the CIFAR-100 dataset and the VGG model trained using SGD
with fixed learning rate η = 0.1 and different batch sizes |B(t)| = 128/64/32 (from left to right) in the early phase
of training. Note that the proportionality constant may change according to the batch size (the smaller the batch size, the
larger the proportionality constant). Curves are plotted for every step (Top: 0-1000 stpes and Bottom: 500-1000 stpes).
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Figure 21: The relation ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2 on the MNIST dataset and the 3FCN-MNIST model trained using
full-batch GD with different learning rates η = 0.02/0.04/0.08 (from left to right) in the early phase of training. Note
that the sharpness did not reach the limit 2/η (the dashed horizontal line). Curves are plotted for every step.
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H. Implicit Regularization on ∥⟨J⟩1̂∥2

We further investigate the relation ∥H∥σ ∝ ⟨λ(1)⟩∥⟨J⟩1̂∥2 in the previous section and its effect on ∥⟨J⟩1̂∥2. For the early
phase of training, it is hard to see the initial rapid growth of the sharpness in this smoothed curves and when exactly the
regularization begins to activate. We refer the readers to the previous section, Appendix G, for the fine-grained analysis of
the early phase of training. We provide plots with different settings. Again, we observe that training with a larger learning
rate and a smaller batch size limits ∥⟨J⟩1̂∥2 with a smaller value (dotted red lines) in the Active Regularization Period.
Curves are smoothed for visual clarity.
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Figure 22: The evolution of ∥H∥σ, ∥⟨J⟩1̂∥2, and ⟨λ(1)⟩ on the CIFAR-10 dataset and the VGG model trained using
full-batch GD with the learning rates η = 0.04/0.08 (solid/dotted lines). See the Figure 5 caption together.
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Figure 23: The evolution of ∥H∥σ , ∥⟨J⟩1̂∥2, and ⟨λ(1)⟩ on the CIFAR-10 dataset and the 6CNN model trained using
full-batch GD with the learning rates η = 0.02/0.04/0.08 (solid/dashed/dotted lines). See the Figure 5 caption together.
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Figure 24: The evolution of ∥H∥σ, ∥⟨J⟩1̂∥2, and ⟨λ(1)⟩ on the CIFAR-10 dataset and the VGG model trained using
SGD with the fixed learning rate η = 0.04 and the batch sizes |B(t)| = 50000(GD)/512/32 (solid/dashed/dotted lines).
Training with a batch size 512 shows similar evolutions to the GD training. See the Figure 5 caption together.
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Figure 25: The evolution of ∥H∥σ , ∥⟨J⟩1̂∥2, and ⟨λ(1)⟩ on the CIFAR-100 dataset and the VGG model trained using
SGD with the fixed learning rate η = 0.1 and the batch sizes |B(t)| = 128/64/32 (solid/dashed/dotted lines). See the
Figure 5 caption together.
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I. Figure 2 (Sharpness and Jacobian norm)
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Figure 26: The sharpness ∥H∥σ and the Jacobian norm ∥⟨J⟩∥2 show similar behavior up to a factor λ̂∗ which is locally
constant and slowly changes during training (CIFAR-10, η = 0.04, B = 128). λ̂∗ ≈ 1/8, 1/17.5, 1/45 (red/blue/purple) for
0-200/1000-1200/4000-4200 steps
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J. Figure 3 (Visualization of the optimization trajectory)
We use UMAP (McInnes et al., 2018) to visualize the optimization trajectory {θ(t)}t∈[T ] ⊂ Θ ⊂ Rm in a 2D space. As
GD enters into the Edge of Stability (Cohen et al., 2021), it oscillates in a direction nearly orthogonal to its global descent
direction (Xing et al., 2018). Note that GD may not enter the Edge of Stability as shown in Figure 27 (Bottom).
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Figure 27: Visualization of the optimization trajectory using UMAP. UMAP on the CIFAR-10 dataset trained with
6CNN for the first 500 steps (Top Left) and for 100-300 steps (Top Right), on the CIFAR-10 dataset trained with VGG for
the first 1000 steps (Middle), and on the MNIST dataset trained with 3FCN-MNIST for the first 1000 steps (Bottom) from
red to blue.
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K. Figure 4 (Active Regularization Period)

Figure 28: Three phases of Implicit Jacobian Regularization (IJR). Figure 4 with 1/⟨λ(1)⟩. As 1/⟨λ(1)⟩ increases, the
Jacobian norm increases faster in phase III.

L. Figure 6 (Efficient EJR)
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Figure 29: The effectiveness of efficient EJR (dashed lines) compared to SGD (solid lines) trained with Setting 3 in
Table 4 (cosine annealing) for WRN-28-10 on CIFAR-10 (Left) and CIFAR-100 (Right). Unlike Figure 6, we train the
model with EJR for 200 epochs and with SGD for 400 epochs and thus we plot with different x-axis to match this difference
(×2 for EJR).
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M. Figure 8 (QΛ1/2)
Figure 30 shows the matrix QΛ1/2 (Figure 8) for different training steps. Figure 8 and Figure 30 (Top Right) are plotted
at the equivalent step (t = 1000). Figure 30 demonstrates that λ(1) becomes more dominant than the others as training
progresses. The argument that there are two salient elements in each q(i) in its (i)- and (i+ 1)-th elements is empirically
shown to be valid throughout the training.
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Figure 30: Evolution of QΛ1/2 for some training steps during the training. They are visualized for
100/500/1000/2000/4000/6000 steps from left to right and from top to bottom.
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N. Figure 9 (Clusters of m around each mi)
Figure 31 shows Figure 9 (Left) for some different class pairs (i, j) with negative cosine similarity, i.e., cos(mi,mj) < 0.
We use the model trained for t = 1000 steps. Figure 32 shows Figure 9 (Right) for different training steps. Figure 33 shows
the evolution of the Mean Resultant Length (MRL) ρ in Figure 9 (Left) during training.
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Figure 31: Directional data of m from Di and Dj . They are visualized for (i, j) = (airplane, ship)/(automobile,
truck)/(dog, cat)/(deer, bird) from left to right. See the Figure 9 caption.
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Figure 32: Cosine similarities of {mi}Ci=1 during training. They are visualized for step=500/1000/1500/2000/3000/4000
from left to right and from top to bottom. See the Figure 9 caption.
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Figure 33: The Mean Resultant Lengths (MRL) ρ for each Di. Note that ρ is not defined for first few steps because some
Di are empty.
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O. Figure 10 (gradient descent happens mostly in the top Hessian subspace)
Figure 34 shows similar results with different settings with VGG and learning rate η = 0.08.
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Figure 34: (Left) Alignment between the two vectors gD and r, and (Right) alignment of gD, r in the subspace
S = span({mi}Ci=1) using VGG with η = 0.08. See the Figure 10 caption. They are plotted for every 25 steps. Note that
AS is not defined for first few steps (about 0-800 steps) because some Di are empty.
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P. Analysis of the MSE loss
In the main text, we focus on the cross-entropy loss. Here, we briefly analyze the MSE loss, l = 1

2∥z − ey∥2. Then, we
have M = ∇2

zl = I , λ(1) = ∥M∥σ = 1 and G = ⟨JJT ⟩. It leads to the same conclusion as in Theorem 5.1:

∥G∥σ = ∥⟨JJT ⟩∥σ ≤ ⟨∥JJT ∥σ⟩ = ⟨∥J∥2⟩ (50)

We empirically observed that ∥H∥σ ∝ ∥⟨J⟩∥2 as shown in Figure 35.
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Figure 35: The sharpness ∥H∥σ and the Jacobian norm ∥⟨J⟩∥2 during training with the MSE loss
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Q. Details of Explicit Jacobian Regularization (EJR)
We first propose a simple form of EJR with the regularized loss as follows:

L̃(θ) = L(θ) + λreg∥⟨J⟩∥2F /C (51)

and update the model parameter as

θ(t+1) = θ(t) − η(∇θL(θ
(t)) + λreg∇θ∥⟨J⟩∥2F /C) (52)

Efficient EJR However, this requires to build a computational graph for ∥⟨J⟩∥2F which is inefficient for a large network
(e.g. WRN-28-10). To this end, we propose an efficient variant of EJR. SVD of the Jacobian is ⟨J⟩ = UΣV T where
U ∈ Rm×m,Σ ∈ Rm×C ,V ∈ RC×C where

Σi,j =

{
σi if i = j ∈ [C]

0 if i ̸= j

and σ1 ≥ σ2 ≥ · · · ≥ σC ≥ 0. Then, we have ∥⟨J⟩∥ = σ1 and ∥⟨J⟩∥2F =
∑

i σ
2
i . We propose to update the model

parameter as follows:
θ(t+1) = θ(t) − η∇θL(θ̂

(t)) (53)

where
θ̂ = θ + ρ̃reg⟨J⟩u (54)

and ρ̃reg = ρreg/∥⟨J⟩u∥ with u ∼ SC−1 as in Foret et al. (2021); Liu et al. (2019). This perturbation in θ̂ is highly aligned
with the principal left-singular vectors of the Jacobian and the principal eigenspace of the Hessian. Therefore, the update of
(53) leads to minimize the largest singular values σi of the Jacobian and the sharpness as well. As shown in Table 1, this
method outperforms the state-of-the-art sharpness-aware optimization methods like SAM (Foret et al., 2021) and ASAM
(Kwon et al., 2021) which can be attributed to the principal eigensubspace awareness.

Efficient EJR.v2 We propose another variant using L̂ instead of L in (53) as follows:

L̂ = L+ µregu
T ⟨z⟩ (55)

We can approximate L̂ as follows:

L̂(θ̂) ≈ L̂(θ) + (∇θL̂(θ))
T (ρ̃reg⟨J⟩u) (56)

= L̂(θ) + (∇θL(θ))
T (ρ̃reg⟨J⟩u) + (∇θµregu

T ⟨z⟩)T (ρ̃reg⟨J⟩u) (57)

= L̂(θ) + (∇θL(θ))
T (ρ̃reg⟨J⟩u) + (µreg⟨J⟩u)T (ρ̃reg⟨J⟩u) (58)

= L̂(θ) + (∇θL(θ))
T (ρ̃reg⟨J⟩u) + µregρreg∥⟨J⟩u∥ (59)

≈ L̂(θ) + (∇θL(θ))
T (ρ̃reg⟨J⟩u) + µregρreg∥⟨J⟩∥F /

√
C (60)

We used the first-order Taylor expansion of L̂(θ+ ρ̂reg⟨J⟩u) in (56). We expect additional effect of minimizing µregu
Tz+

µregρreg∥⟨J⟩∥F /
√
C ≈ µregρreg∥⟨J⟩∥F /

√
C compared to the first variant.
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Figure 36: We plot the test accuracy for different learning rates η and regularization coefficients λreg. The models are
trained with batch size of |B| = 128 on CIFAR-10.
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Table 5: Effectiveness of Efficient EJR. We report improvement (∆Acc.) and Error Reduction Rate (ERR) on CIFAR-10
when trained with EJR (+EJR), compared to the standard training (Baseline). We used Setting 1 and Setting 2 in Table 4 for
SimpleCNN and WRN-28-10, respectively.

Dataset Network
Architecture

Batch Size lr Reg. param. Test Accuracy ∆Acc.
(%p)

ERR
(%)Baseline +EJR

CIFAR-10

SimpleCNN

128

0.003 λreg = 0.01 66.71 75.40 +8.69 26.10
0.01 λreg = 0.03 67.88 75.66 +7.78 24.22
0.03 λreg = 0.01 69.83 75.53 +5.70 18.89
0.1 λreg = 0.03 70.33 74.59 +4.26 14.36
0.3 λreg = 0.01 69.34 73.47 +4.13 13.47

50000
(full-batch)

0.01

λreg = 0.001

66.81 74.43 +7.62 22.96
0.03 67.72 74.31 +6.59 20.42
0.1 67.53 73.69 +6.16 18.97
0.3 61.08 72.15 +11.07 28.44

WRN-28-10
(200 epochs)

128 0.1

ρreg = 0.5

95.93±0.15

96.44 +0.51 12.72
ρreg = 1 96.57 +0.64 15.72
ρreg = 2 96.62 +0.69 16.95
ρreg = 3 96.30 +0.37 9.09

WRN-28-10
(400 epochs)

128 0.1

ρreg = 0.5

96.10±0.05

96.65 +0.55 14.10
ρreg = 1 96.78 +0.68 17.44
ρreg = 2 97.07 +0.97 24.87
ρreg = 3 96.79 +0.69 17.69

CIFAR-100

WRN-28-10
(200 epochs)

128 0.1

ρreg = 0.5

80.29±0.25

80.42 +0.13 0.66
ρreg = 1 81.11 +0.82 4.16
ρreg = 2 81.50 +1.21 6.14
ρreg = 3 82.51 +2.22 11.26
ρreg = 4 82.65 +2.36 11.97
ρreg = 5 82.31 +2.02 10.25
ρreg = 6 82.03 +1.74 8.83

WRN-28-10
(400 epochs)

128 0.1

ρreg = 1

80.69±0.21

82.55 +1.86 9.63
ρreg = 2 82.51 +1.82 9.42
ρreg = 3 82.84 +2.15 11.13
ρreg = 4 83.35 +2.66 13.78
ρreg = 5 83.73 +3.04 15.74
ρreg = 6 83.16 +2.47 12.79
ρreg = 7 83.12 +2.43 12.58
ρreg = 8 81.16 +0.47 2.43
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Table 6: Effectiveness of Efficient EJR.v2. We report improvement (∆Acc.) and Error Reduction Rate (ERR) on
CIFAR-10 when trained with the second variant of EJR (+EJR.v2), compared to the standard training (Baseline). We used
Setting 2 in Table 4

Dataset Network
Architecture

Batch Size lr Reg. param. Test Accuracy ∆Acc.
(%p)

ERR
(%)Baseline +EJR.v2

CIFAR-10
WRN-28-10
(400 epochs)

128 0.1

ρreg = 2, µreg = 0.001

96.10±0.05

97.28 +1.18 30.26
ρreg = 2, µreg = 0.003 97.32 +1.23 31.28
ρreg = 2, µreg = 0.01 97.33 +1.23 31.54
ρreg = 2, µreg = 0.03 97.38 +1.28 32.82
ρreg = 2, µreg = 0.1 97.17 +1.07 27.44
ρreg = 1, µreg = 0.01 97.07 +0.97 24.87
ρreg = 1, µreg = 0.02 97.34 +1.24 31.79
ρreg = 1, µreg = 0.06 97.33 +1.23 31.54
ρreg = 1, µreg = 0.1 97.26 +1.16 29.74
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R. Adversarial Robustness
We also apply EJR to train a model that is robust to adversarial attacks (Szegedy et al., 2013). Adversarially robust training
suffers from robust overfitting (Rice et al., 2020) and we expect EJR to help to improve robust generalization. We test the
effectiveness of EJR with AT (Madry et al., 2018) and TRADES (Zhang et al., 2019). Table 2 shows that the proposed
method can obtain better robust generalization against the adversarial attacks. We report the best result with the regularization
parameter tuning. We follow a similar setting to Pang et al. (2020).

We tune the regularization parameter ρreg as in Table 7 to improve the results and to report the best results in Table 2.
However, we did not perform an exhaustive investigation due to limited computational resources, so there is still room for
further improvement.

Table 7: Adversarial training with efficient EJR on CIFAR-10 compared with AT (Madry et al., 2018) and TRADES
(Zhang et al., 2019). We report Standard Accuracy and robust accuracy (ϵ = 8/255) against PGD-20 and AutoAttack
(AA) (Croce & Hein, 2020).

Model Method Epoch ρreg βTRADES Standard PGD-20 AA

PreAct
ResNet-18

AT Baseline 110 - - 82.45 52.85 48.76

AT-EJR
110 0.05 - 82.32 53.58 49.14
110 0.1 - 81.45 53.61 48.77

TRADES Baseline
110 - 6 82.34 52.83 49.06
110 - 10 79.20 53.19 49.07

TRADES-EJR

110 0.1 6 81.56 53.05 49.56
110 0.1 10 80.43 53.44 49.00
110 0.2 6 81.87 53.19 49.37
110 0.2 10 80.68 53.37 49.21

WRN-34-10

AT Baseline 120 - - 86.99 52.20 49.83

AT-EJR
120 0.05 - 87.16 55.89 52.70
120 0.1 - 86.85 57.82 53.73

TRADES Baseline
120 - 6 85.23 55.68 52.46
120 - 10 83.62 57.08 53.29

TRADES-EJR

120 0.02 6 85.77 56.97 53.62
120 0.02 10 83.61 57.08 53.73
120 0.1 6 85.91 56.34 53.18
120 0.1 10 83.97 57.48 53.85
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