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ABSTRACT

Existing Large Language Model (LLM) based autoregressive (AR) text-to-speech
(TTS) systems, while achieving state-of-the-art quality, still face critical chal-
lenges. The foundation of this LLM-based paradigm is the discretization of the
continuous speech waveform into a sequence of discrete tokens by neural audio
codec. However, single codebook modeling is well suited to text LLMs, but suf-
fers from significant information loss; hierarchical acoustic tokens, typically gen-
erated via Residual Vector Quantization (RVQ), often lack explicit semantic struc-
ture, placing a heavy learning burden on the model. Furthermore, the autoregres-
sive process is inherently susceptible to error accumulation, which can degrade
generation stability. To address these limitations, we propose CaT-TTS, a novel
framework for robust and semantically-grounded zero-shot synthesis. First, we
introduce S3Codec, a split RVQ codec that injects explicit linguistic features into
its primary codebook via semantic distillation from a state-of-the-art ASR model,
providing a structured representation that simplifies the learning task. Second, we
propose an “Understand-then-Generate” dual-Transformer architecture that de-
couples comprehension from rendering. An initial “Understanding” Transformer
models the cross-modal relationship between text and the audio’s semantic tokens
to form a high-level utterance plan. A subsequent “Generation” Transformer then
executes this plan, autoregressively synthesizing hierarchical acoustic tokens. Fi-
nally, to enhance generation stability, we introduce Masked Audio Parallel Infer-
ence (MAPI), a nearly parameter-free inference strategy that dynamically guides
the decoding process to mitigate local errors. Extensive experiments demonstrate
that the synergy of our principled architecture and semantically-aware codec al-
lows CaT-TTS to achieve new state-of-the-art performance in zero-shot voice
cloning, with MAPI providing a measurable boost in generation robustness on
benchmark datasets. Project page: https://anonymous.4open.science/r/CaT-TTS-
66A1.

1 INTRODUCTION

Large Language Model (LLM) based autoregressive (AR) models have achieved state-of-the-art
quality in zero-shot Text-to-Speech (TTS) with discrete audio representations (Wang et al., 2023; Du
et al., 2024a;b; Anastassiou et al., 2024). With a few seconds of audio prompt, current TTS models
are able to synthesize speech for any given text and mimic the speaker of the audio prompt. Contrary
to NAR models (Chen et al., 2024b; Le et al., 2023), the sequential nature of AR models, where
each acoustic token is conditioned on all its predecessors, naturally captures the long-range tempo-
ral dependencies essential for rendering intricate intonation, rhythm, and emotional nuance. This
sequential process synergizes perfectly with the in-context learning (ICL) capabilities of LLMs (Ye
et al., 2025b; Wang et al., 2025b), providing a powerful mechanism for propagating the fine-grained
acoustic characteristics of a voice prompt throughout a newly synthesized utterance.

Despite the remarkable progress in LLM-based zero-shot TTS, several fundamental challenges per-
sist. The foundation of this LLM-based paradigm is the discretization of the continuous speech
waveform into a sequence of discrete tokens, a task handled by a neural audio codec (Kreuk et al.,
2022; Copet et al., 2023). Semantic tokens, typically derived from discretized self-supervised learn-
ing (SSL) models, are considered to exhibit high alignment with text while leading to poor recon-
struction (Du et al., 2024a; Ye et al., 2025a; Gong et al., 2025). In contrast, acoustic tokens often
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derived from speech codecs trained through residual vector quantization GAN (RVQ-GAN), are
recognized for capturing the details of the audio waveform, enabling high-quality synthesis, but
lack explicit semantic grounding, forcing the LLM to learn the complex mapping from text to raw
acoustic properties from scratch (Défossez et al., 2024; Kumar et al., 2023; Han et al., 2025). We
assume that a better audio tokenizer should contain rich semantic information to facilitate an easy
understanding of audio content, thus reducing the language model’s burden in interpreting tokens,
and contains acoustic information for speech reconstruction. For better linguistic understanding and
acoustic reconstruction, inspired by Mimi codec and SpeechTokenizer (Défossez et al., 2024; Zhang
et al., 2023a), we propose S3Codec, a split residual vector quantization speech codec with semantic
distillation. However, rather than using SSL models, we adopt a pretrained state-of-the-art ASR
model for semantic distillation, which we assume brings more explicit linguistic features.

We argue that speech synthesis is fundamentally an information-increasing process, where a thor-
ough understanding of the source conditions is a prerequisite for accurate and effective genera-
tion (Chu et al., 2023; Xu et al., 2025; Xie & Wu, 2024). To embody this principle, we pro-
pose CaT-TTS, a novel ”Comprehend-and-Talk” text-to-speech framework, realized through a dual-
transformer architecture that explicitly decouples contextual comprehension from acoustic render-
ing. Our first module, the Semantic Transformer, operates autoregressively on the semantic level.
Its sole purpose is to model the rich interplay between the input text and the core semantic content
of the voice prompt, building a holistic high-level representation, a latent “plan” for the entire ut-
terance. Following this, our second module, the Acoustic Transformer, takes this contextual plan
as its foundation and executes the synthesis. It generates the detailed acoustic tokens autoregres-
sively. This design allows the model first to understand “what” and “how”, and then generates the
“sound”, which dramatically reduces the modeling burden at each step, leading to more coherent
and expressive output.

While our architectural design provides a more stable foundation, the challenge of long sequence
lengths in speech remains (Zhang et al., 2023b; Le et al., 2023). Even with our proposed high
compression ratio codec, which significantly shortens the acoustic token sequences, the risk of error
accumulation persists in any AR system. To overcome this challenge, inspired by Classifier-Free
Guidance (CFG) in diffusion models (Ho & Salimans, 2022) and Parallel Scaling Laws (Chen et al.,
2025), we introduce Masked Audio Parallel Inference (MAPI). It constructs parallel computing
streams with different masked audio tokens and aggregates these streams adaptively with learnable
weights. This technique acts as a corrective mechanism, steering the model back on track when it
begins to “hallucinate” and ensuring robust output.

In summary, we propose a novel zero-shot TTS system CaT-TTS powered by S3Codec. S3Codec
encompasses acoustic and semantic information with low bit rates. Based on S3Codec, Cat-TTS
embodies an understand and then generate rules via a dual language modeling strategy. To mitigate
the error accumulation problem in audio language models, we introduce Masked Audio Parallel
Inference strategy, which is beneficial for more robust token generation. Extensive experiments
have shown that CaT-TTS has achieved a comparable or superior quality to existing models in terms
of speech quality, similarity, and intelligibility.

2 RELATED WORK

Speech Tokenization. The success of autoregressive language models has spurred progress in
speech LLMs, where speech tokenizers are essential for converting continuous signals into discrete
tokens. Speech tokenizers are typically categorized as acoustic or semantic (Wang et al., 2025a;
Yang et al., 2025). Acoustic tokens, optimized for signal reconstruction, capture detailed acoustic
features beneficial for generation, but perform poorly on understanding tasks like ASR. Previous
semantic tokenizers can be trained in two ways: (1) applying clustering or VQ to the representa-
tions of self-supervised learning models (Zhang et al., 2023a; Défossez et al., 2024). (2) applying
a VQ layer to the intermediate layer of ASR models (Du et al., 2024a;b). These semantic tokeniz-
ers typically use a single codebook, have a simple architecture, are rich in linguistic information,
and are well-suited for LLMs. However, finer-grained acoustic details such as pitch and prosody,
are lost, resulting in poor performance on generation tasks (Łajszczak et al., 2024; Betker, 2023).
An alternative for audio tokenization is to use multi-codebook residual vector quantization (RVQ).
In RVQ, an audio frame is represented by a sum of vectors from several quantizers, allowing for

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

high-fidelity reconstruction over a range of bitrates by capturing details that single-codebook mod-
els often miss (Kumar et al., 2023; Défossez et al., 2022; Zeghidour et al., 2021). To align residual
speech codec tokens with large text models, recent efforts have explored modeling both semantic
and acoustic features simultaneously. SpeechTokenizer (Zhang et al., 2023a) enhances the RVQ-
GAN paradigm with semantic distillation to guide the first layer of RVQ to align with a teacher SSL
model. X-codec (Ye et al., 2025a) proposes an X-shaped structure where each layer of RVQ con-
tains semantic and acoustic information. Mimi (Défossez et al., 2024) argues that distilling semantic
information into the first level of a single RVQ will trade the auido quality restoration performance
of the residual codebooks. Similar to Mimi, we propose S3Codec: a Split RVQ Speech Tokenizer
with Semantic Distillation. Unlike Mimi, we adopt DAC architecture with pretrained Whisper for
semantic distillation. This approach allows S3Codec to have good acoustic restoration ability and
stronger linguistic information.

LLM-based Zero-Shot TTS. Inspired by the success of LLM, several recent works adopt language
models to model text-to-speech (TTS) tasks (Chen et al., 2024a; Kharitonov et al., 2023; Meng
et al., 2024). The LLM-based TTS systems are typically trained on tens of thousands of hours of
speech data and have hundreds of millions of parameters, hence can leverage the emergent abil-
ities of LLMs like in-context learning to enable zero-shot TTS. VALL-E pioneered treating TTS
as a conditional language modeling problem by converting waveforms into neural codec tokens.
Spear-TTS (Kharitonov et al., 2023) integrates multiple AR models to support multispeaker TTS
with minimal supervision. Many systems use a single discrete codebook to quantize semantic fea-
tures (Wang et al., 2025b; Ye et al., 2025b). Although simple, this bottleneck loses fine acoustic
detail (Han et al., 2025). Recent TTS systems have often combined an AR language model with
additional components (Du et al., 2024a), such as diffusion, to generate more natural, controllable
speech when trained on large datasets. While these methods can produce high-quality results, most
of them neglect the interactive understanding of speech and text modalities, instead requiring con-
tinuous and fine-grained acoustic features for supplementation. Storing and processing such large-
scale features is prohibitive, hindering training on hundreds of billions of tokens. In contrast, our
approach utilizes a dual-autoregressive structure powered by a split RVQ discretization technique,
with the first semantic transformer for modality understanding and the second acoustic transformer
for acoustic information generation based on the context guide produced by the semantic trans-
former. This understand-then-generate paradigm fits the natural flow of speech, takes advantage of
the context learning of LLMs, and avoids the need for additional acoustic features for supplementary
reconstruction.

3 METHOD

3.1 S3CODEC: SPLIT RVQ WITH SEMANTIC DISTILLATION FOR SPEECH TOKENIZER

To discretize waveforms into audio tokens, we introduce S3Codec, a neural audio codec that oper-
ates as an autoencoder with a discrete bottleneck. Figure 2 shows the architecture. Based on the
DAC architecture (Kumar et al., 2023), the encoder projects a single-channel waveform x ∈ RT to
a latent representation A = enc(x) ∈ RL×D by cascading residual convolutional blocks that inter-
leave dilated and strided convolutions along with Snake nonlinearities and weight normalizaton, and
Quantizer quantize the latent representation to disrete representations C ∈ RK×L×D where L rep-
resents the length of encoded tokens, K represents the number of codebooks and D represents the
dimension of codebook. Similarly to SpeechTokenizer and Mimi, we distill semantic information
into the first level of RVQ. However, instead of using SSL models like HuBERT (Hsu et al., 2021)
as a semantic teacher, we adopt Whisper (Radford et al., 2023), a state-of-the-art model for auto-
matic speech recognition and speech translation whose hidden representation contains rich explicit
linguistic features. Mimi (Défossez et al., 2024) found that, while distillation significantly improves
the phonetic discriminability of the first quantizer, it also negatively affects the audio quality. To
address the issue, we split the RVQ layers in a way similar to Mimi. Rather than a single RVQ with
K levels, we distill the semantic information into a plain VQ and apply an RVQ with K−1 levels in
parallel; thus the constraint of acoustic information being conserved in the residual of the semantic
quantizer is removed.
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Figure 1: S3Codec architecture overview.
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Figure 2: An overview of CaT-TTS architecture. Semantic Transformer models the temporal context
information, while Acoustic Transformer models the acoustic information from coarse to fine.

3.1.1 TRAINING OBJECTIVE

S3Codec is trained with the combination of reconstruction, semantic distillation and adversarial
losses. Reconstruction and adversarial losses can be found in Appendix E. For semantic distillation
task, we calculated the cosine distance between the output of the first quantizer and the transformed
Whisper embeddings, which is denoted as cos(·), to perform distillation. Formally, the distillation
loss is defined as follows:

Ldistill = 1− 1

L

L∑
t=1

cos(C0
t ,Proj(ES)t), (1)

where C0
t ∈ RD represents the first encoded embeddings for the frame t, ES ∈ RLS×DS repre-

sents the semantic embeddings obtained from the Whisper Encoder, Proj(·) : RLS×DS → RL×D

represents the projection operation that maps whisper latent embedding to the space of audio embed-
ding, LS represents the length of semantic frames, and Proj(ES)t represents the projected whisper
embedding for frame t. The details of the overall training objective are listed in the Appendix C.

3.2 DUAL LANGUAGE MODELING OF AUDIO TOKENS

3.2.1 PROBLEM FORMULATION

Given a dataset D = {x,y}, where y is an audio sample and x is the corresponding text transcrip-
tion. We use a pre-trained neural codec model to encode each audio sample into discrete codes,
denoted as S3Codec(y) = A ∈ RK×L, where K represents the number of codebooks, and L is the
downsampled utterance length. At ∈ RK represents the K codes for frame t and Ak

t represents
the code for the k-th codebook of frame t. Mathematically, given the text prompt T and the speech
prompt Ã, our target is to train a neural language model to generate the discrete code matrix A with
the optimization objective of maximizing the distribution:

P(A|T , Ã). (2)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To build such a model, we propose a dual auto-regressive Transformer modeling framework. The
dual auto-regressive (AR) Transformer models the residual vector quantization (RVQ) output as a
two-level autoregressive process, operating first along the temporal axis and subsequently across
codebooks. The core intuition behind this design is to preserve both the causal nature of speech
generation and the hierarchical refinement characteristic of RVQ. We denote the first transformer
as the semantic transformer, following the causal nature of speech generation and context learning,
while the second transformer is the acoustic transformer, modeling the acoustic feature in a coarse-
to-fine manner.

3.2.2 SEMANTIC TRANSFORMER

The semantic transformer functions as a thinker responsible for processing and understanding the
text and the audio modality, and generating high-level representations. Mathematically, let T ∈ RM

represent the tokenized textual prompt, A ∈ RK×L represent the corresponding speech, and
Ai ∈ RL, i = {0, · · · ,K−1} represent the speech codes in the i-th codebook, where M represents
the length of the encoded text token and L represents the length of the encoded speech token. Given
tokenized text prompt and encoded prompt audio codes, the semantic transformer learns the linguis-
tic features of the text T and the discrete acoustic representation of the prompt audio Ã and outputs
a latent feature Hctx as a guide for the generation of subsequent speech tokens. The optimization
objective of the semantic transformer is maximizing the distribution:

P(Hcxt|T , Ã; θS) =

L∏
t=1

P(Hcxt
t |T ,Hctx

<t , Ã; θS). (3)

Speech Token Sequence Modeling. To be able to inject discrete speech representations into LLM,
some research proposes to use a single codebook codec to make the speech modality well adapted
in the way of text tokens. CaT-TTS fits the RVQ paradigm and, specifically, the multiple codebook
information at each time step will be aggregated as the speech representation of the current time
step. Thus, at each time step t, the audio representation can be formulated as St =

∑K−1
i=0 Ai

t,
where Ai

t represents the i-th encoded representation for frame t.

Next Token Embedding Prediction. In order to inject RVQ speech representation into LLM, we
sum the codebook dimensions of the multi-codebook parallel sequence. Aggregation brings rich
linguistic and acoustic content to the semantic transformer; however, the speech representation of
each time step is no longer a quantitative representation. To solve this problem, we propose direct
embedding prediction. Instead of predicting discrete token IDs and computing cross-entropy loss,
we directly predict the next embedding vector in the continuous semantic space and optimize us-
ing Mean Squared Error Loss between predicted and target embeddings. Specifically, our model
learns to predict the next semantic embedding as Hctx

t+1 = θS(H
ctx
1 ,Hctx

2 , ...,Hctx
t ), where Hctx

t
represents the continuous semantic embedding at position t. To be more task-specific, we denote
Hctx .

= (T ⊕ S), where T represents the text modality, S represents the audio modality, and ⊕
represents the concatenate operation. We split the high-level representation and focus on speech
modality; thus the optimization objective can be formulated as follows:

P(Hcxt|T , Ã; θS) = P(S|T , Ã; θS) =

L|S|∏
t=1

P(St|T ,S<t, Ã; θS), (4)

where L|S| represents the length of speech frames, as the text tokens are ignored. To achieve this,
we replace the standard cross-entropy loss with MSE loss to handle continuous targets:

Lctx = −
L|S|∑
t=1

logP(St|T ,S<t, Ã; θS)→ Lctx =

L|S|∑
t=1

||St − θS(S<t, T , Ã)||2. (5)

3.2.3 ACOUSTIC TRANSFORMER

The purpose of the acoustic transformer is to reconstruct discrete speech representations from
coarse-grained to fine-grained based on the learned preceding text and speech modal information.
The optimization objective of the acoustic transformer is maximizing the following distribution:

P(At|St; θA) =

K−1∏
k=0

P(Ak
t |A<k

t ,St; θA). (6)
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Table 1: Objective Evaluation Metrics for Comparison with Baseline Codecs. S-T represents
SpeechTokenizer for simplicity.

Tokenizer CB Nq FR BR (bps) PESQ ↑ STOI ↑ STFT ↓ Mel ↓ SIM ↑
Encodec 1024 8 75Hz 6k 2.76 0.94 0.11 2.13 0.89
DAC-8 1024 8 75Hz 6k 3.46 0.95 0.06 2.02 0.96
S-T 1024 8 50Hz 4k 2.66 0.92 0.59 7.07 0.84

Encodec-2 1024 2 75Hz 1.5k 1.56 0.94 0.23 4.45 0.90
DAC-2 1024 2 75Hz 1.5k 1.51 0.83 0.12 3.36 0.49
BigCodec 8192 1 80Hz 1.04k 2.68 0.93 - - 0.84
Xcodec 1024 2 50Hz 1k 2.33 0.87 - - 0.72
S-T 1024 2 50Hz 1k 1.25 0.77 0.68 8.02 0.36
Mimi 2048 8 12.5Hz 1.1k 2.24 0.90 - - 0.73
MBCodec 2048 8 25Hz 2.2k 2.98 0.94 0.17 3.62 0.87

S3Codec 4096 8 12.5Hz 1.2k 2.85 0.94 0.12 4.01 0.89

The combination of the semantic transformer and the acoustic transformer can guide the generation
of target audio through the understanding of text and speech modalities, which conforms to the
objective laws of human speech production. Finally, the overall optimization objective Eq.2 can be
detailed as:

P(A|T , Ã) =

L|S|∏
t=1

[
P(St|S<t, T , Ã; θS) ·

K−1∏
k=0

P(Ak
t |A<k

t ,St; θA)

]
. (7)

Consequently, the overall goal of training optimization objective is fourmulated as follows:

Ltotal =

L|S|∑
t=1

[
||St − θS(S<t, T , Ã)||2 −

K−1∑
k=0

logP(Ak
t |A<k

t ,St; θA)

]
. (8)

The mathematical derivation can be found in the Appendix D.

3.3 MASKED AUDIO PARALLEL INFERENCE

Due to the uncertainty of each token prediction, especially in speech generation, errors accumu-
late, which reduces the expressiveness of the generated speech. To address this challenge, inspired
by (Chen et al., 2025), we introduce Masked Audio Parallel Scaling in the semantic generation
module. Specifically, for each prompt token sequence, we duplicate it P times and apply a mask-
ing strategy to speech tokens separately with a certain probability, resulting in a total of P token
sequences. The model then produces P output sequences, and these P candidates are weighted
and summed with a learnable weight to produce the final output sequence. Formally, in our speech
generation task, the discrete text token embeddings and audio embeddings will be concatenated,
resulting in the input embeddings, denoted as x ∈ RLin×D. Specifically, we denote our trained
semantic transformer θS : RLin×D → RLin×D, where θ is the parameter, Lin is the length of in-
put text and audio embeddings and D is the model dimension, the final output is formulated in the
following form:

θ∗S(x) = w1θS(z1) + w2θS(z2) + · · ·+ wP θS(zP ), (9)

where P denotes the number of parallel streams, z1, · · · , zp are P distinct mask transformations
of x, and w1, · · · , wP are adaptive-trained aggregation weights. More details can be found in the
Appendix B.

4 EXPERIMENTS

4.1 AUDIO QUANTIZATION AND RECONSTRUCTION ANALYSIS

S3Codec is trained on the subset of our amassed speech data. Implementation details are listed in
Appendix E.

6
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Table 2: Objective evaluation in the SeedTTS test datasets.

Model test-zh test-en test-hard
WER(%) ↓ SIM ↑ WER(%) ↓ SIM ↑ WER(%) ↓ SIM ↑

NAR-involved Models

MaskGCT 2.27 0.774 2.62 0.714 10.27 0.748
E2 TTS (32 NFE) 1.97 0.730 2.19 0.710 - -
F5-TTS (32 NFE) 1.56 0.741 1.83 0.647 8.67 0.713
Seed-TTS 1.12 0.796 2.25 0.762 7.59 0.776
FireRedTTS 1.51 0.635 3.82 0.460 17.45 0.621
CosyVoice 3.63 0.723 4.29 0.609 11.75 0.709
CosyVoice 2 1.45 0.748 2.57 0.652 6.83 0.724
CosyVoice 3-0.5B 1.16 0.780 2.02 0.718 6.08 0.758

Pure AR based Models
QTTS 1.66 0.648 3.17 0.652 14.45 0.641
Spark-TTS 1.20 0.672 1.98 0.584 - -
Llasa-1B-250k 1.89 0.668 3.22 0.572 12.13 0.638
Llasa-3B-250k 1.60 0.675 3.14 0.579 13.37 0.652
Llasa-8B-250k 1.59 0.684 2.97 0.574 11.09 0.660

CaT-TTS 1.56 0.678 2.35 0.668 9.75 0.674

Baselines. To assess the reconstruction performance of S3Codec, we employ several state-of-the-art
neural codecs as baselines, including Encodec (Défossez et al., 2022), DAC (Kumar et al., 2023),
QDAC (Han et al., 2025), SpeechTokenizer (Zhang et al., 2023a), BigCodec (Xin et al., 2024),
Xcodec (Ye et al., 2025a) and MBCodec (Zhang et al., 2025).

Evaluation Metrics. To evaluate the performance of S3Codec, we employ several metrics, in-
cluding SIM, STFT Distance, Mel Distance, short-time objective intelligibility (STOI) (Taal et al.,
2010) and perceptual evaluation of speech quality (PESQ) (Rix et al., 2001). All evaluations were
conducted on the LibriSpeech (Panayotov et al., 2015) test-clean subset. More detailed evaluation
set up is listed in Appendix E.2.

Evaluation Results. As shown in Table 4, S3Codec achieves SOTA-comparable performance with
a very low frame rate in most evaluation dimensions. S3codec achieves higher SIM scores than
MBcodec, Mimi, and SpeechTokenizer with the same codebooks. In terms of the restoration and
perception indictors PESQ and STOI, S3codec is comparable to the high bitrates Encodec and DAC-
8. At the evaluation dimension of STFT and Mel indicators, S3Codec also performs well among
low-bitrate codecs. These results provide preliminary evidence of the model’s effectiveness in re-
constructing speech. As for the semantic evaluation, results in the Appendix E.2 demonstrate the
superiority of S3Codec.

4.2 ZERO-SHOT TTS PERFORMANCE

Datasets. To train the CaT-TTS models, we have amassed a considerable dataset comprising mul-
tiple languages. The dataset contains about 200k hours labeled speech, with about 85% Chinese
data and 15% English data. We evaluate our zero-shot TTS models with five benchmarks: (1)
Seed-TTS test-en, a test set introduced in Seed-TTS of sample extracted from English public cor-
pora, includes 1,000 samples from the Common Voice dataset. (2) SeedTTS test-zh, a test set
introduced in Seed-TTS of samples extracted from Chinese public corpora, includes 2,020 samples
from the DiDiSpeech (Guo et al., 2021) dataset. (3) Seed-TTS test-hard, includes 400 samples that
consist of complex Chinese sentences. (4) PGC-Hard, includes 1500 Chinese samples, containing
Professionally-Generated Content. (5) PGC-Poly, includes 1500 Chinese samples, containing poly-
phonic characters. The PGC testset is specially designed to test model generalization on difficult,
out-of-domain voices.

Evaluation Metrics. We adopt the word error rate (WER) and speaker similarity (SIM) metrics for
objective evaluation. For WER, we employ Whisper-large-v3 (Radford et al., 2023) and Paraformer-
zh (Gao et al., 2023) as the automatic speech recognition engines for English and Mandarin, re-
spectively. For SIM, we use WavLM-large fine-tuned on the speaker verification task to obtain
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Table 3: Objective evaluation on hard mandarin test. † represents the self-implemented model. −
means the average evaluation results across three sets.

Model Model Size WER(%) ↓ SIM↑ UTMOS↑
Seed-Hard PGC-Hard PGC-Poly - -

CosyVoice 0.3B 11.75 7.86 16.22 0.709 3.01
CosyVoice 2 0.5B 6.83 6.11 14.25 0.713 3.02
L-CosyVoice50† 0.2B 9.52 8.15 18.71 0.691 2.92
L-CosyVoice25† 0.5B 7.46 6.83 13.84 0.706 2.99

Q-TTS 0.2B 14.45 7.89 14.37 0.654 3.03
VALL-E† 0.2B 13.12 9.68 15.71 0.631 3.05

CaT-TTS 0.4B 9.75 7.03 13.97 0.672 3.13

speaker embeddings used to calculate the cosine similarity of speech samples of each test utterance
against reference clips. For naturalness, we use SpeechMOS MOS prediction model to calculate
UTMOS (Saeki et al., 2022) scores for evaluation.

Baselines. We compare our models with state-of-the-art zero-shot TTS systems, including Seed-
TTS (Anastassiou et al., 2024), FireRedTTS (Guo et al., 2024), MaskGCT (Wang et al., 2024),
E2 TTS (Eskimez et al., 2024), F5-TTS (Chen et al., 2024b), CosyVoice (Du et al., 2024a),
CosyVoice2 (Du et al., 2024b), VALL-E (Wang et al., 2023) and QTTS (Han et al., 2025). De-
tails of each model can be found in the Appendix F.2. In particular, we also compare the per-
formance of SOTA two-stage models, including VALL-E, CosyVoice, CosyVoice 2, QTTS and
self-implement AR (Llama) (Dubey et al., 2024) + flow-matching models (Lipman et al., 2022),
where L-CosyVoice50 means Llama backbone with 50 Hz semantic codec (Hsu et al., 2021) and
L-CosyVoice25 means with 25 Hz.

Training. We train CaT-TTS on 8 NVIDIA H20 96GB GPUs. The parallel stream is set to 4. For
more details about the model architecture, please refer to Appendix F.1. We optimize the model
with the AdamW optimizer with a learning rate of 1e-5 and 20K warm-up steps.

Evaluation Results. To evaluate CaT-TTS’s zero-shot TTS capatility, we assess its performance
on Seed-TTS-eval and compare it with existing zero-shot TTS models. These experiments focus on
cross-sentence speaker similarity and the generation of intelligible speech. The results are presented
in Table 4.1. As can be seen, CaT-TTS demonstrates a significant superiority in intelligibility for
zero-shot TTS scenarios. With WER 1.56%, 2.35% and 9.75% in test-zh, test-en and test-hard,
respectively, CaT-TTS achieves best or best comparable performance among these baselines, espe-
cially in pure AR based models. In terms of speaking similarity, like the other Pure AR based mod-
els, Cat-TTS’s performance is inferior to NAR-involved models, especially pure NAR models. The
reason is that NAR models like F5-TTS generate based on more explicit acoustic features like Mel-
Spectrogram, and AR+NAR models typically construct acoustic information with acoustic guidance
like speaker similarity vector in the NAR stage. Although with higher indicator performance, we
think it may degrade diversity and cause more storage and processing cost during training. To do a
further comprehensive comparison on zero-shot TTS performance, we compared recent prominent
AR-based two-stage TTS models including VALL-E, CosyVoice, QTTS and reproduced Llama-
CosyVoice as baseline models, and testify the synthesis capability in a more real scenarios. The
evaluation datasets including PGC-Hard and PGC-Poly, which contain more complex real-life sen-
tences and polyphonetic characters, respectively. The results in Table 4.2 demonstrate that CaT-TTS
has SOTA comparable in-context learning ability. With WER 9.75%, 7.03% and 13.97% in Seed-
TTS test-zh-hard, PGC-Hard and PGC-Poly, respectively. Q-TTS and VALL-E are Transformer-
based TTS systems powered by codec, which is similar to CaT-TTS. As can be seen, CaT-TTS
achieves better performance. Although without additional acoustic information supplement through
flow-matching, CaT-TTS has comparable or superior performance in terms of UTMOS and WER,
demonstrating the context-learning ability of our system.

4.3 ABLATION STUDY

Modality UnderStanding. To demonstrate the effectiveness and superiority of the modality under-
standing loss. We trained two models in sub-dataset with the same architecture but with small model

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Objective Evaluation. Comparison between models trained with and without semantic
guidance.

Model WER(%) ↓ SIM↑ UTMOS ↑
SeedTTS-test PGC-Hard PGC-Poly - -

CaT-TTS w/o 3.97 11.83 18.34 0.649 2.64

CaT-TTS 3.31 9.74 16.57 0.658 2.78

Figure 3: The result analysis of number of parallel streams.

size, and one of them is trained without semantic guidance. Table 4.2 shows the comparison results.
With the loss of semantic guidance removed, this leads to performance decreases, especially with the
WER increasing from 3.31% to 3.97% in SeedTTS-test, 9.74% to 11.83% in PGC-Hard and 16.57%
to 18.34% in PGC-Poly, and the speech quality indicators SIM and UTMOS have also been reduced.
During model training, semantic loss forces the semantic transformer to enhance its understanding
of text and semantic modalities, thus improving the linguistic understanding ability of CaT-TTS.
These results underscore the pivotal role of semantic loss in ensuring accurate semantic information
learning, which is essential for maintaining high-fidelity generation of acoustic transformer.

Masked Audio Parallel Inference. To evaluate the effectiveness of masked parallel inference, we
trained CaT-TTS-small in the subset of the collected dataset. We set different parallel streams and
evaluated the performance in the PGC-Hard, PGC-Poly, and SeedTTS test-zh-easy dataset. Results
in Figure 4 show the average performance analysis of MAPI parallel streams. The left subfigure
shows the speech intelligibility improvement that MAPI brings. The middle subfigure shows that
as the number of parallel streams increases, the acoustic performance SIM score and the UTMOS
score show an upward trend. To demonstrate the robustness of MAPI, each sample in these datasets
will be evaluated 10 times. As can be seen in the right subfigure in Figure 4, the performance of each
inference is more stable in terms of the WER indicator. Due to the parallel computing capability
of GPU, MAPI almost does not bring additional time consumption, but as the number of parallel
streams increases, the utilization of GPU resources also increases. It is necessary to select the most
appropriate number of parallel streams according to the requirements of the actual scenario.

5 CONCLUSION

In this work, we introduced CaT-TTS, a novel Text-to-Speech system designed to address key chal-
lenges in representation and generation. At its core is S3Codec, a split RVQ codec that resolves
the trade-off between reconstruction fidelity and semantic interpretability by injecting linguistic fea-
tures via ASR-based distillation. Building on this semantically aware representation, we proposed
a principled “Understand-then-Generate” paradigm, realized through a dual-Transformer architec-
ture that decouples contextual comprehension from acoustic rendering. To complement this, we
developed Masked Audio Parallel Inference (MAPI), a nearly parameter-free inference strategy that
enhances generation stability by dynamically mitigating local decoding errors. Extensive experi-
ments demonstrate that the synergy between our architecture and codec allows CaT-TTS to achieve
state-of-the-art performance in zero-shot voice cloning, with MAPI providing a measurable boost in
robustness on benchmark datasets.
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Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. arXiv preprint arXiv:2210.13438, 2022.
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A THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models (LLMs), such as OpenAI’s ChatGPT, as a writing-
assistance tool during the preparation of this manuscript. The primary use of the LLM was for
improving the clarity and readability of the text, correcting grammatical errors, and rephrasing sen-
tences. We emphasize that the LLM was used solely for text editing and was not involved in the
generation of core scientific ideas, experimental design, data analysis, or the drawing of conclu-
sions. All intellectual content, arguments, and the final manuscript were produced by the human
authors, who take full responsibility for them.

B IMPLEMENTATION DETAILS OF MAPI

Input Transformation We expect that the transformations applied to the input embedding x can
significantly influence the output, which avoids excessively similar outputs across different parallel
streams. Inspired by (Chen et al., 2025), we utilize random mask strategy to implement input trans-
formation. To be specific, we first duplicate the input x into P parallel copies, distinguishing them
with different mask segments in each attention layer, which is sufficient to ensure diverse outputs
across different streams.

Output Aggregation As stated in (Chen et al., 2025), dynamic aggregation weights performs better
than static ones. Similarly, we concatenate each output together and use an MLP h : Rd×P → RP

to convert it into a vector of length P as aggregation weights. The process can be formalized as:

w1, · · · , wP ← Softmax(h(Concat[θS(z1); · · · ; θS(zP )])), (10)

where Softmax ensures aggregation weights are normalized, zi represents masked input tokens. It
can be seen as dynamically weighting different parallel streams during forward process for each
token.

C MODEL ARCHITECTURE AND TRAINING RECIPE

C.1 MODEL ARCHITECTURE AND SETTING

Model Architecture Our proposed audio codec is a fully convolutional autoencoder consisting of
an encoder, a Residual Vector Quantizer (RVQ), and a decoder. The fundamental component of
our architecture is a residual block, which contains a strided convolution for dimensionality change
(downsampling or upsampling) followed by a stack of convolutional layers. We utilize the non-
linear Snake function as the activation throughout these blocks. The encoder is composed of five
such blocks, which progressively downsample the input waveform with strides of [2, 4, 5, 6, 8]. The
decoder mirrors this structure with five corresponding upsampling blocks with strides of [8, 6, 5, 4,
2] and is configured with an internal channel dimension of 2048.

Model Setting To train the model, we employ a GAN-based objective with a combination of two
discriminators: a multi-period discriminator [18] with periods of [2, 3, 5, 7, 11], and a complex
multi-scale STFT discriminator. The STFT discriminator operates on three resolutions with window
lengths [2048, 1024, 512] and a hop length of 1/4 the window size, using frequency band splits of
[0.0, 0.1, 0.25, 0.5, 0.75, 1.0]. The total loss function is a weighted sum of a GAN loss, feature
matching loss, a codebook loss, and a multi-resolution reconstruction loss. The reconstruction loss
is computed as the L1 distance between the log-mel spectrograms of the original and reconstructed
audio over seven different resolutions. These resolutions use window lengths of [32, 64, 128, 256,
512, 1024, 2048] with a corresponding number of mel bands [5, 10, 20, 40, 80, 160, 320], respec-
tively.

C.2 TRAINING OBJECTIVE

Our model is trained with a multi-task objective that jointly optimizes for reconstruction fidelity and
semantic alignment. The primary task is reconstruction, which is guided by a GAN-based objective
comprising a reconstruction term, a discriminative loss, and an RVQ commitment loss. This is
complemented by a semantic distillation task, which introduces an additional loss term to ensure
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the model’s representations are linguistically meaningful. In the following, x represents an speech
signal and x̂ denotes the reconstructed signal.

Reconstruction Loss The reconstruction loss comprises a time and a frequency domain loss. For
time domain, we minimize the L1 distance between x and x̂, i.e. Lt = ||x − x̂||1. For frequency
domain, we use the L1 loss over the mel-spectrogram using several time scales. Formally, Lf =∑

i∈e ||Si(x) − Si(x̂)||1, where Si is a 64-bins mel-spectrogram using a normalized STFT with
window size of 2i and hop length of 2i/4, e = 5, · · · , 11 is the set of scales.

Discriminator Loss We use the same discriminator as (Kumar et al., 2023) that consist of three
discriminators. The adversarial loss is used to promote perceptual quality and it is defined as a hinge
loss (Lim & Ye, 2017) over the logits of the discriminator, averaged over multiple discriminators
and over time. Let K denote the number of discriminators. For discriminators, LD is defined as :

LD =
1

K

K∑
k=1

max(1 +Dk(x̂), 0) + max(1−Dk(x), 0). (11)

The adversarial loss for the generator Lg is constructed as follows:

Lg =
1

K

K∑
k=1

max(1−Dk(x̂), 0). (12)

Additionally, the feature matching loss for the generator is computed as follow:

Lfeat =
1

KL

K∑
K=1

L∑
l=1

||Dl
k(x)−Dl

k(x̂)||1
mean(||Dl

k(x)||1)
, (13)

where the mean is computed over all dimensions and L is the number of layers in discriminators.
RVQ Commitment Loss We add a commitment loss Lw between the pre-quantized value, and
its quantized value, without gradient computed for the quantized value. The commitment loss is
defined as : Lw =

∑Nq

i=1 ||zi − zqi ||, where zi and zqi denote current residual and nearest entry in
the corresponding codebook respectively.

The generator is trained to optimize the following loss:
LG = λtLt + λfLf + λgLg + λfeatLfeat + λwLw + λdistillLdistill, (14)

where λall are the hyper-parameters used to balance each loss item. The detailed values are refered
to (Kumar et al., 2023). λdistill is set to 0.1 in our work, and Ldistill has been described in Section
3.1.1.

D TRAINING OBJECTIVE OF CAT-TTS

We use the maximum likelihood function to solve this problem.
Ltotal = − logP(A|T , Ã)

= − log

L|S|∏
t=1

[
P(St|S<t, T , Ã; θS) ·

K−1∏
k=0

P(Ak
t |A<k

t ,St; θA)

]

= −
L|S|∑
t=1

log

[
P(St|S<t, T , Ã; θS) ·

K−1∏
k=0

P(Ak
t |A<k

t ,St; θA)

]

= −
L|S|∑
t=1

[
logP(St|S<t, T , Ã; θS) + log

K−1∏
k=0

P(Ak
t |A<k

t ,St; θA)

]

= −
L|S|∑
t=1

[
logP(St|S<t, T , Ã; θS) +

K−1∑
k=0

logP(Ak
t |A<k

t ,St; θA))

]

=

L|S|∑
t=1

[
− logP(St|S<t, T , Ã; θS)−

K−1∑
k=0

logP(Ak
t |A<k

t ,St; θA))

]
. (15)
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To be noticed, in Equation 5, we have

Lctx = −
L|S|∑
t=1

logP(St|T ,S<t, Ã; θS)→ Lctx =

L|S|∑
t=1

||St − θS(S<t, T , Ã)||2, (16)

thus the above equation can be transformed as follows:

Ltotal =

L|S|∑
t=1

[
− logP(St|S<t, T , Ã; θS)−

K−1∑
k=0

logP(Ak
t |A<k

t ,St; θA))

]

= Ltotal =

L|S|∑
t=1

[
||St − θS(S<t, T , Ã)||2 −

K−1∑
k=0

logP(Ak
t |A<k

t ,St; θA)

]
. (17)

E SEMANTIC SUPERIORITY OF S3CODEC

E.1 DETAILS OF S3CODEC

To discretize waveforms into audio tokens, we introduce S3Codec, a neural audio codec that operates
as an autoencoder with a discrete bottleneck. As Figure 2 shows, S3Codec consists of an autoen-
coder and Residual Vector Quantizer. Based on the DAC architecture (Kumar et al., 2023), the en-
coder projects a single-channel waveform x ∈ RT to a latent representation A = enc(x) ∈ RL×D

by cascading residual convolutional blocks that interleave dilated and strided convolutions along
with Snake nonlinearities and weight normalizaton, and Quantizer quantize the latent representa-
tion to disrete representations C ∈ RK×L×D where L represents the length of encoded tokens,
K represents the number of codebooks and D represents the dimension of codebook. Similarly
to SpeechTokenizer and Mimi, we distill semantic information into the first level of RVQ. How-
ever, instead of using SSL models like HuBERT (Hsu et al., 2021) as a semantic teacher, we adopt
Whisper (Radford et al., 2023), a state-of-the-art model for automatic speech recognition and speech
translation whose hidden representation contains rich explicit linguistic features. It projects a 16kHz
waveform into 1280-dimensional embeddings sampled at 50Hz, while S3Codec projects a 24kHz
waveform into 4096-dimensional at 12.5 Hz. During training, we thus downsample the waveforms
and project them to the same dimension as targets for distillation. Mimi (Défossez et al., 2024)
found that, while distillation significantly improves the phonetic discriminability of the first quan-
tizer, it also negatively affects the audio quality. To address the issue, we split the RVQ layers in a
way similar to Mimi. Rather than a single RVQ with K levels, we distill the semantic information
into a plain VQ and apply an RVQ with K − 1 levels in parallel. Their outputs will be summed up;
thus the constraint of acoustic information being conserved in the residual of the semantic quantizer
is removed.

Training Loss. We compute the frequency domain reconstruction loss using L1 loss on multi-
scale mel-spectrograms. Multi-period discriminator and multi-band multi-scale STFT discriminator
are used for waveform discrimination and frequency domain discrimination, respectively. RVQ
codebook learning incorporates both a codebook loss and a commitment loss.

Training Configuration. All audio samples are 24kHz. The codec has 8 codebooks, each with
4096 entries. For optimization, we use AdamW optimizer with moving average coefficients β1 =
0.8 and β2 = 0.99. The model converges within approximately 900k training steps using a batch
size of 128.

Evaluation Setup. To evaluate the preservation of acoustic information, we employ several met-
rics. Speaker similarity (SIM) is calculated as the cosine similarity between speaker embeddings ex-
tracted from original and reconstructed audio using a pre-trained speaker verification model. STFT
and Mel represent the spectrogram distance between original and reconstructed speech. We also use
short-time objective intelligibility (STOI) (Taal et al., 2010) to measure speech intelligibility and
perceptual evaluation of speech quality (PESQ) (Rix et al., 2001) to assess audio quality. All evalua-
tions were conducted on the LibriSpeech (Panayotov et al., 2015) test-clean subset. To demonstrate
the semantic alignment, we trained small CaT-TTS models powered by S3Codec and DAC, respec-
tively.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

DAC S3Codec

Mel-Spectrogram Reconstruction Comparison 

Figure 4: The result analysis of mel-spectrogram reconstruction.

E.2 SEMANTIC PRESERVATION OF S3CODEC

To demonstrate the capability of semantic preservation of S3Codec, we trained CaT-TTS small
powered with S3Codec and DAC, respectively. We use WER as the evaluation metric, representing
the speech intelligibility of the generated results. Table 5 shows the evaluation results on Seed-TTS
test zh easy, PGC-Hard and PGC-Poly. Compared to S3Codec-based system, DAC-based model’s
performance on speech intelligibility has decreased. The reason lies that DAC dose not contain
structured linguistic features as S3Codec, which makes the LM model harder to understand, leading
to worse performance than S3Codec.

Model SeedTTS-test PGC-Hard PGC-Poly

DAC-Based 4.21 12.83 19.27

S3Codec-Based 3.30 9.75 16.53

Table 5: Objective Word Error Rate evaluation.

We visualize the mel-spectrogram reconstruction results below. As can be seen, the reconstruction
results of S3Codec is more clear, while there exists a blurry segment in the result reconstructed by
DAC.

F IMPLEMENTATIONS OF CAT-TTS AND BASELINE DETAILS

F.1 CAT-TTS ARCHITECTURE

Semantic Transformer Semantic Transformer is a decoder-only transformer. The dimension is
1536, with 12 layers.

Acoustic Transformer Acousctic Transformer is also a decoder-only architecture, with 8 layers,
and the dimension is 1024.

Text Tokenizer We use the Whisper Tokenizer, with 50260 text vocabularies size.

Regarding the CaT-TTS small, the semantic transformer is 8 decoder-only transformer layers, with
1024 model dimension, and the acoustic transformer is 4 decoder-only transformer layers, with 512
model dimension.
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F.2 BASELINE DETAILS

VALL-E (Wang et al., 2023): AR + NAR TTS system. The first AR model predicts the first
codebook, and the second transformer predict the remaining codebooks.

Seed-TTS (Anastassiou et al., 2024): Hybrid TTS system. A two-stage model that employs an AR
LM for semantic token prediction and flow matching for acoustic feature generation.

FireRedTTS (Guo et al., 2024): Hybrid TTS system. A two-stage model similar to Seed-TTS,
using an AR LM for semantic tokens and flow matching for acoustic features.

MaskGCT (Wang et al., 2024): NAR TTS system. A NAR model that applies masking-based
generative strategies for speech synthesis.

E2-TTS (Eskimez et al., 2024): NAR TTS system. A flow matching-based model that predicts Mel
spectrograms as acoustic features.

F5-TTS (Chen et al., 2024b): NAR TTS system. A flow matching-based model that predicts Mel
spectrograms as acoustic features.

CosyVoice series (Du et al., 2024a;b; 2025): Hybrid TTS system. AR for semantic prediction and
flow-matching for acoustic feature generation.

Spark-TTS (Wang et al., 2025b): Single codebook Neural Audio Codec based Pure language TTS
model. Powered by BiCodec and Qwen LLM.

QTTS (Han et al., 2025): Pure Codec based language audio model. A two-stage AR+AR model.
RVQ-based two stage speech synthesis modeling.

Llasa (Ye et al., 2025b): A single-stream codecbased TTS model that uses a single AR language
model for direct single-stream code prediction.
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