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Abstract

Reinforcement Learning (RL) has shown promising results in solving Job Schedul-
ing Problems (JSPs), automatically deriving powerful dispatching rules from data
without relying on expert knowledge. However, most RL-based methods train only
a single decision-maker, which limits exploration capability and leaves significant
room for performance improvement. Moreover, designing reward functions for
different JSP variants remains a challenging and labor-intensive task. To address
these limitations, we introduce a novel and generic learning framework that opti-
mizes multiple policies sharing a common objective and a single neural network,
while enabling each policy to learn specialized and diverse strategies. The model
optimization process is fully guided by a self-labeling manner, eliminating the need
for reward functions. In addition, we develop a training scheme that adaptively
controls the imitation intensity to reflect the quality of self-labels. Experimental
results show that our method effectively addresses the aforementioned challenges
and significantly outperforms state-of-the-art RL methods across six JSP vari-
ants. Furthermore, our approach also demonstrates strong performance on other
combinatorial optimization problems, highlighting its versatility beyond JSPs.

1 Introduction

Job Scheduling Problems (JSPs) are fundamental Combinatorial Optimization Problems (COPs) with
significant practical importance across various industries such as manufacturing [1], logistics [2],
and data centers [3]. Solving a JSP involves assigning jobs to machines (e.g., limited resources) and
sequencing them on each machine. The goal is to find a schedule from a combinatorial solution space
that minimizes (or maximizes) the objective function under problem-specific constraints. Traditionally,
JSPs have been solved using exact methods or handcrafted heuristic algorithms. However, exact
methods are computationally intractable for large-size problems [4], and designing effective heuristics
for each JSP variant requires deep domain knowledge and significant manual effort [5].

Beyond expert-designed heuristics, Neural Combinatorial Optimization (NCO) methods, as variants
of Hyper-Heuristics (HH) [6], have recently emerged to automate the heuristic design process
[7, 8]. In particular, neural constructive heuristics, which sequentially build solutions from scratch
using Deep Neural Networks (DNNs), have attracted significant attention due to their simplicity
and flexibility [9, 10, 11, 12]. These methods leverage DNNs to model decision-making policies
(traditionally represented by Priority Dispatching Rules (PDRs)) and learn state-to-action mappings
from data via Supervised Learning (SL) or Reinforcement Learning (RL). However, due to the
NP-hardness of most JSPs, SL approaches struggle to obtain sufficiently high-quality solutions for
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labeled data. Accordingly, RL-based policy gradient methods, which optimize policies using reward
signals, have gained popularity and shown promising results [13].

However, despite its strengths, applying RL to JSPs still faces two key challenges. (1) Exploration:
Due to the exponentially large search space of JSPs [14] and the trial-and-error nature of RL,
effective exploration in both training and inference phases is essential for finding high-quality
solutions. Nevertheless, most RL-based methods train only a single policy, which often suffers
from insufficient exploration due to mode collapse, where the policy distribution converges toward a
unimodal distribution during RL training [15, 16]. For Vehicle Routing Problems (VRPs), another
well-known class of COPs, NCO methods effectively enhance search capabilities by leveraging
optimality symmetries (solution symmetry [10] and problem symmetry [17, 18]). However, JSPs
lack universally definable beneficial symmetries, making it difficult to enforce effective exploration.
(2) Reward shaping: JSPs have numerous variants based on machine environments, constraints,
and objective functions [19]. Thus, designing bespoke reward functions for each variant remains a
complex and challenging task [20]. Although the objective value can be directly used as a true reward
for policy optimization using the REINFORCE algorithm [21], this approach suffers from reward
sparsity and non-trivial credit assignment problems [22], which add to the training complexity.

Contributions. In this paper, we propose a novel and generic learning framework to address
the aforementioned challenges. Rather than training a single policy, our framework aims to learn
multiple policies that share the same objective and model parameters, but solve the problem using
distinct strategies. To this end, we introduce the MP-ASIL (Multi-Policy Optimization with Adaptive
Self-Imitation Learning), designed to guide each policy to learn diverse and complementary problem-
solving strategies in a fully self-evolutionary manner. MP-ASIL addresses the limitations of RL-based
methods in the following ways. Firstly, multiple specialized policies can express a multimodal action
distribution, alleviating the mode collapse problem in single policy approaches and improving solution
quality as a natural byproduct of enhanced search capability. Secondly, MP-ASIL autonomously
generates training labels to guide model optimization, eliminating the need for problem-specific
Markov Decision Process (MDP) formulations. Beyond addressing the RL limitations, we also
develop a training scheme that adaptively controls imitation intensity based on the quality of the
self-teacher, mitigating fundamental drawbacks of existing Self-Imitation Learning (SIL)-based
methods. Finally, MP-ASIL is a task- and model-agnostic learning framework, enabling easy plug-in
to diverse neural solvers across various problem domains.

To validate the effectiveness of MP-ASIL, we evaluate it on six widely studied JSPs: Single Machine
Scheduling Problem (SMSP), Unrelated Parallel Machine Scheduling Problem (UPMSP), Permu-
tation Flow Shop scheduling Problem (PFSP), Flexible Flow Shop scheduling Problem (FFSP),
Job Shop Scheduling Problem (JSSP), and Flexible Job Shop Scheduling Problem (FJSSP). The
experimental results demonstrate that MP-ASIL successfully unlocks the potential of models for sig-
nificantly improved exploration capabilities and overall performance, providing new state-of-the-art
results on various synthetic and benchmark datasets. Furthermore, MP-ASIL also demonstrates strong
performance on other COPs, underscoring its broad applicability beyond JSPs.

2 Related Work

Neural Constructive Heuristics for JSPs. Recent advances in artificial intelligence have opened
new avenues for solving JSPs with Machine Learning (ML) [23]. Various learning-based approaches
have been studied, including neural improvement heuristics that iteratively refine complete solutions
via neural-guided local search [24, 25, 26] and hybrid methods that integrate ML into classical
heuristics [27, 16, 28]. Nonetheless, most learning-based methods have primarily focused on neural
constructive heuristics. L2D [11], a seminal work in this area, introduces a Graph Neural Network
(GNN)-based policy for solving JSSP. It sequentially assigns operations to machines using the
topological information of partial solutions represented as disjunctive graphs, outperforming tradi-
tional dispatching rules. Building on this success, several methods have been proposed for diverse
JSP variants, differing in how the networks are designed (e.g., GNN-based policies [29, 30, 31]
or Transformer [32]-based policies [12, 33]) and how the networks are trained (e.g., actor-critic
methods [34, 35, 36, 37], REINFORCE algorithms [38, 39, 40, 41], or SL [42, 43, 44]). Despite these
advancements, most existing approaches only train a single policy, limiting exploration capability and
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leaving substantial room for performance improvement. Furthermore, they often require specialized
MDP formulations or expert knowledge for training, thus limiting their generalizability to other JSPs.

Recently, to eliminate the need for reward function design and labeled data, SIL-based methods
have emerged as self-labeling approaches for solving JSPs. In this paradigm, a policy generates
multiple candidate solutions and selects the best one as the expert trajectory for SL. SLIM [20]
generates candidate solutions via vanilla stochastic sampling from a single policy, which produces
many duplicate candidates, thereby leaving less space for potentially better solutions. To improve
the sampling process, SI GD [45] proposes a method based on drawing trajectories in multiple steps
using stochastic beam search. However, this approach demands extensive search effort for each
instance and careful hyperparameter tuning. Existing SIL-based methods also disregard the quality of
their self-labels and exhibit low sample efficiency as they rely solely on the best solution and discard
the rest. In contrast, our work addresses these limitations via the simple yet powerful MP-ASIL and
demonstrates its effectiveness across various JSPs.

Improving Solution Diversity in NCO. Many recent NCO methods for VRPs follow the POMO
approach [10], improving exploration by generating multiple solutions from different starting points.
However, in JSPs, initial actions often significantly impact solution quality, limiting the applicability
of the POMO method to JSPs. Although LCP [46] proposes a general methodology that encour-
ages sampling diverse solutions via entropy regularization, computing the entropy over the entire
trajectory remains computationally intractable. Recently, Generative Flow Networks (GFlowNets)
[47] have gained attention due to their powerful exploration capabilities [48, 49, 16, 50]; however,
substantial post-search efforts are still required to achieve competitive results. For JSPs, some studies
improve solution quality through beam search [51], active search [52], or look-ahead search [53], yet
approaches specifically aimed at promoting solution diversity remain limited.

A promising research direction in NCO involves training multiple policies to learn different solution
patterns. MDAM [15] proposes an Attention Model (AM) [9] with multiple decoders to train diverse
policies for VRPs. It maximizes the Kullback-Leibler divergence between initial action distributions
to encourage distinct solution patterns. Poppy [54] introduces "Winner-takes-all" strategy as a
REINFORCE variant for multi-decoder training, in which only the best-performing policy is updated
at each iteration. Despite their effectiveness, multi-decoder models require a separate decoder for
each policy, resulting in substantial computational overhead and limiting scalability as the number of
policies increases. Similar to our work, COMPASS [55] and PolyNet [56] use continuous or discrete
latent spaces to represent multiple policies within a single model. However, both methods train the
model using a variant of REINFORCE [54], where gradients are computed from complete trajectories.
As a result, the training process suffers from high variance and instability.

3 Preliminaries

Job Scheduling Problems. In this work, we focus on standard and static JSPs. A standard JSP
instance of size |J | × |M| consists of a set of jobs J , a set of machinesM, and a set of operations
O. Each job j ∈ J comprises mj operations {Oji}

mj

i=1 ⊆ O that must be processed in a predefined
order Oj1 → · · · → Oji → · · · → Ojmj , where Oji denotes the ith operation of job j. Each
operation Oji can be processed on exactly one machine from its set of eligible machinesMji ⊆M
with processing time pjik ∈ R>0 on machine k ∈ Mji. Based on this formulation, each JSP is
uniquely characterized by its specific machine environment, constraints, and objective functions [57]
(see Appendix A for details). Given a JSP instance s ∼ D, where D is an instance distribution, our
goal is to find a solution τ ∈ Ω, where Ω is a finite solution space that satisfies all constraints while
minimizing (or maximizing) a predefined objective function f : (τ , s)→ R. f need not be injective;
due to the multimodality of the objective function in JSPs [14], distinct solutions can have the same
objective value. In this paper, without loss of generality, we consider minimization problems.

Constructing Solutions Using a Parameterized Policy. A JSP solution τ can be autoregressively
constructed by sequentially assigning each operation to a compatible machine according to the
policy and appending it to the end of that machine’s operation sequence. At this point, we define
τ = (τ1, . . . , τt, . . . , τ|O|) as a sequence of decisions, with the policy πθ modeled as a DNN
parameterized by θ. As illustrated in Figure 1, at each decision step t, the parameterized policy
computes a conditional action distribution πθ(τt | s, τ<t) over the next operation τt, where τ<t
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Figure 1: Illustrative example of sequential decision-making process using neural constructive
heuristics to build a solution τ .

represents the partial solution until step t, guiding the sequential decision-making process until all
operations are scheduled. Consequently, the overall policy πθ(τ | s) for generating a solution τ
given an instance s is factorized as:

πθ(τ | s) =
|O|∏
t=1

πθ(τt | s, τ<t). (1)

4 Methods

In this section, we introduce MP-ASIL, a novel and generic learning framework to address several
challenges in solving JSPs with RL. An overview of MP-ASIL is illustrated in Figure 2.

4.1 Multi-Policy Representation: Latent Conditioned Policies

As discussed in Section 1, enforcing effective exploration in JSPs is challenging, and single policy
approaches struggle to balance exploration and exploitation. To address these issues, we aim to learn
multiple policies (a set of neural heuristics) that share the same objective and model parameters but
can represent diverse and complementary solution patterns. In this work, we model this population
by conditioning a single neural network on different latent variables, referred to as latent conditioned
policies [58, 55, 56]. Formally, the latent conditioned policy is described as π(· | s, z), conditioned
on an instance s and the latent variable z ∈ Rdz . By sampling multiple latent variables z1, . . . , zk
from a fixed latent distribution Z , we can obtain a policy set Π as follows:

Π =
{
πθ( · | s, zi)

∣∣ zi∼Z, i = 1, 2, . . . , k
}
. (2)

Each latent variable defines a distinct policy, enabling a single DNN to represent multiple decision-
makers. These latent conditioned policies can be implemented regardless of the underlying architec-
ture. Appendix B provides deeper motivation for using latent variables to represent the population, as
well as the implementation details and the distribution for sampling the latent variables.

4.2 MP-ASIL: Multi-Policy Optimization with Adaptive Self-Imitation Learning

Motivation. Given our motivation for using multiple policies, the following question naturally
arises: How can we guide these policies to learn diverse and complementary problem-solving
strategies? This question emerges because merely representing multiple policies does not ensure
that they can generate diverse solutions. To answer this, we introduce MP-ASIL, designed to guide
each policy to specialize into a distinct yet powerful schedule generator. Our method is based on
three principles: (1) we aim not merely for diversity (e.g., random policies as an extreme case), but
for useful diversity that effectively helps to find better solutions [59]; (2) it is unnecessary for every
policy in Π to show strong performance on a given instance s, as inference requires selecting only the
best solution among candidates; (3) the following population-level inference objective, defined as:

Es∼DEz1,...,zk∼ZEτ1∼πθ(·|s,z1),...,τk∼πθ(·|s,zk) min{f(τ 1, s), . . . , f(τ k, s)}, (3)

should be reflected during training. However, RL-based methods suffer from sparse learning signals,
as feedback emphasizing the population objective is provided only after generating a complete
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Figure 2: An overview of MP-ASIL. Step A (Section 4.1): We generate k distinct policies by
conditioning a single DNN on k latent variables, and sample k solutions from these policies. Step B
(Section 4.2): Among these k solutions, the one with the lowest objective value is selected as the
pseudo-label τ ∗. Step C (Section 4.2): The model is trained to imitate τ∗ using MP-ASIL.

decision trajectory. Moreover, designing dense surrogate reward functions is a complex and non-
trivial task. To overcome these challenges, we reformulate the problem of learning heuristics from a
return-maximization task to a classification task, in which the model autonomously generates and
imitates pseudo-labels corresponding to the best current action at each constructive step.

Training Procedure. Specifically, for each training instance s, (Step A:) we draw k latent variables
from Z and generate k policies by conditioning the policy network on the sampled variables. (Step
B:) From these policies, we roll out k candidate solutions simultaneously and select the one with
the lowest objective value as the pseudo-label τ ∗ = argminτ i∈{τ1,...,τk} f(τ

i, s), obtained from
the best-performing policy πθ(·|s, z∗). (Step C:) The model is then optimized to imitate the best
decision τ ∗ = {τ∗1 , . . . , τ∗t , . . . , τ∗|O|} at each step in an SL manner (maximizing the conditional
log-likelihood). However, pseudo-labels are not guaranteed to be globally optimal, and their quality
can vary according to the sampled policies. Therefore, to adaptively control imitation intensity based
on pseudo-label quality, we modify the loss function (cross-entropy loss) as follows:

LMP-ASIL = −
(
|f(τ ∗, s)− mean(s)|

std(s)

)
1

|O|

|O|∑
t=1

log πθ(τ
∗
t | s, τ ∗

<t, z
∗), (4)

where mean(s) = 1
k

∑k
i=1 f(τ

i, s) is the average objective value across k candidate solutions and

std(s) =
√

1
k

∑k
i=1 (f(τ

i, s)− mean(s))2 is the standard deviation. In Equation (4), we use the

normalized advantage value |f(τ∗,s)−mean(s)|
std(s) as a pseudo-label quality indicator that enables adaptive

SIL, where superior pseudo-labels are strongly imitated and less informative pseudo-labels are weakly
imitated.

Rationale of MP-ASIL and Summary. Our learning framework establishes a self-evolutionary loop
via an iterative optimization process by generating and imitating progressively stronger self-teachers.
Notably, to reflect the population-level objective in Equation (3) during training, our method updates
the model based solely on the performant policy, incentivizing higher probabilities for specific
actions conditioned on z∗ and s. This training procedure naturally encourages the latent space to be
diverse (guided by latent variables) and specialized (optimized for distinct instance sub-distributions).
As a result, trained latent conditioned policies can represent a multimodal trajectory distribution
without requiring diversity-enforcing mechanisms (e.g., entropy bonus), mitigating the relatively
deterministic action distribution problem in single policy approaches. Our approach also resolves the
sparse feedback problem in RL by removing the need for reward functions.

Beyond overcoming RL limitations, MP-ASIL improves upon existing SIL-based methods by leverag-
ing information from all sampled solutions, improving sample efficiency and facilitating adaptive
imitation intensity control to avoid over-exploitation of suboptimal solutions.
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Algorithm 1 MP-ASIL training

1: Input: Model parameters θ, instance distribution D, latent variable distribution Z , number of
epochs E, number of training steps T , batch size B, and number of policies k.

2: Initialize model parameters θ.
3: for epoch = 1 to E do
4: for step = 1 to T do
5: si ← SampleInstance(D), ∀i ∈ {1, . . . , B}
6: Πi = {πθ(τ

j
i | si, z

j
i )}kj=1 ← SamplePolicy(Z), ∀i ∈ {1, . . . , B}

7: {τ 1
i , . . . , τ

k
i } ← SampleRollout(Πi), ∀i ∈ {1, . . . , B}

8: τ ∗
i = argminτ j

i∈{τ1
i ,...,τ

k
i }

f(τ j
i , si), ∀i ∈ {1, . . . , B} ▷ Select the best solution.

9: LMP-ASIL = − 1
B

1
|O|
∑B

i=1
|f(τ∗

i ,si)−mean(si)|
std(si)

∑|O|
t=1 log πθ(τ

∗
i,t | si, τ ∗

i,<t, z
∗
i )

10: θ ← Adam(θ,∇θLMP-ASIL) ▷ Update solely based on the performant policy.
11: end for
12: end for
13: Output: Trained model parameters θ.

Last but not least, MP-ASIL can be directly applied to existing neural constructive solvers (detailed
in Appendix B.1) and JSPs without any algorithmic modifications, since our method leverages the
fundamental property of JSPs that solutions generated for the same instance can be discriminated
by their objective values. Therefore, we can easily obtain the MP-ASIL recipe ingredients (latent
conditioned policies, pseudo-label, and label-quality indicator) for any setting. The mini-batch
training of MP-ASIL is summarized in Algorithm 1.

5 Experiments

We evaluate MP-ASIL on six representative JSP variants: SMSP, UPMSP, PFSP, FFSP, JSSP, and
FJSSP. These problems cover a wide range of JSP scenarios. Detailed definitions of each problem
are provided in Appendix C. We first describe the experimental settings of MP-ASIL (Section 5.1)
and then present the experimental results and detailed analysis (Section 5.2). All experiments are
conducted on a 24-core Intel(R) i9-14900KS CPU and a single NVIDIA GeForce RTX 4090.

5.1 Experimental Settings

Model & Training. We implement MP-ASIL on top of the problem-specific backbone models for
each task, for two reasons. First, neural solvers for JSPs have developed with specialized network
architectures tailored to each problem. Second, this experimental design highlights MP-ASIL as a
generic learning framework that is agnostic to the problem type and underlying model architecture.
We use training hyperparameters of the backbone models from original papers whenever applicable.
Detailed model architectures and training settings are presented in Appendices C and F. Additionally,
Appendix D.1 provides validation scores during the training process.

Baseline Methods. We compare MP-ASIL with various state-of-the-art classic heuristics and NCO
methods for each problem. Details of the baselines for each problem are described in Appendix C.

Test Datasets & Inference. We evaluate MP-ASIL on benchmark and synthetic datasets widely
used in the NCO and the operations research communities (Appendix C). At inference time, we select
the best solution from k candidates generated by the Π. To ensure fair comparison, we match k to the
sample size reported in prior studies using the same architecture; otherwise, we set k = 128.

Performance Metrics. We use three metrics for evaluation: average objective value (Obj.), average
performance gap (Gap), and total inference time (Time). The performance gap for each method
on an instance s is calculated as 100× (fs

o − fs
b )/f

s
b , where fs

o is the objective value obtained by
each method, and fs

b is the best-known objective value for s. Note that reported Time may not be
directly comparable across methods due to differences in hardware and other experimental settings.
Therefore, for clarity, results obtained from the original papers are marked with an asterisk (*).
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Table 1: Experiment results on SMSP, UPMSP, and FFSP. †: Methods using the same model as
MP-ASIL. Exact: Exact solver. Heuristics: Handcrafted heuristics. NCH: Neural constructive
heuristics. Hybrid: Hybrid methods. Gray : Our (MP-ASIL) results. S: Sampling size. ↓: Lower is
better. Bold: Best Obj. and Gap among the NCO methods except for Large. •: Instance sizes unseen
during MP-ASIL training. Time units: s (seconds), m (minutes), and h (hours).

Method Type SMSP 50 SMSP 100 • SMSP 500 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

EDD Heuristics 0.3268 49.84% (0s) 0.3950 66.24% (0s) 0.7287 97.70% (1s)
ACO [27] Heuristics 0.7787 >100% (1.1m) 6.9138 >100% (2.4m) 646.81 >100% (28.9m)

DeepACO [27] Hybrid 0.2296 5.27% (1.1m) 0.2551 7.36% (2.6m) 0.5944 61.30% (29m)
GFACS [16] Hybrid 0.4202 92.64% (1.5m) 1.2153 >100% (3m) 14.612 >100% (33.7m)

MP-ASIL (k=128) NCH 0.2181 0.00% (5s) 0.2376 0.00% (17s) 0.3691 0.16% (14.5m)
MP-ASIL (Large) NCH 0.2181 0.00% (1m) 0.2376 0.00% (2.3m) 0.3685 0.00% (53.5m)

Method Type UPMSP 50×3 • UPMSP 50×6 • UPMSP 100×6 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

EDD Heuristics 2836.8 >100% (1s) 778.5 >100% (1s) 2472.1 >100% (2s)
ATCSR_Rm [60] Heuristics 877.0 22.91% (6.6m) 294.5 14.40% (6.9m) 735.6 75.94% (10.0m)

Cho et al. (S=6) † [41] NCH 784.4 9.94% (1.8m) 294.2 14.29% (2.4m) 502.4 20.16% (10.6m)

MP-ASIL (k=6) NCH 751.9 5.37% (1.8m) 275.7 7.09% (2.4m) 458.1 9.57% (10.7m)
MP-ASIL (Large) NCH 713.5 0.00% (6.1m) 257.4 0.00% (24.6m) 418.1 0.00% (1h)

Method Type FFSP 20×12 FFSP 50×12 FFSP 100×12
Obj. ↓ Gap↓ Time ↓ Obj. ↓ Gap↓ Time ↓ Obj. ↓ Gap↓ Time ↓

CPLEX (1m)* [61] Exact 46.4 81.04% (17h) – – – – – –
CPLEX (10m)* [61] Exact 36.6 42.80% (167h) – – – – – –

SPT* [12] Heuristics 31.3 22.12% (40s) 57.0 14.22% (1m) 99.3 10.71% (2m)
GA* [62] Heuristics 30.6 19.39% (7h) 56.4 13.03% (16h) 98.7 10.04% (29h)
PSO* [63] Heuristics 29.1 13.54% (13h) 55.1 10.42% (26h) 97.3 8.48% (48h)

MatNet (S=24) † [12] NCH 27.3 6.51% (8s) 51.5 3.21% (13s) 91.5 2.02% (26s)
PolyNet (k=24) † [56] NCH 26.9 5.11% (8s) 51.2 2.56% (13s) 91.1 1.59% (27s)

MP-ASIL (k=24) NCH 26.9 4.88% (8s) 51.1 2.40% (13s) 90.9 1.32% (27s)
MP-ASIL (Large) NCH 25.6 0.00% (26s) 49.9 0.00% (1.1m) 89.7 0.00% (3.2m)

Table 2: Experiment results on PFSP using the TA benchmark. G: Greedy action selection. The Time
metric is reported in Appendix D.2.

Method Type 20×5 20×10 50×5 • 50×10 • 100×5 • 100×10 • 200×10 • Avg.
Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓

ILS [64] Heuristics 6.81% 9.45% 4.14% 11.69% 3.44% 9.57% 6.63% 7.39%
IGA [65] Heuristics 3.36% 10.56% 1.97% 7.53% 1.03% 5.73% 3.43% 4.80%
NEH [66] Heuristics 2.40% 4.45% 0.66% 4.69% 0.41% 2.04% 1.28% 2.28%

IL (G) [42] NCH 18.20% 26.96% 12.30% 26.76% 10.13% 19.03% 15.25% 18.38%
PFSPNet (G)* [38] NCH – 14.78% – 11.95% – 8.21% – 11.65%
Q-Learning (S=5)* [37] NCH 9.90% 13.41% 6.24% 15.43% 4.87% 11.64% 8.74% 10.03%

MP-ASIL (k=128) NCH 0.37% 3.32% 0.22% 4.05% 0.16% 2.15% 1.51% 1.68%

5.2 Experimental Results

Benchmark Results. We first evaluate the performance of MP-ASIL on synthetic datasets for SMSP,
UPMSP, and FFSP. The test datasets contain 100, 500, and 1,000 instances per problem size for
SMSP, UPMSP, and FFSP, respectively. Additionally, we report results for MP-ASIL (Large), which
generates k×16 policies, serving as an anchor for computing the Gap. As shown in Table 1, MP-ASIL
significantly outperforms all baselines, achieving state-of-the-art results across all problem types
and problem sizes. Specifically, for SMSP, DeepACO [27] and GFACS [16] retrain models for each
problem size. In contrast, MP-ASIL trains solely on small-size instances (|J |=50) yet demonstrates
remarkable cross-size generalization, achieving 0.00% Gap for SMSP 50 and SMSP 100, and 0.16%
Gap for SMSP 500. For UPMSP, we use the same network architecture (except for the multi-policy
implementation) and training settings as Cho et al. [41], differing only in the policy optimization
manner (REINFORCE algorithm with a shared baseline [3, 17] vs. MP-ASIL). Table 1 shows that
MP-ASIL strongly outperforms Cho et al. with the advantage of MP-ASIL becoming more pronounced
as problem sizes increase. Note that the ATCSR_Rm [60] results are obtained through a greedy
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Table 3: Experiment results on JSSP using the TA benchmark. NIH: Neural improvement heuristics.
The Time metric is reported in Appendix D.2.

Method Type 15×15 20×15 20×20 30×15 • 30×20 • 50×15 • 50×20 • 100×20 • Avg.
Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓

Gurobi (3600s)* [20] Exact 0.1% 3.2% 2.9% 10.7% 13.2% 12.2% 13.6% 11.0% 8.4%
OR-Tools (3600s)* [67] Exact 0.1% 0.2% 0.7% 2.1% 2.8% 3.0% 2.8% 3.9% 2.0%

L2D (G)* [11] NCH 26.0% 30.0% 31.6% 33.0% 33.6% 22.4% 26.5% 13.6% 27.1%
L2D (S=128)* [11] NCH 17.1% 23.7% 22.6% 24.4% 28.4% 17.1% 20.4% 10.3% 20.5%
SN (G)* [29] NCH 15.3% 19.4% 17.2% 19.1% 23.7% 13.9% 13.5% 6.7% 16.1%
RASCL (G)* [36] NCH 14.3% 16.5% 17.3% 18.5% 21.5% 12.2% 13.2% 5.9% 14.9%
RS (G)* [39] NCH 14.8% 16.5% 16.9% 14.4% 17.7% 6.7% 10.0% 2.6% 12.5%
SI GD (G)* [45] NCH 9.6% 9.9% 11.1% 9.5% 13.8% 2.7% 6.7% 1.7% 8.4%
SLIM (S=512)*† [20] NCH 6.5% 8.8% 9.0% 10.6% 12.7% 4.9% 7.6% 2.1% 7.8%

L2S-500* [25] NIH 9.3% 11.6% 12.4% 14.7% 17.5% 11.0% 13.0% 7.9% 12.2%
TBGAT-500* [26] NIH 8.0% 9.9% 10.0% 13.3% 16.4% 9.6% 11.9% 6.4% 10.7%

MP-ASIL (k=512) NCH 6.8% 8.5% 8.7% 10.4% 12.8% 4.2% 7.0% 1.0% 7.4%

search over 3,146 heuristic parameter configurations for each instance, following the original paper.
More detailed results for UPMSP are provided in Appendix D.3. For FFSP, we implement MP-ASIL
on top of the trained MatNet [12] and show remarkably better performance than all baselines.

Table 2 compares MP-ASIL with baseline methods on PFSP using the well-known Taillard (TA)
benchmark [68].2 We apply MP-ASIL to the MatNet-based model. From the table, we observe that
previous NCO methods cannot beat classical heuristics; however, MP-ASIL considerably surpasses all
neural solvers and even exceeds traditional approaches in terms of average Gap and Time. Although
direct comparisons are limited by the lack of reported inference times from some neural solvers,
MP-ASIL solves all instances for each problem size within one second (see Appendix D.2). Appendix
D.4 provides experiment results on synthetic PFSP datasets. Table 3 compares MP-ASIL with other
methods on JSSP using the TA benchmark. As shown in the table, SLIM [20], which differs
from MP-ASIL in learning strategy but uses the same backbone model, already outperforms all
learning-based methods in terms of Time and average Gap. Nevertheless, MP-ASIL achieves a relative
performance improvement of about 5.1% in average Gap. Experimental results on additional JSSP
benchmarks are provided in Appendices D.5 and D.6. Due to space limitations, experimental results
on deterministic and stochastic FJSSP can be found in Appendix D.7.

Ablation Studies. Recall that MP-ASIL consists of three key components: (1) multiple policies
represented by latent variables, (2) SIL to optimize multiple policies, and (3) an advantage weight to
control imitation intensity. To validate the contribution of each component to enhanced performance,
we conduct ablation studies by progressively removing individual components. Table 4 clearly shows
that our full version consistently surpasses all ablation versions by a large margin, highlighting the
critical role of each component. We provide ablation results on all test instances in Appendix D.8.

Table 4: Result of ablation studies. AdvW: Advantage weight. MP: Multiple policies. ↑: Performance
drop relative to MP-ASIL. In the MP-ablation version, latent conditioned policies are replaced by a
single policy. In the SIL-ablation version, SIL is substituted with RL approaches: the REINFORCE
algorithm with a shared baseline [3, 17] for a single policy or Poppy method [54] for multiple policies.
[✗ ✗ ✓] is equivalent to the SLIM [20].

AdvW MP SIL SMSP 100 UPMSP 100×6 PFSP 100×10 FFSP 100×12 JSSP 100×20

✓ ✓ ✓ 0.00% 9.57% 2.15% 1.32% 0.96%
✗ ✓ ✓ 0.67% (0.67% ↑) 10.30% (0.73% ↑) 3.56% (1.41% ↑) 1.37% (0.05% ↑) 1.75% (0.79% ↑)
✗ ✗ ✓ 3.37% (3.37% ↑) 14.33% (4.76% ↑) 3.57% (1.42% ↑) 1.40% (0.08% ↑) 2.10% (1.14% ↑)
✗ ✓ ✗ 35.77% (35.77% ↑) 13.50% (3.93% ↑) 2.16% (0.01% ↑) 1.59% (0.27% ↑) 2.47% (1.51% ↑)
✗ ✗ ✗ 6.69% (6.69% ↑) 20.16% (10.59% ↑) 3.78% (1.63% ↑) 2.02% (0.70% ↑) 3.96% (3.00% ↑)

The Effect of k. We analyze the effect of k on model performance during training and infer-
ence. We train our model using different values of k, with k ∈ {32, 64, 128} for PFSP and
k ∈ {64, 128, 256} for JSSP. We then evaluate the trained models across various inference set-
tings with k ∈ {32, 64, 128, 256, 512}. Figure 3 presents the analysis results on the TA benchmark.

2The best-known results for PFSP and JSSP are obtained from http://mistic.heig-vd.ch/taillard/.
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Figure 3: The effect of k on model performance. The results are averaged over ten runs.
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Table 5: Experiment results on TSP 100 and
CVRP 100. Poppy uses 16 decoders for TSP 100
and 32 decoders for CVRP 100. d: Days. Other
symbols follow definitions provided in Table 1.

Method TSP 100 CVRP 100
Gap ↓ Time ↓ Gap ↓ Time ↓

LKH3* 0.000% (8h) 0.00% (6d)

POMO *† 0.146% (1m) 0.76% (2m)
Sym-NCO *† 0.180% (1m) 0.89% (2m)
Poppy* 0.07% (1m) 0.51% (5m)

MP-ASIL 0.000% (1m) 0.28% (2m)

From the figure, we can observe that (1) training with larger k generates stronger models, and (2)
increasing k at inference time consistently enhances performance. These findings align with our
hypothesis that larger k produces more specialized decision-makers, enabling more extensive solution
space exploration and increasing the chance of finding better solutions, albeit with increased memory
and computational requirements.

Exploration Capability. In this part, we validate the capability of MP-ASIL to generate diverse
solutions. For evaluation, we use 1,000 instances for both SMSP 20 and PFSP 20×5. We intentionally
choose small-size problems, which represent a challenging scenario for generating diverse solutions
[69]. The solution diversity is calculated as the average percentage of unique solutions among k
candidates generated per instance, which is a widely used population-level diversity metric [69, 56].
For comparison, we also report the solution diversity of representative single policy approaches, such
as REINFORCE with a shared baseline and SLIM. Figure 4 demonstrates that MP-ASIL achieves
significantly higher average solution diversity than baselines across all scenarios. Notably, MP-ASIL
shows a diversity of 99.4% for SMSP 20 even at k=1024, emphasizing its remarkable ability to
generate diverse solution patterns. Additionally, we can observe that REINFORCE generates many
duplicate solutions at the sampling stage, as pointed out in many recent studies [15, 45, 16].

Policy Specialization. We verify that each policy specializes in distinct instance sub-distributions
by analyzing how the best-performing latent variable z varies across instances. Specifically, we
randomly sample 16 policies, evaluate their performance on batches of instances, and count the
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number of instances each policy solves best. From Figure 5, we find that each policy achieves top
performance across different instances. These results demonstrate that different policies specialize
in producing high-quality solutions for distinct instance sub-distributions, leading to significantly
improved overall performance and robustness. To aid better understanding, visualizations of the
performance landscape in the policy latent space are provided in Appendix D.9. Additionally, we can
search the policy latent space to find promising latent variables for each instance at test time. Details
on this approach can be found in Appendix D.10.

Experiments with Routing. Finally, to demonstrate the versatility of MP-ASIL, we apply it to
other COPs, specifically the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing
Problem (CVRP) with 100 nodes (denoted as TSP 100 and CVRP 100), which are extensively studied
in the NCO literature. We implement MP-ASIL on top of POMO [10], training it on n = 100 node
instances uniformly distributed in [0, 1]2. We follow the original POMO training hyperparameters
(see Appendix F). We compare MP-ASIL with state-of-the-art neural solvers, including POMO,
Sym-NCO [17] and Poppy [54], using synthetic datasets from [10]. At inference time, MP-ASIL,
POMO, and Sym-NCO generate 8× n(= k) solutions for each instance of size n nodes, where eight
represents the instance augmentation proposed by [12]. Poppy samples d (number of decoders) ×n
solutions for each instance. Unlike baseline methods that enforce distinct initial actions, MP-ASIL
does not impose different starting points during training and inference. This rollout strategy enables
multiple behaviors to freely explore the search space and is universally applicable across all COPs.

Table 5 reports the Gap relative to LKH3 [70] and Time. From the table, we can see that MP-ASIL
significantly outperforms neural methods on both TSP 100 and CVRP 100. Surprisingly, MP-ASIL
finds practically optimal solutions for TSP 100 in less than one minute. These results show that
MP-ASIL can be effective across other COPs. Results for various out-of-distribution VRP scenarios
(cross-size, cross-distribution, and cross-problem generalization) are presented in Appendix E.

6 Conclusion

In this work, we propose MP-ASIL, a generic learning framework for job scheduling. MP-ASIL
addresses several limitations in RL-based policy gradient methods by enabling multiple policies to
autonomously learn diverse and specialized problem-solving strategies without external supervision.
We also develop a training scheme to mitigate the suboptimality of self-teaching labels, a fundamental
drawback of SIL, and enhance sample efficiency. Last but not least, MP-ASIL is agnostic to both
network architectures and scheduling problems, allowing its benefits to be realized universally across
various problem settings. Extensive experiments demonstrate that MP-ASIL achieves new state-of-
the-art results on six scheduling problems and significantly outperforms previous neural solvers on
routing tasks, highlighting its versatility and broadening the scope of current NCO methods.
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A Job Scheduling Problems

A JSP can be described by a three-field notation α|β|γ [57]. The α field specifies the machine
environment, the β field represents constraints, and the γ field defines the objective function. Here,
we provide representative examples of each field considered in our work. Figures 6, 7, and 8 provide
illustrative examples of each field.

Machine environments (𝜶𝜶)

Flow shop (𝑭𝑭𝑭𝑭)Parallel machine (𝑹𝑹𝑹𝑹)Single machine (𝟏𝟏)

: Job : Machine : Job-machine route

Jop shop (𝑱𝑱𝑱𝑱)

M1
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M2

M3

M1 M2 M3

M1 M2

M6M5M4

M3

Figure 6: Illustrative examples of machine environments (α).

A.1 Machine Environments α

Single Machine (1). There is a single machine, representing the simplest case of machine environ-
ments. In this environment, each job j consists of a single operation.

Parallel Machine (Pm) / Unrelated Parallel Machine (Rm). There are |M| parallel machines,
and each job j is processed by exactly one of these machines. If the processing time of job j varies
across different machines, this environment is known as the Unrelated Parallel Machine (Rm). Each
job j consists of a single operation.

Flow Shop (Fm). There are |M| machines in series, and each job must be processed sequentially
on all machines following the same fixed route from machine 1 to machine |M|. If there are |Q|
sequential stages, where Q is a set of stages, each equipped with parallel machines, the resulting
environment is known as the Flexible Flow Shop (FFc). In this case, jobs must sequentially pass
through each stage, from stage 1 to stage |Q|, being processed by exactly one machine per stage.
Each processing step at a machine or stage represents an operation.

Job Shop (Jm). There are |M| machines, and each job j consists of a sequence of operations
that must be processed in a predefined, job-specific order. Each operation requires processing on
one machine, and when an operation can be processed on one of several alternative machines, the
problem setting is referred to as the Flexible Job Shop (FJc).

Constraints (𝜷𝜷)

: Jobs : Machines : Job-machine route

Precedence (𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) Machine eligibility (𝑴𝑴𝒋𝒋 )

𝒓𝒓𝟏𝟏:10
𝒕𝒕=12

Ready time (𝒓𝒓𝒋𝒋)

𝒓𝒓𝟐𝟐:15

𝒓𝒓𝟑𝟑:32

Setup time (𝒔𝒔𝒊𝒊𝒊𝒊) Permutation (𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑)

: Not available

M1

M2

M3

M1 M2

M1

Figure 7: Illustrative examples of constraints (β).

A.2 Constraints β

Precedence (prec). The precedence constraints enforce that one or more operations (or jobs) must
finish before another operation (or job) can start.
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Machine Eligibility (Mj). Only a subset of the machinesMj ⊆M can process job j.

Ready Time (rj). Each job j cannot start processing before its ready time rj .

Sequence Dependent Setup Time (sij). Switching from job i to job j incurs a setup time. If the
setup time between jobs i and j depends on machine k, we denote it as sijk.

Permutation (prmu). The permutation constraint requires that the job processing order determined
at the first machine remains unchanged throughout all machines in a flow shop environment.

Objective functions (𝜸𝜸)

M1

M2

J1

J2

J3

J5

Makespan: max 𝐶𝐶𝑗𝑗 = 37

J4

37

M1

M2

J1

J2

J3

J5

J4

7 20 22 31 37

J1 J2 J3 J4 J5

𝑪𝑪𝒋𝒋 7 20 22 31 37

𝒅𝒅𝒋𝒋 5 22 19 25 30

𝐦𝐦𝐦𝐦𝐦𝐦(𝑪𝑪𝒋𝒋 − 𝒅𝒅𝒋𝒋,𝟎𝟎) 2 0 3 6 7

Total Tardiness: ∑𝒋𝒋=𝟏𝟏
|𝓙𝓙| 𝑇𝑇𝑗𝑗(= max(𝐶𝐶𝑗𝑗 − 𝑑𝑑𝑗𝑗 , 0))

Solution Solution

Figure 8: Illustrative examples of objective functions (γ).

A.3 Objective Functions (γ)

Makespan (Cmax). The makespan, defined as max(C1, . . . , Cn), where Cj is the completion time
of job j, denotes the completion time of the last job processed.

Total Tardiness (
∑

Tj). The total tardiness, defined as
∑

Tj =
∑

max(Cj − dj , 0), denotes the
sum of job completion delays relative to their due dates dj . When each job j has a weight wj , the
objective function becomes

∑
wjTj .

B Multi-Policy Representation

B.1 Implementation of Latent Conditioned Policies

Overview. Neural dispatcher architectures generally fall into two main categories: Heavy Encoder
Light Decoder (HELD) [9, 10, 12], and Light Encoder Heavy Decoder (LEHD) [11, 71, 72]. HELD-
based models employ a computationally expensive encoder once to generate static hidden embeddings,
subsequently constructing solutions sequentially using a lightweight decoder. In contrast, LEHD-
based models dynamically recompute hidden embeddings at each decision step using multiple decoder
layers.

Figure 9 illustrates how latent conditioned policies are applicable to the architectures above. Following
previous work [55], HELD-based models concatenate the latent variables with the query, key, and
value inputs of the Multi-Head Attention (MHA) layer. LEHD-based models concatenate the latent
variables with the final hidden embeddings before computing action probabilities through a Multi-
Layer Perceptron (MLP). This means that, regardless of the underlying architecture, multiple policies
can be easily implemented by conditioning the decision-making layer’s input embeddings on latent
variables. The latent variables are sampled once at the start of the solution rollout and remain
unchanged during the solution construction. Notably, within each policy, an identical latent variable
is concatenated to all hidden embeddings. In this work, we use LEHD-based models for SMSP,
UPMSP, JSSP, and FJSSP. In contrast, PFSP and FFSP utilize HELD-based models. In the following
sections, we detail how latent conditioned policies are implemented within each architecture.

HELD. The encoder generates hidden embeddings for the input instance s. Initially, raw operation
features X = {xi|i ∈ {1, . . . , |O|}} ∈ R|O|×dx are projected into dh-dimensional embeddings
via a linear layer. These embeddings H(0) = {h(0)

i |i ∈ {1, . . . , |O|}} ∈ R|O|×dh are iteratively
updated L times by the update function F to generate a set of final hidden embeddings H(L) =
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Figure 9: Illustrations of applying the latent conditioned policies into (a) HELD and (b) LEHD.

{h(L)
i |i ∈ {1, . . . , |O|}} ∈ R|O|×dh . F can be designed using any neural network model (e.g., GNN

or Transformer).

The decoder sequentially constructs a solution by leveraging the final hidden embeddings, which
are the output of the encoder. At each decoding step t, the decoder receives hidden embeddings
Ht = {h(L)

i |i ∈ At} ∈ R|At|×dh , where At represents the set of feasible operations at step t,
alongside a context vector hc

t indicating the current state. To integrate hidden embedding information
into the context vector, HELD employs MHA to update the context vector. In this process, latent
variables are concatenated with the query, key, and value inputs of the MHA module. The context
vector is updated as follows:

qt = WqConcat(hc
t , z), Kt = WkConcat(Ht, z), Vt = WvConcat(Ht, z), (5)

hc′

t = MHA (qt,Kt, Vt) , (6)

where Wq,Wk,Wv ∈ R(dh+dz)×dh are learnable model weights. At the final stage, single-head
attention computes a conditional action distribution at step t. The action probability πi for operation
i ∈ At is computed by:

πi = Softmax
(
C · tanh

(
(hc′

t )
TKt√
dh

))
i

, (7)

where C is the clipping parameter and tanh is the hyperbolic tangent function.

LEHD. The LEHD-based models recompute hidden embeddings at every step t, effectively cap-
turing dynamic relationships. At step t, the raw operation features Xt = {xi|i ∈ At} ∈ R|At|×dx

are projected into dh-dimensional hidden embeddings via a linear layer. These embeddings
H

(0)
t = {h(0)

i |i ∈ At} ∈ R|At|×dh are iteratively updated L times by the update function F
to generate a set of final hidden embeddings H(L)

t .

At step t, a conditional action distribution is computed via an MLP using the final hidden embeddings
H

(L)
t . In this process, the latent variables are concatenated to the final node embeddings. The action

probability πi for operation i ∈ At is computed by:

πi = Softmax
(
MLP(Concat(H(L)

t , z))
)
i
. (8)

26



4 8 16 32
k

0

5m

10m

15m

20m

25m

30m

#
 P

ar
am

s

(a) SMSP

4 8 16 32
k

0

500000

1m

1m

2m

2m

3m

3m

4m
(b) UPMSP

4 8 16 32
k

2m

3m

3m

4m

4m

5m

5m
(c) PFSP

4 8 16 32
k

10m

15m

20m

25m

30m

35m

40m

45m

(d) FFSP

4 8 16 32
k

1m

2m

3m

4m

5m

6m

7m
(e) JSSP

Single LCP MD

Figure 10: Number of parameters for each strategy. Here, Single denotes a single policy, LCP
indicates latent conditioned policies, MD represents a multi-decoder architecture, and k denotes the
number of policies.

B.2 Why We Use Latent Variables to Represent Multiple Policies

Early approaches for representing multiple policies often rely on multi-decoder models without
parameter sharing [15, 54]. However, as illustrated in Figure 10, this design leads to substantial
parameter growth with the number of policies, limiting scalability and flexibility. In contrast, latent
conditioned policies add a fixed number of parameters, regardless of the number of policies. This
property enables efficient and scalable representation of multiple policies, which provides the rationale
for our design choice.

B.3 The Effect of Latent Distributions

The latent variable z, indexing different policies, can affect model performance based on its distribu-
tion Z . To identify an effective prior, we evaluate models trained under three latent distributions: (1)
Z1 = U(−1, 1)16; (2)Z2, a joint distribution combining U(−1, 1)8 with an 8-dimensional categorical
(one-hot) distribution; (3) Z3, a joint distribution combining U(−1, 1)4 with a 12-dimensional cate-
gorical (one-hot) distribution. We do not consider a 16-dimensional categorical (one-hot) distribution
because it can only generate 16 policies.

Figure 11 compares performances across these prior distributions on the TA benchmarks. For
reference, we also include the results of SLIM and the REINFORCE with a shared baseline as
representative single policy approaches. From the figure, we can observe that Z3 shows robust
and strong zero-shot performance. Therefore, we adopt Z3 as the default prior for all problems
except UPMSP, which uses lower-dimensional hidden embedding (dh = 64). For UPMSP, we
adopt a joint prior combining U(−1, 1)2 with a 6-dimensional categorical distribution. However, all
prior distributions consistently outperform single policy approaches. This finding underscores the
robustness and generalizability of our approach, with its effectiveness stemming from the fundamental
model optimization mechanism rather than fine-tuning the latent space.
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Figure 11: The effect of latent distributions.
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C Benchmark Problems

In this section, we formally define six benchmark problems, following the notations introduced
in Sections 3 and Appendix A. We also provide details on the training and inference settings. As
mentioned in Section 5, learning-based methods for JSPs have evolved with specialized network
architectures and algorithms tailored to each problem variant. Therefore, due to the current absence
of foundation models, we implement MP-ASIL using different backbone models for each problem
type. Naturally, comparisons are conducted against distinct baselines specific to each problem.

C.1 Single Machine Scheduling Problem (1||ΣwjTj)

Definition. The Single Machine Scheduling Problem (SMSP) is one of the most fundamental
scheduling problems in which a set of jobs J must be processed on a single machine. Each job
j ∈ J has processing time pj , due date dj , and weight wj . The optimization objective is to find a
schedule that minimizes the total weighted tardiness ΣwjTj .

Model Architecture. Due to the absence of existing neural constructive solvers, we develop a
transformer-based solver following the BQ-NCO architecture [72]. In our implementation, nodes
represent jobs defined by three features: pj , wj , and remaining deadline slack (dj − et), where et
is the elapsed time at step t. The processes for updating hidden embeddings and making decisions
follow the approach described in Appendix B.1.

Training Instances. Following previous work [27], we randomly generate training instances as
follows: pj ∼ U(0, 1), wj ∼ U(0, 1), and dj ∼ U(0, |J |), where U represents a continuous uniform
distribution. We train our model using instances with |J | = 50.

Test Instances. For evaluation, we use 100 SMSP instances for each problem size |J | = 50, 100,
and 500 from [27]. The test instances follow the same distribution used for generating the training
instances.

Baseline Algorithms. We compare MP-ASIL with (1) Handcrafted Heuristics: Earliest Due Date
(EDD) and Ant Colony Optimization (ACO) [27]; (2) Hybrid Methods: DeepACO [27] and GFACS
[16].

C.2 Unrelated Parallel Machine Scheduling Problem (Rm|sijk,Mj , rj |ΣwjTj)

Definition. The Unrelated Parallel Machine Scheduling Problem (UPMSP) is a generalized parallel
machine scheduling problem, requiring the assignment and sequencing of a set of jobs J onto a set
of machinesM. Each job j ∈ J must be processed on exactly one machine selected from its eligible
machine setMj ⊆ M with processing time pjk on machine k ∈ Mj . Each job j has weight wj ,
due date dj , and ready time rj . Additionally, each machine k ∈ M requires setup time sijk. The
optimization objective is to find a schedule that minimizes the total weighted tardiness ΣwjTj .

Model Architecture. We use the LEHD-based architecture introduced by Cho et al. [41]. We refer
readers to the original paper for detailed architectural specifications and features.

Training Instances. Following previous work [41], we randomly generate training instances as
follows: |Mj | ∼ Uniform({1, 2, . . . , |M|}), pjk ∼ Uniform({1, 2, . . . , 99}), wj ∼ U(0, 1), sijk ∼
Uniform({0, 1, . . . , 10}), and rj ∼ Uniform({0, 1, . . . , ⌊p̂/2⌋}), where p̂ = 1

|M|2
∑|M|

k=1

∑|J |
j=1 pjk

and Uniform() denotes a discrete uniform distribution. Due dates are sampled as dj ∼
rj+Uniform ({max(0, ⌊(p̂− rj)× (1− T −R/2)⌋), . . . ,max(0, ⌊(p̂− rj)× (1− T +R/2)⌋)})
using tightness T and range R parameters, which range from 0.2 to 1.0 in steps of 0.2. During training,
we uniformly sample T and R. We train our model using instances with |J | × |M| = 25× 3.

Test Instances. For evaluation, we use 500 UPMSP instances for each problem size |J | × |M| =
50 × 3, 50 × 6, and 100 × 6 from [41]. The test instances follow the same distribution used for
generating the training instances.
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Baseline Algorithms. We compare MP-ASIL with (1) Handcrafted Heuristics: EDD and
ATCSR_RM [60]; (2) Neural Constructive Heuristic: Cho et al. [41].

C.3 Permutation Flow Shop Scheduling Problem (Fm|prmu|Cmax)

Definition. The Permutation Flow shop Scheduling Problem (PFSP) is a widely studied variant of
the flow shop scheduling problem, where a set of jobs J is processed on a sequence of machines. The
processing order determined at the first machine remains unchanged across all subsequent machines.
Each job j ∈ J has a processing time pjk on each machine k ∈M. The optimization objective is to
find a schedule that minimizes the makespan Cmax.

Model Architecture. We use the HELD-based architecture based on MatNet [12]. The model
takes as input a P|J |×|M| matrix, with each element representing processing time pjk. In our
implementation, the context vector hc

t at step t is defined as:

hc
t = WcConcat (ht−1, h

u
t , h

m) , (9)

where Wc ∈ R3dh×dh is the learnable model weight, ht−1 represents the embedding of the last
selected job, hu

t denotes the mean embedding of unselected jobs up to step t, and hm is obtained by
concatenating all machine embeddings and projecting to a dh-dimensional vector. At step t = 1, we
use a learnable start-token embedding as ht−1.

Training Instances. We randomly sample pjk from Uniform({1, 2, . . . , 99}). We train separate
models for two problem sizes: instances with |J | × |M| =20×5 and 20×10.

Test Instances. For evaluation, we use the TA benchmark [68]. Each problem size consists of 10
instances. The benchmark instances follow the same distribution used for generating the training
instances. For problems with five machines, we employ the model trained on 20×5 instances, while
for problems with ten machines, we use the model trained on 20×10 instances.

Beseline Algorithms. We compare MP-ASIL with (1) Handcrafted Heuristics: Iterated Local
Search (ILS) [64], Iterated Greedy Algorithm (IGA) [65], and Nawaz-Enscore-Ham (NEH) algorithm
[66]; (2) Neural Constructive Heuristics: Q-Learning [37], IL [42], and PFSPNet [38].

C.4 Flexible Flow Shop Scheduling Problem (FFc||Cmax)

Definition. The Flexible Flow shop Scheduling Problem (FFSP) involves scheduling a set of jobs
J through multiple sequential stages Q. Each stage q ∈ Q comprises unrelated parallel machines
Mq ⊆M, and each job must be processed by exactly one machine at every stage. Each job j ∈ J
has a processing time pjqk on machine k ∈Mq at stage q ∈ Q. The optimization objective is to find
a schedule that minimizes the makespan Cmax.

Model Architecture. We use the HELD-based architecture introduced by PolyNet [56]. We refer
readers to the original paper for detailed architectural specifications and features.

Training Instances. Following prior work [12], we set |Q| = 3, where each stage consists of
|Mq| = 4 machine. Processing times are sampled as pjqk ∼ Uniform({2, 3, . . . , 9}). We train
separate models for three problem sizes: instances with |J | × |M|=20×12, 50×12, and 100×12.

Test Instances. For evaluation, we use 1,000 FFSP instances for each problem size |J | × |M|
= 20×12, 50×12, and 100×12 from [12]. The test instances follow the same distribution used for
generating the training instances.

Baseline Algorithms. We compare MP-ASIL with (1) Exact Solver: CPLEX [61]; (2) Hand-
crafted Heuristics: Shortest Processing Time (SPT), Genetic Algorithm (GA) [62], and Particle
Swarm Optimization (PSO) [63]; (3) Neural Constructive Heuristics: MatNet [12] and PolyNet
[56].
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C.5 Job Shop Scheduling Problem (Jm||Cmax)

Definition. The Job Shop Scheduling Problem (JSSP) is a well-known JSP that has attracted
considerable attention from the NCO community. A JSSP instance consists of a set of jobs J and a
set of machinesM. Each job j ∈ J comprises mj operations that must be processed in a predefined
order. Each operation Oji (1 ≤ i ≤ mj) can only be processed on a specific machine with processing
time pji. The optimization objective is to find a schedule that minimizes the makespan Cmax.

Model Architecture. We use the LEHD-based architecture introduced by SLIM [20]. We refer
readers to the original paper for detailed architectural specifications and features.

Training Instances. Following [20], we use 5,000 problem instances for each problem size:
|J | × |M|=10×10, 15×10, 15×15, 20×10, 20×15, and 20×20. Processing times are sampled as
pji ∼ Uniform({1, 2, . . . , 99}).

Test Instances. For evaluation, we use the TA benchmark [68]. Each problem size consists of 10
instances. The benchmark instances follow the same distribution used for generating the training
instances.

Baseline Algorithms. We compare MP-ASIL with (1) Exact Solvers: Gurobi and OR-Tools; (2)
Neural Constructive Heuristics: L2D [11], SN [29], RASCL [36], SI GD [45], and SLIM [45]; (3)
Neural Improvement Heuristics: L2S [25] and TBGAT [26].

C.6 Flexible Job Shop Scheduling Problem (FJc||Cmax)

Definition. The Flexible Job Shop Scheduling Problem (FJSSP) is a generalized version of the
JSSP, where each operation can be processed on one of the several compatible machinesMji ⊆M
with processing time pjik on machine k ∈Mji. The optimization objective is to find a schedule that
minimizes the makespan Cmax.

Model Architecture. We use the LEHD-based architecture introduced by DANIEL [31]. We refer
readers to the original paper for detailed architectural specifications and features.

Training Instances. Following [31], we randomly sample |Mji| from Uniform({1, 2, . . . , |M|)
and p̄ji from Uniform({1, 2, . . . , 20}). pijk is sampled from Uniform({max(1, ⌊0.8 ×
p̄ji⌉), . . . ,min(20, ⌊1.2 × p̄ji⌉)}). Each job has mj ∼ Uniform({4, 5, 6}) operations. We train
our model using instances with |J | × |M| = 10× 5.

Test Instances. For evaluation, we use 100 instances for each problem size |J | × |M| = 10×5,
20×5, 15×10, 20×10, 30×10, and 40×10 from [31].

Baseline Algorithms. We compare MP-ASIL with (1) Exact Solver: OR-Tools; (2) Handcrafted
Heuristic: First in First Out (FIFO), Most Operations Remaining (MOR), SPT, and MWKR; (3)
Neural Constructive Heuristics: HGNN [73], MCGA [74], RS [39], and DANIEL [31].

D Additional Experiments

In this section, we present supplementary experimental results and analyses. Since MP-ASIL can
generate different results based on sampled policies, we report the averaged results of three trials.

D.1 Validation Curves

Figure 12 shows the validation curves for MP-ASIL. For comparison, we also report validation results
from state-of-the-art methods, including the REINFORCE with a shared baseline [17], SLIM [20],
and Poppy [54]. The validation sets consist of 100 instances each for SMSP, UPMSP, PFSP, and
FFSP, and 600 instances for JSSP, all sampled from the same distribution as the training instances.
Validation is performed at every epoch for JSSP and every 10 epochs for other problems. We
train each model from scratch except for FFSP, for which we use publicly available MatNet [12]
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Figure 12: Validation curves.

checkpoints to initialize our policy network.3 From the figure, we can see that MP-ASIL achieves
performance comparable to all baselines using approximately 1.3× to 250× fewer epochs.

D.2 Computation Time for PFSP and JSSP

Due to space limitations, we report only the Gap in Tables 2 and 3. In this section, we additionally
provide Time in Tables 6 and 7. Time results for PFSP are reported only when available from the
original papers or when the authors made code available.

Table 6: Inference time for PFSP. Symbols follow definitions provided in Table 1.

Method Type 20×5 20×10 50×5 • 50×10 • 100×5 • 100×10 • 200×10 •
Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓

ILS [64] Heuristics (0.1s) (0.2s) (0.2s) (0.4s) (0.3s) (0.9s) (1.9s)
IGA [65] Heuristics (0.6s) (1.1s) (3.7s) (7.0s) (14.9s) (28.6s) (1.9m)
NEH [66] Heuristics (0.1s) (0.1s) (0.6s) (1.1s) (4.4s) (8.6s) (1.1m)

IL (G) [42] NCH (0.3s) (0.3s) (0.4s) (0.4s) (0.7s) (0.7s) (1.2s)

MP-ASIL (k=128) NCH (0.2s) (0.2s) (0.2s) (0.2s) (0.3s) (0.3s) (0.8s)

Table 7: Inference time for JSSP. Symbols follow definitions provided in Table 1.

Method Type 15×15 20×15 20×20 30×15 • 30×20 • 50×15 • 50×20 • 100×20 •
Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓

Gurobi (3600s)* [20] Exact (10h) (10h) (10h) (10h) (10h) (10h) (10h) (10h)
OR-Tools (3600s)* [67] Exact (77m) (8h) (10h) (10h) (10h) (10h) (10h) (10h)

L2D (G)* [11] NCH (4s) (6s) (7s) (10s) (14s) (18s) (30s) (1.6m)
SN (G)* [29] NCH (35s) (1.1m) (1.8m) (2.9m) (4.7m) (8.8m) (16.0m) (1.2h)
RASCL (G)* [36] NCH (8s) (11s) (14s) (15s) (17s) (28s) (39s) (1.6m)
RS (G)* [39] NCH (5s) (8s) (9s) (19s) (22s) (53s) (1.2m) (4.6m)
L2D (S=128)* [11] NCH (6.8m) (9.0m) (13.1m) (15.6m) (26.3m) (35.9m) (1.0h) (3.4h)
SI GD (G)* [45] NCH (10s) (11s) (11s) (12s) (15s) (24s) (39s) (5.0m)
SLIM (S=512)*† [20] NCH (3s) (5s) (7s) (9s) (12s) (22s) (29s) (1.5m)

L2S-500* [25] NIH (1.6m) (1.7m) (1.8m) (2.1m) (2.3m) (2.7m) (3.8m) (8.4m)
TBGAT-500* [26] NIH (2.1m) (2.4m) (2.9m) (2.9m) (3.2m) (4.0m) (4.1m) (7.0m)

MP-ASIL (k=512) NCH (3s) (5s) (7s) (9s) (12s) (22s) (29s) (1.5m)

3https://github.com/yd-kwon/MatNet
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D.3 Detailed UPMSP Results

As detailed in Appendix C.2, the distribution of dj in UPMSP instances depends on the parameters
T and R. While the main paper presents average results due to space limitations, here we report
detailed results for each parameter combination, evaluating 20 instances per configuration.
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Table 8: Experiment results on UPMSP across all parameter combinations. Bold: Best Obj. Other
symbols follow definitions provided in Table 1.

|J | |M| T R EDD ATCSR_Rm [60] Cho et al. (S=6) † [41] MP-ASIL (k=6)

50 3 0.2 0.2 917.72 37.35 117.92 54.76
50 3 0.2 0.4 856.02 12.92 65.1 26.82
50 3 0.2 0.6 917.8 19.85 47.96 29.59
50 3 0.2 0.8 672.76 16.19 30.76 15.14
50 3 0.2 1.0 384.16 22.18 7.14 4.72
50 3 0.4 0.2 1233.29 228.01 254.75 186.66
50 3 0.4 0.4 1506.45 134.38 209.42 179.57
50 3 0.4 0.6 1489.27 194.58 157.27 110.32
50 3 0.4 0.8 1680.08 151.21 186.57 140.40
50 3 0.4 1.0 1283.9 164.41 160.6 137.93
50 3 0.6 0.2 2405.19 620.78 607.09 584.25
50 3 0.6 0.4 2669.6 593.82 528.3 491.25
50 3 0.6 0.6 3154.25 759.75 621.97 616.45
50 3 0.6 0.8 2963.12 668.87 560.29 579.01
50 3 0.6 1.0 2502.97 542.00 484.42 459.23
50 3 0.8 0.2 4078.04 1456.9 1434.37 1356.45
50 3 0.8 0.4 4640.32 1608.95 1499.61 1458.93
50 3 0.8 0.6 4683.02 1726.59 1412.5 1410.99
50 3 0.8 0.8 3750.98 1179.13 1011.52 946.71
50 3 0.8 1.0 3381.26 985.23 875.89 842.48
50 3 1.0 0.2 5871.35 2766.78 2600.2 2517.76
50 3 1.0 0.4 5326.36 2494.93 2047.97 2019.69
50 3 1.0 0.6 5049.34 2239.92 1850.28 1805.2
50 3 1.0 0.8 4893.06 1980.81 1500.76 1539.71
50 3 1.0 1.0 4609.76 1325.51 1338.26 1283.15

Average 2836.80 876.97 784.43 751.89

|J | |M| T R EDD ATCSR_Rm [60] Cho et al. (S=6) † [41] MP-ASIL (k=6)

50 6 0.2 0.2 96.49 0.63 9.44 3.65
50 6 0.2 0.4 56.54 0.69 5.14 1.33
50 6 0.2 0.6 104.96 1.08 8.35 2.15
50 6 0.2 0.8 26.89 0.82 1.83 1.65
50 6 0.2 1.0 13.61 2.90 5.43 5.66

50 6 0.4 0.2 207.71 23.08 45.72 34.29
50 6 0.4 0.4 214.54 17.03 34.18 18.41
50 6 0.4 0.6 251.38 30.32 40.36 32.23
50 6 0.4 0.8 237.65 41.40 52.60 34.29
50 6 0.4 1.0 133.83 58.33 69.88 69.59
50 6 0.6 0.2 560.17 132.46 160.3 140.24
50 6 0.6 0.4 610.25 157.71 159.78 148.74
50 6 0.6 0.6 710.42 145.43 170.82 147.21
50 6 0.6 0.8 752.29 236.75 247.67 225.23
50 6 0.6 1.0 649.65 192.54 219.31 184.92
50 6 0.8 0.2 1358.95 507.04 474.49 462.67
50 6 0.8 0.4 1513.27 621.03 597.84 571.43
50 6 0.8 0.6 1377.82 519.09 504.68 484.47
50 6 0.8 0.8 1288.62 468.83 447.89 418.04
50 6 0.8 1.0 1047.54 326.61 320.17 297.40
50 6 1.0 0.2 1902.52 1175.66 1160.46 1118.15
50 6 1.0 0.4 1839.51 912.1 930.03 888.82
50 6 1.0 0.6 1678.61 722.82 678.23 681.27
50 6 1.0 0.8 1455.71 602.00 558.43 520.20
50 6 1.0 1.0 1372.49 466.88 451.87 464.67

Average 778.46 294.50 294.23 275.70

|J | |M| T R EDD ATCSR_Rm [60] Cho et al. (S=6) † [41] MP-ASIL (k=6)

100 6 0.2 0.2 255.49 0.25 1.39 0.04
100 6 0.2 0.4 89.55 0.00 0.00 0.00
100 6 0.2 0.6 43.55 0.00 0.00 0.00
100 6 0.2 0.8 17.77 0.02 0.00 0.00
100 6 0.2 1.0 11.04 2.62 0.00 0.00
100 6 0.4 0.2 430.48 32.65 22.94 10.17
100 6 0.4 0.4 881.5 48.43 15.84 9.99
100 6 0.4 0.6 563.9 25.30 7.29 0.79
100 6 0.4 0.8 517.33 27.44 12.92 8.76
100 6 0.4 1.0 306.99 49.9 20.56 12.20
100 6 0.6 0.2 1497.45 327.21 150.37 148.92
100 6 0.6 0.4 1898.12 314.28 129.59 110.07
100 6 0.6 0.6 2163.50 167.17 138.09 122.61
100 6 0.6 0.8 2738.14 561.34 301.71 272.11
100 6 0.6 1.0 1560.70 284.26 206.50 177.32
100 6 0.8 0.2 3880.05 1152.10 722.26 636.25
100 6 0.8 0.4 5125.19 1361.08 1002.46 915.62
100 6 0.8 0.6 4449.80 912.5 863.04 770.21
100 6 0.8 0.8 3896.58 901.39 644.09 539.94
100 6 0.8 1.0 2409.26 452.19 348.51 313.65
100 6 1.0 0.2 7073.31 3718.23 2655.76 2507.50
100 6 1.0 0.4 6527.61 3209.26 2040.39 1941.05
100 6 1.0 0.6 5800.50 2089.76 1377.43 1258.89
100 6 1.0 0.8 4949.04 1314.94 1057.43 977.17
100 6 1.0 1.0 4716.41 1436.42 840.95 719.93

Average 2472.13 735.55 502.37 458.11
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D.4 Experiment Results on PFSP Using Synthetic Datasets

In the PFSP benchmark results presented in Table 2, IL [42] is trained on a distribution different from
that of the benchmark. Following the IL paper setting, we compare MP-ASIL with IL on synthetic
datasets sampled from a Gamma distribution (α = 1, θ = 2).

Setup. IL is trained on instances with |J | × |M| = 20×5 to imitate solutions generated by NEH
[66], a highly specialized PFSP solver. We also train MP-ASIL on small-size instances ( |J | × |M| =
20×5) sampled from the Gamma distribution, using the same hyperparameters detailed in Table 23.
For evaluation, we use 1,000 instances each for 20×5, 50×5, and 100×5, and 100 instances each for
200×5, 500×5, and 1000×5 from [42]. We also include classical heuristics (Iterated Local Search
(ILS) [64], Iterated Greedy Algorithm (IGA) [65], and NEH [66]) as baselines.

Remark. IL does not directly provide datasets in its code repository but offers code for dataset
generation.4 Thus, we generate datasets and reproduce the evaluation results by running the trained
IL model provided by the authors.

Results. Table 9 shows that MP-ASIL achieves new state-of-the-art results on these datasets. Surpris-
ingly, MP-ASIL, trained exclusively on 20×5 instances, demonstrates strong cross-size generalization,
outperforming NEH on all problem sizes except 100×5, while achieving computational speedups
of 4× to 360×. This superior performance of MP-ASIL can be attributed to its self-evolutionary
approach. While IL faces a performance ceiling due to imitating suboptimal solutions, MP-ASIL
autonomously generates and learns from self-teaching labels. Thus, MP-ASIL can break the funda-
mental limitation of classic SL methods, which strongly depend on the performance of their teacher
algorithms.

Table 9: Experiment results on PFSP using synthetic datasets. Gap: Performance gap relative to NEH.
Other symbols follow definitions provided in Table 1.

Method PFSP 20×5 PFSP 50×5 • PFSP 100×5 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

ILS 29.96 2.74% (9s) 65.33 4.38% (18s) 121.49 3.63% (36s)
IGA 29.05 -0.37% (1m) 63.19 0.96% (5m) 118.08 0.72% (25m)
NEH 29.16 0.00% (4s) 62.59 0.00% (56s) 117.24 0.00% (7m)

IL 31.93 9.50% (0s) 68.05 8.72% (1s) 125.34 6.91% (2s)

MP-ASIL (k = 128) 28.43 -2.50% (1s) 62.48 -0.18% (2s) 117.37 0.11% (8s)

Method PFSP 200×5 • PFSP 500×5 • PFSP 1000×5 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

ILS 230.12 2.92% (7s) 551.77 2.36% (19s) 1076.35 2.07% (39s)
IGA 224.85 0.56% (10m) 540.86 0.34% (1h) 1056.55 0.19% (4.2h)
NEH 223.60 0.00% (9m) 539.06 0.00% (1.5h) 1054.50 0.00% (12h)

IL 234.87 5.04% (1s) 566.96 5.18% (4s) 1115.22 5.76% (21s)

MP-ASIL (k = 128) 223.23 -0.15% (3s) 537.31 -0.32% (20s) 1049.17 -0.51% (2m)

D.5 Experiment Results on JSSP Using Lawrence’s Benchmark

Setup. Lawrence’s (LA) benchmark [75], widely used for evaluating generalization capability in
JSSP research papers [26, 20], consists of five instances for each of the eight different problem sizes.
To evaluate the generalization performance of MP-ASIL, we compare it with the baseline methods
listed in Table 3, excluding approaches that do not provide results on the LA benchmark.

Results. Table 10 demonstrates that MP-ASIL achieves the best average Gap (Avg.) among neural
constructive heuristics, finding optimal solutions for LA 15×5, LA 20×5, and LA 30×10. Moreover,
MP-ASIL solves all instances within one second per problem size, clearly outperforming L2S-500
and showing comparable performance to TBGAT-500, both known to require significantly longer

4https://github.com/lokali/PFSS-IL
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computation times as reported in [26] (e.g., MP-ASIL requires 0.8 seconds for LA 15×15 instances,
whereas L2S-500 and TBGAT-500 demand approximately one minute).

Table 10: Experiment results on JSSP using the LA benchmark. Symbols follow definitions provided
in Table 1.

Method LA 10×5 • LA 10×10 LA 15×5 • LA 15×10 LA 15×15 LA 20×5 • LA 20×10 LA 30×10 • Avg.
Gurobi (3600s)* [20] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
OR-Tools (3600s)* [67] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

MWKR* [20] 16.0% 12.2% 5.5% 17.8% 18.2% 5.2% 17.2% 8.6% 12.6%

L2D (G)* [11] 14.3% 23.7% 7.8% 27.2% 27.1% 6.3% 24.6% 8.4% 17.4%
SN (G)* [29] 12.1% 11.9% 2.7% 14.6% 16.1% 3.6% 15.7% 3.1% 10.0%
L2D (S=128)* [11] 8.8% 10.4% 2.8% 16.2% 17.4% 3.1% 18.3% 6.8% 10.6%
SLIM (S=512)*† [20] 1.1% 2.5% 0.0% 5.0% 5.6% 0.0% 5.6% 0.0% 2.5%

L2S-500* [25] 2.1% 4.4% 0.0% 6.4% 7.3% 0.0% 7.0% 0.2% 3.4%
TBGAT-500* [26] 2.1% 1.8% 0.0% 3.6% 5.5% 0.0% 5.0% 0.0% 2.3%
MP-ASIL (k = 512) 1.3% 2.1% 0.0% 4.3% 5.5% 0.0% 4.9% 0.0% 2.3%

D.6 Experiment Results on JSSP Using Synthetic Datasets

For JSSP, we also compare MP-ASIL with search-based NCO methods using synthetic JSSP datasets
commonly used in the NCO literature.

Setup. Our test uses three sets of 100 instances each for 10×10, 15×15, and 20×15 from [52].
Baseline methods include L2D [11], Poppy [54], EAS [52], COMPASS [55], and TBGAT-500 [26].
L2D and Poppy use naive stochastic sampling, whereas EAS fine-tunes its policy individually for
each test instance. COMPASS improves solution quality through CMA-based policy space search
(detailed in Section D.10), and TBGAT-500 employs a GNN-based local search operator to iteratively
update solutions for 500 iterations.

Results. Table 11 presents the average makespan (Obj.), Gap relative to OR-Tools [67], and Time.
From the table, we can find that MP-ASIL significantly outperforms all search-based methods in
solution quality and computational speed, with total inference times under one minute per test set.
Notably, compared to COMPASS, which also learns latent conditioned policies but conducts extensive
inference time search, MP-ASIL reduces the Gap using one-shot inference alone, from 4.7% to 2.7%
on JSSP 10×10, from 8.0% to 6.1% on JSSP 15×15, and from 10.4% to 8.2% on JSSP 20×15.

Table 11: Experiment results on JSSP using synthetic datasets. d denotes the number of decoders.
Other symbols follow definitions provided in Table 1.

Method JSSP 10×10 JSSP 15×15 JSSP 20×15
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

OR-Tools* 807.6 0.0% (37s) 1188.0 0.0% (3h) 1345.5 0.0% (80h)

L2D* 871.7 8.0% (8h) 1378.3 16.0% (25h) 1624.6 20.8% (40h)
Poppy (d = 16)* 849.7 5.2% (3h) 1290.4 8.6% (5h) 1495.7 11.2% (8h)
EAS* 858.4 6.3% (5h) 1295.2 9.0% (9h) 1498.0 11.3% (11h)
COMPASS* 845.5 4.7% (3h) 1282.8 8.0% (5h) 1485.6 10.4% (8h)
TBGAT-500* – 2.7% (16m) – 6.7% (21m) – 9.3% (23m)

MP-ASIL (k=512) 829.7 2.7% (12s) 1260.9 6.1% (28s) 1456.6 8.2% (40s)

D.7 Experiment results on FJSSP

Deterministic FJSSP. For FJSSP, one of the most complex scheduling problems, we apply MP-ASIL
on top of DANIEL [31], a state-of-the-art neural FJSSP solver. For comparison, we also include
(1) Exact Solver: OR-Tools (1800s); (2) Handcrafted Heuristic: First in First Out (FIFO), Most
Operations Remaining (MOR), SPT, and MWKR; (3) Neural Constructive Heuristics: HGNN [73],
MCGA [74], RS [39], and DANIEL [31] as baselines. Table 12 reports the Gap relative to OR-Tools
(1800s) and Time. From the table, we can see that MP-ASIL significantly enhances the performance
of DANIEL and outperforms all other methods. Remarkably, on large-scale instances unseen during
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training (20×10, 30×10, and 40×10), MP-ASIL even surpasses OR-Tools (1800s) while requiring
79× to 291× shorter computation times.

Table 12: Experiment results on FJSSP. Symbols follow the definitions provided in Table 1.
Method Type 10×5 20×5• 15×10 • 20×10 • 30×10 • 40×10 •

Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓
OR-Tools (1800s)* Exact 0.00% (50h) 0.00% (50h) 0.00% (50h) 0.00% (50h) 0.00% (50h) 0.00% (50h)

FIFO Heuristics 24.06% (16s) 14.87% (32s) 28.65% (51s) 19.22% (1.2m) 19.50% (1.8m) 16.67% (2.5m)
MOR Heuristics 19.87% (16s) 13.85% (32s) 20.68% (51s) 12.20% (1.2m) 15.57% (1.8m) 15.13% (2.5m)
SPT Heuristics 34.76% (16s) 22.56% (32s) 38.22% (51s) 30.25% (1.2m) 27.47% (1.8m) 21.66% (2.5m)
MWKR Heuristics 17.58% (16s) 11.51% (32s) 19.41% (51s) 10.30% (1.2m) 13.96% (1.8m) 13.37% (2.5m)

HGNN (S=100)* NCH 9.66% (1.9m) 10.31% (3.9m) 12.13% (6.6m) 9.64% (10.7m) 12.36% (21.3m) 12.26% (40.9m)
MCGA (S=100)* NCH 9.01% – 8.36% – 11.77% – 7.70% – 12.44% – 12.50% –
RS (S=100)* NCH 7.26% – 7.22% – 9.59% – 6.06% – 11.14% – 11.29% –
DANIEL (S=100)*† NCH 5.57% (1.2m) 2.46% (3.1m) 6.79% (6.5m) -1.03% (10.2m) 4.43% (20.6m) 3.77% (37.6m)

MP-ASIL (k=100) NCH 3.00% (1.2m) 0.67% (3.1m) 4.61% (6.5m) -3.00% (10.3m) -0.15% (20.7m) -0.59% (37.8m)

Additionally, we evaluate our approach on well-known FJSSP benchmarks, including Brandimarte
[76] and Hurink [77] datasets. The Hurink benchmark consists of edata, rdata, and vdata instances,
with operations assignable to 1-2 machines, 1-3 machines, and 1-|M| machines, respectively. We
also include Genetic Programming (GP) [78], a representative HH, as a baseline. GP is a widely
used methodology among dispatching rule generation HH, evolving populations of individual tree
structures to automatically discover effective problem-solving strategies. This approach shares the
same spirit as our method from the perspective of heuristics to generate heuristics. As shown in Table
13, MP-ASIL substantially surpasses all baselines, demonstrating robust and superior performance in
out-of-distribution scenarios.

Table 13: Experiment results on FJSSP using four benchmark datasets. Symbols follow the definitions
provided in Table 1.

Method Type Brandimarte Hurink (edata) Hurink (vdata) Hurink (rdata)
Gap ↓ Gap ↓ Gap ↓ Gap ↓

MWKR Heuristics 28.91% 18.60% 4.25% 13.86%

GP HH 12.13% – – –

HGNN (S=100)* NCH 18.56% 8.71% 1.32% 5.57%
MCGA (S=100)* NCH 18.67% 8.38% 1.40% 5.71%
RS (S=100)* NCH 15.40% 7.90% 0.70% 4.72%
DANIEL (S=100)*† NCH 9.53% 9.08% 0.69% 4.95%

MP-ASIL (k = 100) NCH 7.32% 7.24% 0.50% 4.66%

Stochastic FJSSP. MP-ASIL is also applicable to stochastic scheduling problems. For stochastic
problems, we can evaluate solution quality through expected makespan E(Cmax) or Value-at-Risk
V aRα(Cmax) metrics by applying the model’s decisions identically to multiple scenarios sampled
from probability distributions. Thus, MP-ASIL can evaluate each policy’s decisions through scenario
sets, enabling easy application in the same way as deterministic problems. To validate this approach,
we perform experiments on the stochastic FJSSP, where processing times are random variables. We
apply MP-ASIL to the Scenario Processing Module (SPM)-DAN [79], which introduces an attention-
based SPM to solve stochastic FJSSP. Specifically, we implement latent conditioned policies by
concatenating latent variables to the decision-making layer (MLP) input as detailed in Appendix
B.1. We employ the identical MP-ASIL training procedure described in the main text. Our training
objective is to minimize V aRα(Cmax). Training hyperparameters and experimental settings follow
the original paper, with training conducted on only 10×5 instances. Baseline methods include four
dispatching rules (FIFO, MOR, SPT, and MWKR) and SPM-DAN.

Tables 14 and 15 present experiment results on various stochastic FJSSP datasets. Each problem size
comprises 100 instances from SPM-DAN. From Table 14, we observe that MP-ASIL demonstrates
clear performance improvement over SPM-DAN and significantly outperforms all dispatching rules,
but requires slightly more computation time. Moreover, for different objective functions E(Cmax),
as shown in Table 15, MP-ASIL consistently achieves the best performance without retraining.
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Through these experimental results, we verify that MP-ASIL can be effective for stochastic scheduling
problems.

Table 14: Experiment results on stochastic FJSSP. The objective function is V aRα(Cmax). We set
α = 95%, following the original paper. Symbols follow the definitions provided in Table 1.

Method 10x5 20x5 • 15x10 • 20x10 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

FIFO 757.19 13.00% (40s) 1308.89 6.98% (1.3m) 1215.23 14.46% (2.2m) 1448.87 11.41% (2.8m)
MOR 753.22 12.41% (40s) 1326.69 8.43% (1.3m) 1182.71 11.40% (2.2m) 1435.38 10.37% (2.8m)
SPT 820.38 22.43% (40s) 1427.94 16.71% (1.3m) 1309.28 23.32% (2.2m) 1485.49 14.27% (2.8m)
MWKR 741.49 10.66% (40s) 1317.16 7.66% (1.3m) 1155.40 8.82% (2.2m) 1419.13 9.12% (2.7m)

SPM-DAN 670.08 0.00% (1.8m) 1223.49 0.00% (6.2m) 1061.71 0.00% (14.7m) 1300.53 0.00% (25.3m)

MP-ASIL 654.34 -2.35% (1.8m) 1194.25 -2.39% (6.2m) 1026.87 -3.28% (15m) 1230.77 -5.07% (25.9m)

Table 15: Experiment results on stochastic FJSSP. The objective function is E(Cmax). Symbols
follow the definitions provided in Table 1.

Method 10x5 20x5 • 15x10 • 20x10 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

FIFO 645.35 10.18% (40s) 1171.82 4.98% (1.3m) 1074.24 12.75% (2.2m) 1301.00 9.16% (2.7m)
MOR 641.50 9.52% (40s) 1186.68 6.32% (1.3m) 1044.47 9.63% (2.2m) 1288.04 8.07% (2.7m)
SPT 705.50 20.45% (40s) 1280.55 12.76% (1.3m) 1167.27 22.52% (2.2m) 1485.49 14.27% (2.7m)
MWKR 632.44 7.98% (40s) 1179.92 5.71% (1.3m) 1020.88 7.15% (2.2m) 1275.73 7.04% (2.7m)

SPM-DAN 585.74 0.00% (1.8m) 1116.19 0.00% (6.3m) 952.73 0.00% (14.7m) 1191.87 0.00% (25.4m)

MP-ASIL 570.54 -2.60% (1.8m) 1091.14 -2.24% (6.3m) 926.65 -2.74% (14.9m) 1139.56 -4.39% (25.8m)

D.8 Ablation Studies

In this section, we present comprehensive ablation results for all problems evaluated in this study,
using the ablation variants defined in Section 5.2. As shown in Figure 13, MP-ASIL performs best in
22 out of 24 benchmark datasets. Specifically, MP-ASIL significantly outperforms Poppy (AdvW, SIL
ablation) across all benchmark problems, highlighting the effectiveness of MP-ASIL in optimizing
multiple policies compared to RL. Furthermore, MP-ASIL shows superior performance compared
to SLIM (AdvW, MP ablation), the state-of-the-art SIL-based method, on all benchmark datasets
except JSSP 15×15 and JSSP 30×30. Additionally, removing Advantage Weight (AdvW ablation)
substantially drops performance across all datasets, underscoring the importance of our proposed
training scheme that dynamically adjusts imitation intensity for self-labels.
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Figure 13: Results of ablation studies. Gaps greater than 100% are truncated to 100%.
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Figure 14: Policy latent space heat maps on 8 problem instances. Red-colored regions correspond to
low-performing latent regions, whereas blue-colored regions show high-performing areas.

D.9 Performance Landscape Visualization

In this section, we visualize the performance landscape of a two-dimensional policy latent space.
To this end, we train the model with a two-dimensional latent space bounded in [−1, 1]. We then
evaluate 32,000 randomly sampled latent vectors on eight TA PFSP instances of size 20 × 5 and
report the results in Figure 14. From the figure, we observe that: 1) the performance landscape is
instance-dependent and 2) high-performing regions differ across various instances. These findings
confirm that different policy regions specialize in generating superior solutions for distinct instance
subsets. These conclusions also motivate the application of search techniques to find high-performing
latent space regions during inference, with the results presented in the subsequent section.

D.10 Policy Latent Space Search at Inference Time

Randomly sampling latent variables at inference time does not guarantee that promising latent
variables will be included (although increasing the number of samples can improve the likelihood).
However, at inference time, we can apply a principled search procedure to find high-performing
latent variables. Recently, COMPASS [55] introduced a policy latent space search method using the
Covariance Matrix Adaptation (CMA) [80] evolutionary algorithm. In this section, we use CMA at
test time to search for promising latent areas on a per-instance basis.

Table 16: Performance evaluation results combined
with CMA on the TA benchmark. ↓: Lower is better.

Method PFSP 20×10 JSSP 20×15
Gap ↓ Gap ↓

Poppy + CMA 2.27% 7.35%

MP-ASIL + SAM 2.04% 6.98%
MP-ASIL + CMA 1.63% 6.37%

Following the COMPASS paper, we em-
ploy three independent CMA components
in parallel with 1,600 search attempts and
report the results in Table 16. For compar-
ison, we present results that apply CMA
to latent-conditioned policies trained via
Poppy [54] instead of MP-ASIL, which ex-
actly matches the original COMPASS train-
ing setup. Poppy is an RL-based method. In
addition, we report sampling-based results
(MP-ASIL + SAM), where the number of samples is set equal to the number of search attempts.

From the table, we can see that MP-ASIL + SAM already outperforms Poppy + CMA without the
search method. Furthermore, MP-ASIL + CMA achieves significant relative performance improve-
ments of 25.1% on PFSP 20×10 and 9.6% on JSSP 20×15 compared to MP-ASIL + SAM. These
results highlight the effectiveness of MP-ASIL in optimizing multi-policy compared to the RL-based
method and show that performance can be significantly improved through search procedures to
identify promising regions in the latent space.
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E Vehicle Routing Problems

In this section, we present performance evaluation results for various out-of-distribution scenarios in
VRPs (cross-size, cross-distribution, and cross-problem generalization). These experiments aim to
demonstrate that MP-ASIL can show good generalization capabilities across diverse COPs.

E.1 Cross-size Generalization

This part presents the cross-size generalization performance of MP-ASIL on TSP and CVRP.

Setup. For evaluation, we use three datasets of 1,000 instances each with n = 125, 150, and 200
from [52] and compare MP-ASIL with the baseline methods listed in Table 5. All methods generate
solutions following the procedure detailed in Section 5.2, employing models trained on instances
with n = 100. As before, MP-ASIL does not enforce distinct initial actions.

Results. Table 17 summarizes the experimental results for TSP and CVRP instances of various
sizes. From the table, we can observe that MP-ASIL significantly outperforms state-of-the-art NCO
methods across all sizes, with the performance advantage increasing as instance size grows for both
problems. These results confirm that MP-ASIL demonstrates remarkable cross-size generalization
capabilities across various COPs.

Table 17: Experiment results on TSP and CVRP. Symbols follow definitions provided in Table 1.

Method n = 125 • n = 150 • n = 200 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap↓ Time ↓

T
SP

LKH3* 8.583 0.000% (73m) 9.346 0.000% (99m) 10.687 0.000% (3h)

POMO* †[10] 8.607 0.278% (<1m) 9.397 0.542% (<1m) 10.843 1.457% (1m)
Sym-NCO †[17] 8.619 0.413% (<1m) 9.402 0.599% (<1m) 10.849 1.516% (1m)
Poppy (d=16)* [54] 8.594 0.14% (<1m) 9.372 0.27% (<1m) – – –

MP-ASIL 8.585 0.028% (<1m) 9.359 0.143% (<1m) 10.798 1.041% (1m)

C
V

R
P

LKH3* 17.50 0.00% (19h) 19.22 0.00% (20h) 22.00 0.00% (25h)

POMO*†[10] 17.73 1.29% (<1m) 19.64 2.18% (1m) 22.90 4.12% (1m)
Sym-NCO†[17] 17.72 1.23% (<1m) 19.61 2.03% (<1m) 22.78 3.54% (1m)
Poppy (d=32)* [54] 17.63 0.74% (1m) 19.50 1.46% (1m) – – –

MP-ASIL 17.62 0.70% (<1m) 19.46 1.23% (<1m) 22.57 2.58% (1m)

Furthermore, to validate performance on larger-scale TSP datasets (TSP 100, TSP 200, TSP 500,
and TSP 1000 from [45]), we implement MP-ASIL with BQ-NCO [72] and perform evaluations.
Baseline methods include BQ-NCO trained via SL and BQ-NCO trained through SI GD [45], another
SIL-based approach. The results are presented in Table 18. The table shows that MP-ASIL does not
surpass the baseline approaches on TSP 100, TSP 200, and TSP 1000. However, MP-ASIL remains
easy to implement, without requiring labeled data for SL or extensive search and hyperparameter
tuning needed for SI GD (as mentioned in Section 2). To improve performance, a discussion on this
topic is provided in the Limitations section (Appendix G).

Table 18: Experiment results on large-size TSP. beam: Beam search. Other symbols follow definitions
provided in Table 1.

Method n = 100 n = 200 • n = 500 • n = 1000 •
Gap ↓ Gap ↓ Gap ↓ Gap ↓

BQ-NCO beam16 (SL)*† 0.02% 0.09% 0.43% 0.91%
BQ-NCO beam16 (SI GD)*† 0.02% 0.10% 0.46% 1.01%

MP-ASIL (k = 16) 0.02% 0.14% 0.41% 1.19%

E.2 Cross-distribution Generalization

This part discusses the cross-distribution generalizability of MP-ASIL on TSP.
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Setup. For evaluation, we use four TSP 100 datasets with different distributions, including uniform,
clustered, explosion, and implosion from INViT [81]. Each dataset contains 2,000 instances. As
baseline methods, we include RL-based approaches (POMO [10], PointerFormer [18], Omni-TSL
[82], ELG [83], and INViT [81]) and SL-based methods (LEHD [71] and BQ-NCO [72]), following
the baseline methods used in INViT. In our experiments, we employ the trained POMO models used
in Section 5.2. At test time, we use k = 100 policies for each instance to generate solutions and also
apply data augmentation to enhance overall performance.

Results. Table 19 shows the performance on TSP 100 datasets from four different distributions.
The Gap is computed relative to Gurobi. The table demonstrates that MP-ASIL substantially surpasses
all NCO methods across all distributions while maintaining efficient runtime. Particularly, while
the second-best and third-best methods vary across datasets, MP-ASIL consistently maintains top
performance. We attribute this robustness to MP-ASIL’s ability to learn multiple specialized behaviors.
Even when some policies perform poorly on specific distributions, others can achieve superior
performance and provide complementary strengths, thereby demonstrating excellent and robust
performance under distribution shift scenarios.

Table 19: Experiment results on four TSP 100 datasets. Symbols follow definitions provided in Table
1.

Method Uniform Clustered • Explosion • Implosion •
Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓

Gurobi* 0.00% (23.8m) 0.00% (34.4m) 0.00% (28.3m) 0.00% (28.7m)

POMO*† 1.29% (2.0m ) 3.89% (1.7m) 1.42% (1.7m) 1.44% (1.7m)
PointerFormer* 0.43% (1.7m) 3.96% (1.7m) 0.87% (1.7m) 0.71% (1.7m)

Omni-TSL* 2.55% (2.0m) 3.62% (2.0m) 3.21% (2.0m) 2.67% (2.0m)
ELG* 0.51% (3.2m) 3.69% (2.3m) 0.93% (3.5m) 0.85% (3.2m)

INViT-2V* 1.65% (3.0m) 3.12% (2.9m) 1.85% (3.1m) 1.95% (2.9m)
INViT-3V* 0.95% (4.2m) 2.47% (4.0m) 1.12% (4.3m) 1.21% (4.0m)

LEHD* 0.57% (11.5m) 4.51% (14.9m) 0.68% (11.1m) 1.17% (18.3m)
BQ-NCO* 5.90% (16.6m) 8.86% (17.4m) 6.41% (18.0m) 6.40% (16.8m)

MP-ASIL (k = 100) 0.00% (1.0m) 1.05% (1.0m) 0.06% (1.0m) 0.21% (1.0m)

E.3 Cross-problem Generalization

In real-world industrial applications, cross-problem generalization is as important as cross-size and
cross-distribution generalization since practical problems typically involve various attributes and
constraints. In this part, we verify the ability of MP-ASIL to address this critical requirement.

Setup. Figure 15 summarizes the attributes considered in our experiments. Each problem variant is
derived by incorporating one or more additional attributes into the standard CVRP formulation (e.g.,
CVRP + Time Window (TW) = CVRPTW, CVRP + Open route (O) = OVRP, and CVRP + TW + O
+ Backhaul (B) = OVRPBTW).

• Time Windows (TW): The vehicle must visit node i within the time window from ei to li, and
each node has a service time si. If the vehicle arrives at node i before ei, it must wait until ei to
begin service.

• Open Routes (O): The vehicle is not required to return to the depot after completing visits to all
nodes.

• Backhaul (B): The classical CVRP assumes that demand is positive (linehaul) for delivery. In
practice, however, customers can have negative demand (backhaul) for pickup. The linehaul and
backhaul customers may coexist on the same route.

• Duration Limit (L): The total length of each route must not exceed a predetermined threshold.

We build MP-ASIL upon POMO-MTL [84], a transformer-based multi-task VRP solver. Except for
the policy optimization strategy (a single policy with POMO vs. MP-ASIL) and the rollout strategy,
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Figure 15: Illustrations of various attributes of VRPs.

we follow the same training setup, evaluation procedure, and test datasets as in POMO-MTL. During
both training and inference, we do not enforce distinct initial actions. This strategy is particularly
critical in complex VRPs, where initial actions can significantly influence solution quality, rendering
rollouts from every node less suitable; however, this aspect is frequently overlooked in current studies
[56].

Results. Table 20 shows the performance evaluation results for five trained VRPs and five unseen
VRPs. Performance gaps (Gap) are computed relative to HGS [85], a state-of-the-art handcrafted
VRP solver. For trained VRPs, the table demonstrates that MP-ASIL significantly outperforms POMO-
MTL across all VRP variants, reducing the Gap from 1.71% to 1.48% on CVRP 100, from 3.81% to
3.70% on VRPTW 100, from 4.48% to 4.01% on OVRP 100, from 3.58% to 2.80% on VRPB 100,
and from 1.66% to 1.23% on VRPL 100.

For unseen VRPs, MP-ASIL shows remarkable cross-problem generalization, surpassing POMO-MTL
across nearly all instances. Specifically, MP-ASIL achieves performance improvements by reducing
the Gap from 4.50% to 3.77% on VRPBL 100, from 3.05% to 3.01% on VRPBTW 100, and from
11.50% to 10.86% on OVRPBLTW 100, while performing slightly worse only on OVRPL 100
(4.57% vs. 4.90%). These results strongly support the capability of MP-ASIL to effectively generalize
across diverse out-of-distribution scenarios, underscoring its effectiveness in both single-task and
multi-task settings.
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Table 20: Experiment results on ten VRP variants using synthetic datasets. Each problem includes
5,000 test instances. Symbols follow definitions provided in Table 1.

(a) Trained VRPs

Method CVRP 100 VRPTW 100 OVRP 100
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

HGS* 15.54 0.00% 14h 26.14 0.00% 14h 9.71 0.00% 14h

POMO-MTL*† 15.80 1.71% 35s 27.13 3.81% 35s 10.14 4.48% 35s
MP-ASIL 15.77 1.48% 36s 27.11 3.70% 36s 10.10 4.01% 36s

Method VRPB 100 VRPL 100 AVG.
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

HGS* 11.13 0.00% (14h) 15.54 0.00% (14h) 15.612 0.00% (14h)

POMO-MTL*† 11.53 3.58% (35s) 15.80 1.66% (35s) 16.27 3.05% (35s)
MP-ASIL 11.44 2.80% (36s) 15.73 1.23% (36s) 16.03 2.68% (36s)

(b) Unseen VRPs

Method VRPBL 100 • OVRPL 100 • VRPBTW 100 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

HGS* 11.15 0.00% (14h) 9.71 0.00% (14h) 26.31 0.00% (14h)

POMO-MTL*† 11.65 4.50% (35s) 10.15 4.57% (35s) 27.11 3.05% (35s)
MP-ASIL 11.57 3.77% (36s) 10.19 4.90% (36s) 27.10 3.01% (36s)

Method OVRPLTW 100 • OVRPBTW 100 • AVG. •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

HGS* 17.35 0.00% (14h) 17.31 0.00% (14h) 16.36 0.00% (14h)

POMO-MTL*† 19.34 11.50% (35s) 19.32 11.61% (35s) 17.51 7.03% (35s)
MP-ASIL 19.23 10.86% (36s) 19.29 11.44% (36s) 17.47 6.78% (36s)
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F Training Hyperparameters

In this section, we provide training hyperparameters, closely following the original papers. Our
experimental results in this paper show that simply applying MP-ASIL without hyperparameter tuning
achieves significantly improved performance while maintaining comparable training and inference
time. This demonstrates the practical value and ease of adoption of our method, enabling practitioners
to seamlessly replace policy gradient methods without requiring extensive hyperparameter calibration
or algorithmic redesign.

SMSP. Due to the lack of neural constructive solver for SMSP, we develop the model based on
BQ-NCO [72].

Table 21: Hyperparameter setting for SMSP. h: Hours.
SMSP

Learning Rate (LR) 1e-4
Weight decay 1e-6
The number of encoder layers 1
The number of decoder layers 5
The number of attention heads 8
Hidden embedding dimension (dh) 128
Batch-size 50
Continuous latent variable dimension 4
Categorical latent variable dimension 12
The number of policies (Training) 128
Epochs 100
Optimizer Adam
LR scheduler MultiStepLR
LR milestones [90,100]
LR gamma 0.1
Epoch size 1,000
Training time ∼7h

UPMSP. We follow the training settings from [41].

Table 22: Hyperparameter setting for UPMSP. d: Days.
UPMSP

Learning Rate (LR) 5e-4
Weight decay –
The number of encoder layers 1
The number of decoder layers 3
The number of attention heads 8
Hidden embedding dimension (dh) 64
Batch-size 32
Continuous latent variable dimension 2
Categorical latent variable dimension 6
The number of policies (Training) 32
Epochs 1,000
Optimizer Adam
LR scheduler Constant
Epoch size 256
Training time ∼3d
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PFSP. We follow the training settings from [12].

Table 23: Hyperparameter setting for PFSP.
PFSP

Learning Rate (LR) 1e-4
Weight decay 1e-6
The number of encoder layers 6
The number of decoder layers 1
The number of attention heads 8
Hidden embedding dimension (dh) 128
Batch-size 200
Continuous latent variable dimension 4
Categorical latent variable dimension 12
The number of policies (Training) 128
Epochs 1,000
Optimizer Adam
LR scheduler MultiStepLR
LR milestones [900, 950]
LR gamma 0.1
Epoch size 100,000
Training time ∼1.2d

FFSP. We follow the training settings from [12].

Table 24: Hyperparameter setting for FFSP 20×12, 50×12, and 100×12.
FFSP 20×12 FFSP 50×12 FFSP 100×12

Learning Rate (LR) 1e-5 1e-5 1e-5
Weight decay 1e-6 1e-6 1e-6
The number of encoder layers 3 3 3
The number of decoder layers 1 1 1
The number of attention heads 16 16 16
Hidden embedding dimension (dh) 256 256 256
Batch-size 50 50 50
Continuous latent variable dimension 4 4 4
Categorical latent variable dimension 12 12 12
The number of policies (Training) 24 24 24
Epochs 100 150 200
Optimizer Adam Adam Adam
LR scheduler MultiStepLR MultiStepLR MultiStepLR
LR milestones [80,90] [130,140] [170,190]
LR gamma 0.1 0.1 0.1
Epoch size 1,000 1,000 1,000
Training time ∼2h ∼5h ∼1d
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JSSP. We follow the training settings from [20].

Table 25: Hyperparameter setting for JSSP.
JSSP

Learning Rate (LR) 1e-4
Weight decay –
The number of encoder layers 2
The number of decoder layers 2
The number of attention heads 3
Hidden embedding dimension (dh) 128
Batch-size 16
Continuous latent variable dimension 4
Categorical latent variable dimension 12
The number of policies (Training) 256
Epochs 20
Optimizer Adam
LR scheduler Constant
Epoch size 30,000
Training time ∼4d

FJSSP. We follow the training settings from [31].

Table 26: Hyperparameter setting for FJSSP.
FJSSP

Learning Rate (LR) 3e-4
Weight decay –
The number of encoder layers 1
The number of decoder layers 2
The number of attention heads 4
Hidden embedding dimension (dh) 64
Batch-size 16
Continuous latent variable dimension 4
Categorical latent variable dimension 12
The number of policies (Training) 128
Epochs 40
Optimizer Adam
LR scheduler Constant
Epoch size 160
Training time ∼5h
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TSP and CVRP. We follow the training settings from [10].

Table 27: Hyperparameter setting for TSP and CVRP.
TSP CVRP

Learning rate 1e-4
Weight decay 1e-6
The number of encoder layers 6
The number of decoder layers 1
The number of attention heads 8
Hidden embedding dimension (dh) 128
Batch-size 50
Continuous latent variable dimension 4
Discrete latent variable dimension 12
The number of policies (Training) 100

Epochs 2,000 8,000
Optimizer Adam Adam
LR scheduler MultiStepLR MultiStepLR
LR milestones [1900,1950] [7900, 7950]
LR gamma 0.1 0.1
Epoch size 100,000 10,000
Training time ∼12d ∼4d

G Limitation and Future Work

Algorithm. Despite the demonstrated effectiveness of MP-ASIL, our approach has several potential
limitations. First, MP-ASIL samples latent variables from a fixed prior distribution Z across all
instances, potentially overlooking optimal instance-specific priors. Therefore, learning adaptive,
instance-dependent distributions is a promising future direction. Second, while increasing the number
of policies (k) can make stronger models during training (detailed in Section 5.2), it also increases
memory usage and training time. Therefore, an important avenue for future research is to design
a practical yet effective sampling framework that can generate stronger self-teachers from fewer
samples drawn from promising policy subspaces.

Applications. In this work, we primarily focus on deterministic and static JSPs. For future research,
we plan to apply MP-ASIL to more realistic scenarios, including communication latency [86] and
dynamic environments, as well as multi-objective JSPs. Additionally, we aim to demonstrate
MP-ASIL’s effectiveness across a broader range of COPs.

H Broader Impact

This paper introduces a new learning paradigm for scheduling problems. MP-ASIL addresses diverse
decision-making tasks in manufacturing and logistics via end-to-end learning, potentially reducing
human reliance on effective heuristic algorithm design. However, unlike simple PDRs, deep learning
lack interpretability, raising trust concerns for AI-driven decision-making systems. Therefore,
advancing explainable AI methods to elucidate and justify decision-making processes remains a
critical avenue for future research.

I Licenses

The licenses for code repositories and datasets used in this work are summarized in Table 28.
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Table 28: List of licenses for code repositories and datasets used in this work.
Resource Type Link License

BQ-NCO Code https://github.com/naver/bq-nco CC BY-NC-SA 4.0

DeepACO and
ACO

Code&
dataset

https://github.com/henry-yeh/DeepACO MIT License

GFACS Code https://github.com/ai4co/gfacs MIT License

POMO Code https://github.com/yd-kwon/POMO MIT License

MatNet Code&
dataset

https://github.com/yd-kwon/MatNet MIT License

IL, ILS, IGA, and
NEH

Code https://github.com/lokali/PFSS-IL Available online

SLIM Code&
dataset

https://github.com/AndreaCorsini1/
SelfLabelingJobShop

Available online

DANIEL Code&
dataset

https://github.com/wrqccc/FJSP-DRL Available online

SPM-DAN Code https://github.com/
ai-for-decision-making-tue/
NCO-for-Stochastic-FJSP

Available online

Sym-NCO Code https://github.com/alstn12088/Sym-NCO Available online

EAS Dataset https://github.com/ahottung/EAS Available online

SI GD Dataset https://github.com/grimmlab/
gumbeldore/tree/main

Available online

INViT Dataset https://github.com/Kasumigaoka-Utaha/
INViT

Available online

POMO-MTL Code&
Dataset

https://github.com/FeiLiu36/MTNCO Available online
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