
Towards Generalizable Multi-Policy Optimization with
Self-Evolution for Job Scheduling

Inguk Choi, Woo-Jin Shin, Sang-Hyun Cho, Hyun-Jung Kim∗

Manufacturing and Service Systems Lab
Dept. of Industrial and Systems Engineering

Korea Advanced Institute of Science and Technology (KAIST)
{inguk0826, wjshin, ie02002, hyunjungkim}@kaist.ac.kr

Abstract

Reinforcement Learning (RL) has shown promising results in solving Job Schedul-
ing Problems (JSPs), automatically deriving powerful dispatching rules from data
without relying on expert knowledge. However, most RL-based methods train only
a single decision-maker, which limits exploration capability and leaves significant
room for performance improvement. Moreover, designing reward functions for
different JSP variants remains a challenging and labor-intensive task. To address
these limitations, we introduce a novel and generic learning framework that opti-
mizes multiple policies sharing a common objective and a single neural network,
while enabling each policy to learn specialized and diverse strategies. The model
optimization process is fully guided in a self-supervised manner, eliminating the
need for reward functions. In addition, we develop a training scheme that adaptively
controls the imitation intensity to reflect the quality of self-labels. Experimental
results show that our method effectively addresses the aforementioned challenges
and significantly outperforms state-of-the-art RL methods across six JSP vari-
ants. Furthermore, our approach also demonstrates strong performance on other
combinatorial optimization problems, highlighting its versatility beyond JSPs.

1 Introduction

Job Scheduling Problems (JSPs) are fundamental Combinatorial Optimization Problems (COPs) with
significant practical importance across various industries such as manufacturing [1], logistics [2], and
data centers [3]. Solving a JSP involves assigning jobs to machines (limited resources) and sequencing
them on each machine. The goal is to find a schedule from a finite, discrete solution space that
minimizes (or maximizes) the objective function under problem-specific constraints. Traditionally,
JSPs have been solved using exact methods or handcrafted heuristic algorithms. However, exact
methods are computationally intractable for large-size problems [4], and designing effective heuristics
for each JSP variant requires deep domain knowledge and significant manual effort [5].

Beyond expert-designed heuristics, Neural Combinatorial Optimization (NCO) methods, as variants
of Hyper-Heuristics (HH) [6], have recently emerged to automate the heuristic design process
[7, 8]. In particular, neural constructive heuristics, which sequentially build solutions from scratch
using Deep Neural Networks (DNNs), have attracted significant attention due to their simplicity
and flexibility [9, 10, 11, 12]. These methods leverage DNNs to model decision-making policies
(traditionally represented by Priority Dispatching Rules (PDRs)) and learn state-to-action mappings
from data via Supervised Learning (SL) or Reinforcement Learning (RL). However, due to the
NP-hardness of most JSPs, SL approaches struggle to obtain sufficiently high-quality solutions for

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

labeled data. Consequently, RL-based policy gradient methods, which optimize policies from reward
signals, have gained popularity and have shown promising results [13].

Despite its strength, applying RL to JSPs still faces two key challenges. (1) Exploration: Due to the
exponentially large search space of JSPs [14] and the trial-and-error nature of RL, effective exploration
in both training and inference phases is essential for finding high-quality solutions. Nevertheless,
most RL-based methods train only a single policy, which often suffers from insufficient exploration
due to mode collapse, where the policy distribution converges toward a unimodal distribution during
RL training [15, 16]. For Vehicle Routing Problems (VRPs), another well-known class of COPs,
NCO methods effectively enhance search capabilities by leveraging optimality symmetries (solution
symmetry [10] and problem symmetry [17, 18]). However, JSPs lack universally definable beneficial
symmetries, making it difficult to enforce effective exploration. (2) Reward shaping: JSPs have
numerous variants based on machine environments, constraints, and objective functions [19]. Thus,
designing bespoke reward functions for each variant remains a complex and challenging task [20].
Although the objective value can be directly used as a true reward for policy optimization using
the REINFORCE algorithm [21], this approach suffers from reward sparsity and non-trivial credit
assignment problems [22], which add to the training complexity.

Contributions. In this paper, we propose a novel and generic learning framework to address
the aforementioned challenges. Rather than training a single policy, our framework aims to learn
multiple policies that share the same objective and model parameters, but solve the problem us-
ing distinct strategies. To this end, we introduce the MP-ASIL (Multi-Policy Optimization with
Adaptive Self-Imitation Learning), designed to guide each policy to learn diverse and complementary
problem-solving strategies in a fully self-evolutionary manner. MP-ASIL addresses the limitations
of RL-based methods in the following ways. Firstly, multiple specialized policies can express a
multimodal action distribution, alleviating the mode collapse problem in single policy approaches
and improving solution quality as a natural byproduct of enhanced search capability. Secondly,
MP-ASIL autonomously generates training labels for model optimization, eliminating the need for
problem-specific Markov Decision Process (MDP) formulations. Beyond addressing the RL limita-
tions, we develop a training scheme that adaptively controls imitation intensity based on the quality of
the self-teacher, mitigating fundamental drawbacks of existing Self-Imitation Learning (SIL)-based
methods. Finally, our framework is problem- and model-agnostic, enabling easy plug-in to diverse
problem-specific architectures.

To validate the effectiveness of MP-ASIL, we evaluate it on six widely studied JSPs: Single Machine
Scheduling Problem (SMSP), Unrelated Parallel Machine Scheduling Problem (UPMSP), Permu-
tation Flow Shop scheduling Problem (PFSP), Flexible Flow Shop scheduling Problem (FFSP),
Job Shop Scheduling Problem (JSSP), and Flexible Job Shop Scheduling Problem (FJSSP). The
experimental results demonstrate that MP-ASIL successfully unlocks the potential of models for sig-
nificantly improved exploration capabilities and overall performance, providing new state-of-the-art
results on various synthetic and benchmark datasets. Furthermore, MP-ASIL also demonstrates strong
performance on other COPs, underscoring its broad applicability beyond JSPs.

2 Related Work

Neural Constructive Heuristics for JSPs. Recent advances in artificial intelligence have opened
new avenues for solving JSPs with Machine Learning (ML) [23]. Various learning-based approaches
have been studied, including neural improvement heuristics that iteratively refine complete solutions
via neural-guided local search [24, 25, 26] and hybrid methods that integrate ML into classical
heuristics [27, 16, 28]. Nonetheless, most learning-based methods have primarily focused on neural
constructive heuristics. L2D [11], a seminal work in this area, introduces a Graph Neural Network
(GNN)-based policy for solving JSSP. It sequentially assigns operations to machines using the
topological information of partial solutions represented as disjunctive graphs, outperforming tradi-
tional dispatching rules. Building on this success, several methods have been proposed for diverse
JSP variants, differing in how the networks are designed (e.g., GNN-based policies [29, 30, 31]
or Transformer [32]-based policies [12, 33]) and how the networks are trained (e.g., actor-critic
methods [34, 35, 36, 37], REINFORCE algorithms [38, 39, 40, 41], or SL [42, 43, 44]). Despite these
advancements, most existing approaches only train a single policy, limiting exploration capability and

2

leaving substantial room for performance improvement. Furthermore, they often require specialized
MDP formulations or expert knowledge for training, thus limiting their generalizability to other JSPs.

Recently, to eliminate the need for reward function design and labeled data, SIL-based methods have
emerged as self-improvement approaches for solving JSPs. In this paradigm, a policy generates
multiple candidate solutions and selects the best one as the expert trajectory for SL. SLIM [20]
generates candidate solutions via vanilla stochastic sampling from a single policy, which produces
many duplicate candidates, thereby leaving less space for potentially better solutions. To improve
the sampling process, SI GD [45] proposes a method based on drawing trajectories in multiple steps
using stochastic beam search. However, this approach demands extensive search effort for each
instance and careful hyperparameter tuning. Existing SIL-based methods also disregard the quality of
their self-labels and exhibit low sample efficiency because they rely solely on the best solution and
discard the rest. In contrast, our work addresses these limitations via simple yet powerful MP-ASIL
and demonstrates its effectiveness across various JSPs.

Improving Solution Diversity in NCO. Many recent NCO methods for VRPs follow the POMO
approach [10], improving exploration by generating multiple solutions from different starting points.
However, in JSPs, initial actions often significantly impact solution quality, limiting the applicability
of the POMO method to JSPs. Although LCP [46] proposes a general methodology that encour-
ages sampling diverse solutions via entropy regularization, computing the entropy over the entire
trajectory remains computationally intractable. Recently, Generative Flow Networks (GFlowNets)
[47] have gained attention due to their powerful exploration capabilities [48, 49, 16, 50]; however,
substantial post-search efforts are still required to achieve competitive results. For JSPs, some studies
improve solution quality through beam search [51], active search [52], or look-ahead search [53], yet
approaches specifically aimed at promoting solution diversity remain limited.

A promising research direction in NCO involves training multiple policies to learn different solution
patterns. MDAM [15] proposes an Attention Model (AM) [9] with multiple decoders to train
diverse policies for VRPs. It maximizes the Kullback-Leibler divergence between initial action
distributions to encourage distinct solution patterns. Poppy [54] introduces another multi-decoder
training approach in which only the best-performing policy is updated at each iteration. Despite
their effectiveness, multi-decoder models require a separate decoder for each policy, resulting in
substantial computational overhead and limiting scalability as the number of policies increases.
Similar to our work, COMPASS [55] and PolyNet [56] utilize latent variables to represent multiple
policies. However, COMPASS focuses on test time search, while PolyNet requires specialized
decoder structures [9, 12]. Both methods also mainly target relatively simple VRPs and employ the
REINFORCE algorithm, which suffers from the non-trivial credit assignment problem.

3 Preliminaries

Job Scheduling Problems. In this work, we focus on standard and static JSPs. A standard JSP
instance of size |J |× |M| consists of a set of jobs J , a set of machinesM, and a set of operationsO.
Each job j ∈ J comprises mj operations {Oji}

mj

i=1 ⊆ O that must be processed in a predefined order
Oj1 → · · · → Oji → · · · → Ojmj , where Oji denotes the ith operation of job j. Each operation Oji

can be processed on exactly one machine from its set of eligible machinesMji ⊆M with processing
time pjik ∈ R>0 on machine k ∈Mji. Based on this formulation, each JSP is uniquely characterized
by its specific machine environment, constraints, and objective functions [57] (see Appendix A for
details). Given a JSP instance s ∼ D, where D is an instance distribution, our goal is to find a
solution τ ∈ Ω, where Ω is a finite solution space that satisfies all constraints while minimizing
(or maximizing) a predefined objective function f : (τ , s)→ R. For convenience, we assume that
we solve minimization problems. Notably, f need not be injective; due to the multimodality of the
objective function in JSPs [14], distinct solutions can have the same objective value.

Constructing Feasible Solutions. A JSP solution τ can be autoregressively constructed by sequen-
tially assigning each operation to a compatible machine according to the policy, and appending it
to the end of that machine’s operation sequence. Thus, we define τ = (τ1, . . . , τt, . . . , τ|O|) as a
sequence of decisions, with the policy πθ modeled as a DNN parameterized by θ. As illustrated in
Figure 1, at each decision step t, the DNN-based policy computes a conditional action distribution
πθ(τt | s, τ<t) over the next operation τt, where τ<t represents the partial solution until step t,

3

Problem Instance 𝒔

𝝅
𝜽 (∙|𝒔

,𝝉
<
𝟏)

Partial Sol.

M2

M1 …

𝝅
𝜽 (∙|𝒔

,𝝉
<
𝟐)

Partial Sol.

M2

M1

Solution 𝝉

M2

M1

…
Action 𝝉𝟏 Action 𝝉𝟐

: Operations

Policy

: Machines

M1

M2

: Eligibility

Time

Policy

Figure 1: Illustrative example of sequential decision-making process using neural constructive
heuristics to build a solution τ .

guiding the sequential decision-making process until all operations are scheduled. Consequently, the
overall policy πθ(τ | s) for generating a solution τ given an instance s is factorized as:

πθ(τ | s) =
|O|∏
t=1

πθ(τt | s, τ<t). (1)

4 Methods

In this section, we introduce MP-ASIL, a novel and generic learning framework to address several
challenges in solving JSPs with RL. An overview of MP-ASIL is illustrated in Figure 2.

4.1 Multi-Policy Representation: Latent Conditioned Policies

As discussed in Section 1, enforcing effective exploration in JSPs is challenging, and single policy
approaches struggle to balance exploration and exploitation. To address these issues, we aim to learn
multiple policies (a set of heuristics) that share the same objective and model parameters but can
represent diverse and complementary solution patterns. In this work, we model this population by
conditioning a single neural network on different latent variables, referred to as latent conditioned
policies [58, 55, 56]. Formally, the latent conditioned policy is described as π(· | s, z), parameterized
by an instance s and the latent variable z ∈ Rdz . By sampling multiple latent variables z1, . . . , zk
from a known latent distribution Z , we can obtain a policy set Π as follows:

Π =
{
πθ(· | s, zi)

∣∣ zi∼Z, i = 1, 2, . . . , k
}
. (2)

Each latent variable defines a distinct policy, enabling a single DNN to represent multiple decision-
makers. Notably, these latent conditioned policies can be implemented regardless of network
architectures. Appendix B provides deeper motivation for using latent variables to represent the
population, as well as the implementation details and the distribution for sampling the latent variables.

4.2 MP-ASIL: Multi-Policy Optimization with Adaptive Self-Imitation Learning

Motivation. Given our motivation for using multiple policies, the following question naturally
arises: How can we guide these policies to learn diverse and complementary problem-solving
strategies? This question emerges because merely representing multiple policies does not ensure
that they can generate diverse solutions. To answer this, we introduce MP-ASIL, designed to guide
each policy to specialize into a distinct yet powerful schedule generator. Our method is based on
three principles: (1) the Π aims not merely for diversity (e.g., random policies in extreme cases), but
for useful diversity that effectively helps to find better solutions [59]; (2) it is unnecessary for every
policy in Π to show strong performance on a given instance s, as inference requires selecting only the
best solution among candidates; (3) the following population-level inference objective, defined as:

Es∼DEz1,...,zk∼ZEτ1∼πθ(·|s,z1),...,τk∼πθ(·|s,zk) min{f(τ 1, s), . . . , f(τ k, s)}, (3)

should be reflected during training. Unfortunately, RL-based methods suffer from sparse learning
signals, as feedback emphasizing the population objective is provided only after generating a complete

4

Problem instance 𝒔

A: Sample 𝒌 Solutions

Conditioning~…

Update

function

:Latent variables :Latent conditioned policies

𝝅
𝜽

(∙
|𝒔

,𝒛
𝟏)

𝝅
𝜽

(∙
|𝒔

,𝒛
𝒌)

42 3

Solution

ranking

Best solution 𝝉∗

Self-Teacher

M2

1

B: Best Solution Selection

𝒌 policies

C: MP-ASIL

Train best conditioned policy

using MP-ASIL

…

Label

quality

indicator

M1

𝓛𝐌𝐏−𝐀𝐒𝐈𝐋 = −(
|𝑓 𝜏∗, 𝑠 − 𝑚𝑒𝑎𝑛 𝑠 |

𝑠𝑡𝑑(𝑠)
)

1

|𝒪|
෍

𝑡=1

|𝒪|

log 𝜋𝜃(𝜏𝑡
∗|𝑠, 𝝉<𝑡

∗ , 𝑧∗)

Pseudo

label

:Updated embeddings

Single DNN 𝜽

M1

M2

Rollout

Update

𝒛𝟏

𝒛𝟏

𝝉∗

Candidate

solutions

𝒛𝟏 𝒛𝒌

𝒌 Latent variables

Figure 2: An overview of MP-ASIL. Step A (Section 4.1): We generate k distinct policies by
conditioning a single DNN on k latent variables, and sample k solutions from these policies. Step B
(Section 4.2): Among these k solutions, the one with the lowest objective value is selected as the
pseudo-label τ ∗. Step C (Section 4.2): The model is trained to imitate τ∗ using MP-ASIL.

decision trajectory. Moreover, designing surrogate stepwise reward functions is a complex and non-
trivial task. To overcome these challenges, we reformulate the problem of learning PDRs from
a reward-maximization task to a classification task, in which the Π autonomously generates and
imitates pseudo-labels corresponding to the best current action at each constructive step.

Training procedure. Specifically, for each training instance s, (Step A:) we draw k latent variables
from Z and generate k policies by conditioning the policy network on the sampled variables. (Step
B:) From these policies, we sample k candidate solutions simultaneously and select the one with
the lowest objective value as the pseudo-label τ ∗ = argminτ i∈{τ1,...,τk} f(τ

i, s), obtained from
the best-performing policy πθ(·|s, z∗). (Step C:) The model is then optimized to imitate the best
decision τ ∗ = {τ∗1 , . . . , τ∗t , . . . , τ∗|O|} at each step in an SL manner (maximizing the conditional
log-likelihood). However, pseudo-labels are not guaranteed to be globally optimal, and their quality
can vary with the sampled solutions. Therefore, to adaptively control imitation intensity based on
pseudo-label quality, we modify the loss function (cross-entropy loss) as follows:

LMP-ASIL = −
(
|f(τ ∗, s)− mean(s)|

std(s)

)
1

|O|

|O|∑
t=1

log πθ(τ
∗
t | s, τ ∗

<t, z
∗), (4)

where mean(s) = 1
k

∑k
i=1 f(τ

i, s) is the average objective value across k candidate solutions, and

std(s) =
√

1
k

∑k
i=1 (f(τ

i, s)− mean(s))2 is the standard deviation. In Equation (4), we use the

normalized advantage value |f(τ∗,s)−mean(s)|
std(s) as a pseudo-label quality indicator that enables adaptive

SIL, where superior pseudo-labels are strongly imitated and marginally good pseudo-labels are
weakly imitated.

Rationale of MP-ASIL and Summary. Our learning framework establishes a self-evolutionary loop
via an iterative optimization process by generating and imitating progressively stronger self-teachers.
Notably, to reflect the population-level objective in Equation (3) during training, our method updates
the model based solely on the performant policy, incentivizing higher probabilities for specific actions
conditioned on z∗ and s. This training procedure naturally encourages the policy latent space to be
diverse (guided by latent variables) and specialized (optimized for distinct instance sub-distributions).
As a result, trained latent conditioned policies can represent a multimodal trajectory distribution
without requiring diversity-enforcing mechanisms (e.g., entropy bonus), mitigating the (relatively-
)deterministic action distribution problem in single policy approaches. Our approach also resolves
the sparse reward problem in RL by removing the need for reward functions.

Beyond overcoming RL limitations, MP-ASIL improves upon existing SIL-based methods by leverag-
ing information from all sampled solutions, significantly improving sample efficiency and facilitating
adaptive imitation intensity control to avoid over-exploitation of suboptimal solutions.

5

Algorithm 1 MP-ASIL training

1: Input: Model parameters θ, instance distribution D, latent variable distribution Z , number of
epochs E, number of training steps T , batch size B, and number of policies k.

2: Initialize model parameters θ.
3: for epoch = 1 to E do
4: for step = 1 to T do
5: si ← SampleInstance(D), ∀i ∈ {1, . . . , B}
6: Πi = {πθ(τ

j
i | si, z

j
i)}kj=1 ← SamplePolicy(Z), ∀i ∈ {1, . . . , B}

7: {τ 1
i , . . . , τ

k
i } ← SampleRollout(Πi), ∀i ∈ {1, . . . , B}

8: τ ∗
i = argminτ j

i∈{τ1
i ,...,τ

k
i }

f(τ j
i , si), ∀i ∈ {1, . . . , B} ▷ Select the best solution.

9: LMP-ASIL = − 1
B

1
|O|
∑B

i=1
|f(τ∗

i ,si)−mean(si)|
std(si)

∑|O|
t=1 log πθ(τ

∗
i,t | si, τ ∗

i,<t, z
∗
i)

10: θ ← Adam(θ,∇θLMP-ASIL) ▷ Solely based on the performant policy.
11: end for
12: end for
13: Output: Trained model parameters θ.

Last but not least, MP-ASIL can be directly applied to existing neural constructive solvers (detailed
in Appendix B.1) and JSPs without any algorithmic modifications, since our method leverages the
fundamental property of JSPs that solutions generated for the same instance can be discriminated
by their objective values. Therefore, we can easily obtain the MP-ASIL recipe ingredients (latent
conditioned policies, pseudo-label, and label-quality indicator) for any setting. The mini-batch
training of MP-ASIL is summarized in Algorithm 1.

5 Experiments

We evaluate MP-ASIL on six representative JSPs: SMSP, UPMSP, PFSP, FFSP, JSSP, and FJSSP. They
cover various JSP scenarios. Detailed definitions of each problem are provided in Appendix C. We
first describe the experimental settings of MP-ASIL (Section 5.1) and then present the experimental
results and detailed analysis (Section 5.2). All experiments are conducted on a 24-core Intel(R)
i9-14900kS CPU and a single NVIDIA GeForce RTX 4090 with 24 GB.

5.1 Experimental Settings

Model & Training. We implement MP-ASIL on top of the problem-specific backbone models for
each task, for two reasons. First, neural solvers for JSPs have evolved with specialized network
architectures tailored to each problem. Second, this experimental design highlights MP-ASIL as a
generic learning framework that is agnostic to the problem type and underlying model architecture.
We use training hyperparameters of the backbone models from original papers whenever applicable.
Detailed model architectures and training settings are presented in Appendices C and F. Additionally,
Appendix D.1 provides validation scores during the training process.

Baseline Methods. We compare MP-ASIL with various state-of-the-art classic heuristics and NCO
methods for each problem. Baseline methods for each problem are described in Appendix C.

Test Datasets & Inference. We evaluate MP-ASIL on benchmark and synthetic datasets widely
used in the NCO and operations research communities (Appendix C). At inference time, we select
the best solution from k candidates generated by the Π. To ensure fair comparison, we match k to the
sampling size reported in prior studies using the same architecture; otherwise, we set k = 128.

Performance Metrics. We use three metrics for evaluation: average objective value (Obj.), average
performance gap (Gap), and total inference time (Time). The performance gap for each method
on an instance s is calculated as 100× (fs

o − fs
b)/f

s
b , where fs

o is the objective value obtained by
each method, and fs

b is the best-known objective value for s. Note that reported Time may not be
directly comparable across methods due to differences in hardware and other experimental settings.
Therefore, for clarity, results obtained from the original papers are marked with an asterisk (*).

6

Table 1: Experiment results on SMSP, UPMSP, and FFSP. †: Methods using the same model as
MP-ASIL. Exact: Exact solver. Heuristics: Handcrafted heuristics. NCH: Neural constructive
heuristics. Hybrid: Hybrid methods. Gray : Our (MP-ASIL) results. S: Sampling size. ↓: Lower is
better. Bold: Best Obj. and Gap among the NCO methods except for Large. •: Instance sizes unseen
during MP-ASIL training. Time units: s (seconds), m (minutes), and h (hours).

Method Type SMSP 50 SMSP 100 • SMSP 500 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

EDD Heuristics 0.3268 49.84% (0s) 0.3950 66.24% (0s) 0.7287 97.70% (1s)
ACO [27] Heuristics 0.7787 >100% (1.1m) 6.9138 >100% (2.4m) 646.81 >100% (28.9m)

DeepACO [27] Hybrid 0.2296 5.27% (1.1m) 0.2551 7.36% (2.6m) 0.5944 61.30% (29m)
GFACS [16] Hybrid 0.4202 92.64% (1.5m) 1.2153 >100% (3m) 14.612 >100% (33.7m)

MP-ASIL (k=128) NCH 0.2181 0.00% (5s) 0.2376 0.00% (17s) 0.3691 0.16% (14.5m)
MP-ASIL (Large) NCH 0.2181 0.00% (1m) 0.2376 0.00% (2.3m) 0.3685 0.00% (53.5m)

Method Type UPMSP 50×3 • UPMSP 50×6 • UPMSP 100×6 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

EDD Heuristics 2836.8 >100% (1s) 778.5 >100% (1s) 2472.1 >100% (2s)
ATCSR_Rm [60] Heuristics 877.0 22.91% (6.6m) 294.5 14.40% (6.9m) 735.6 75.94% (10.0m)

Cho et al. (S=6) † [41] NCH 784.4 9.94% (1.8m) 294.2 14.29% (2.4m) 502.4 20.16% (10.6m)

MP-ASIL (k=6) NCH 751.9 5.37% (1.8m) 275.7 7.09% (2.4m) 458.1 9.57% (10.7m)
MP-ASIL (Large) NCH 713.5 0.00% (6.1m) 257.4 0.00% (24.6m) 418.1 0.00% (1h)

Method Type FFSP 20×12 FFSP 50×12 FFSP 100×12
Obj. ↓ Gap↓ Time ↓ Obj. ↓ Gap↓ Time ↓ Obj. ↓ Gap↓ Time ↓

CPLEX (1m)* [61] Exact 46.4 81.04% (17h) – – – – – –
CPLEX (10m)* [61] Exact 36.6 42.80% (167h) – – – – – –

SPT* [12] Heuristics 31.3 22.12% (40s) 57.0 14.22% (1m) 99.3 10.71% (2m)
GA* [62] Heuristics 30.6 19.39% (7h) 56.4 13.03% (16h) 98.7 10.04% (29h)
PSO* [63] Heuristics 29.1 13.54% (13h) 55.1 10.42% (26h) 97.3 8.48% (48h)

MatNet (S=24) † [12] NCH 27.3 6.51% (8s) 51.5 3.21% (13s) 91.5 2.02% (26s)
PolyNet (k=24) † [56] NCH 26.9 5.11% (8s) 51.2 2.56% (13s) 91.1 1.59% (27s)

MP-ASIL (k=24) NCH 26.9 4.88% (8s) 51.1 2.40% (13s) 90.9 1.32% (27s)
MP-ASIL (Large) NCH 25.6 0.00% (26s) 49.9 0.00% (1.1m) 89.7 0.00% (3.2m)

Table 2: Experiment results on PFSP using the TA benchmark. G: Greedy action selection. The Time
metric is reported in Appendix D.2.

Method Type 20×5 20×10 50×5 • 50×10 • 100×5 • 100×10 • 200×10 • Avg.
Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓

ILS [64] Heuristics 6.81% 9.45% 4.14% 11.69% 3.44% 9.57% 6.63% 7.39%
IGA [65] Heuristics 3.36% 10.56% 1.97% 7.53% 1.03% 5.73% 3.43% 4.80%
NEH [66] Heuristics 2.40% 4.45% 0.66% 4.69% 0.41% 2.04% 1.28% 2.28%

IL (G) [42] NCH 18.20% 26.96% 12.30% 26.76% 10.13% 19.03% 15.25% 18.38%
PFSPNet (G)* [38] NCH – 14.78% – 11.95% – 8.21% – 11.65%
Q-Learning (S=5)* [37] NCH 9.90% 13.41% 6.24% 15.43% 4.87% 11.64% 8.74% 10.03%

MP-ASIL (k=128) NCH 0.37% 3.32% 0.22% 4.05% 0.16% 2.15% 1.51% 1.68%

5.2 Experimental Results

Benchmark Results. We first evaluate the performance of MP-ASIL on synthetic datasets for SMSP,
UPMSP, and FFSP. The test datasets contain 100, 500, and 1,000 instances per problem size for
SMSP, UPMSP, and FFSP, respectively. Additionally, we report results for MP-ASIL (Large), which
generates k×16 policies, serving as an anchor for computing the Gap. As shown in Table 1, MP-ASIL
significantly outperforms all baselines, achieving state-of-the-art results across all problem types
and problem sizes. Specifically, for SMSP, DeepACO [27] and GFACS [16] retrain models for each
problem size. In contrast, MP-ASIL trains solely on small-size instances (|J |=50) yet demonstrates
remarkable cross-size generalization, achieving 0.00% Gap for SMSP 50 and SMSP 100, and 0.16%
Gap for SMSP 500. For UPMSP, we use the same network architecture (except for the multi-policy
implementation) and training settings as Cho et al. [41], differing only in the policy optimization
manner (REINFORCE algorithm with a shared baseline (REINFORCE) [3, 17] vs. MP-ASIL). Table
1 shows that MP-ASIL strongly outperforms Cho et al. with Gap becoming more pronounced as
problem sizes increase. Note that the ATCSR_Rm [60] results are obtained through a greedy search

7

Table 3: Experiment results on JSSP using the TA benchmark. NIH: Neural improvement heuristics.
The Time metric is reported in Appendix D.2.

Method Type 15×15 20×15 20×20 30×15 • 30×20 • 50×15 • 50×20 • 100×20 • Avg.
Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓ Gap ↓

Gurobi (3600s)* [20] Exact 0.1% 3.2% 2.9% 10.7% 13.2% 12.2% 13.6% 11.0% 8.4%
OR-Tools (3600s)* [67] Exact 0.1% 0.2% 0.7% 2.1% 2.8% 3.0% 2.8% 3.9% 2.0%

L2D (G)* [11] NCH 26.0% 30.0% 31.6% 33.0% 33.6% 22.4% 26.5% 13.6% 27.1%
L2D (S=128)* [11] NCH 17.1% 23.7% 22.6% 24.4% 28.4% 17.1% 20.4% 10.3% 20.5%
SN (G)* [29] NCH 15.3% 19.4% 17.2% 19.1% 23.7% 13.9% 13.5% 6.7% 16.1%
RASCL (G)* [36] NCH 14.3% 16.5% 17.3% 18.5% 21.5% 12.2% 13.2% 5.9% 14.9%
RS (G)* [39] NCH 14.8% 16.5% 16.9% 14.4% 17.7% 6.7% 10.0% 2.6% 12.5%
SI GD (G)* [45] NCH 9.6% 9.9% 11.1% 9.5% 13.8% 2.7% 6.7% 1.7% 8.4%
SLIM (S=512)*† [20] NCH 6.5% 8.8% 9.0% 10.6% 12.7% 4.9% 7.6% 2.1% 7.8%

L2S-500* [25] NIH 9.3% 11.6% 12.4% 14.7% 17.5% 11.0% 13.0% 7.9% 12.2%
TBGAT-500* [26] NIH 8.0% 9.9% 10.0% 13.3% 16.4% 9.6% 11.9% 6.4% 10.7%

MP-ASIL (k=512) NCH 6.8% 8.5% 8.7% 10.4% 12.8% 4.2% 7.0% 1.0% 7.4%

over 3,146 heuristic parameter configurations for each instance, following the original paper. More
detailed results for UPMSP are provided in Appendix D.3. For FFSP, we implement MP-ASIL on
top of the trained MatNet [12] and show remarkably better performance than all baselines.

Table 2 compares MP-ASIL with baseline methods on PFSP using the well-known Taillard (TA)
benchmark [68].2 We apply MP-ASIL to the MatNet-based model. From the table, we observe that
previous NCO methods cannot beat classical heuristics; however, MP-ASIL considerably surpasses all
neural solvers and even exceeds traditional approaches in terms of average Gap and Time. Although
direct comparisons are limited by the lack of inference times from some neural solvers, MP-ASIL
solves all instances for each problem size within one second (see Appendix D.2). Appendix D.4
provides experiment results on synthetic PFSP datasets. Table 3 compares MP-ASIL with other
methods on JSSP using the TA benchmark. As shown in the table, SLIM [20], which differs
from MP-ASIL in learning strategy but uses the same backbone model, already outperforms all
learning-based methods in terms of Time and average Gap. Nevertheless, MP-ASIL achieves a relative
performance improvement of about 5.1% with nearly the same runtime. Experimental results on
additional JSSP benchmarks are provided in Appendices D.5 and D.6. Due to space limitations,
experimental results on deterministic and stochastic FJSSP can be found in Appendix D.7.

Ablation Studies. Recall that MP-ASIL consists of three key components: (1) multiple policies
represented by latent variables, (2) SIL to optimize multiple policies, and (3) an advantage weight to
control imitation intensity. To validate the contribution of each component to enhanced performance,
we conduct ablation studies by progressively removing individual components. Table 4 clearly shows
that our full version consistently surpasses all ablation versions by a large margin, highlighting the
critical role of each component. We provide ablation results on all tested instances in Appendix D.8.

Table 4: Result of ablation studies. AdvW: Advantage weight. MP: Multiple policies. ↑: Performance
drop relative to MP-ASIL. In the MP-ablation version, latent conditioned policies are replaced by a
single policy. In the SIL-ablation version, SIL is substituted with RL approaches: the REINFORCE
algorithm with a shared baseline [3, 17] for a single policy or Poppy method [54] for multiple policies.
[✗ ✗ ✓] is equivalent to the SLIM [20].

AdvW MP SIL SMSP 100 UPMSP 100×6 PFSP 100×10 FFSP 100×12 JSSP 100×20

✓ ✓ ✓ 0.00% 9.57% 2.15% 1.32% 0.96%
✗ ✓ ✓ 0.67% (0.67% ↑) 10.30% (0.73% ↑) 3.56% (1.41% ↑) 1.37% (0.05% ↑) 1.75% (0.79% ↑)
✗ ✗ ✓ 3.37% (3.37% ↑) 14.33% (4.76% ↑) 3.57% (1.42% ↑) 1.40% (0.08% ↑) 2.10% (1.14% ↑)
✗ ✓ ✗ 35.77% (35.77% ↑) 13.50% (3.93% ↑) 2.16% (0.01% ↑) 1.59% (0.27% ↑) 2.47% (1.51% ↑)
✗ ✗ ✗ 6.69% (6.69% ↑) 20.16% (10.59% ↑) 3.78% (1.63% ↑) 2.02% (0.70% ↑) 3.96% (3.00% ↑)

The Effect of k. We analyze the effect of k on model performance during training and infer-
ence. We train our model using different values of k, with k ∈ {32, 64, 128} for PFSP and
k ∈ {64, 128, 256} for JSSP. We then evaluate the trained models across various inference set-
tings with k ∈ {32, 64, 128, 256, 512}. Figure 3 presents the analysis results on the TA benchmark.

2The best-known results for PFSP and JSSP are obtained from http://mistic.heig-vd.ch/taillard/.

8

http://mistic.heig-vd.ch/taillard/

3264 128 256 512

0.4

0.6

0.8

G
ap

 (
%

)

PFSP 20x5
Training k=32
Training k=64
Training k=128

3264 128 256 512

0.2

0.3

0.4

PFSP 50x5
Training k=32
Training k=64
Training k=128

3264 128 256 512

0.15

0.20

0.25

0.30

0.35
PFSP 100x5

Training k=32
Training k=64
Training k=128

3264 128 256 512
Inference time k

7

8

9

G
ap

 (
%

)

JSSP 15x15
Training k=64
Training k=128
Training k=256

3264 128 256 512
Inference time k

8.5

9.0

9.5

10.0

10.5

JSSP 20x15
Training k=64
Training k=128
Training k=256

3264 128 256 512
Inference time k

9

10

11

JSSP 20x20
Training k=64
Training k=128
Training k=256

Figure 3: The effect of k on model performance. The results are averaged on ten times.

32 64 128 256 512 1024
20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
un

iq
ue

 s
ol

ut
io

ns
 (

%
) (a) SMSP 20

32 64 128 256 512 1024
20

40

60

80

100
(b) PFSP 20x5

Sampling size
REINFORCE SLIM MP-ASIL

Figure 4: Average percentage of unique solutions.
The x-axis denotes the number of candidate solu-
tions per instance.

Table 5: Experiment results on TSP 100 and
CVRP 100. Poppy uses 16 decoders for TSP 100
and 32 decoders for CVRP 100. d: Days. Other
symbols follow definitions provided in Table 1.

Method TSP 100 CVRP 100
Gap ↓ Time ↓ Gap ↓ Time ↓

LKH3* 0.000% (8h) 0.00% (6d)

POMO *† 0.146% (1m) 0.76% (2m)
Sym-NCO *† 0.180% (1m) 0.89% (2m)
Poppy* 0.07% (1m) 0.51% (5m)

MP-ASIL 0.000% (1m) 0.28% (2m)

From the figure, we can observe that (1) training with larger k generates stronger models, and (2)
increasing k at inference time consistently enhances performance. These findings align with our
hypothesis that larger k produces more specialized decision-makers, enabling more extensive solution
space exploration and increasing the chance of finding better solutions, albeit with increased memory
requirements.

Exploration Capability. In this part, we validate the capability of MP-ASIL to generate diverse
solutions. For evaluation, we use 1,000 instances for both SMSP 20 and PFSP 20×5. We intentionally
choose small-size problems, which represent a challenging scenario for generating diverse solutions
[69]. The solution diversity is calculated as the average percentage of unique solutions among k
candidates generated per instance, which is a widely used population-level diversity metric [69, 56].
For comparison, we also report the solution diversity of representative single policy approaches,
such as REINFORCE and SLIM. Figure 4 demonstrates that MP-ASIL achieves significantly higher
average solution diversity than baselines across all scenarios. Notably, MP-ASIL shows a diversity of
99.4% for SMSP 20 even at k=1024, emphasizing its remarkable ability to generate diverse solution
patterns. Additionally, we can observe that RL generates many duplicate solutions at the sampling
stage, as pointed out in many recent studies [15, 45, 16].

Policy Specialization. We verify that each policy specializes in distinct instance sub-distributions
by analyzing how the best-performing latent variable z varies across instances. Specifically, we
randomly sample 16 policies, evaluate their performance on batches of instances, and count the

9

0

20

40

60

W
in

ni
ng

 t
im

es

(a) SMSP 50

0

20

40

60

80
(b) UPMSP 50x3

0

20

40

60

(c) PFSP 20x5

0

20

40

60

(d) JSSP 10x10

Latent conditioned policies

Figure 5: Number of instances where each policy performs best (winning times). 16 policies on the
x-axis are ordered arbitrarily.

number of instances each policy solves best. From Figure 5, we find that each policy achieves
top performance across different instances, significantly contributing to model performance. These
results demonstrate that different policies specialize in producing high-quality solutions for distinct
instance sub-distributions, leading to improved overall performance and robustness. To aid better
understanding, visualizations of the performance landscape in the policy latent space are provided in
Appendix D.9. Importantly, we can search the policy latent space to find promising latent variables
for each instance at test time. Details on this approach can be found in Appendix D.10.

Experiments with Routing. Finally, to demonstrate the versatility of MP-ASIL, we apply it to
other COPs, specifically the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing
Problem (CVRP) with 100 nodes (denoted as TSP 100 and CVRP 100), which are extensively studied
in the NCO literature. We implement MP-ASIL on top of POMO [10], training it on n = 100 node
instances uniformly distributed in [0, 1]2. We follow the original POMO training hyperparameters
(see Appendix F). We compare MP-ASIL with state-of-the-art neural solvers, including POMO,
Sym-NCO [17] and Poppy [54], using synthetic datasets from [10]. At inference time, MP-ASIL,
POMO, and Sym-NCO generate 8× n(= k) solutions for each instance of size n nodes, where eight
represents the instance augmentation proposed by [12]. Poppy samples d (number of decoders) ×n
solutions for each instance. Unlike baseline methods that enforce distinct initial actions, MP-ASIL
does not impose different starting points during training and inference. This rollout strategy enables
multiple behaviors to freely explore the search space and is universally applicable across all COPs.

Table 5 reports the Gap relative to LKH3 [70] and Time. From the table, we can see that MP-ASIL
significantly outperforms neural methods on both TSP 100 and CVRP 100. Surprisingly, MP-ASIL
finds practically optimal solutions for TSP 100 in less than one minute. These results show that
MP-ASIL can be effective across other COPs. Results for various out-of-distribution VRP scenarios
(cross-size, cross-distribution, and cross-problem generalization) are presented in Appendix E.

6 Conclusion

In this work, we propose MP-ASIL, a generic learning framework for job scheduling. MP-ASIL
addresses several limitations in RL-based policy gradient methods by enabling multiple policies to
autonomously learn diverse and specialized problem-solving strategies without external supervision.
We also develop a training scheme to mitigate the suboptimality of self-teaching labels, a fundamental
drawback of SIL, and enhance sample efficiency. Last but not least, MP-ASIL is agnostic to both
network architectures and scheduling problems, allowing its benefits to be realized universally across
various problem settings. Extensive experiments demonstrate that MP-ASIL achieves new state-of-
the-art results on six scheduling problems and significantly outperforms previous neural solvers on
routing tasks, highlighting its versatility and broadening the scope of current NCO methods.

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (RS-2024-00334171, RS-2025-02216640) and in part by the IITP
(Institute of Information Communications Technology Planning Evaluation)-ITRC (Information
Technology Research Center) grant funded by the Korea government (Ministry of Science and ICT)
(IITP-2025-RS-2024-00437268).

10

References
[1] Jose M Framinan and Rubén Ruiz. Architecture of manufacturing scheduling systems: Literature

review and an integrated proposal. European Journal of Operational Research, 205(2):237–246,
2010.

[2] Matthew Veres and Medhat Moussa. Deep learning for intelligent transportation systems: A sur-
vey of emerging trends. IEEE Transactions on Intelligent Transportation Systems, 21(8):3152–
3168, 2019.

[3] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In Proceedings of the
ACM Special Interest Group on Data Communication, pages 270–288, 2019.

[4] Wen-Yang Ku and J Christopher Beck. Mixed integer programming models for job shop
scheduling: A computational analysis. Computers & Operations Research, 73:165–173, 2016.

[5] Teofilo F Gonzalez. Handbook of Approximation Algorithms and Metaheuristics. Chapman
and Hall/CRC, 2007.

[6] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the art. Journal of the
Operational Research Society, 64(12):1695–1724, 2013.

[7] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in Neural
Information Processing Systems, 28, 2015.

[8] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

[9] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

[10] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in
Neural Information Processing Systems, 33, 2020.

[11] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning
to dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural
Information Processing Systems, 33, 2020.

[12] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon.
Matrix encoding networks for neural combinatorial optimization. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

[13] Behice Meltem Kayhan and Gokalp Yildiz. Reinforcement learning applications to machine
scheduling problems: a comprehensive literature review. Journal of Intelligent Manufacturing,
34(3):905–929, 2023.

[14] Anant Singh Jain and Sheik Meeran. Deterministic job-shop scheduling: Past, present and
future. European Journal of Operational Research, 113(2):390–434, 1999.

[15] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with
embedding glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 12042–12049, 2021.

[16] Minsu Kim, Sanghyeok Choi, Hyeonah Kim, Jiwoo Son, Jinkyoo Park, and Yoshua Ben-
gio. Ant colony sampling with gflownets for combinatorial optimization. arXiv preprint
arXiv:2403.07041, 2024.

[17] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization. Advances in Neural Information Processing Systems, 35, 2022.

11

[18] Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep reinforced multi-pointer transformer for the traveling salesman problem.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 8132–8140,
2023.

[19] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, New York, NY,
USA, 4th edition, 2012.

[20] Andrea Corsini, Angelo Porrello, Simone Calderara, and Mauro Dell’Amico. Self-labeling the
job shop scheduling problem. Advances in Neural Information Processing Systems, 37:105528–
105551, 2024.

[21] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992.

[22] Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 1961.

[23] Alican Dogan and Derya Birant. Machine learning and data mining in manufacturing. Expert
Systems with Applications, 166:114060, 2021.

[24] Jonas K Falkner, Daniela Thyssens, Ahmad Bdeir, and Lars Schmidt-Thieme. Learning to
control local search for combinatorial optimization. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 361–376. Springer, 2022.

[25] Cong Zhang, Zhiguang Cao, Wen Song, Yaoxin Wu, and Jie Zhang. Deep reinforcement learning
guided improvement heuristic for job shop scheduling. arXiv preprint arXiv:2211.10936, 2022.

[26] Cong Zhang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jing Sun. Learning topological
representations with bidirectional graph attention network for solving job shop scheduling
problem. arXiv preprint arXiv:2402.17606, 2024.

[27] Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced
ant systems for combinatorial optimization. Advances in Neural Information Processing Systems,
36, 2023.

[28] Hyeonah Kim, Sanghyeok Choi, Jiwoo Son, Jinkyoo Park, and Changhyun Kwon. Neural
genetic search in discrete spaces. arXiv preprint arXiv:2502.10433, 2025.

[29] Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-agent
scheduling problems with reinforcement learning. arXiv preprint arXiv:2106.03051, 2021.

[30] Jun-Ho Lee and Hyun-Jung Kim. Reinforcement learning for robotic flow shop scheduling with
processing time variations. International Journal of Production Research, 60(7):2346–2368,
2022.

[31] Runqing Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. Flexible job shop scheduling
via dual attention network-based reinforcement learning. IEEE Transactions on Neural Networks
and Learning Systems, 35(3):3091–3102, 2023.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[33] Ruiqi Chen, Wenxin Li, and Hongbing Yang. A deep reinforcement learning framework
based on an attention mechanism and disjunctive graph embedding for the job-shop scheduling
problem. IEEE Transactions on Industrial Informatics, 19(2):1322–1331, 2022.

[34] Ruyuan Pan, Xingye Dong, and Sheng Han. Solving permutation flowshop problem with
deep reinforcement learning. In 2020 Prognostics and Health Management Conference (PHM-
Besançon), pages 349–353. IEEE, 2020.

[35] Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning
to schedule job-shop problems: representation and policy learning using graph neural network
and reinforcement learning. International Journal of Production Research, 59(11):3360–3377,
2021.

12

[36] Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal Ochoa De Retana, and Martin Takac. On
the study of curriculum learning for inferring dispatching policies on the job shop scheduling.
International Joint Conference on Artificial Intelligence, 2023.

[37] Daqiang Guo, Sichao Liu, Shiquan Ling, Mingxing Li, Yishuo Jiang, Ming Li, and George Q
Huang. The marriage of operations research and reinforcement learning: Integration of neh into
q-learning algorithm for the permutation flowshop scheduling problem. Expert Systems with
Applications, 255:124779, 2024.

[38] Zixiao Pan, Ling Wang, Jingjing Wang, and Jiawen Lu. Deep reinforcement learning based
optimization algorithm for permutation flow-shop scheduling. IEEE Transactions on Emerging
Topics in Computational Intelligence, 7(4):983–994, 2021.

[39] Kuo-Hao Ho, Jui-Yu Cheng, Ji-Han Wu, Fan Chiang, Yen-Chi Chen, Yuan-Yu Wu, and I-
Chen Wu. Residual scheduling: A new reinforcement learning approach to solving job shop
scheduling problem. IEEE Access, 12:14703–14718, 2024.

[40] Sang-Hyun Cho, Woo-Jin Shin, Jeongsun Ahn, Sanghyun Joo, and Hyun-Jung Kim. Dy-
namic crane scheduling with reinforcement learning for a steel coil warehouse. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pages 16545–16552. IEEE,
2024.

[41] Sang-Hyun Cho, Hyun-Jung Kim, and Lars Mönch. Reinforcement learning for unrelated
parallel machine scheduling with release dates, setup times, and machine eligibility. In 2024
Winter Simulation Conference (WSC), pages 1773–1784. IEEE, 2024.

[42] Longkang Li, Siyuan Liang, Zihao Zhu, Chris Ding, Hongyuan Zha, and Baoyuan Wu. Learning
to optimize permutation flow shop scheduling via graph-based imitation learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pages 20185–20193, 2024.

[43] Woo-Jin Shin, Sang-Wook Lee, Jun-Ho Lee, Min-Ho Song, and Hyun-Jung Kim. Scheduling of
steelmaking-continuous casting process by integrating deep neural networks with mixed integer
programming. International Journal of Production Research, pages 1–22, 2024.

[44] Je-Hun Lee and Hyun-Jung Kim. Graph-based imitation learning for real-time job shop
dispatcher. IEEE Transactions on Automation Science and Engineering, 2024.

[45] Jonathan Pirnay and Dominik G Grimm. Self-improvement for neural combinatorial opti-
mization: Sample without replacement, but improvement. arXiv preprint arXiv:2403.15180,
2024.

[46] Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing
problems. Advances in Neural Information Processing Systems, 34, 2021.

[47] Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and
Yoshua Bengio. Generative flow networks for discrete probabilistic modeling. In International
Conference on Machine Learning, pages 26412–26428. PMLR, 2022.

[48] Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling
Pan. Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in
Neural Information Processing Systems, 36, 2023.

[49] Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided gflownets for
sample efficient molecular optimization. arXiv preprint arXiv:2402.05961, 2024.

[50] Ni Zhang, Jingfeng Yang, Zhiguang Cao, and Xu Chi. Adversarial generative flow network for
solving vehicle routing problems. arXiv preprint arXiv:2503.01931, 2025.

[51] Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney,
and Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization.
Advances in Neural Information Processing Systems, 35, 2022.

[52] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021.

13

[53] Hyun-Jung Kim and Jun-Ho Lee. Deep reinforcement learning with a look-ahead search
for robotic cell scheduling. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
54(1):622–633, 2023.

[54] Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett.
Winner takes it all: Training performant rl populations for combinatorial optimization. Advances
in Neural Information Processing Systems, 36, 2023.

[55] Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexan-
dre Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent
space search. Advances in Neural Information Processing Systems, 36, 2023.

[56] André Hottung, Mridul Mahajan, and Kevin Tierney. Polynet: Learning diverse solution
strategies for neural combinatorial optimization. arXiv preprint arXiv:2402.14048, 2024.

[57] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey. In
Annals of Discrete Mathematics, volume 5, pages 287–326. Elsevier, 1979.

[58] Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One solution is not all
you need: Few-shot extrapolation via structured maxent rl. Advances in Neural Information
Processing Systems, 33, 2020.

[59] Samir W Mahfoud. Niching methods for genetic algorithms. University of Illinois at Urbana-
Champaign, 1995.

[60] Yang-Kuei Lin and Feng-Yu Hsieh. Unrelated parallel machine scheduling with setup times
and ready times. International Journal of Production Research, 52(4):1200–1214, 2014.

[61] IBM Corp. IBM ILOG CPLEX Optimization Studio. V20.1: User’s Manual for CPLEX, 2020.

[62] Cengiz Kahraman, Orhan Engin, Ihsan Kaya, and Mustafa Kerim Yilmaz. An application of
effective genetic algorithms for solving hybrid flow shop scheduling problems. International
Journal of Computational Intelligence Systems, 1(2):134–147, 2008.

[63] Manas Ranjan Singh and SS Mahapatra. A swarm optimization approach for flexible flow shop
scheduling with multiprocessor tasks. The International Journal of Advanced Manufacturing
Technology, 62:267–277, 2012.

[64] Helena Ramalhinho Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search:
Framework and applications. Handbook of Metaheuristics, pages 129–168, 2019.

[65] Rubén Ruiz, Quan-Ke Pan, and Bahman Naderi. Iterated greedy methods for the distributed
permutation flowshop scheduling problem. Omega, 83:213–222, 2019.

[66] Meenakshi Sharma, Manisha Sharma, and Sameer Sharma. An improved neh heuristic to
minimize makespan for flow shop scheduling problems. Decision Science Letters, 10(3):311–
322, 2021.

[67] Laurent Perron and Vincent Furnon. Or-tools. URL: https://developers.google.com/
optimization.

[68] Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285, 1993.

[69] Kensen Shi, David Bieber, and Charles Sutton. Incremental sampling without replacement for
sequence models. In International Conference on Machine Learning, pages 8785–8795. PMLR,
2020.

[70] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

[71] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. Advances in Neural Information
Processing Systems, 36, 2023.

14

https://developers.google.com/optimization
https://developers.google.com/optimization

[72] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco:
Bisimulation quotienting for efficient neural combinatorial optimization. Advances in Neural
Information Processing Systems, 36, 2024.

[73] Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling
via graph neural network and deep reinforcement learning. IEEE Transactions on Industrial
Informatics, 19(2):1600–1610, 2022.

[74] Dailin Huang, Hong Zhao, Jie Cao, Kangping Chen, and Lijun Zhang. Optimizing the flexible
job shop scheduling problem via deep reinforcement learning with mean multichannel graph
attention. Applied Soft Computing, page 113128, 2025.

[75] S Lawrence. Resource constrained project scheduling: an experimental investigation of heuristic
scheduling techniques. GSIA, Carnegie Mellon University, 1984.

[76] Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of
Operations Research, 41(3):157–183, 1993.

[77] Johann Hurink, Bernd Jurisch, and Monika Thole. Tabu search for the job-shop scheduling
problem with multi-purpose machines. Operations-Research-Spektrum, 15(4):205–215, 1994.

[78] Roland Braune, Frank Benda, Karl F Doerner, and Richard F Hartl. A genetic program-
ming learning approach to generate dispatching rules for flexible shop scheduling problems.
International Journal of Production Economics, 243:108342, 2022.

[79] Igor G Smit, Yaoxin Wu, Pavel Troubil, Yingqian Zhang, and Wim PM Nuijten. Neural
combinatorial optimization for stochastic flexible job shop scheduling problems. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pages 26678–26687, 2025.

[80] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation, 9(2):159–195, 2001.

[81] Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem
solver with invariant nested view transformer. arXiv preprint arXiv:2402.02317, 2024.

[82] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pages 42769–42789. PMLR, 2023.

[83] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. arXiv preprint
arXiv:2308.14104, 2023.

[84] Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1898–1908,
2024.

[85] Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap*
neighborhood. Computers & Operations Research, 140:105643, 2022.

[86] Marcel Blöcher, Nils Nedderhut, Pavel Chuprikov, Ramin Khalili, Patrick Eugster, and Lin
Wang. Train once apply anywhere: Effective scheduling for network function chains running
on fumes. In IEEE INFOCOM 2024-IEEE Conference on Computer Communications, pages
661–670. IEEE, 2024.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our main contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

16

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all implementation details in Appendices C and F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

Answer: [NA]

Justification: This paper uses public datasets and benchmarks. Also, the source code will be
available after the decision is made.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all details regarding experiments in Appendices C and F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We only provide average values.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix D provides details on computational resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have checked the paper according to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of this work in Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We clearly state the source and license of the original code, data, and models
used in this work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We use well-known public datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing experiments and human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing experiments and human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

Appendix

Contents

A Job Scheduling Problems . 23
A.1 Machine Environments α . 23
A.2 Constraints β . 23
A.3 Objective Functions γ . 24

B Multi-Policy Representation . 24
B.1 Implementation of Latent Conditioned Policies . 24
B.2 Why We Use Latent Variables to Represent Multiple Policies . 25
B.3 The Effect of Latent Distributions . 26

C Benchmark Problems . 26
C.1 Single Machine Scheduling Problem . 27
C.2 Unrelated Parallel Machine Scheduling Problem . 27
C.3 Permutation Flow Shop Scheduling Problem . 28
C.4 Flexible Flow Shop Scheduling Problem . 28
C.5 Job Shop Scheduling Problem . 28
C.6 Flexible Job Shop Scheduling Problem . 29

D Additional Experiments . 29
D.1 Validation curves . 29
D.2 Computation Time for PFSP and JSSP . 30
D.3 Detailed UPMSP Results . 30
D.4 Experiment Results on PFSP Using Synthetic Datasets . 32
D.5 Experiment Results on JSSP Using Lawrence’s Benchmark . 32
D.6 Experiment Results on JSSP Using Synthetic Datasets . 33
D.7 Experiment Results on FJSSP . 33
D.8 Ablation Studies . 35
D.9 Performance Landscape Visualization . 37
D.10 Policy Latent Space Search at Inference Time . 37

E Vehicle Routing Problems .38
E.1 Cross-size Generalization . 38
E.2 Cross-distribution Generalization . 38
E.3 Cross-problem Generalization . 39

F Training Hyperparameters . 42
G Limitation and Future Work . 45
H Broader Impact . 45
I Licenses . 45

22

A Job Scheduling Problems

A JSP can be described by a three-field notation α|β|γ [57]. The α field specifies the machine
environment, the β field represents constraints, and the γ field defines the objective function. Here,
we provide representative examples of each field considered in our work. Figures 6, 7, and 8 provide
illustrative examples of each field.

Machine environments (𝜶𝜶)

Flow shop (𝑭𝑭𝑭𝑭)Parallel machine (𝑹𝑹𝑹𝑹)Single machine (𝟏𝟏)

: Job : Machine : Job-machine route

Jop shop (𝑱𝑱𝑱𝑱)

M1

M1

M2

M3

M1 M2 M3

M1 M2

M6M5M4

M3

Figure 6: Illustrative examples of machine environments (α).

A.1 Machine Environments α

Single Machine (1). There is a single machine, representing the simplest case of machine environ-
ments. In this environment, each job j consists of a single operation.

Parallel Machine (Pm) / Unrelated Parallel Machine (Rm). There are |M| parallel machines,
and each job j is processed by exactly one of these machines. If the processing time of job j varies
across different machines, this environment is known as an unrelated parallel machine. Each job j
consists of a single operation.

Flow Shop (Fm). There are |M| machines in series, and each job must be processed sequentially
on all machines following the same fixed route from machine 1 to machine |M|. If there are |Q|
sequential stages, where Q is a set of stages, each equipped with parallel machines, the resulting
environment is known as a Flexible Flow Shop (FFc). In this case, jobs must sequentially pass
through each stage, from stage 1 to stage |Q|, being processed by exactly one machine per stage.
Each processing step at a machine or stage represents an operation.

Job Shop (Jm). There are |M| machines, and each job j must be processed on these machines
following a predefined, job-specific sequence. Each processing step at a machine represents an
operation.

Constraints (𝜷𝜷)

: Jobs : Machines : Job-machine route

Precedence (𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) Machine eligibility (𝑴𝑴𝒋𝒋)

𝒓𝒓𝟏𝟏:10
𝒕𝒕=12

Ready time (𝒓𝒓𝒋𝒋)

𝒓𝒓𝟐𝟐:15

𝒓𝒓𝟑𝟑:32

Setup time (𝒔𝒔𝒊𝒊𝒊𝒊) Permutation (𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑)

: Not available

M1

M2

M3

M1 M2

M1

Figure 7: Illustrative examples of constraints (β).

A.2 Constraints β

Precedence (prec). The precedence constraints enforce that one or more operations (or jobs) must
finish before another operation (or job) can start.

Machine Eligibility (Mj). Only a subset of the machinesMj ⊆M can process job j.

23

Ready Time (rj). Each job j cannot start processing before its ready time rj .

Sequence Dependent Setup Time (sij). Switching from job i to job j incurs a setup time. If the
setup time between jobs i and j depends on machine k, we denote it as sijk.

Permutation (prmu). The permutation constraint requires that the job processing order determined
at the first machine remains unchanged throughout all machines in a flow shop environment.

Objective functions (𝜸𝜸)

M1

M2

J1

J2

J3

J5

Makespan: max 𝐶𝐶𝑗𝑗 = 37

J4

37

M1

M2

J1

J2

J3

J5

J4

7 20 22 31 37

J1 J2 J3 J4 J5

𝑪𝑪𝒋𝒋 7 20 22 31 37

𝒅𝒅𝒋𝒋 5 22 19 25 30

𝐦𝐦𝐦𝐦𝐦𝐦(𝑪𝑪𝒋𝒋 − 𝒅𝒅𝒋𝒋,𝟎𝟎) 2 0 3 6 7

Total Tardiness: ∑𝒋𝒋=𝟏𝟏
|𝓙𝓙| 𝑇𝑇𝑗𝑗(= max(𝐶𝐶𝑗𝑗 − 𝑑𝑑𝑗𝑗 , 0))

Solution Solution

Figure 8: Illustrative examples of objective functions (γ).

A.3 Objective Functions (γ)

Makespan (Cmax). The makespan, defined as max(C1, . . . , Cn), where Cj is the completion time
of job j, denotes the completion time of the last job processed.

Total Tardiness (
∑

Tj). The total tardiness, defined as
∑

Tj =
∑

max(Cj − dj , 0), denotes the
sum of job completion delays relative to their due dates dj . When each job j has a weight wj , the
objective function becomes

∑
wjTj .

B Multi-Policy Representation

B.1 Implementation of Latent Conditioned Policies

Overview. Neural dispatcher architectures generally fall into two main categories: Heavy Encoder
Light Decoder (HELD) [9, 10, 12], and Light Encoder Heavy Decoder (LEHD) [11, 71, 72]. HELD-
based models employ a computationally expensive encoder once to generate hidden embeddings,
subsequently constructing solutions sequentially using a lightweight decoder. In contrast, LEHD-
based models dynamically recompute hidden embeddings at each decision step using multiple decoder
layers.

Figure 9 illustrates how latent conditioned policies are applicable to the architectures above. Following
previous work [55], HELD-based models concatenate the latent variables with the query, key, and
value inputs of the Multi-Head Attention (MHA) layer. LEHD-based models concatenate the latent
variables with the final hidden embeddings before computing action probabilities through a Multi-
Layer Perceptron (MLP). This means that, regardless of the underlying architecture, multiple policies
can be easily implemented by conditioning the decision-making layer’s input embeddings on latent
variables. The latent variables are sampled once at the start of the solution rollout and remain
unchanged during the solution construction. Notably, within each policy, an identical latent variable
is concatenated to all embeddings. In this work, we use LEHD-based models for SMSP, UPMSP,
JSSP, and FJSSP. In contrast, PFSP and FFSP utilize HELD-based models. In the following sections,
we detail how latent conditioned policies are implemented within each architecture.

HELD. The encoder generates hidden embeddings for the input instance s. Initially, raw operation
features X = {xi|i ∈ {1, . . . , |O|}} ∈ R|O|×dx are projected into dh-dimensional embeddings
via a linear layer. These embeddings H(0) = {h(0)

i |i ∈ {1, . . . , |O|}} ∈ R|O|×dh are iteratively
updated L times by the update function F to generate a set of final hidden embeddings H(L) =

{h(L)
i |i ∈ {1, . . . , |O|}} ∈ R|O|×dh . F can be designed using any neural network model (e.g., GNN

or Transformer).

24

(a) HELD (b) LEHD

X |O|
Multi–Head Attention Layer

QK V

Single-Head Attention

Linear projection

X |O|
X L

Updated

node embeddings

𝑯(𝑳) ∈ ℝ|𝑶|×𝒅𝒉

Linear Projection

Update Function

…𝒙𝟏 𝒙𝟐 𝒙|𝑶| 𝒛 𝒛 𝒛

𝝅𝟏 𝝅𝟐 𝝅|𝑨𝒕|

𝑿 ∈ ℝ|𝑶|×𝒅𝒙

MLP & Softmax

Linear Projection

Update Function X L

QVK

𝒙𝟏 𝒙𝟐 𝒙|𝑨𝒕|

𝑿𝒕 ∈ ℝ|𝑨𝒕|×𝒅𝒙

…𝒛 𝒛

𝝅𝟏 𝝅𝟐 𝝅|𝑨𝒕|

𝑯𝒕 ∈ ℝ|𝑨𝒕|×𝒅𝒉

𝒉𝟏
(𝑳) 𝒉|𝑨𝒕|

(𝑳)

𝒉𝟏
(𝑳) 𝒉|𝑨𝒕|

(𝑳)

𝒉𝟏
(𝑳)

𝒉𝟐
(𝑳) 𝒉|𝑶|

(𝑳)

𝒉𝒕
𝒄

Figure 9: Illustrations of applying the latent conditioned policies into (a) HELD and (b) LEHD.

The decoder sequentially constructs a solution by leveraging the final hidden embeddings, which
are the output of the encoder. At each decoding step t, the decoder receives hidden embeddings
Ht = {h(L)

i |i ∈ At} ∈ R|At|×dh , where At represents the set of feasible operations at step t,
alongside a context vector hc

t indicating the current state. To integrate hidden embedding information
into the context vector, HELD employs MHA to update the context vector. In this process, latent
variables are concatenated with the query, key, and value inputs of the MHA module. The context
vector is updated as follows:

qt = WqConcat(hc
t , z), Kt = WkConcat(Ht, z), Vt = WvConcat(Ht, z), (5)

hc′

t = MHA (qt,Kt, Vt) , (6)

where Wq,Wk,Wv ∈ R(dh+dz)×dh are learnable model weights. At the final stage, single-head
attention computes a conditional action distribution at step t. The action probability πi for operation
i ∈ At is computed by:

πi = Softmax
(
C · tanh

(
(hc′

t)
TKt√
dh

))
i

, (7)

where C is the clipping parameter and tanh is the hyperbolic tangent function.

LEHD. The LEHD-based models recompute hidden embeddings at every step t, effectively cap-
turing dynamic relationships. At step t, the raw operation features Xt = {xi|i ∈ At} ∈ R|At|×dx

are projected into dh-dimensional hidden embeddings via a linear layer. These embeddings
H

(0)
t = {h(0)

i |i ∈ At} ∈ R|At|×dh are iteratively updated L times by the update function F
to generate a set of final hidden embeddings H(L)

t .

At step t, a conditional action distribution is computed via an MLP using the final hidden embeddings
H

(L)
t . In this process, the latent variables are concatenated to the final node embeddings. The action

probability πi for operation i ∈ At is computed by:

πi = Softmax
(
MLP(Concat(H(L)

t , z))
)
i
. (8)

B.2 Why We Use Latent Variables to Represent Multiple Policies

Early approaches for representing multiple policies often rely on multi-decoder models without
parameter sharing [15, 54]. However, as illustrated in Figure 10, this design leads to substantial

25

4 8 16 32
k

0

5m

10m

15m

20m

25m

30m

#
 P

ar
am

s

(a) SMSP

4 8 16 32
k

0

500000

1m

1m

2m

2m

3m

3m

4m
(b) UPMSP

4 8 16 32
k

2m

3m

3m

4m

4m

5m

5m
(c) PFSP

4 8 16 32
k

10m

15m

20m

25m

30m

35m

40m

45m

(d) FFSP

4 8 16 32
k

1m

2m

3m

4m

5m

6m

7m
(e) JSSP

Single LCP MD

Figure 10: Number of parameters for each strategy. Here, Single denotes a single policy, LCP
indicates latent conditioned policies, MD represents a multi-decoder architecture, and k denotes the
number of policies.

parameter growth with the number of policies, limiting scalability and flexibility. In contrast, latent
conditioned policies add a fixed number of parameters, regardless of the number of policies. This
property enables efficient and scalable representation of multiple policies, which provides the rationale
for our design choice.

B.3 The Effect of Latent Distributions

The latent variable z, indexing different policies, can affect model performance based on its distribu-
tion Z . To identify an effective prior, we evaluate models trained under three latent distributions: (1)
Z1 = U(−1, 1)16; (2)Z2, a joint distribution combining U(−1, 1)8 with an 8-dimensional categorical
(one-hot) distribution; (3) Z3, a joint distribution combining U(−1, 1)4 with a 12-dimensional cate-
gorical (one-hot) distribution. We do not consider a 16-dimensional categorical (one-hot) distribution
because it can only generate 16 policies.

Figure 11 compares performances across these prior distributions on the TA benchmarks. For
reference, we also include the results of SLIM [20] and the REINFORCE algorithm with a shared
baseline [10] as representative single policy approaches. From the figure, we can observe that Z3

shows robust and strong zero-shot performance. Therefore, we adopt Z3 as the default prior for all
problems except UPMSP, which uses lower-dimensional hidden embedding (dh = 64). For UPMSP,
we adopt a joint prior combining U(−1, 1)2 with a 6-dimensional categorical distribution. However,
all prior distributions consistently outperform single policy approaches. This finding underscores the
robustness and generalizability of our approach, with its effectiveness stemming from the fundamental
model optimization mechanism rather than fine-tuning the latent space.

SLIM REINFORCE 1 2 3

Methods

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

G
ap

 (
%

)

2.98

2.6

1.79 1.74 1.68

(a) PFSP

SLIM REINFORCE 1 2 3

Methods

6.5

7.0

7.5

8.0

8.5

9.0

9.5

7.8

9.36

7.53 7.47 7.41

(b) JSSP

Figure 11: The effect of latent distributions.

C Benchmark Problems

In this section, we formally define six benchmark problems, following the notations introduced in
Sections 3 and A. We also provide details on the training and inference settings. As mentioned in
Section 5, learning-based methods for JSPs have evolved with specialized network architectures and
algorithms tailored to each problem variant. Consequently, due to the current absence of foundation

26

models, we implement MP-ASIL using different backbone models for each problem type. Naturally,
comparisons are conducted against distinct baselines specific to each problem.

C.1 Single Machine Scheduling Problem (1||ΣwjTj)

Definition. The Single Machine Scheduling Problem (SMSP) is one of the most fundamental
scheduling problems in which a set of jobs J must be processed on a single machine. Each job
j ∈ J has processing time pj , due date dj , and weight wj . The optimization objective is to find a
schedule that minimizes the total weighted tardiness ΣwjTj .

Model Architecture. Due to the absence of existing neural constructive solvers, we develop a
transformer-based constructive method following the BQ-NCO structure [72]. In our implementation,
nodes represent jobs defined by three features: pj , wj , and remaining deadline slack (dj − et), where
et is the elapsed time at step t. The processes for updating hidden embeddings and making decisions
follow the approach described in Appendix B.1.

Training Instances. Following previous work [27], we randomly generate training instances as
follows: pj ∼ U(0, 1), wj ∼ U(0, 1), and dj ∼ U(0, |J |), where U represents a continuous uniform
distribution. We train our model using instances with |J | = 50.

Test Instances. For evaluation, we use 100 SMSP instances for each problem size |J | = 50, 100,
and 500 from [27]. The test instances follow the same distribution used for generating the training
instances.

Baseline Algorithms. We compare MP-ASIL with (1) Handcrafted Heuristics: Earliest Due Date
(EDD) and Ant Colony Optimization (ACO) [27]; (2) Hybrid Methods: DeepACO [27] and GFACS
[16].

C.2 Unrelated Parallel Machine Scheduling Problem (Rm|sijk,Mj , rj |ΣwjTj)

Definition. The Unrelated Parallel Machine Scheduling Problem (UPMSP) is a generalized parallel
machine scheduling problem, requiring the assignment and sequencing of a set of jobs J onto a set
of machinesM. Each job j ∈ J must be processed on exactly one machine selected from its eligible
machine setMj ⊆ M with processing time pjk on machine k ∈ Mj . Each job j has weight wj ,
due date dj , and ready time rj . Additionally, each machine k ∈ M requires setup time sijk. The
optimization objective is to find a schedule that minimizes the total weighted tardiness ΣwjTj .

Model Architecture. We use the LEHD-based architecture introduced by Cho et al. [41]. We refer
readers to the original paper for detailed architectural specifications and features.

Training Instances. Following previous work [41], we randomly generate training instances
as follows: pjk ∼ Uniform({1, 2, . . . , 99}), wj ∼ U(0, 1), sijk ∼ Uniform({0, 1, . . . , 9}),
and rj ∼ Uniform({0, 1. . . . , ⌊p̂/2⌋}), where p̂ = 1

|M|·|J |
∑|M|

k=1

∑|J |
j=1 pjk and Uniform()

denotes a discrete uniform distribution. Due dates are sampled as dj ∼ rj +
Uniform ({⌊(p̂− rj) · (1− T −R/2)⌋ , . . . , ⌊(p̂− rj) · (1− T +R/2)⌋}) using tightness T and
range R parameters, which range from 0.2 to 1.0 in steps of 0.2. During training, we uniformly
sample T and R. We train our model using instances with |J | × |M| = 25× 3.

Test Instances. For evaluation, we use 500 UPMSP instances for each problem size |J | × |M| =
50 × 3, 50 × 6, and 100 × 6 from [41]. The test instances follow the same distribution used for
generating the training instances.

Baseline Algorithms. We compare MP-ASIL with (1) Handcrafted Heuristics: EDD and
ATCSR_RM [60]; (2) Neural Constructive Heuristic: Cho et al. [41].

27

C.3 Permutation Flow Shop Scheduling Problem (Fm|prmu|Cmax)

Definition. The Permutation Flow shop Scheduling Problem (PFSP) is a widely studied variant of
the flow shop scheduling problem, where a set of jobs J is processed on a sequence of machines. The
processing order determined at the first machine remains unchanged across all subsequent machines.
Each job j ∈ J has a processing time pjk on each machine k ∈M. The optimization objective is to
find a schedule that minimizes the makespan Cmax.

Model Architecture. We use the HELD-based architecture based on MatNet [12]. The model
takes as input a P|J |×|M| matrix, with each element representing processing time pjk. The processes
for updating hidden embeddings and making decisions follow the MatNet [12]. However, in our
implementation, the context vector hc

t at step t is defined as:

hc
t = WcConcat (ht−1, h

u
t , h

m) , (9)

where Wc ∈ R3dh×dh is the learnable model weight, ht−1 represents the embedding of the last
selected job, hu

t denotes the mean embedding of unselected jobs up to step t, and hm is obtained by
concatenating all machine embeddings and projecting to a dh-dimensional vector. At step t = 1, we
use a learnable start-token embedding as ht−1.

Training Instances. We randomly sample pjk from Uniform({1, 2, . . . , 99}). We train separate
models for two problem sizes: instances with |J | × |M| =20×5 and 20×10.

Test Instances. For evaluation, we use the TA benchmark [68]. Each problem size consists of 10
instances. The benchmark instances follow the same distribution used for generating the training
instances. For problems with five machines, we employ the model trained on 20×5 instances, while
for problems with ten machines, we use the model trained on 20×10 instances.

Beseline Algorithms. We compare MP-ASIL with (1) Handcrafted Heuristics: Iterated Local
Search (ILS) [64], Iterated Greedy Algorithm (IGA) [65], and Nawaz-Enscore-Ham (NEH) algorithm
[66]; (2) Neural Constructive Heuristics: Q-Learning [37], IL [42], and PFSPNet [38].

C.4 Flexible Flow Shop Scheduling Problem (FFc||Cmax)

Definition. The Flexible Flow shop Scheduling Problem (FFSP) involves scheduling a set of jobs
J through multiple sequential stages Q. Each stage q ∈ Q comprises unrelated parallel machines
Mq ⊆M, and each job must be processed by exactly one machine at every stage. Each job j ∈ J
has a processing time pjqk on machine k ∈Mq at stage q ∈ Q. The optimization objective is to find
a schedule that minimizes the makespan Cmax.

Model Architecture. We use the HELD-based architecture introduced by PolyNet [56]. We refer
readers to the original paper for detailed architectural specifications and features.

Training Instances. Following prior work [12], we set |Q| = 3, where each stage consists of
|Mq| = 4 machine. Processing times are sampled as pjqk ∼ Uniform({2, 3, . . . , 9}). We train
separate models for three problem sizes: instances with |J | × |M|=20×12, 50×12, and 100×12.

Test Instances. For evaluation, we use 1,000 FFSP instances for each problem size |J | × |M|
= 20×12, 50×12, and 100×12 from [12]. The test instances follow the same distribution used for
generating the training instances.

Baseline Algorithms. We compare MP-ASIL with (1) Exact Solver: CPLEX [61]; (2) Hand-
crafted Heuristics: Shortest Processing Time (SPT), Genetic Algorithm (GA) [62], and Particle
Swarm Optimization (PSO) [63]; (3) Neural Constructive Heuristics: MatNet [12] and PolyNet
[56].

C.5 Job Shop Scheduling Problem (Jm||Cmax)

Definition. The Job Shop Scheduling Problem (JSSP) is a well-known JSP that has attracted
considerable attention from the NCO community. A JSSP instance consists of a set of jobs J and a

28

set of machinesM. Each job j ∈ J comprises mj operations that must be processed in a predefined
order. Each operation Oji (1 ≤ i ≤ mj) can only be processed on a specific machine with processing
time pji. The optimization objective is to find a schedule that minimizes the makespan Cmax.

Model Architecture. We use the LEHD-based architecture introduced by SLIM [20]. We refer
readers to the original paper for detailed architectural specifications and features.

Training Instances. Following [20], we use 5,000 problem instances for each problem size:
|J | × |M|=10×10, 15×10, 15×15, 20×10, 20×15, and 20×20. Processing times are sampled as
pji ∼ Uniform({1, 2, . . . , 99}).

Test Instances. For evaluation, we use the TA benchmark [68]. Each problem size consists of 10
instances. The benchmark instances follow the same distribution used for generating the training
instances.

Baseline Algorithms. We compare MP-ASIL with (1) Exact Solvers: Gurobi and OR-Tools; (2)
Neural Constructive Heuristics: L2D [11], SN [29], RASCL [36], SI GD [45], and SLIM [45]; (3)
Neural Improvement Heuristics: L2S [25] and TBGAT [26].

C.6 Flexible Job Shop Scheduling Problem (FJC||Cmax)

Definition. The Flexible Job Shop Scheduling Problem (FJSSP) is a generalized version of the
JSSP, where each operation can be processed on one of the several compatible machinesMji ⊆M
with processing time pjik on machine k ∈Mji. The optimization objective is to find a schedule that
minimizes the makespan Cmax.

Model Architecture. We use the LEHD-based architecture introduced by DANIEL [31]. We refer
readers to the original paper for detailed architectural specifications and features.

Training Instances. Following [31], we randomly sample |Mji| from Uniform({1, 2, . . . , |M|)
and pjik from Uniform({1, 2, . . . , 20}). We train our model using instances with |J |×|M| = 10×5.

Test Instances. For evaluation, we use 100 instances for each problem size |J | × |M| = 10×5,
20×5, 15×10, 20×10, 30×10, and 40×10 from [31]. The test instances follow the same distribution
used for generating the training instances.

Baseline Algorithms. We compare MP-ASIL with (1) Exact Solver: OR-Tools; (2) Handcrafted
Heuristic: First in First Out (FIFO), Most Operations Remaining (MOR), SPT, and MWKR; (3)
Neural Constructive Heuristics: HGNN [73], MCGA [74], RS [39], and DANIEL [31].

D Additional Experiments

In this section, we present supplementary experimental results and analyses. Since MP-ASIL can
generate different results based on sampled policies, we report the averaged results of three trials.

D.1 Validation Curves

Figure 12 shows the validation curves of MP-ASIL. For comparison, we additionally report validation
results from state-of-the-art methods, including the REINFORCE algorithm with a shared baseline
[17], SLIM [20], and Poppy [54]. The validation sets consist of 100 instances each for SMSP, UPMSP,
PFSP, and FFSP, and 600 instances for JSSP, all sampled from the same distribution as the training
instances. Validation is performed at every epoch for JSSP and every 10 epochs for other benchmark
problems. We train our model from scratch except for FFSP, for which we use publicly available
MatNet [12] checkpoints to initialize our policy network.3 From the figure, we can see that MP-ASIL
achieves performance comparable to all baselines using approximately 1.3× to 250× fewer epochs.

3https://github.com/yd-kwon/MatNet

29

https://github.com/yd-kwon/MatNet

0 50 100

(e) FFSP 20x12

0.2150

0.2175

0.2200

O
b
je

c
ti
v
e
 v

a
lu

e (a) SMSP 50

350

400

450

(b) UPMSP 25x3

0 500 1000

(f) FFSP 50x12

0 500 1000

1240

1245

1250
(c) PFSP 20x5

0 500 1000
1590

1600

1610

(d) PFSP 20x10

0 10050

Epochs

26.8

27.0

27.2

27.4

O
b
je

c
ti
v
e
 v

a
lu

e

0 100

Epochs

51.2

51.4

51.6

0 200100

Epochs

90.8

91.0

91.2

91.4

91.6
(g) FFSP 100x12

0 2010

Epochs

2590

2600

2610

(h) JSSP

Poppy REINFORCE SLIM MP-ASIL

16x
2.4x

200x
5.5x

20x

10x

2.1x

1.6x

2.1x

4x 2.6x 19x 4x

8.7x

1.6x

250x
10x

3.2x 1.3x 2.8x 2x

Figure 12: Validation curves.

D.2 Computation Time for PFSP and JSSP

Due to space limitations, we report only the Gap in Tables 2 and 3. In this section, we additionally
provide Time in Tables 6 and 7. Time results for PFSP are reported only when available from the
original papers or when the authors made code available.

Table 6: Inference time for PFSP. Symbols follow definitions provided in Table 1.

Method Type 20×5 20×10 50×5 • 50×10 • 100×5 • 100×10 • 200×10 •
Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓

ILS [64] Heuristics (0.1s) (0.2s) (0.2s) (0.4s) (0.3s) (0.9s) (1.9s)
IGA [65] Heuristics (0.6s) (1.1s) (3.7s) (7.0s) (14.9s) (28.6s) (1.9m)
NEH [66] Heuristics (0.1s) (0.1s) (0.6s) (1.1s) (4.4s) (8.6s) (1.1m)

IL (G) [42] NCH (0.3s) (0.3s) (0.4s) (0.4s) (0.7s) (0.7s) (1.2s)

MP-ASIL (k=128) NCH (0.2s) (0.2s) (0.2s) (0.2s) (0.3s) (0.3s) (0.8s)

Table 7: Inference time for JSSP. Symbols follow definitions provided in Table 1.

Method Type 15×15 20×15 20×20 30×15 • 30×20 • 50×15 • 50×20 • 100×20 •
Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓ Time ↓

Gurobi (3600s)* [20] Exact (10h) (10h) (10h) (10h) (10h) (10h) (10h) (10h)
OR-Tools (3600s)* [67] Exact (77m) (8h) (10h) (10h) (10h) (10h) (10h) (10h)

L2D (G)* [11] NCH (4s) (6s) (7s) (10s) (14s) (18s) (30s) (1.6m)
SN (G)* [29] NCH (35s) (1.1m) (1.8m) (2.9m) (4.7m) (8.8m) (16.0m) (1.2h)
RASCL (G)* [36] NCH (8s) (11s) (14s) (15s) (17s) (28s) (39s) (1.6m)
RS (G)* [39] NCH (5s) (8s) (9s) (19s) (22s) (53s) (1.2m) (4.6m)
L2D (S=128)* [11] NCH (6.8m) (9.0m) (13.1m) (15.6m) (26.3m) (35.9m) (1.0h) (3.4h)
SI GD (G)* [45] NCH (10s) (11s) (11s) (12s) (15s) (24s) (39s) (5.0m)
SLIM (S=512)*† [20] NCH (3s) (5s) (7s) (9s) (12s) (22s) (29s) (1.5m)

L2S-500* [25] NIH (1.6m) (1.7m) (1.8m) (2.1m) (2.3m) (2.7m) (3.8m) (8.4m)
TBGAT-500* [26] NIH (2.1m) (2.4m) (2.9m) (2.9m) (3.2m) (4.0m) (4.1m) (7.0m)

MP-ASIL (k=512) NCH (3s) (5s) (7s) (9s) (12s) (22s) (29s) (1.5m)

D.3 Detailed UPMSP Results

As detailed in Appendix C.2, the distribution of dj in UPMSP instances depends on the parameters
T and R. While the main paper presents average results due to space limitations, here we report
detailed results for each parameter combination, evaluating 20 instances per configuration.

30

Table 8: Experiment results on UPMSP across all parameter combinations. Bold: Best Obj. Other
symbols follow definitions provided in Table 1.

|J | |M| T R EDD ATCSR_Rm [60] Cho et al. (S=6) † [41] MP-ASIL (k=6)

50 3 0.2 0.2 917.72 37.35 117.92 54.76
50 3 0.2 0.4 856.02 12.92 65.1 26.82
50 3 0.2 0.6 917.8 19.85 47.96 29.59
50 3 0.2 0.8 672.76 16.19 30.76 15.14
50 3 0.2 1.0 384.16 22.18 7.14 4.72
50 3 0.4 0.2 1233.29 228.01 254.75 186.66
50 3 0.4 0.4 1506.45 134.38 209.42 179.57
50 3 0.4 0.6 1489.27 194.58 157.27 110.32
50 3 0.4 0.8 1680.08 151.21 186.57 140.40
50 3 0.4 1.0 1283.9 164.41 160.6 137.93
50 3 0.6 0.2 2405.19 620.78 607.09 584.25
50 3 0.6 0.4 2669.6 593.82 528.3 491.25
50 3 0.6 0.6 3154.25 759.75 621.97 616.45
50 3 0.6 0.8 2963.12 668.87 560.29 579.01
50 3 0.6 1.0 2502.97 542.00 484.42 459.23
50 3 0.8 0.2 4078.04 1456.9 1434.37 1356.45
50 3 0.8 0.4 4640.32 1608.95 1499.61 1458.93
50 3 0.8 0.6 4683.02 1726.59 1412.5 1410.99
50 3 0.8 0.8 3750.98 1179.13 1011.52 946.71
50 3 0.8 1.0 3381.26 985.23 875.89 842.48
50 3 1.0 0.2 5871.35 2766.78 2600.2 2517.76
50 3 1.0 0.4 5326.36 2494.93 2047.97 2019.69
50 3 1.0 0.6 5049.34 2239.92 1850.28 1805.2
50 3 1.0 0.8 4893.06 1980.81 1500.76 1539.71
50 3 1.0 1.0 4609.76 1325.51 1338.26 1283.15

Average 2836.80 876.97 784.43 751.89

|J | |M| T R EDD ATCSR_Rm [60] Cho et al. (S=6) † [41] MP-ASIL (k=6)

50 6 0.2 0.2 96.49 0.63 9.44 3.65
50 6 0.2 0.4 56.54 0.69 5.14 1.33
50 6 0.2 0.6 104.96 1.08 8.35 2.15
50 6 0.2 0.8 26.89 0.82 1.83 1.65
50 6 0.2 1.0 13.61 2.90 5.43 5.66

50 6 0.4 0.2 207.71 23.08 45.72 34.29
50 6 0.4 0.4 214.54 17.03 34.18 18.41
50 6 0.4 0.6 251.38 30.32 40.36 32.23
50 6 0.4 0.8 237.65 41.40 52.60 34.29
50 6 0.4 1.0 133.83 58.33 69.88 69.59
50 6 0.6 0.2 560.17 132.46 160.3 140.24
50 6 0.6 0.4 610.25 157.71 159.78 148.74
50 6 0.6 0.6 710.42 145.43 170.82 147.21
50 6 0.6 0.8 752.29 236.75 247.67 225.23
50 6 0.6 1.0 649.65 192.54 219.31 184.92
50 6 0.8 0.2 1358.95 507.04 474.49 462.67
50 6 0.8 0.4 1513.27 621.03 597.84 571.43
50 6 0.8 0.6 1377.82 519.09 504.68 484.47
50 6 0.8 0.8 1288.62 468.83 447.89 418.04
50 6 0.8 1.0 1047.54 326.61 320.17 297.40
50 6 1.0 0.2 1902.52 1175.66 1160.46 1118.15
50 6 1.0 0.4 1839.51 912.1 930.03 888.82
50 6 1.0 0.6 1678.61 722.82 678.23 681.27
50 6 1.0 0.8 1455.71 602.00 558.43 520.20
50 6 1.0 1.0 1372.49 466.88 451.87 464.67

Average 778.46 294.50 294.23 275.70

|J | |M| T R EDD ATCSR_Rm [60] Cho et al. (S=6) † [41] MP-ASIL (k=6)

100 6 0.2 0.2 255.49 0.25 1.39 0.04
100 6 0.2 0.4 89.55 0.00 0.00 0.00
100 6 0.2 0.6 43.55 0.00 0.00 0.00
100 6 0.2 0.8 17.77 0.02 0.00 0.00
100 6 0.2 1.0 11.04 2.62 0.00 0.00
100 6 0.4 0.2 430.48 32.65 22.94 10.17
100 6 0.4 0.4 881.5 48.43 15.84 9.99
100 6 0.4 0.6 563.9 25.30 7.29 0.79
100 6 0.4 0.8 517.33 27.44 12.92 8.76
100 6 0.4 1.0 306.99 49.9 20.56 12.20
100 6 0.6 0.2 1497.45 327.21 150.37 148.92
100 6 0.6 0.4 1898.12 314.28 129.59 110.07
100 6 0.6 0.6 2163.50 167.17 138.09 122.61
100 6 0.6 0.8 2738.14 561.34 301.71 272.11
100 6 0.6 1.0 1560.70 284.26 206.50 177.32
100 6 0.8 0.2 3880.05 1152.10 722.26 636.25
100 6 0.8 0.4 5125.19 1361.08 1002.46 915.62
100 6 0.8 0.6 4449.80 912.5 863.04 770.21
100 6 0.8 0.8 3896.58 901.39 644.09 539.94
100 6 0.8 1.0 2409.26 452.19 348.51 313.65
100 6 1.0 0.2 7073.31 3718.23 2655.76 2507.50
100 6 1.0 0.4 6527.61 3209.26 2040.39 1941.05
100 6 1.0 0.6 5800.50 2089.76 1377.43 1258.89
100 6 1.0 0.8 4949.04 1314.94 1057.43 977.17
100 6 1.0 1.0 4716.41 1436.42 840.95 719.93

Average 2472.13 735.55 502.37 458.11

31

D.4 Experiment Results on PFSP Using Synthetic Datasets

In the PFSP benchmark results presented in Table 2, IL [42] is trained on a distribution different
from the benchmark distribution. Following the IL paper setting, we compare MP-ASIL with IL on
synthetic datasets sampled from a Gamma distribution (k=1, θ=2).

Setup. IL is trained on instances with |J | × |M| = 20×5 to imitate solutions generated by NEH
[66], a highly specialized PFSP solver. We also train MP-ASIL on small-size instances (|J | × |M| =
20×5) sampled from the Gamma distribution, using the same hyperparameters detailed in Table 23.
For evaluation, we use 1,000 instances each for 20×5, 50×5, and 100×5, and 100 instances each for
200×5, 500×5, and 1000×5 from [42]. We also include classical heuristics (Iterated Local Search
(ILS) [64], Iterated Greedy Algorithm (IGA) [65], and NEH [66]) as baselines.

Remark. IL does not directly provide datasets in its code repository but offers code for dataset
generation.4 Thus, we generate datasets and reproduce the evaluation results by running trained IL
model provided by authors.

Results. Table 9 shows that MP-ASIL achieves new state-of-the-art results on these datasets. Surpris-
ingly, MP-ASIL, trained exclusively on 20×5 instances, demonstrates strong cross-size generalization,
outperforming NEH on all problem sizes except 100×5, while achieving computational speedups
of 4× to 360×. This superior performance of MP-ASIL can be attributed to its self-evolutionary
approach. While IL faces a performance ceiling due to imitating suboptimal solutions, MP-ASIL
autonomously generates and learns from self-teaching labels. Thus, MP-ASIL can break the funda-
mental limitation of classic SL methods, which strongly depend on the performance of their teacher
algorithms.

Table 9: Experiment results on PFSP using synthetic datasets. Gap: Performance gap relative to NEH.
Other symbols follow definitions provided in Table 1.

Method PFSP 20×5 PFSP 50×5 • PFSP 100×5 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

ILS [64] 29.96 2.74% (9s) 65.33 4.38% (18s) 121.49 3.63% (36s)
IGA [65] 29.05 -0.37% (1m) 63.19 0.96% (5m) 118.08 0.72% (25m)
NEH [66] 29.16 0.00% (4s) 62.59 0.00% (56s) 117.24 0.00% (7m)

IL [42] 31.93 9.50% (0s) 68.05 8.72% (1s) 125.34 6.91% (2s)

MP-ASIL (k = 128) 28.43 -2.50% (1s) 62.48 -0.18% (2s) 117.37 0.11% (8s)

Method PFSP 200×5 • PFSP 500×5 • PFSP 1000×5 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

ILS [64] 230.12 2.92% (7s) 551.77 2.36% (19s) 1076.35 2.07% (39s)
IGA [65] 224.85 0.56% (10m) 540.86 0.34% (1h) 1056.55 0.19% (4.2h)
NEH [66] 223.60 0.00% (9m) 539.06 0.00% (1.5h) 1054.50 0.00% (12h)

IL [42] 234.87 5.04% (1s) 566.96 5.18% (4s) 1115.22 5.76% (21s)

MP-ASIL (k = 128) 223.23 -0.15% (3s) 537.31 -0.32% (20s) 1049.17 -0.51% (2m)

D.5 Experiment Results on JSSP Using Lawrence’s Benchmark

Setup. Lawrence’s (LA) benchmark [75], widely used for evaluating generalization capability in
JSSP research papers [26, 20], consists of five instances for each of the eight different problem sizes.
To evaluate the generalization performance of MP-ASIL, we compare it with the baseline methods
listed in Table 3, excluding approaches that do not provide results on the LA benchmark.

Results. Table 10 demonstrates that MP-ASIL achieves the best average Gap (Avg.) among neural
constructive heuristics, finding optimal solutions for LA 15×5, LA 20×5, and LA 30×10. Moreover,
MP-ASIL resolves all instances within one second per problem size, clearly outperforming L2S-500
and showing comparable performance to TBGAT-500, both known to require significantly longer

4https://github.com/lokali/PFSS-IL

32

https://github.com/lokali/PFSS-IL

computation times as reported in [26] (e.g., MP-ASIL requires 0.8 seconds for LA 15×15 instances,
whereas L2S-500 and TBGAT-500 demand approximately one minute).

Table 10: Experiment results on JSSP using the LA benchmark. Symbols follow definitions provided
in Table 1.

Method LA 10×5 • LA 10×10 LA 15×5 • LA 15×10 LA 15×15 LA 20×5 • LA 20×10 LA 30×10 • Avg.
Gurobi (3600s)* [20] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
OR-Tools (3600s)* [67] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

MWKR* [20] 16.0% 12.2% 5.5% 17.8% 18.2% 5.2% 17.2% 8.6% 12.6%

L2D (G)* [11] 14.3% 23.7% 7.8% 27.2% 27.1% 6.3% 24.6% 8.4% 17.4%
SN (G)* [29] 12.1% 11.9% 2.7% 14.6% 16.1% 3.6% 15.7% 3.1% 10.0%
L2D (S=128)* [11] 8.8% 10.4% 2.8% 16.2% 17.4% 3.1% 18.3% 6.8% 10.6%
SLIM (S=512)*† [20] 1.1% 2.5% 0.0% 5.0% 5.6% 0.0% 5.6% 0.0% 2.5%

L2S-500* [25] 2.1% 4.4% 0.0% 6.4% 7.3% 0.0% 7.0% 0.2% 3.4%
TBGAT-500* [26] 2.1% 1.8% 0.0% 3.6% 5.5% 0.0% 5.0% 0.0% 2.3%
MP-ASIL (k = 512) 1.3% 2.1% 0.0% 4.3% 5.5% 0.0% 4.9% 0.0% 2.3%

D.6 Experiment Results on JSSP Using Synthetic Datasets

For JSSP, we also compare MP-ASIL with search-based NCO methods using synthetic JSSP datasets
commonly used in NCO literature.

Setup. Our test uses three sets of 100 instances for each of 10×10, 15×15, and 20×15 from [52].
Baseline methods include L2D [11], Poppy [54], EAS [52], COMPASS [55], and TBGAT-500 [26].
L2D and Poppy use naive stochastic sampling, whereas EAS fine-tunes its policy individually for
each test instance. COMPASS improves solution quality through CMA-based policy space search
(detailed in Section D.10), and TBGAT-500 employs a GNN-based local search operator to iteratively
update solutions for 500 iterations.

Results. Table 11 presents the average makespan (Obj.), Gap relative to OR-Tools [67], and Time.
From the table, we can find that MP-ASIL significantly outperforms all search-based methods in
solution quality and computational speed, with total inference times under one minute. Notably, com-
pared to COMPASS, which also learns latent conditioned policies but conducts extensive inference
time search, MP-ASIL reduces the gap using one-shot inference alone from 4.7% to 2.7% on JSSP
10×10, from 8.0% to 6.1% on JSSP 15×15, and from 10.4% to 8.2% on JSSP 20×15.

Table 11: Experiment results on JSSP using synthetic datasets. d denotes the number of decoders.
Other symbols follow definitions provided in Table 1.

Method JSSP 10×10 JSSP 15×15 JSSP 20×15
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

OR-Tools* 807.6 0.0% (37s) 1188.0 0.0% (3h) 1345.5 0.0% (80h)

L2D* 871.7 8.0% (8h) 1378.3 16.0% (25h) 1624.6 20.8% (40h)
Poppy (d = 16)* 849.7 5.2% (3h) 1290.4 8.6% (5h) 1495.7 11.2% (8h)
EAS* 858.4 6.3% (5h) 1295.2 9.0% (9h) 1498.0 11.3% (11h)
COMPASS* 845.5 4.7% (3h) 1282.8 8.0% (5h) 1485.6 10.4% (8h)
TBGAT-500* – 2.7% (16m) – 6.7% (21m) – 9.3% (23m)

MP-ASIL (k=512) 829.7 2.7% (12s) 1260.9 6.1% (28s) 1456.6 8.2% (40s)

D.7 Experiment results on FJSSP

Deterministic FJSSP. For FJSSP, one of the most complex scheduling problems, we apply MP-ASIL
on top of DANIEL [31], a state-of-the-art neural FJSSP solver. For comparison, we also include
(1) Exact Solver: OR-Tools (1800s); (2) Handcrafted Heuristic: First in First Out (FIFO), Most
Operations Remaining (MOR), SPT, and MWKR; (3) Neural Constructive Heuristics: HGNN [73],
MCGA [74], RS [39], and DANIEL [31] as baselines. Table 12 reports the Gap relative to OR-Tools
(1800s) and Time. From the table, we can see that MP-ASIL significantly enhances the performance
of DANIEL and outperforms all other methods. Remarkably, on large-scale instances unseen during

33

training (20×10, 30×10, and 40×10), MP-ASIL even surpasses OR-Tools (1800s) while requiring
79× to 291× shorter computation times.

Table 12: Experiment results on FJSSP. Symbols follow the definitions provided in Table 1.
Method Type 10×5 20×5• 15×10 • 20×10 • 30×10 • 40×10 •

Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓
OR-Tools (1800s)* Exact 0.00% (50h) 0.00% (50h) 0.00% (50h) 0.00% (50h) 0.00% (50h) 0.00% (50h)

FIFO Heuristics 24.06% (16s) 14.87% (32s) 28.65% (51s) 19.22% (1.2m) 19.50% (1.8m) 16.67% (2.5m)
MOR Heuristics 19.87% (16s) 13.85% (32s) 20.68% (51s) 12.20% (1.2m) 15.57% (1.8m) 15.13% (2.5m)
SPT Heuristics 34.76% (16s) 22.56% (32s) 38.22% (51s) 30.25% (1.2m) 27.47% (1.8m) 21.66% (2.5m)
MWKR Heuristics 17.58% (16s) 11.51% (32s) 19.41% (51s) 10.30% (1.2m) 13.96% (1.8m) 13.37% (2.5m)

HGNN (S=100)* NCH 9.66% (1.9m) 10.31% (3.9m) 12.13% (6.6m) 9.64% (10.7m) 12.36% (21.3m) 12.26% (40.9m)
MCGA (S=100)* NCH 9.01% – 8.36% – 11.77% – 7.70% – 12.44% – 12.50% –
RS (S=100)* NCH 7.26% – 7.22% – 9.59% – 6.06% – 11.14% – 11.29% –
DANIEL (S=100)*† NCH 5.57% (1.2m) 2.46% (3.1m) 6.79% (6.5m) -1.03% (10.2m) 4.43% (20.6m) 3.77% (37.6m)

MP-ASIL (k=100) NCH 3.00% (1.2m) 0.67% (3.1m) 4.61% (6.5m) -3.00% (10.3m) -0.15% (20.7m) -0.59% (37.8m)

Additionally, we evaluate our approach on well-known FJSSP benchmarks, including Brandimarte
[76] and Hurink [77] datasets. The Hurink benchmark consists of edata, rdata, and vdata instances,
with operations assignable to 1-2 machines, 1-3 machines, and 1-|M| machines, respectively. We
also include Genetic Programming (GP) [78], a representative HH, as a baseline. GP is a widely
used methodology among dispatching rule generation HH, evolving populations of individual tree
structures to automatically discover effective problem-solving strategies. This approach shares the
same spirit as our method from the perspective of heuristics to generate heuristics. As shown in Table
13, MP-ASIL substantially surpasses other baselines, demonstrating robust and superior performance
in out-of-distribution scenarios.

Table 13: Experiment results on FJSSP using four benchmark datasets. Symbols follow the definitions
provided in Table 1.

Method Type Brandimarte Hurink (edata) Hurink (vdata) Hurink (rdata)
Gap ↓ Gap ↓ Gap ↓ Gap ↓

MWKR Heuristics 28.91% 18.60% 4.25% 13.86%

GP HH 12.13% – – –

HGNN (S=100)* NCH 18.56% 8.71% 1.32% 5.57%
MCGA (S=100)* NCH 18.67% 8.38% 1.40% 5.71%
RS (S=100)* NCH 15.40% 7.90% 0.70% 4.72%
DANIEL (S=100)*† NCH 9.53% 9.08% 0.69% 4.95%

MP-ASIL (k = 100) NCH 7.32% 7.24% 0.50% 4.66%

Stochastic FJSSP. MP-ASIL is also applicable to stochastic scheduling problems. For stochastic
problems, we can evaluate solution quality through expected makespan E(Cmax) or Value-at-Risk
V aRα(Cmax) metrics by applying the model’s decisions identically to multiple scenarios sampled
from probability distributions. Thus, MP-ASIL can evaluate each policy’s decisions through scenario
sets, enabling easy application in the same way as deterministic problems. To validate this approach,
we perform experiments on the stochastic FJSSP, where processing times are random variables. We
apply MP-ASIL to the Scenario Processing Module (SPM)-DAN [79], which introduces an attention-
based SPM to solve stochastic FJSSP. This research is a representative and recent stochastic JSP
paper in the NCO field. Specifically, we implement latent conditioned policies by concatenating
latent variables to the decision-making layer (MLP) input as detailed in Appendix B.1. We employ
the identical MP-ASIL training procedure described in the main text. Our training objective is to
minimize V aRα(Cmax). Training hyperparameters and experimental settings follow the original
paper, with training conducted on only 10×5 instances. Baseline methods include four dispatching
rules (FIFO, MOR, SPT, and MWKR) and SPM-DAN.

Tables 14 and 15 present experiment results on various stochastic FJSSP datasets. Each problem size
comprises 100 instances from SPM-DAN. From Table 14, we observe that MP-ASIL demonstrates
clear performance improvement over SPM-DAN and significantly outperforms all dispatching rules,
but requires slightly more computation time. Moreover, for different objective functions E(Cmax),
as shown in Table 15, MP-ASIL consistently achieves the best performance without retraining.

34

Through these experimental results, we verify that MP-ASIL can be effective for stochastic scheduling
problems.

Table 14: Experiment results on stochastic FJSSP. The objective function is V aRα(Cmax). We set
α = 95%, following the original paper. Symbols follow the definitions provided in Table 1.

Method 10x5 20x5 • 15x10 • 20x10 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

FIFO 757.19 13.00% (40s) 1308.89 6.98% (1.3m) 1215.23 14.46% (2.2m) 1448.87 11.41% (2.8m)
MOR 753.22 12.41% (40s) 1326.69 8.43% (1.3m) 1182.71 11.40% (2.2m) 1435.38 10.37% (2.8m)
SPT 820.38 22.43% (40s) 1427.94 16.71% (1.3m) 1309.28 23.32% (2.2m) 1485.49 14.27% (2.8m)
MWKR 741.49 10.66% (40s) 1317.16 7.66% (1.3m) 1155.40 8.82% (2.2m) 1419.13 9.12% (2.7m)

SPM-DAN 670.08 0.00% (1.8m) 1223.49 0.00% (6.2m) 1061.71 0.00% (14.7m) 1300.53 0.00% (25.3m)

MP-ASIL 654.34 -2.35% (1.8m) 1194.25 -2.39% (6.2m) 1026.87 -3.28% (15m) 1230.77 -5.07% (25.9m)

Table 15: Experiment results on stochastic FJSSP. The objective function is E(Cmax). Symbols
follow the definitions provided in Table 1.

Method 10x5 20x5 • 15x10 • 20x10 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

FIFO 645.35 10.18% (40s) 1171.82 4.98% (1.3m) 1074.24 12.75% (2.2m) 1301.00 9.16% (2.7m)
MOR 641.50 9.52% (40s) 1186.68 6.32% (1.3m) 1044.47 9.63% (2.2m) 1288.04 8.07% (2.7m)
SPT 705.50 20.45% (40s) 1280.55 12.76% (1.3m) 1167.27 22.52% (2.2m) 1485.49 14.27% (2.7m)
MWKR 632.44 7.98% (40s) 1179.92 5.71% (1.3m) 1020.88 7.15% (2.2m) 1275.73 7.04% (2.7m)

SPM-DAN 585.74 0.00% (1.8m) 1116.19 0.00% (6.3m) 952.73 0.00% (14.7m) 1191.87 0.00% (25.4m)

MP-ASIL 570.54 -2.60% (1.8m) 1091.14 -2.24% (6.3m) 926.65 -2.74% (14.9m) 1139.56 -4.39% (25.8m)

D.8 Ablation Studies

In this section, we present comprehensive ablation results for all problems evaluated in this study,
using the ablation variants defined in Section 5.2. As shown in Figure 13, MP-ASIL performs best in
22 out of 24 benchmark datasets. Specifically, MP-ASIL significantly outperforms Poppy (AdvW, SIL
ablation) across all benchmark problems, highlighting the effectiveness of MP-ASIL in optimizing
multiple policies compared to RL. Furthermore, MP-ASIL shows superior performance compared
to SLIM (AdvW, MP ablation), the state-of-the-art SIL-based method, on all benchmark datasets
except JSSP 15×15 and JSSP 30×30. Additionally, removing Advantage Weight (AdvW ablation)
substantially drop performance across all datasets, underscoring the importance of our proposed
training scheme that dynamically adjusts imitation intensity for self-labels.

35

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Pe
rf

or
m

an
ce

 g
ap

 (
%

)

0.00

0.41

0.04
0.13

1.47

SMSP 50

0

5

10

15

20

25

30

35

0.00 0.67
3.37

35.77

6.69

SMSP 100

0

20

40

60

80

100

0.16

15.14
20.67

100.00

40.19

SMSP 500

5

6

7

8

9

10

5.38
5.78

6.62

9.67
9.94

UPMSP 50x3

6

7

8

9

10

11

12

13

14

15

Pe
rf

or
m

an
ce

 g
ap

 (
%

)

7.08
7.51

8.06

11.93

14.29
UPMSP 50x6

8

10

12

14

16

18

20

9.57
10.30

14.15
13.50

20.16
UPMSP 100x6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.37

0.94
1.02

0.62

1.61

PFSP 20x5

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

3.32

3.80 3.80
3.94

4.28

PFSP 20x10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rf

or
m

an
ce

 g
ap

 (
%

)

0.22
0.25

0.34

0.27

0.50

PFSP 50x5

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

4.05

4.31

4.59

4.28

5.07

PFSP 50x10

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.16
0.19

0.23 0.24

0.45

PFSP 100x5

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

2.15

3.56 3.57

2.16

3.78

PFSP 100x10

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Pe
rf

or
m

an
ce

 g
ap

 (
%

)

1.51

2.29

2.48

2.10

2.54

PFSP 200x10

4.5

5.0

5.5

6.0

6.5

4.88 4.97 4.99
5.11

6.52

FFSP 20x12

2.2

2.4

2.6

2.8

3.0

3.2

2.40
2.46

2.57 2.57

3.21
FFSP 50x12

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1.32 1.37 1.40

1.59

2.02

FFSP 100x12

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

Pe
rf

or
m

an
ce

 g
ap

 (
%

)

6.76 6.84

6.50

7.09

7.60

JSSP 15x15

8.2

8.4

8.6

8.8

9.0

9.2

9.4

9.6

9.8

8.50
8.60

8.80 8.74

9.65

JSSP 20x15

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

8.65

9.14
9.00

8.93

9.77

JSSP 20x20

10.5

11.0

11.5

12.0

12.5

10.43
10.55 10.60

11.00

12.39

JSSP 30x15

Methods
12.25

12.50

12.75

13.00

13.25

13.50

13.75

14.00

Pe
rf

or
m

an
ce

 g
ap

 (
%

)

12.78
12.92

12.66

13.29

13.68

JSSP 30x20

Methods

4

5

6

7

8

9

4.18
4.54

4.90

6.50

9.05
JSSP 50x15

Methods

7.0

7.5

8.0

8.5

9.0

7.03

7.42
7.60

8.08

8.84
JSSP 50x20

Methods
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.96

1.75
2.10

2.47

3.93
JSSP 100x20

MP-ASIL (Ours) AdvW ablation AdvW, MP ablation AdvW, SIL ablation All ablation

Figure 13: Results of ablation studies. Gaps greater than 100% are truncated to 100%.

36

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Problem 1

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Problem 2

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Problem 3

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Problem 4

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Problem 5

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Problem 6

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Problem 7

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Problem 8

Figure 14: Policy latent space heat maps on 8 problem instances. Red-colored regions correspond to
low-performing latent regions, whereas blue-colored regions denote high-performing areas.

D.9 Performance Landscape Visualization

In this section, we visualize the performance landscape of a two-dimensional policy latent space. To
achieve this, we evaluate 32,000 latent vectors on 8 randomly sampled PFSP 20×5 instances and
report the results in Figure 14. From the figure, we observe that: 1) the performance landscape is
instance-dependent, 2) high-performing regions differ across various instances, and 3) the landscape
demonstrates a multimodal characteristic (several performant areas in the latent space). These findings
confirm that different policy regions specialize in generating superior solutions for distinct instance
subsets. These conclusions also motivate the application of search techniques to find high-performing
latent space regions during inference, with the results presented in the subsequent section.

D.10 Policy Latent Space Search at Inference Time

Randomly sampling latent variables at inference time does not guarantee that promising latent
variables will be included (although increasing the number of samples can improve the likelihood).
However, at inference time, we can apply a principled search procedure to find high-performing
latent variables. Recently, COMPASS [55] introduced a policy latent space search method using the
Covariance Matrix Adaptation (CMA) [80] evolutionary algorithm. In this section, we use CMA
during test to search for promising latent areas on a per-instance basis.

Table 16: Performance evaluation results combined
with CMA on the TA benchmark. ↓: Lower is better.

Method PFSP 20×10 JSSP 20×15
Gap ↓ Gap ↓

Poppy + CMA 2.27% 7.35%

MP-ASIL + SAM 2.04% 6.98%
MP-ASIL + CMA 1.63% 6.37%

Following the original COMPASS paper,
we employ three independent CMA compo-
nents in parallel with 1,600 search attempts
and report the results in Table 16. For com-
parison, we present results that apply CMA
to latent-conditioned policies trained via
Poppy [54] instead of MP-ASIL, which ex-
actly matches the original COMPASS train-
ing setup. Poppy is an RL-based method. In
addition, we report sampling-based results
(MP-ASIL + SAM), where the number of samples is set equal to the number of search attempts.

From the table, we can see that MP-ASIL + SAM already outperforms Poppy + CMA without the
search method. Furthermore, MP-ASIL + CMA achieves significant relative performance improve-
ments of 25.1% on PFSP 20×10 and 9.6% on JSSP 20×15 compared to MP-ASIL + SAM. These
results highlight the effectiveness of MP-ASIL in optimizing multi-policy compared to the RL-based
method and show that performance can be significantly improved through search procedures to
identify promising regions in the latent space.

37

E Vehicle Routing Problems

In this section, we present performance evaluation results for various out-of-distribution scenarios
in VRPs (cross-size, cross-distribution, and cross-task generalization). These experiments aim to
demonstrate that MP-ASIL can show good generalization capabilities across diverse COPs.

E.1 Cross-size Generalization

This part presents the cross-size generalization performance of MP-ASIL on TSP and CVRP.

Setup. For evaluation, we use three datasets of 1,000 instances each with n = 125, 150, and 200
from [52] and compare MP-ASIL with the baseline methods listed in Table 5. All methods generate
solutions following the procedure detailed in Section 5.2, employing models trained on instances
with n = 100. As before, MP-ASIL does not enforce distinct initial actions.

Results. Table 17 summarizes the experimental results for TSP and CVRP instances of various
sizes. From the table, we can observe that MP-ASIL significantly outperforms state-of-the-art NCO
methods across all sizes, with an increasing performance advantage as instance size grows for both
problems. These results confirm that MP-ASIL demonstrates remarkable cross-size generalization
capabilities across various COPs.

Table 17: Experiment results on TSP and CVRP. Symbols follow definitions provided in Table 1.

Method n = 125 • n = 150 • n = 200 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap↓ Time ↓

T
SP

LKH3* 8.583 0.000% (73m) 9.346 0.000% (99m) 10.687 0.000% (3h)

POMO* † 8.607 0.278% (<1m) 9.397 0.542% (<1m) 10.843 1.457% (1m)
Sym-NCO † 8.619 0.413% (<1m) 9.402 0.599% (<1m) 10.849 1.516% (1m)
Poppy (d=16)* 8.594 0.14% (<1m) 9.372 0.27% (<1m) – – –

MP-ASIL 8.585 0.028% (<1m) 9.359 0.143% (<1m) 10.798 1.041% (1m)

C
V

R
P

LKH3* 17.50 0.00% (19h) 19.22 0.00% (20h) 22.00 0.00% (25h)

POMO*† 17.73 1.29% (<1m) 19.64 2.18% (1m) 22.90 4.12% (1m)
Sym-NCO† 17.72 1.23% (<1m) 19.61 2.03% (<1m) 22.78 3.54% (1m)
Poppy (d=32)* 17.63 0.74% (1m) 19.50 1.46% (1m) – – –

MP-ASIL 17.62 0.70% (<1m) 19.46 1.23% (<1m) 22.57 2.58% (1m)

Furthermore, to validate performance on larger-scale TSP datasets (TSP 100, TSP 200, TSP 500,
and TSP 1000 from [45]), we implement MP-ASIL with BQ-NCO [72] and perform evaluations.
Baseline methods include BQ-NCO trained via SL and BQ-NCO trained through SI GD [45], another
SIL-based approach. The results are presented in Table 18. The table shows that MP-ASIL does not
surpass the baseline approaches on TSP 100, TSP 200, and TSP 1000. However, MP-ASIL offers the
advantage of being easy to implement without requiring labeled data for SL or extensive search and
hyperparameter tuning needed for SI GD (as mentioned in Section 2). To improve performance, a
discussion on this topic is provided in the Limitations section (Appendix G).

Table 18: Experiment results on large-size TSP. beam: Beam search. Other symbols follow definitions
provided in Table 1.

Method n = 100 n = 200 • n = 500 • n = 1000 •
Gap ↓ Gap ↓ Gap ↓ Gap ↓

BQ-NCO beam16 (SL)*† 0.02% 0.09% 0.43% 0.91%
BQ-NCO beam16 (SI GD)*† 0.02% 0.10% 0.46% 1.01%

MP-ASIL (k = 16) 0.02% 0.14% 0.41% 1.19%

E.2 Cross-distribution Generalization

This part discusses the cross-distribution generalizability of MP-ASIL on TSP.

38

Setup. For evaluation, we use four TSP 100 datasets with different distributions, including uniform,
clustered, explosion, and implosion from INViT [81]. Each dataset contains 2,000 instances. As
baseline methods, we include RL-based approaches (POMO [10], PointerFormer [18], Omni-TSL
[82], ELG [83], and INViT [81]) and SL-based methods (LEHD [71] and BQ-NCO [72]), following
the baseline methods used in INViT. In our experiments, we employ the trained POMO models used
in Section 5.2. At test time, we utilize k = 100 policies for each instance to generate solutions and
also apply data augmentation to enhance overall performance.

Results. Table 19 shows the performance on TSP 100 datasets from four different distributions.
The Gap is computed relative to Gurobi. The table demonstrates that MP-ASIL substantially surpasses
all NCO methods across all distributions while maintaining efficient computational time. Particularly,
while the second-best and third-best methods vary across datasets, MP-ASIL consistently maintains
top performance. We attribute this robustness to MP-ASIL’s ability to learn multiple specialized
behaviors. Even when some policies perform poorly on specific distributions, others can achieve
superior performance and provide complementary strengths, thereby demonstrating excellent and
robust performance under distribution shift scenarios.

Table 19: Experiment results on four TSP 100 datasets. Symbols follow definitions provided in Table
1.

Method Uniform Clustered • Explosion • Implosion •
Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓

Gurobi* 0.00% (23.8m) 0.00% (34.4m) 0.00% (28.3m) 0.00% (28.7m)

POMO*† 1.29% (2.0m) 3.89% (1.7m) 1.42% (1.7m) 1.44% (1.7m)
PointerFormer* 0.43% (1.7m) 3.96% (1.7m) 0.87% (1.7m) 0.71% (1.7m)

Omni-TSL* 2.55% (2.0m) 3.62% (2.0m) 3.21% (2.0m) 2.67% (2.0m)
ELG* 0.51% (3.2m) 3.69% (2.3m) 0.93% (3.5m) 0.85% (3.2m)

INViT-2V* 1.65% (3.0m) 3.12% (2.9m) 1.85% (3.1m) 1.95% (2.9m)
INViT-3V* 0.95% (4.2m) 2.47% (4.0m) 1.12% (4.3m) 1.21% (4.0m)

LEHD* 0.57% (11.5m) 4.51% (14.9m) 0.68% (11.1m) 1.17% (18.3m)
BQ-NCO* 5.90% (16.6m) 8.86% (17.4m) 6.41% (18.0m) 6.40% (16.8m)

MP-ASIL (k = 100) 0.00% (1.0m) 1.05% (1.0m) 0.06% (1.0m) 0.21% (1.0m)

E.3 Cross-problem Generalization

In real-world industry applications, cross-problem generalization ability is as important as cross-size
and cross-distribution generalization since practical problems typically involve various attributes and
constraints. In this part, we verify the ability of MP-ASIL to address this critical requirement.

Setup. Figure 15 summarizes the attributes considered in our experiments. Each problem variant is
derived by incorporating one or more additional attributes into the standard CVRP formulation (e.g.,
CVRP + Time Window (TW) = CVRPTW, CVRP + Open route (O) = OVRP, and CVRP + TW + O
+ Backhaul (B) = OVRPBTW).

• Time Windows (TW): The vehicle must visit node i within the time window from ei to li, and
each node has a service time si. If the vehicle arrives at node i before ei, it must wait until ei to
begin service.

• Open Routes (O): The vehicle is not required to return to the depot after completing visits to all
nodes.

• Backhaul (B): The classical CVRP assumes that demand is positive (linehaul) for delivery. In
practice, however, customers can have negative demand (backhaul) for pickup. The linehaul and
backhaul customers may coexist on the same route.

• Duration Limit (L): The total length of each route must not exceed a predetermined threshold.

We build MP-ASIL upon POMO-MTL [84], a transformer-based multi-task solver. Except for the
policy optimization strategy (a single policy with POMO vs. MP-ASIL) and the rollout strategy, we

39

Time Window (TW) Open Route (O) Backhauls (B) Duration limit (L)

L<
L<

Time range BackhaulVehicle route Linehaul Depot

Done!

+
+

-
-

Figure 15: Illustrations of various attributes of VRPs.

follow the same training setups, evaluation procedures, and test datasets as in POMO-MTL. During
both training and inference, we do not enforce distinct initial actions. This strategy is particularly
critical in complex VRPs, where initial actions can significantly influence solution quality, rendering
rollouts from every node unsuitable; however, this aspect is frequently overlooked in current studies
[56].

Results. Table 20 shows the performance evaluation results for five trained VRPs and five unseen
VRPs. Performance gaps (Gap) are computed relative to HGS [85], a state-of-the-art handcrafted
VRP solver. For trained VRPs, the table demonstrates that MP-ASIL significantly outperforms POMO-
MTL across all VRP variants, reducing the Gap from 1.71% to 1.48% on CVRP 100, from 3.81% to
3.70% on VRPTW 100, from 4.48% to 4.01% on OVRP 100, from 3.58% to 2.80% on VRPB 100,
and from 1.66% to 1.23% on VRPL 100.

For unseen VRPs, MP-ASIL shows remarkable cross-problem generalization, surpassing POMO-MTL
across nearly all instances. Specifically, MP-ASIL achieves performance improvements by reducing
the Gap from 4.50% to 3.77% on VRPBL 100, from 3.05% to 3.01% on VRPBTW 100, and from
11.50% to 10.86% on OVRPBLTW 100, while performing slightly worse only on OVRPL 100
(4.57% vs. 4.90%). These results strongly support the capability of MP-ASIL to effectively generalize
across diverse out-of-distribution scenarios, highlighting its pivotal role in single-task and multi-task
learning contexts.

40

Table 20: Experiment results on ten VRP variants using synthetic datasets. Each problem includes
5,000 test instances. Symbols follow definitions provided in Table 1.

(a) Trained VRPs

Method CVRP 100 VRPTW 100 OVRP 100
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

HGS* 15.54 0.00% 14h 26.14 0.00% 14h 9.71 0.00% 14h

POMO-MTL*† 15.80 1.71% 35s 27.13 3.81% 35s 10.14 4.48% 35s
MP-ASIL 15.77 1.48% 36s 27.11 3.70% 36s 10.10 4.01% 36s

Method VRPB 100 VRPL 100 AVG.
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

HGS* 11.13 0.00% (14h) 15.54 0.00% (14h) 15.612 0.00% (14h)

POMO-MTL*† 11.53 3.58% (35s) 15.80 1.66% (35s) 16.27 3.05% (35s)
MP-ASIL 11.44 2.80% (36s) 15.73 1.23% (36s) 16.03 2.68% (36s)

(b) Unseen VRPs

Method VRPBL 100 • OVRPL 100 • VRPBTW 100 •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

HGS* 11.15 0.00% (14h) 9.71 0.00% (14h) 26.31 0.00% (14h)

POMO-MTL*† 11.65 4.50% (35s) 10.15 4.57% (35s) 27.11 3.05% (35s)
MP-ASIL 11.57 3.77% (36s) 10.19 4.90% (36s) 27.10 3.01% (36s)

Method OVRPLTW 100 • OVRPBTW 100 • AVG. •
Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

HGS* 17.35 0.00% (14h) 17.31 0.00% (14h) 16.36 0.00% (14h)

POMO-MTL*† 19.34 11.50% (35s) 19.32 11.61% (35s) 17.51 7.03% (35s)
MP-ASIL 19.23 10.86% (36s) 19.29 11.44% (36s) 17.47 6.78% (36s)

41

F Training Hyperparameters

In this section, we provide training hyperparameters, closely following the original papers. Our
experimental results in this paper show that simply applying MP-ASIL without hyperparameter tuning
achieves significantly improved performance while maintaining comparable training and inference
time. This demonstrates the practical value and ease of adoption of our method, enabling practi-
tioners to seamlessly substitute policy gradient methods without requiring extensive hyperparameter
calibration or algorithmic redesign.

SMSP. Due to the lack of neural constructive solver for SMSP, we develop the model based on
BQ-NCO [72].

Table 21: Hyperparameter setting for SMSP. h: Hours.
SMSP

Learning Rate (LR) 1e-4
Weight decay 1e-6
The number of encoder layers 1
The number of decoder layers 5
The number of attention heads 8
Hidden embedding dimension (dh) 128
Batch-size 50
Continuous latent variable dimension 4
Categorical latent variable dimension 12
The number of policies (Training) 128
Epochs 100
Optimizer Adam
LR scheduler MultiStepLR
LR milestones [90,100]
LR gamma 0.1
Epoch size 1,000
Training time ∼7h

UPMSP. We follow the training settings from [41].

Table 22: Hyperparameter setting for UPMSP. d: Days.
UPMSP

Learning Rate (LR) 5e-4
Weight decay –
The number of encoder layers 1
The number of decoder layers 3
The number of attention heads 8
Hidden embedding dimension (dh) 64
Batch-size 32
Continuous latent variable dimension 2
Categorical latent variable dimension 6
The number of policies (Training) 32
Epochs 1,000
Optimizer Adam
LR scheduler Constant
Epoch size 256
Training time ∼3d

42

PFSP. We follow the training settings from [12].

Table 23: Hyperparameter setting for PFSP.
PFSP

Learning Rate (LR) 1e-4
Weight decay 1e-6
The number of encoder layers 6
The number of decoder layers 1
The number of attention heads 8
Hidden embedding dimension (dh) 128
Batch-size 200
Continuous latent variable dimension 4
Categorical latent variable dimension 12
The number of policies (Training) 128
Epochs 1,000
Optimizer Adam
LR scheduler MultiStepLR
LR milestones [900, 950]
LR gamma 0.1
Epoch size 100,000
Training time ∼1.2d

FFSP. We follow the training settings from [12].

Table 24: Hyperparameter setting for FFSP 20×12, 50×12, and 100×12.
FFSP 20×12 FFSP 50×12 FFSP 100×12

Learning Rate (LR) 1e-5 1e-5 1e-5
Weight decay 1e-6 1e-6 1e-6
The number of encoder layers 3 3 3
The number of decoder layers 1 1 1
The number of attention heads 16 16 16
Hidden embedding dimension (dh) 256 256 256
Batch-size 50 50 50
Continuous latent variable dimension 4 4 4
Categorical latent variable dimension 12 12 12
The number of policies (Training) 24 24 24
Epochs 100 150 200
Optimizer Adam Adam Adam
LR scheduler MultiStepLR MultiStepLR MultiStepLR
LR milestones [80,90] [130,140] [170,190]
LR gamma 0.1 0.1 0.1
Epoch size 1,000 1,000 1,000
Training time ∼2h ∼5h ∼1d

43

JSSP. We follow the training settings from [20].

Table 25: Hyperparameter setting for JSSP.
JSSP

Learning Rate (LR) 1e-4
Weight decay –
The number of encoder layers 2
The number of decoder layers 2
The number of attention heads 3
Hidden embedding dimension (dh) 128
Batch-size 16
Continuous latent variable dimension 4
Categorical latent variable dimension 12
The number of policies (Training) 256
Epochs 20
Optimizer Adam
LR scheduler Constant
Epoch size 30,000
Training time ∼4d

FJSSP. We follow the training settings from [31].

Table 26: Hyperparameter setting for FJSSP.
FJSSP

Learning Rate (LR) 3e-4
Weight decay –
The number of encoder layers 1
The number of decoder layers 2
The number of attention heads 4
Hidden embedding dimension (dh) 64
Batch-size 16
Continuous latent variable dimension 4
Categorical latent variable dimension 12
The number of policies (Training) 128
Epochs 40
Optimizer Adam
LR scheduler Constant
Epoch size 160
Training time ∼5h

44

TSP and CVRP. We follow the training settings from [10].

Table 27: Hyperparameter setting for TSP and CVRP.
TSP CVRP

Learning rate 1e-4
Weight decay 1e-6
The number of encoder layers 6
The number of decoder layers 1
The number of attention heads 8
Hidden embedding dimension (dh) 128
Batch-size 50
Continuous latent variable dimension 4
Discrete latent variable dimension 12
The number of policies (Training) 100

Epochs 2,000 8,000
Optimizer Adam Adam
LR scheduler MultiStepLR MultiStepLR
LR milestones [1900,1950] [7900, 7950]
LR gamma 0.1 0.1
Epoch size 100,000 10,000
Training time ∼12d ∼4d

G Limitation and Future Work

Algorithm. Despite the demonstrated effectiveness of MP-ASIL, our approach has several potential
limitations. First, MP-ASIL samples latent variables from a fixed prior distribution Z across all
instances, potentially overlooking optimal instance-specific priors. Therefore, learning adaptive,
instance-dependent distributions is a promising future direction. Second, while increasing the number
of policies (k) can make stronger models during training (detailed in Section 5.2), it also increases
memory usage and training time. Therefore, an important avenue for future research is to design
a practical yet effective sampling framework that can generate stronger self-teachers from fewer
samples drawn from promising policy subspaces.

Applications. In this work, we primarily focus on deterministic and static JSPs. For future research,
we plan to apply MP-ASIL to more realistic scenarios, including communication latency [86] and
dynamic environments, as well as multi-objective JSPs. Additionally, we aim to demonstrate
MP-ASIL’s effectiveness across a broader range of COPs.

H Broader Impact

This paper introduces a new learning paradigm for scheduling problems. MP-ASIL addresses diverse
decision-making tasks in manufacturing and logistics via end-to-end learning, potentially reducing
human reliance on effective heuristic algorithm design. However, unlike simple PDRs, deep learning
lack interpretability, raising trust concerns for AI-driven decision-making systems. Therefore,
advancing explainable AI methods to elucidate and justify decision-making processes remains a
critical avenue for future research.

I Licenses

The licenses for code repositories and datasets used in this work are summarized in Table 28.

45

Table 28: List of licenses for code repositories and datasets used in this work.
Resource Type Link License

BQ-NCO Code https://github.com/naver/bq-nco CC BY-NC-SA 4.0

DeepACO and
ACO

Code&
dataset

https://github.com/henry-yeh/DeepACO MIT License

GFACS Code https://github.com/ai4co/gfacs MIT License

POMO Code https://github.com/yd-kwon/POMO MIT License

MatNet Code&
dataset

https://github.com/yd-kwon/MatNet MIT License

IL, ILS, IGA, and
NEH

Code https://github.com/lokali/PFSS-IL Available online

SLIM Code&
dataset

https://github.com/AndreaCorsini1/
SelfLabelingJobShop

Available online

DANIEL Code&
dataset

https://github.com/wrqccc/FJSP-DRL Available online

SPM-DAN Code https://github.com/
ai-for-decision-making-tue/
NCO-for-Stochastic-FJSP

Available online

Sym-NCO Code https://github.com/alstn12088/Sym-NCO Available online

EAS Dataset https://github.com/ahottung/EAS Available online

SI GD Dataset https://github.com/grimmlab/
gumbeldore/tree/main

Available online

INViT Dataset https://github.com/Kasumigaoka-Utaha/
INViT

Available online

POMO-MTL Code&
Dataset

https://github.com/FeiLiu36/MTNCO Available online

46

https://github.com/naver/bq-nco
https://github.com/henry-yeh/DeepACO
https://github.com/ai4co/gfacs
https://github.com/yd-kwon/POMO
https://github.com/yd-kwon/MatNet
https://github.com/lokali/PFSS-IL
https://github.com/AndreaCorsini1/SelfLabelingJobShop
https://github.com/AndreaCorsini1/SelfLabelingJobShop
https://github.com/wrqccc/FJSP-DRL
https://github.com/ai-for-decision-making-tue/NCO-for-Stochastic-FJSP
https://github.com/ai-for-decision-making-tue/NCO-for-Stochastic-FJSP
https://github.com/ai-for-decision-making-tue/NCO-for-Stochastic-FJSP
https://github.com/alstn12088/Sym-NCO
https://github.com/ahottung/EAS
https://github.com/grimmlab/gumbeldore/tree/main
https://github.com/grimmlab/gumbeldore/tree/main
https://github.com/Kasumigaoka-Utaha/INViT
https://github.com/Kasumigaoka-Utaha/INViT
https://github.com/FeiLiu36/MTNCO

	Introduction
	Related Work
	Preliminaries
	Methods
	Multi-Policy Representation: Latent Conditioned Policies
	MP-ASIL: Multi-Policy Optimization with Adaptive Self-Imitation Learning

	Experiments
	Experimental Settings
	Experimental Results

	Conclusion
	Appendix
	Job Scheduling Problems
	Machine Environments
	Constraints
	Objective Functions ()

	Multi-Policy Representation
	Implementation of Latent Conditioned Policies
	Why We Use Latent Variables to Represent Multiple Policies
	The Effect of Latent Distributions

	Benchmark Problems
	Single Machine Scheduling Problem (1||wjTj)
	Unrelated Parallel Machine Scheduling Problem (Rm|sijk, Mj,rj|wjTj)
	Permutation Flow Shop Scheduling Problem (Fm|prmu|Cmax)
	Flexible Flow Shop Scheduling Problem (FFc||Cmax)
	Job Shop Scheduling Problem (Jm||Cmax)
	Flexible Job Shop Scheduling Problem (FJC||Cmax)

	Additional Experiments
	Validation Curves
	Computation Time for PFSP and JSSP
	Detailed UPMSP Results
	Experiment Results on PFSP Using Synthetic Datasets
	Experiment Results on JSSP Using Lawrence's Benchmark
	Experiment Results on JSSP Using Synthetic Datasets
	Experiment results on FJSSP
	Ablation Studies
	Performance Landscape Visualization
	Policy Latent Space Search at Inference Time

	Vehicle Routing Problems
	Cross-size Generalization
	Cross-distribution Generalization
	Cross-problem Generalization

	Training Hyperparameters
	Limitation and Future Work
	Broader Impact
	Licenses

