

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TEXTUAL BAYES: QUANTIFYING PROMPT UNCERTAINTY IN LLM-BASED SYSTEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Although large language models (LLMs) are becoming increasingly capable of solving challenging real-world tasks, accurately quantifying their uncertainty remains a critical open problem—one that limits their applicability in high-stakes domains. This challenge is further compounded by the closed-source, black-box nature of many state-of-the-art LLMs. Moreover, LLM-based systems can be highly sensitive to the prompts that bind them together, which often require significant manual tuning (i.e., prompt engineering). In this work, we address these challenges by viewing LLM-based systems through a Bayesian lens. We interpret prompts as textual parameters in a statistical model, allowing us to use a small training dataset to perform Bayesian inference over these prompts. This novel perspective enables principled uncertainty quantification over both the model’s textual parameters and its downstream predictions, while also incorporating prior beliefs about these parameters expressed in free-form text. To perform Bayesian inference—a difficult problem even for well-studied data modalities—we introduce Metropolis-Hastings through LLM Proposals (MHLP), a novel Markov chain Monte Carlo (MCMC) algorithm that combines prompt optimization techniques with standard MCMC methods. MHLP is a turnkey modification to existing LLM pipelines, including those that rely exclusively on closed-source models. Empirically, we demonstrate that our method yields improvements in both predictive accuracy and uncertainty quantification (UQ) on a range of LLM benchmarks and UQ tasks. More broadly, our work demonstrates a viable path for incorporating methods from the rich Bayesian literature into the era of LLMs, paving the way for more reliable and calibrated LLM-based systems.

1 INTRODUCTION

Large language models (LLMs) have become increasingly embedded in our daily lives, with growing adoption across domains such as customer support (Chaturvedi & Verma, 2023), code generation (Wang et al., 2021; Chen et al., 2021), scientific research (Boiko et al., 2023; Schmidgall et al., 2025; Yamada et al., 2025), and creative writing (Gómez-Rodríguez & Williams, 2023). As their capabilities continue to advance, there is also mounting interest in deploying them in agentic systems, wherein they perform tasks autonomously on behalf of users (Wooldridge & Jennings, 1995; Xi et al., 2025). Despite their proliferation, however, trust in LLMs remains limited, largely due to their propensity to generate hallucinated content (Maynez et al., 2020; Xu et al., 2024) and their susceptibility to adversarial attacks and jailbreaking (Wei et al., 2023; Zou et al., 2023; Yan et al., 2024). These vulnerabilities in LLM-based systems therefore must be addressed, especially to fully unlock high-stakes domains such as finance and medicine. A key step towards mitigating these risks is to reliably quantify the uncertainty of LLM-based systems. Accurate measures of uncertainty ensure that, when unable to answer, LLM-based systems can abstain, defer to human experts, or augment their context with subroutines based on retrieval or reasoning (Lewis et al., 2020; Wei et al., 2022).

Despite recent progress, UQ for LLMs is far from solved and no consensus exists over exactly what should be quantified (Kuhn et al., 2023; Wang & Holmes, 2024; Yang et al., 2024b). In this work, we propose to better quantify uncertainty in LLM-based systems by viewing them through a Bayesian lens. In light of a model, observational data, and one’s prior beliefs, Bayesian inference uses Bayes’ rule to compute the distribution of possible model parameters. Commonly applied in classical statistics and deep learning, Bayesian inference is a principled and mathematically grounded approach to

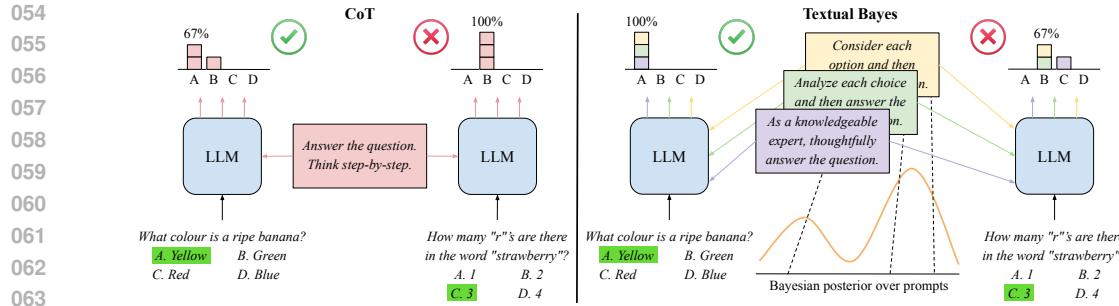


Figure 1: In chain-of-thought (CoT) prompting (left), answers are generated by an LLM using a single fixed prompt; this frequentist approach does not account for uncertainty about how the model should be prompted, causing potential issues such as overconfidence on incorrect answers. In Textual Bayes (right), we sample prompts from our Bayesian posterior and use each to generate answers from the LLM; this allows for principled uncertainty quantification over both the prompts themselves and the resulting generated answers.

UQ (Bernardo & Smith, 2009). Bayesian techniques have led to high-profile successes in methods like variational autoencoders (Kingma & Welling, 2014) and Bayesian neural networks (Blundell et al., 2015). As with their 20th century forebears (e.g., (Duane et al., 1987; Saul et al., 1996)), these methods estimate uncertainty over high-dimensional continuous variables. Here, we bring Bayesian methods into the age of LLMs. In LLM-based systems, the main variables of interest are prompts, since LLMs themselves are often black boxes that can only be accessed via an API. By treating prompts as textual parameters in a statistical model, as illustrated in Fig. 1, we can use Bayesian inference to estimate distributions over their values. These distributions rigorously quantify our uncertainty about the models themselves. Furthermore, they can be integrated into uncertainty estimates on the system’s downstream outputs via easy-to-compute Monte Carlo estimates. To the best of our knowledge, **we are the first to perform Bayesian inference over the space of free-form prompts in LLM-based systems**.

Adapting Bayesian methods to text has its challenges and advantages. On the one hand, textual variables are discrete, making it difficult to apply traditional Bayesian deep learning techniques such as gradient-based Markov chain Monte Carlo (MCMC) (Welling & Teh, 2011) or variational inference (Saul et al., 1996). We address this obstacle with a novel text-based MCMC method: *Metropolis-Hastings through LLM Proposals* (MHLP). On the other hand, textual variables are better suited conceptually to Bayesian modelling than high-dimensional continuous variables such as the weights of a deep neural network. Bayesian inference famously requires the specification of prior beliefs about a variable; textual variables are more amenable to human priors than neural network weights, and as we show, prior beliefs can be readily incorporated into LLM-based systems as free-form text.

To advance and justify our proposed method, this work contains the following contributions:

1. We take a novel perspective on LLM-based systems in which prompts are viewed as Bayesian textual parameters θ in a model $p(y | x, \theta)$. We show how this formulation leads to a principled way to incorporate prior beliefs about θ while quantifying our inherent uncertainty in the model.
2. To implement our Bayesian approach, we propose *Metropolis-Hastings through LLM Proposals* (MHLP), an MCMC algorithm to sample from intractable distributions over textual variables. MHLP has broad potential applications even beyond Bayesian inference.
3. We propose a novel metric of model calibration, *semantic expected calibration error*, for quantifying calibration, a form of UQ, on free-form textual outputs.
4. We systematically evaluate our method through standard LLM benchmarks and baselines, showing that it improves performance while providing state-of-the-art UQ over model outputs.

2 BACKGROUND AND TERMINOLOGY

2.1 LLM-BASED SYSTEMS

The central object in this work is the LLM-based system. The most common LLM-based system is one consisting of a single input x (e.g., a question), a prompt θ (e.g., a system message defin-

108 ing instructions for the model’s behaviour, shared across all x), and an output y (e.g., the model’s
 109 predicted answer), which we denote

$$110 \quad y = \mathbf{LLM}(x; \theta). \quad (1)$$

111 We allow $\mathbf{LLM}(x; \theta)$ to be any open- or closed-source model that we view as a *random* function
 112 of x and θ , whose randomness depends on the underlying LLM sampling strategy (e.g., greedy,
 113 temperature, nucleus). In general throughout the work, capitalized, boldface function names will
 114 indicate random functions comprising one or more LLM calls.

115 LLM-based systems can be more complex than single-prompt models. Many recent works have
 116 proposed to group LLM calls of arbitrary count and complexity into pipelines parameterized by
 117 the prompts used at each step (Khattab et al., 2024; Zhuge et al., 2024; Yuksekgonul et al., 2025;
 118 Cheng et al., 2024; Hu et al., 2024). For example, Self-Refine (Madaan et al., 2023) iterates on an
 119 initial LLM output by alternating between an LLM call providing feedback and one incorporating
 120 the feedback into refinement. Fully agentic systems integrate multiple LLM and tool calls to arrive
 121 at a final output. In full generality, we can describe a forward pass through an LLM-based system as

$$123 \quad y = \mathbf{LBS}(x; \theta), \quad (2)$$

124 where $\mathbf{LBS}(\cdot; \theta)$ can be described as a directed acyclic graph with k edges in which each edge e_j
 125 corresponds to an LLM call $\mathbf{LLM}(\cdot; \theta_j)$ parameterized by a prompt θ_j and where we denote the
 126 combination of all prompts in the system as $\theta = (\theta_1, \dots, \theta_k)$. Since each LLM call in the system is
 127 potentially random, y is a random function of x parameterized by $\theta = (\theta_1, \dots, \theta_k)$. The LLM-based
 128 system thus forms a statistical model for y whose density we express as $p(y | x, \theta)$, where sampling
 129 $y \sim p(y | x, \theta)$ is equivalent to computing $y = \mathbf{LBS}(x; \theta)$.

130 Unlike a linear regressor or neural network where θ denotes continuous model parameters, for
 131 an LLM-based system θ denotes *textual* parameters. From the statistical modelling perspec-
 132 tive, a natural next step is to find the optimal value of θ . For example, given an i.i.d. dataset
 133 $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$, one might want to perform maximum-likelihood:

$$135 \quad \theta^* = \arg \max_{\theta} p(\mathcal{D} | \theta) = \arg \max_{\theta} \prod_{i=1}^n p(y_i | x_i, \theta). \quad (3)$$

138 The discrete nature of textual parameters prevents us from applying gradient-based algorithms to
 139 maximize likelihood in LLM-based systems. Prompt engineering can be understood as approximat-
 140 ing θ^* by having a human propose candidates θ until adequate performance on a small dataset is
 141 reached. However, this manual process lacks rigour, is lengthy and tedious, and does not scale well.

142 Past works have proposed heuristic approaches to automatically optimize prompts θ in LLM-based
 143 systems (Zhou et al., 2022; Khattab et al., 2024; Zhuge et al., 2024; Cheng et al., 2024). Here,
 144 we focus on iterative prompt optimization methods, which we can express mathematically as a
 145 stochastic update function **UPDATE** applied iteratively to an initial prompt $\theta^{(0)}$:

$$146 \quad \theta^{(t)} = \mathbf{UPDATE}(\theta^{(t-1)}). \quad (4)$$

148 For simplicity, we assume that **UPDATE** is Markovian; i.e., not a function of θ values from earlier
 149 than $t - 1$. **UPDATE**, which consists of one or more LLM calls, is itself an LLM-based system.

150 One particularly relevant prompt optimization method is TextGrad (Yuksekgonul et al., 2025). The
 151 TextGrad framework conceptualizes constructive feedback on prompts as *textual gradients* and pro-
 152 poses a method for “backpropagating” feedback through an LLM-based system akin to backprop-
 153 agation in neural networks. Although this framework is highly analogous to backpropagation of
 154 gradients for continuous variables, it does not formally optimize model likelihood.

156 2.2 BAYESIAN INFERENCE

158 In this section, we briefly review Bayesian inference. For a more in-depth introduction, we refer the
 159 reader to MacKay (2003). Here, we allow $p(y | x, \theta)$ to be any statistical model for some variable
 160 y given another variable x . From the Bayesian perspective, there is uncertainty about the true value
 161 of θ , and hence the point estimate θ^* given by maximum-likelihood may be an overly reductive way
 of summarizing a dataset \mathcal{D} . Bayesian statistics provides a formal way of capturing this uncertainty.

162 First, we encode our prior uncertainty (beliefs) about the true value of θ as a *prior distribution* $p(\theta)$.
 163 Then, having observed a dataset \mathcal{D} , we update our beliefs about θ using Bayes' rule as
 164

$$165 \quad p(\theta | \mathcal{D}) = \frac{p(\theta)p(\mathcal{D} | \theta)}{p(\mathcal{D})} = \frac{p(\theta) \prod_i p(y_i | x_i, \theta)}{\sum_{\theta'} p(\theta') \prod_i p(y_i | x_i, \theta')}. \quad (5)$$

166

167 The *posterior distribution* $p(\theta | \mathcal{D})$ formally captures our uncertainty about θ in light of (i) our prior
 168 beliefs and (ii) the observed data. Given $p(\theta | \mathcal{D})$ and a new unobserved datapoint x_{new} , we can
 169 compute the *posterior predictive distribution* of y_{new} via
 170

$$171 \quad p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \sum_{\theta} p(y_{\text{new}} | x_{\text{new}}, \theta)p(\theta | \mathcal{D}) = \mathbb{E}_{\theta \sim p(\theta | \mathcal{D})} [p(y_{\text{new}} | x_{\text{new}}, \theta)]. \quad (6)$$

172

173 Eq. 6, formalizes predictive uncertainty in terms of uncertainty over θ . Since it is expressed as an
 174 expectation, we can estimate it via Monte Carlo sampling with draws from $p(\theta | \mathcal{D})$. The posterior
 175 predictive has immediate practical value: its value represents confidence in the prediction y_{new} , and
 176 its variability (as measured by, e.g., variance or entropy) formally quantifies uncertainty.

177 The central challenge of Bayesian inference thus lies in sampling from the posterior $p(\theta | \mathcal{D})$. As
 178 $p(y | x, \theta)$ or $p(\theta)$ acquire even moderate complexity, sampling from $p(\theta | \mathcal{D})$ quickly becomes
 179 intractable. In deep learning, Bayesian inference requires approximations such as gradient-based
 180 MCMC (Welling & Teh, 2011), variational inference (Blundell et al., 2015), or Laplace approximations
 181 (Ritter et al., 2018). We highlight that all of these approaches rely on the differentiability of
 182 $p(\theta)p(\mathcal{D} | \theta)$ with respect to θ , so none can be readily applied to the context where θ is a discrete
 183 prompt in an LLM-based system.

184 2.3 MARKOV CHAIN MONTE CARLO AND THE METROPOLIS-HASTINGS ALGORITHM

185

186 In Bayesian statistics, MCMC algorithms are a common technique for tractably sampling from the
 187 posterior $p(\theta | \mathcal{D})$ when only its numerator in Eq. 5 can be computed for any values of θ and
 188 \mathcal{D} . First, fix \mathcal{D} and let $g(\theta) = p(\theta)p(\mathcal{D} | \theta)$ be the numerator of Eq. 5. Given an unnormalized
 189 density like $g(\theta)$, an MCMC algorithm is a general-purpose technique that specifies a Markov chain
 190 $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(t)}, \dots$ whose distribution converges to $\frac{g(\theta)}{\sum_{\theta'} g(\theta')} = p(\theta | \mathcal{D})$ as $t \rightarrow \infty$. In practice,
 191 by generating enough samples from the Markov chain, we can approximate sampling from $p(\theta | \mathcal{D})$
 192 without needing to evaluate it.

193 The *Metropolis-Hastings* algorithm (MH) is a
 194 generic and broadly applicable form of MCMC
 195 (for an introduction, see Robert (2015)). Starting
 196 with an initial sample $\theta^{(0)}$, MH iterates from sam-
 197 ple $\theta^{(t-1)}$ to $\theta^{(t)}$ by generating a new *proposal* θ'
 198 from a pre-defined *proposal distribution* $q(\theta' | \theta)$
 199 and then either accepting it (i.e., setting $\theta^{(t)} := \theta'$)
 200 or rejecting it (i.e., setting $\theta^{(t)} := \theta^{(t-1)}$) based on
 201 an acceptance probability γ (Alg. 1).

202 In MH, the main “tunable hyperparameter”, the
 203 choice of proposal distribution $q(\theta' | \theta)$, is con-
 204 strained only by very mild regularity conditions.
 205 However, the choice of q has a pronounced effect
 206 on the practicality of the algorithm, with poor
 207 choices (e.g., ones that perturb θ too mildly or too
 208 strongly at each step) taking an intractable amount
 209 of time to converge to the limiting distribution $p(\theta | \mathcal{D})$. The importance of q is such that some
 210 of the most popular MCMC algorithms (e.g., Langevin Monte Carlo and Hamiltonian Monte Carlo
 211 (Duane et al., 1987; Neal, 1996)) are simply special cases of MH with highly specialized choices
 212 of q . Our method, MHP, will also fall into this category, being specialized for textual parameters
 213 θ . The choice of q should be informed by any information available about the desired limiting dis-
 214 tribution $p(\theta | \mathcal{D})$ (Rosenthal, 2011). Indeed, the optimal $q(\theta' | \theta)$ would be *equal* to the desired
 215 limiting distribution itself; if this were possible, of course, there would be no need to run MH in the
 first place. Nevertheless, we apply this intuition in Sec. 3 as we adapt MH to textual data.

Algorithm 1: Metropolis-Hastings

Require: $\theta^{(0)}, q(\theta' | \theta), g(\theta)$;
for $t \leftarrow 1$ **to** T **do**

Sample proposal: $\theta' \sim q(\theta' | \theta^{(t-1)})$;
 Compute acceptance probability:

$$\gamma = \min \left(1, \frac{g(\theta') q(\theta^{(t-1)} | \theta')}{g(\theta^{(t-1)}) q(\theta' | \theta^{(t-1)})} \right);$$

Sample random number:
 $u \sim \text{Uniform}(0, 1)$;

if $u < \gamma$ **then**
 | Accept: $\theta^{(t)} \leftarrow \theta'$;
else
 | Reject: $\theta^{(t)} \leftarrow \theta^{(t-1)}$;

return $\{\theta^{(t)}\}_{t=1}^T$;

216 **3 TEXTUAL BAYES**

218 In this section, we describe our method for Bayesian inference on LLM-based systems. We begin
 219 with the setup described in Sec. 2.1: an LLM-based system $\mathbf{LBS}(x; \theta)$ that gives rise to a statistical
 220 model $p(y | x, \theta)$, where x is the input, y is the output, and $\theta = (\theta_1, \dots, \theta_k)$ represents all the
 221 textual parameters involved in the system. We assume that $p(y | x, \theta)$ can be evaluated for any LLM-
 222 based system we consider; to do this in full generality for closed source models, we require some
 223 approximations, including selective use of open-source likelihoods as surrogates - see App. A.1 for
 224 more details. Our Bayesian inference algorithm will provide samples $\theta^{(1)}, \dots, \theta^{(m)} \sim p(\theta | \mathcal{D})$,
 225 which can in turn be used to quantify uncertainty over the system’s outputs as per Eq. 6.

226 **Textual priors** To perform Bayesian inference, we must specify our prior beliefs about θ in the
 227 form of a distribution $p(\theta)$. Although θ lies in an infinite and semantically complex space of discrete
 228 text, humans are well equipped to reason and express their beliefs about textual variables. For
 229 example, a practitioner’s prior about a prompt θ_j might be that it should describe the purpose of the
 230 corresponding LLM call, guidelines for how to solve the task at hand, and the expected structure
 231 of the output. To exploit this knowledge, we codify our beliefs about each parameter θ_j as a free-
 232 form human-written string of textual constraints s_j , and provide it to an LLM to model the resulting
 233 parameter as

234 $\theta_j = \mathbf{LLM}(s_j; \text{"Generate an LLM prompt satisfying the given constraints."})$. (7)

235 For simplicity, we construct our prior $p(\theta) = \prod_{j=1}^k p(\theta_j)$ by assuming that all textual variables are
 236 independent, but this setup can be easily generalized by specifying joint constraints over multiple
 237 parameters θ_j and modelling them in a single LLM call.

238 **Metropolis-Hastings through LLM Proposals** Having constructed our prior $p(\theta)$, we now need
 239 an algorithm to sample from $p(\theta | \mathcal{D})$. A generally applicable MCMC method for text could have
 240 wide-ranging applications even beyond Bayesian inference. To this end, we propose Metropolis-
 241 Hastings through LLM Proposals (MHLP), a text-specific variant of MH.

242 At the heart of MHLP is our proposal distribution. We could in theory achieve the correct limiting
 243 distribution through almost any arbitrary choice of $q(\theta' | \theta)$, like randomly replacing letters or words
 244 in θ . But it is easy to see that such a proposal would rarely change θ semantically and never converge
 245 in practice. Instead, to generate useful proposals, we turn to LLMs. Analogously to how Langevin
 246 Monte Carlo uses gradient computation to exploit differentiable structure on $p(\theta | \mathcal{D})$, MHLP uses
 247 LLM calls to exploit linguistic structure on $p(\theta | \mathcal{D})$. Ideally, $q(\theta' | \theta)$ should be as similar to
 248 $p(\theta | \mathcal{D})$ as possible. By this standard, as per the relationship $p(\theta | \mathcal{D}) \propto p(\mathcal{D} | \theta)p(\theta)$, samples
 249 $\theta' \sim q(\theta' | \theta)$ should roughly satisfy the following criteria: (i) θ' should satisfy all the constraints
 250 embodied by the prior $p(\theta')$, and (ii) θ' should provide strong downstream performance on \mathcal{D} as
 251 measured by $p(\mathcal{D} | \theta')$.

252 We take inspiration from the prompt optimization methods discussed in Sec. 2.1 and use suggestions
 253 from LLMs to propose values of θ' that implement these guidelines. The observation underpinning
 254 MHLP is that iterative prompt optimization methods can be used to propose high-quality candidates
 255 θ' . Here we recall our formalization of prompt optimization as an iterated stochastic update function
 256 **UPDATE** (Eq. 4), and sample from $q(\theta' | \theta)$ by computing $\theta' = \mathbf{UPDATE}(\theta)$.¹ Note that since
 257 **UPDATE** is itself an LLM-based system just like our model **LBS**, and so, like the model density
 258 $p(y | x, \theta)$, the value of $q(\theta' | \theta)$ can be estimated by using an open-source model for the final
 259 LLM call of **UPDATE** and by using the approximations in App. A.1. Although MHLP is agnostic
 260 to the underlying prompt optimization method, we use TextGrad (Yuksekgonul et al., 2025) in our
 261 implementation. By analogy to numerical losses in standard gradient-based optimization, TextGrad
 262 optimizes objectives described in natural language. We can thus express criteria (i) and (ii) as ob-
 263 jectives in natural language and use TextGrad to propose improvements to θ based on these criteria.
 264 This choice of objectives is specific to Bayesian inference, but in MHLP they can be easily replaced
 265 or modified to suit any textual distribution, which broadens its potential impact. We demonstrate
 266 one such example in Sec. 4.2.

267 ¹Some prompt optimization methods, such as the momentum variant of TextGrad (Yuksekgonul et al.,
 268 2025), make updates based on a history of multiple past θ values. MHLP can take advantage of such methods
 269 by running multiple steps of the optimizer per accept/reject decision, akin to Hamiltonian Monte Carlo.

270 **Method summary** We define MHLP as the variant of MH (Alg. 1) acting on textual parameters θ in which the proposal step $\theta' \sim q(\theta' \mid \theta^{(t-1)})$ is defined as a prompt optimization update $\theta' = \text{UPDATE}(\theta^{(t-1)})$. For our experiments, we implement **UPDATE** as a TextGrad step (Alg. 2). Additionally, as is common practice in Bayesian deep learning (e.g., Blundell et al. (2015); Daxberger et al. (2021)), we employ approximations for tractability, including a **tempered** posterior (Wenzel et al., 2020) and stochastic minibatch estimates of certain quantities in Alg. 1 (rather than evaluating them exactly). Due to space constraints, approximation details are relegated to App. A.1.

277 Having a collection $\{\theta^{(r)}\}_{r=1}^m \sim p(\theta \mid \mathcal{D})$ of prompt samples, we can now put them to use at 278 inference time to sample from the predictive posterior (Eq. 6). Given an input x_{new} , we can generate 279 a set of samples $\{y_{\text{new}}^{(r)}\}_{r=1}^m \sim p(y_{\text{new}} \mid x_{\text{new}}, \theta^{(r)})$ via 280

$$281 \quad \theta^{(r)} \sim p(\theta \mid \mathcal{D}), \quad y_{\text{new}}^{(r)} \sim p(y_{\text{new}} \mid x_{\text{new}}, \theta^{(r)}); \quad (8)$$

283 that is, by running $y_{\text{new}}^{(r)} = \text{LBS}(x_{\text{new}}; \theta^{(r)})$ for each sampled prompt $\theta^{(r)}$. The variability of the 284 resulting answer set $\{y_{\text{new}}^{(r)}\}_{r=1}^m$ can be interpreted as the uncertainty of the LLM-based system. 285

286 4 EXPERIMENTS

288 In this section, we empirically evaluate our proposed Textual Bayes method. Specifically, we aim 289 to answer the following question: how does Bayesian inference on the prompts of an LLM-based 290 system with our MHLP algorithm translate into the system’s downstream *predictive performance* 291 and *uncertainty quantification* (UQ) abilities? In Sec. 4.1, we demonstrate that our method out- 292 performs comparable baselines in accuracy, calibration, and abstention capabilities on challenging 293 LLM benchmarks. In Sec. 4.2, we adapt Textual Bayes to reducing hallucinations with conformal 294 factuality (Mohri & Hashimoto, 2024), a distinct context from traditional Bayesian inference.

295 **Implementation** For each dataset, we use MHLP to generate samples $\theta^{(1)}, \dots, \theta^{(m)} \sim p(\theta \mid \mathcal{D})$ 296 from a Markov chain of length T . To increase sample diversity we employ burn-in, in which a 297 fixed number d of initial MCMC samples are discarded, and thinning, in which we take every h -th 298 sample thereafter until m samples are obtained. Given a datapoint x_{new} , we sample values of y_{new} 299 using Eq. 6 and quantify uncertainty on the basis of these downstream outputs. Because our research 300 focus is on compatibility with black-box LLMs, in this section we present experiments with GPT- 301 4o or, when possible, GPT-4o-mini, depending on the difficulty of the dataset. For details such as 302 settings of d , h , m , and other dataset-specific hyperparameters, see App. B.

304 4.1 UNCERTAINTY QUANTIFICATION WITH TEXTUAL BAYES

306 **Setup** We consider the canonical LLM-based system consisting of a single LLM as defined by 307 Eq. 1. Hallucinations in such systems occur when a model responds confidently with incorrect or 308 ungrounded information, an issue that can be combatted with calibration (Kadavath et al., 2022; 309 Wei et al., 2024). Calibration refers to the quality of a model’s confidence score, or the probability it 310 assigns to the correctness of its provided answer; in other words, how well the model “knows what 311 it knows”. Here, we test calibration in downstream responses resulting from Bayesian inference 312 over the LLM’s prompt. We compute confidences by generating 10 responses from each system and 313 measuring the frequency of each response. For MHLP, we initialize $\theta^{(0)}$ to be a generic chain-of- 314 thought (CoT) (Wei et al., 2022) prompt: “Answer the question. Think step-by-step.”.

315 **Baselines** We compare our method against four frequentist baselines. *Paraphrasing* and *System- 316 Message* are two prompt perturbation methods proposed by Gao et al. (2024). These methods inject 317 prompt stochasticity by rephrasing the question or system prompt in a question-answering context.² To 318 these we add two additional baselines: (i) CoT refers to sampling m predictions from 319 $\text{LBS}(x; \theta^{(0)})$, and (ii) TextGrad refers to first performing T steps of prompt optimization and then 320 sampling m predictions from $\text{LBS}(x; \theta^{(T)})$. Both TextGrad and MHLP require a one-time initial 321 fixed cost incurred by prompt optimization and MCMC, respectively, and we use the same value 322 of T for both. All methods use the same number m of **LBS** calls during inference to ensure a fair 323 comparison from a computational perspective.

324 ²Our implementation has minor differences from the cited paper. For further details see App. B.2.1.

324 We reiterate Sec. 3 in highlighting that we follow the common pipeline for quantifying uncertainty
 325 in two steps: (i) generate a diverse answer set $y^{(1)}, \dots, y^{(m)}$ and (ii) summarize them into an uncertainty
 326 score. Because ours is a method for step (i), our baselines are methods designed specifically
 327 to do the same. This means we omit direct comparison to means of performing step (ii) such as
 328 semantic entropy (Kuhn et al., 2023) and other methods described in Sec. 5. Although these are also
 329 UQ methods, they are orthogonal to our approach, and can be straightforwardly combined (for an
 330 example, see App. B.4). For direct comparison, all experiments in this section use confidence or
 331 semantic confidence (described below) as the means of summarizing the uncertainty in every set of
 332 answers.

333 **Datasets** We evaluate both predictive performance and model calibration on AIME 2024 (MAA,
 334 2024), SimpleQA (Wei et al., 2024), and QASPER (Dasigi et al., 2021), representing question-
 335 answering tasks that are closed-form, free-form, and free-form with context, respectively. We ran-
 336 domly select and fix 100 samples from each of SimpleQA and QASPER for all experiments and
 337 use all 30 available samples from AIME 2024. Notably, QASPER includes contextless questions,
 338 which are explicitly marked as unanswerable. We use these instances to assess our method’s ability
 339 to detect insufficient information and abstain from answering. See App. B for further dataset details.

340 In Tab. 1, we report accuracy for all datasets us-
 341 ing exact-match on closed-form datasets and an
 342 LLM judge (Zheng et al., 2023) to assess semantic
 343 correctness on free-form datasets. In Tab. 2,
 344 we report the expected calibration error (ECE) as a
 345 measure of model calibration (Naeini et al., 2015;
 346 Guo et al., 2017). Additionally, for QASPER, we
 347 estimate abstention ability on two types of unan-
 348 swerable questions: questions with no context, and
 349 those with a random context. We use the same
 350 confidence scores used to estimate calibration as
 351 an abstention metric and compute the ROC AUC
 352 of this score when used as a classifier of answer-
 353 ability. Results are shown in Tab. 3. All results are
 354 averaged over 10 independent runs with standard
 355 errors to account for stochasticity.

356 **Semantic ECE** Standard ECE cannot be applied
 357 to open-ended tasks since it requires a confidence
 358 score, which is nontrivial to compute in general
 359 due to the variability of possible correct responses.
 360 To address this limitation, inspired by semantic en-
 361 tropy (Kuhn et al., 2023), we propose an extension of ECE based on semantic clustering. Our met-
 362 ric, semantic ECE (SECE), uses these clusters to estimate model confidence over free-form outputs.
 363 Specifically, for each input x_i , we sample m outputs: $y_i^{(1)}, \dots, y_i^{(m)}$. We then query an LLM to
 364 group these outputs into semantic clusters. The empirical probability assigned by the model to each
 365 cluster is defined as the proportion of the generated samples in that cluster. The maximum of these
 366 probabilities is then taken as the model’s *semantic confidence* for input x_i . Finally, we use this
 367 value as the confidence for standard ECE computation, enabling estimation of model calibration for
 368 free-form outputs.

369 **Discussion** Across tasks, MHL is the only method to consistently outperform the rest. It only
 370 trails in calibration (ECE) on AIME, but its accuracy exceeds the two best-calibrated methods by
 371 a substantial margin. We hypothesize this outperformance is due to the high-posterior-valued sam-
 372 ples of θ generated by MHL; it effectively performs stochastic prompt optimization, incorporating
 373 quantitative performance into its accept/reject decisions. In contrast, TextGrad alone has no accep-
 374 t/reject scheme and thus “always accepts”, leading to the inclusion of potentially less useful changes
 375 to the initial prompt. For qualitative examples and diagnostics of accept/reject decisions, see App. B.
 376
 377

Table 1: Accuracy (%) across datasets

Method	AIME	SimpleQA	QASPER
Paraphrasing	12.6 ± 0.7	43.7 ± 0.5	43.7 ± 1.3
System-Message	7.2 ± 0.7	47.3 ± 0.7	59.7 ± 0.6
CoT	9.0 ± 1.4	47.8 ± 0.6	56.5 ± 0.8
TextGrad	11.9 ± 0.9	46.6 ± 0.5	58.8 ± 1.0
MHL (Ours)	15.0 ± 0.7	48.6 ± 0.6	60.9 ± 1.0

Table 2: ECE / SECE (%) across datasets

Method	AIME	SimpleQA	QASPER
Paraphrasing	21.1 ± 0.8	18.7 ± 0.7	28.5 ± 1.1
System-Message	19.7 ± 0.8	18.4 ± 0.4	23.9 ± 0.9
CoT	31.5 ± 1.4	18.0 ± 0.6	26.2 ± 0.67
TextGrad	27.4 ± 1.6	17.7 ± 1.0	21.6 ± 1.2
MHL (Ours)	22.0 ± 1.0	15.4 ± 0.6	17.7 ± 1.1

Table 3: Abstention ROC AUC (%)

Method	QASPER	
	No context	Random context
Paraphrasing	48.2 ± 1.1	62.1 ± 1.6
System-Message	76.6 ± 1.7	69.9 ± 1.3
CoT	75.6 ± 1.1	67.4 ± 0.9
TextGrad	66.6 ± 2.1	67.4 ± 0.9
MHL (Ours)	77.9 ± 1.2	71.7 ± 0.9

378 4.2 CONFORMAL FACTUALITY WITH MHLP
379

380 **Background** Conformal factuality (Mohri & Hashimoto, 2024) is a method for providing statistical guarantees on the correctness of LLM-generated answers to open-ended questions based on 381 conformal prediction (CP) (Vovk et al., 2005; Shafer & Vovk, 2008). Generally, CP techniques use 382 a small set of n labeled datapoints to calibrate a prediction threshold. In conformal factuality, given a 383 question x , an LLM generates an answer y which is broken into a set of distinct claims $\{c_1, \dots, c_\ell\}$. 384 Each claim is assigned a factuality score $\mathbf{F}(c; \theta)$ —generated by an LLM-based system—with larger 385 values indicating increased confidence that c is a factual claim. Then, after using CP to calibrate a 386 threshold λ , claims with $\mathbf{F}(c; \theta) < \lambda$ are filtered out, such that only high-confidence claims are 387 returned in the final answer \hat{y} . CP guarantees that \hat{y} contains only factual claims with high probability, 388

$$389 \quad 1 - \alpha \leq \mathbb{P}[c \text{ is factual } \forall c \in \hat{y}] \leq 1 - \alpha + \frac{1}{n+1}, \quad (9)$$

390 where the error rate α is user-defined. The quality of final answers can be gauged through the 391 fraction of claims which are retained, since longer answers with more claims are more useful.³ Better 392 calibrated expressions of confidence through $\mathbf{F}(c; \theta)$ improve claim retention, and since MHLP 393 enables better calibration, we can use it to design a better factuality score.

394 **Baseline (GPT-4 frequency scoring)** The best performing option for $\mathbf{F}(c; \theta)$ from Mohri & 395 Hashimoto (2024) is frequency scoring. Five alternative answers $y^{(p)}$ are generated for the same 396 question x from GPT-4 (Achiam et al., 2023) using unit temperature and a manually crafted prompt 397 θ . For each claim in the original answer y , the number of times it appears across the y_i , i.e. its 398 self-consistency (Wang et al., 2023b; Manakul et al., 2023), is used as the score $\mathbf{F}(c; \theta)$.

399 **Our method (MHLP frequency scoring)** Like GPT-4 frequency scoring, our method estimates a 400 claim’s importance based on its frequency across alternative generations. However, instead of generating 401 with a single fixed prompt, we produce diverse alternatives by sampling different θ via MHLP 402 with zero temperature. Notably, in the factuality context, ground truth outputs $\{y_1, \dots, y_n\}$ are 403 unavailable, so the unnormalized posterior $p(\theta)p(\mathcal{D} | \theta)$ is unavailable. To surmount this obstacle, we 404 replace the unnormalized probability mass with a surrogate

$$405 \quad g(\theta) = \mathbb{E}_{p(y' | x, \theta)} \left[\frac{1}{|y'|} \sum_{c \in y'} \mathbf{F}(c; \theta) \right], \quad (10)$$

406 which we estimate stochastically when running Alg. 1. One alternative answer $y^{(p)}$ is generated 407 per sampled prompt. The ability to sample from this surrogate distribution underscores MHLP’s 408 versatility in situations beyond conventional Bayesian inference.

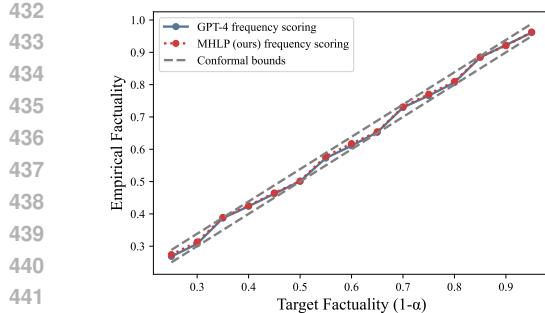
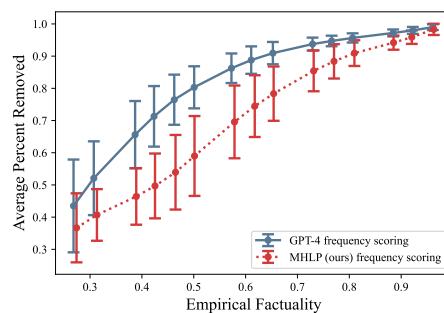
409 **Dataset** We use FactScore (Min et al., 2023), which is widely adopted for factuality tests of LLMs. 410 Following Mohri & Hashimoto (2024), we focus on “person” entities from the biography generation 411 subset and extract subclaims from the generated biographies using the same extraction method 412 across runs. We also follow Mohri & Hashimoto (2024) in using 50 samples for the calibration/test 413 sets and performing 1000 random splits of calibration and test data for each α value.

414 **Implementation** We initialize both scoring methods with the same prompt. For MHLP, we 415 perform sampling using a separate set of 100 samples from FactScore and obtain five prompt samples. 416 Since there is no ground-truth answer in the open-ended QA setting, factuality is determined by 417 decomposing answers into claims (as in Mohri & Hashimoto (2024)) and annotating them using a 418 GPT web search tool. We use GPT-4 for answer generation, and GPT-4o-mini for claim generation, 419 factuality annotation, frequency scoring, and MHLP proposals. See App. B for more details.

420 **Results** First, we verify that both scoring methods achieve the target coverage from Eq. 9: Fig. 2a 421 shows that empirical factuality remains within the conformal bounds across all values of α . Fig. 2b 422 compares the removal rate, with error bars showing the standard deviation of the average removal 423 rate across the 1000 data splits. Our method consistently achieves lower removal, showing that 424 MHLP scoring provides a better uncertainty estimation of the factuality of LLM outputs.⁴

425 ³Filtering out all claims guarantees that \hat{y} does not contain false claims, but does not give a useful answer.

426 ⁴The GPT-4 frequency scoring method shows slightly higher removal than reported by Mohri & Hashimoto 427 (2024), likely due to our use of a stricter web search-based factuality annotator.

432
433 (a) Empirical factuality vs. Target factuality $1 - \alpha$ 434
435 (b) Average removal rate vs. Empirical factuality436
437
438
439
440
441
442
443
444 Figure 2: Comparison of conformal factuality for frequency scoring with a fixed prompt (Mohri & Hashimoto, 445
446 2024), and with prompts sampled through MHLP. (a) The empirical factuality achieved in practice is 447
448 consistently within the bounds guaranteed by Eq. 9. (b) MHLP achieves the same level of empirical factuality as
449 frequency scoring but removes fewer claims, indicating better calibrated confidence.450
451

5 RELATED WORK

452
453 LLMs are applicable to a wide range of tasks and settings, which makes UQ inherently ambiguous—
454 there is no single, well-defined quantity that UQ aims to approximate. Although our main setting of
455 interest is where we have access to a pre-trained model and no fine-tuning is performed, we note that
456 popular methods for UQ in deep learning, such as ensembles (Lakshminarayanan et al., 2017) and
457 Laplace approximations (Ritter et al., 2018; Kristiadi et al., 2020; Daxberger et al., 2021), have been
458 successfully ported over for UQ when fine-tuning LLMs (Wang et al., 2023a; Yang et al., 2024a).
459 Within our setting of interest, some approaches estimate uncertainty by analyzing the variability in
460 outputs generated by an LLM given the same input (Kuhn et al., 2023; Lin et al., 2024; Grewal
461 et al., 2024; Wang & Holmes, 2024; Qiu & Miikkulainen, 2024; Nikitin et al., 2024), others do
462 so by perturbing or modifying the input itself (e.g. by paraphrasing) (Hou et al., 2024; Gao et al.,
463 2024; Abbasi Yadkori et al., 2024; Zhang et al., 2024; Zhao et al., 2024; Feng et al., 2025a), and still
464 others rely on directly asking the model to express its own confidence (Kadavath et al., 2022; Yang
465 et al., 2024b). Unlike all these methods, we aim to quantify the uncertainty associated with LLM
466 prompts. Other methods for UQ within in-context learning tasks with LLMs have also leveraged
467 Bayesian ideas (Ling et al., 2024; Jesson et al., 2024; Tonolini et al., 2024; Feng et al., 2025b), but
468 we highlight that these works differ greatly from ours in that they do not directly perform Bayesian
469 inference over free-form text and, once again, they do not quantify uncertainty over prompts.470
471 Lastly, we mention another line of work performing Metropolis-Hastings over text. Like ours, Faria
472 et al. (2024) use LLMs to construct a proposal distribution within the MH algorithm. We nonetheless
473 highlight many differences with this work: their method is applied to machine translation and not to
474 UQ, they do not perform Bayesian inference, and their proposal is completely different and does not
475 rely on prompt optimization methods. Also, concurrently to our work, Faria & Smith (2025) build
476 on top of Faria et al. (2024) by applying their proposal to a Bayesian formulation of the alignment
477 problem wherein aligned model answers are sampled directly using MCMC. Investigating crossover
478 applications of our and their proposals are potential directions for future work.479
480

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

481
482 In this work, we propose Textual Bayes for quantifying uncertainty in LLM-based systems. Our
483 work represents a formalization of recent work conceptualizing LLM-based systems as models
484 whose parameters are their prompts. Textual Bayes furthers this framework by performing Bayesian
485 inference on these parameters, thus blending cutting-edge models with a formal statistical frame-
486 work for uncertainty quantification. To implement this framework, we propose Metropolis-Hastings
487 through LLM Proposals (MHLP), a novel MCMC algorithm for free-form text which finds applica-
488 tions in Bayesian inference and beyond. We test these frameworks on several uncertainty quantifi-
489 cation benchmarks and find that they consistently improve the frontier of accuracy and calibration.
490 We also show that MHLP can be adapted to a factuality-based objective, leading to more reliable
491 factual claims as quantified by the setting of conformal factuality.

486 Although Textual Bayes and MHLP post strong performance against baselines, there remain avenues
 487 for improvement. First, MCMC is costly; despite equivalent inference cost to leading baselines, Tex-
 488 tual Bayes requires a one-time expensive application of MHLP. This cost might be addressed, for
 489 example, by further engineering the underlying prompt optimization method or training a small
 490 language model specifically for the task of generating proposals. Second, like many practical ap-
 491 plications of Bayesian inference, our method requires approximations, which will inevitably cause
 492 deviations from the true posterior. Third, our evaluations on free-form answering benchmarks re-
 493 quire LLM-based clustering. These techniques, though fairly applied across methods, are imperfect
 494 and a stronger evaluation signal might be obtained with improved fine-tuning, prompt engineering,
 495 or human evaluation. Lastly, we expect future work to find broader applications for MHLP beyond
 496 Bayesian inference. For example, we could use MHLP to modulate the *outputs* of LLM-based sys-
 497 tems in accordance with unnormalized functions quantifying objectives such as alignment or safety.
 498

Reproducibility Statement We have provided code to reproduce our method and experiments as supplemental material. Our method is described in full throughout Sec. 3 and App. A.1, with experimental details in Sec. 4 and App. B.2. The datasets we benchmark on are publicly available.

502 REFERENCES

504 Yasin Abbasi Yadkori, Ilja Kuzborskij, András György, and Csaba Szepesvari. To believe or not to
 505 believe your llm: Iterative prompting for estimating epistemic uncertainty. *Advances in Neural*
 506 *Information Processing Systems*, 37:58077–58117, 2024.

507 Josh Achiam et al. GPT-4 Technical Report. *arXiv:2303.08774*, 2023.

509 Laurence Aitchison. A statistical theory of cold posteriors in deep neural networks. In *International*
 510 *Conference on Learning Representations*, 2021.

512 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
 513 Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
 514 *arXiv:2505.00949*, 2025.

515 José M Bernardo and Adrian FM Smith. *Bayesian Theory*, volume 405. John Wiley & Sons, 2009.

517 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
 518 in neural network. In *Proceedings of the 32nd International Conference on Machine Learning*,
 519 volume 37, pp. 1613–1622, 2015.

521 Daniil A Boiko, Robert MacKnight, and Gabe Gomes. Emergent autonomous scientific research
 522 capabilities of large language models. *arXiv:2304.05332*, 2023.

523 Rijul Chaturvedi and Sanjeev Verma. *Opportunities and Challenges of AI-Driven Customer Service*,
 524 pp. 33–71. Springer International Publishing, 2023. ISBN 978-3-031-33898-4. doi: 10.1007/
 525 978-3-031-33898-4_3.

527 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 528 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 529 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 530 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 531 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 532 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
 533 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 534 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
 535 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
 536 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
 537 language models trained on code. *arXiv:2107.03374*, 2021.

538 Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the Next AutoDiff: Generative Op-
 539 timization with Rich Feedback, Execution Traces, and LLMs. In *Advances in Neural Information*
Processing Systems, volume 37, pp. 71596–71642, 2024.

540 Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset
 541 of information-seeking questions and answers anchored in research papers. In *Proceedings of the*
 542 *2021 Conference of the North American Chapter of the Association for Computational Linguis-*
 543 *tics: Human Language Technologies*, 2021. doi: 10.18653/v1/2021.nacl-main.365.

544

545 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
 546 Philipp Hennig. Laplace redux-effortless Bayesian deep learning. In *Advances in Neural Infor-*
 547 *mation Processing Systems*, 2021.

548

549 Simon Duane, A. D. Kennedy, B. J. Pendleton, and Duncan Roweth. Hybrid monte carlo. *Physics*
 550 *Letters B*, 195(2):216–222, 1987.

551

552 Gonçalo Faria and Noah A Smith. Sample, don't search: Rethinking test-time alignment for lan-
 553 guage models. *arXiv:2504.03790*, 2025.

554

555 Gonçalo Faria, Sweta Agrawal, António Farinhas, Ricardo Rei, José de Souza, and André Martins.
 556 QUEST: Quality-aware metropolis-hastings sampling for machine translation. In *Advances in*
 557 *Neural Information Processing Systems*, 2024.

558

559 Yu Feng, Phu Mon Htut, Zheng Qi, Wei Xiao, Manuel Mager, Nikolaos Pappas, Kishaloy Halder,
 560 Yang Li, Yassine Benajiba, and Dan Roth. Rethinking llm uncertainty: A multi-agent approach
 561 to estimating black-box model uncertainty. In *Findings of the Association for Computational*
 562 *Linguistics: EMNLP 2025*, pp. 12349–12375, 2025a.

563

564 Yu Feng, Ben Zhou, Weidong Lin, and Dan Roth. Bird: A trustworthy bayesian inference framework
 565 for large language models. In *The Thirteenth International Conference on Learning Representa-*
 566 *tions*, 2025b.

567

568 Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Ratsch,
 569 Richard E Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian neural network pri-
 570 ors revisited. In *International Conference on Learning Representations*, 2022.

571

572 Xiang Gao, Jiaxin Zhang, Lalla Mouatadid, and Kamalika Das. SPUQ: Perturbation-based uncer-
 573 tainty quantification for large language models. In *Proceedings of the 18th Conference of the*
 574 *European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 575 2024. doi: 10.18653/v1/2024.eacl-long.143.

576

577 Andrew Gelman, Walter R Gilks, and Gareth O Roberts. Weak convergence and optimal scaling of
 578 random walk metropolis algorithms. *The Annals of Applied Probability*, 7(1):110–120, 1997.

579

580 Carlos Gómez-Rodríguez and Paul Williams. A Confederacy of Models: a Comprehensive Evalua-
 581 tion of LLMs on Creative Writing. In *Findings of the Association for Computational Linguistics:*
 582 *EMNLP 2023*, pp. 14504–14528, 2023.

583

584 Yashvir S Grewal, Edwin V Bonilla, and Thang D Bui. Improving uncertainty quantification in large
 585 language models via semantic embeddings. *arXiv:2410.22685*, 2024.

586

587 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 588 networks. In *Proceedings of the 34th International Conference on Machine Learning*, volume 70,
 589 pp. 1321–1330, 2017.

590

591 Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, and Yang Zhang. Decomposing
 592 uncertainty for large language models through input clarification ensembling. In *International*
 593 *Conference on Machine Learning*, 2024.

594

595 Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. *arXiv:2408.08435*,
 596 2024.

597

598 Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What Are
 599 Bayesian Neural Network Posteriors Really Like? In *Proceedings of the 38th International*
 600 *Conference on Machine Learning*, volume 139, pp. 4629–4640, 2021.

594 Andrew Jesson, Nicolas Beltran Velez, Quentin Chu, Sweta Karlekar, Jannik Kossen, Yarin Gal,
 595 John P Cunningham, and David Blei. Estimating the hallucination rate of generative AI. In
 596 *Advances in Neural Information Processing Systems*, 2024.

597

598 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 599 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
 600 els (mostly) know what they know. *arXiv:2207.05221*, 2022.

601

602 Sanyam Kapoor, Wesley J Maddox, Pavel Izmailov, and Andrew G Wilson. On uncertainty, tem-
 603 pering, and data augmentation in bayesian classification. In *Advances in Neural Information
 604 Processing Systems*, volume 35, 2022.

605

606 Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
 607 hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
 608 Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into
 609 state-of-the-art pipelines. In *The Twelfth International Conference on Learning Representations*,
 610 2024.

611 Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In *International Conference
 612 on Learning Representations*, 2014.

613 Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, even just a bit, fixes
 614 overconfidence in relu networks. In *International Conference on Machine Learning*, 2020.

615

616 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
 617 uncertainty estimation in natural language generation. In *International Conference on Learning
 618 Representations*, 2023.

619

620 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 621 uncertainty estimation using deep ensembles. In *Advances in Neural Information Processing
 622 Systems*, 2017.

623

624 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 625 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
 626 Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In *Advances in
 627 Neural Information Processing Systems*, volume 33, pp. 9459–9474, 2020.

628

629 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quan-
 630 tification for black-box large language models. In *Transactions on Machine Learning Research*,
 631 2024.

632

633 Chen Ling, Xujiang Zhao, Xuchao Zhang, Wei Cheng, Yanchi Liu, Yiyou Sun, Mika Oishi, Takao
 634 Osaki, Katsushi Matsuda, Jie Ji, et al. Uncertainty quantification for in-context learning of large
 635 language models. *arXiv:2402.10189*, 2024.

636

637 MAA. Aime problems and solutions. [https://artofproblemsolving.com/wiki/index.php/
 638 AIME_Problems_and_Solutions](https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions), 2024.

639

640 David JC MacKay. *Information Theory, Inference and Learning Algorithms*. Cambridge University
 641 Press, 2003.

642

643 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 644 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
 645 Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine:
 646 Iterative Refinement with Self-Feedback. In *Advances in Neural Information Processing Systems*,
 647 volume 36, pp. 46534–46594, 2023.

648

649 Potsawee Manakul, Adian Liusie, and Mark Gales. SelfCheckGPT: Zero-Resource Black-Box Hal-
 650 lucination Detection for Generative Large Language Models. In *Proceedings of the 2023 Con-
 651 ference on Empirical Methods in Natural Language Processing*, pp. 9004–9017. Association for
 652 Computational Linguistics, 2023. doi: 10.18653/v1/2023.emnlp-main.557.

648 Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
 649 in abstractive summarization. In *Proceedings of the 58th Annual Meeting of the Association for*
 650 *Computational Linguistics*, pp. 1906–1919, 2020.

651

652 Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke
 653 Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained Atomic Evaluation of Factual
 654 Precision in Long Form Text Generation. In *Proceedings of the 2023 Conference on Empirical*
 655 *Methods in Natural Language Processing*. Association for Computational Linguistics, 2023. doi:
 656 10.18653/v1/2023.emnlp-main.741.

657

658 Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality guarantees. In *Proceedings of the 41st International Conference on Machine Learning*, 2024.

659

660 Seth Nabarro, Stoil Ganev, Adrià Garriga-Alonso, Vincent Fortuin, Mark van der Wilk, and Lau-
 661 rence Aitchison. Data augmentation in Bayesian neural networks and the cold posterior effect. In
 662 *Uncertainty in Artificial Intelligence*, pp. 1434–1444. PMLR, 2022.

663

664 Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated prob-
 665 abilities using bayesian binning. *Proceedings of the AAAI Conference on Artificial Intelligence*,
 29(1), 2015. doi: 10.1609/aaai.v29i1.9602.

666

667 Radford M. Neal. *Bayesian Learning for Neural Networks*, volume 118 of *Lecture Notes in Statistics*. Springer, 1996. doi: 10.1007/978-1-4612-0745-0.

668

669 Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy: Fine-
 670 grained uncertainty quantification for LLMs from semantic similarities. In *Advances in Neural*
 671 *Information Processing Systems*, 2024.

672

673 Lorenzo Noci, Kevin Roth, Gregor Bachmann, Sebastian Nowozin, and Thomas Hofmann. Dis-
 674 entangling the roles of curation, data-augmentation and the prior in the cold posterior effect. In
 675 *Advances in Neural Information Processing Systems*, volume 34, 2021.

676

677 Xin Qiu and Risto Miikkulainen. Semantic density: Uncertainty quantification for large language
 678 models through confidence measurement in semantic space. In *Advances in Neural Information*
 679 *Processing Systems*, 2024.

680

681 Hippolyt Ritter, Aleksandar Botev, and David Barber. A Scalable Laplace Approximation for Neural
 682 Networks. In *International Conference on Learning Representations*, 2018.

683

684 Christian P Robert. The Metropolis-Hastings algorithm. *arXiv:1504.01896*, 2015.

685

686 Jeffrey S Rosenthal. Optimal proposal distributions and adaptive MCMC. *Handbook of Markov*
 687 *Chain Monte Carlo*, 4(10.1201):93–111, 2011.

688

689 Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. Mean field theory for sigmoid belief
 690 networks. *Journal of Artificial Intelligence Research*, 4:61–76, 1996.

691

692 Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
 693 Zicheng Liu, and Emad Barsoum. Agent Laboratory: Using LLM Agents as Research Assistants.
 694 *arXiv:2501.04227*, 2025.

695

696 Daniel Seita, Xinlei Pan, Haoyu Chen, and John Canny. An efficient minibatch acceptance test
 697 for metropolis-hastings. In *Proceedings of the 27th International Joint Conference on Artificial*
 698 *Intelligence*, pp. 5359–5363, 2018.

699

700 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning*
 701 *Research*, 9(3), 2008.

702

703 Francesco Tonolini, Nikolaos Aletras, Jordan Massiah, and Gabriella Kazai. Bayesian prompt en-
 704 sembles: Model uncertainty estimation for black-box large language models. In *Findings of the*
 705 *Association for Computational Linguistics ACL 2024*, pp. 12229–12272, 2024.

706

707 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random*
 708 *World*. Springer, 2005.

702 Xi Wang, Laurence Aitchison, and Maja Rudolph. Lora ensembles for large language model fine-
 703 tuning. *arXiv:2310.00035*, 2023a.

704

705 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 706 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 707 models. In *The Eleventh International Conference on Learning Representations*, 2023b.

708

709 Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-
 710 trained encoder-decoder models for code understanding and generation. In *Proceedings of the
 711 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 8696–8708, 2021.

712

713 Zhilin Wang, Alexander Bukharin, Olivier Delalleau, Daniel Egert, Gerald Shen, Jiaqi Zeng, Oleksii
 714 Kuchaiiev, and Yi Dong. Helpsteer2-preference: Complementing ratings with preferences. In *The
 715 Thirteenth International Conference on Learning Representations*, 2025.

716

717 Ziyu Wang and Chris Holmes. On subjective uncertainty quantification and calibration in natural
 718 language generation. *arXiv:2406.05213*, 2024.

719

720 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does LLM safety training
 721 fail? *Advances in Neural Information Processing Systems*, 36:80079–80110, 2023.

722

723 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V
 724 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
 725 *Advances in Neural Information Processing Systems*, volume 35, pp. 24824–24837, 2022.

726

727 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 728 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
 729 *arXiv:2411.04368*, 2024.

730

731 Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics.
 732 In *Proceedings of the 28th International Conference on Machine Learning*, pp. 681–688, 2011.
 733 ISBN 978-1-4503-0619-5.

734

735 Bingbing Wen, Bill Howe, and Lucy Lu Wang. Characterizing LLM abstention behavior in science
 736 QA with context perturbations. In *Findings of the Association for Computational Linguistics:
 737 EMNLP 2024*, 2024. doi: 10.18653/v1/2024.findings-emnlp.197.

738

739 Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
 740 Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the Bayes
 741 posterior in deep neural networks really? In *Proceedings of the 37th International Conference on
 742 Machine Learning*, volume 119, pp. 10248–10259, 2020.

743

744 Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and practice. *The Knowl-
 745 edge Engineering Review*, 10(2):115–152, 1995.

746

747 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
 748 zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
 749 Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
 750 Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuan-
 751 jing Huang, and Tao Gui. The rise and potential of large language model based agents: A survey.
 752 *Science China Information Sciences*, 68(2):121101, 2025.

753

754 Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
 755 large language models. *arXiv:2401.11817*, 2024.

756

757 Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
 758 and David Ha. The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic
 759 Tree Search. *arXiv:2504.08066*, 2025.

760

761 Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang
 762 Ren, and Hongxia Jin. Backdooring instruction-tuned large language models with virtual prompt
 763 injection. In *Proceedings of the 2024 Conference of the North American Chapter of the Associa-
 764 tion for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*,
 765 pp. 6065–6086, 2024.

756 Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
 757 for large language models. In *International Conference on Learning Representations*, 2024a.
 758

759 Daniel Yang, Yao-Hung Hubert Tsai, and Makoto Yamada. On verbalized confidence scores for
 760 LLMs. *arXiv:2412.14737*, 2024b.
 761

762 Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
 763 and James Zou. Optimizing generative AI by backpropagating language model feedback. *Nature*,
 764 639:609–616, 2025.
 765

766 Ze Yu Zhang, Arun Verma, Finale Doshi-Velez, and Bryan Kian Hsiang Low. Understanding the
 767 relationship between prompts and response uncertainty in large language models. *arXiv preprint*
 768 *arXiv:2407.14845*, 2024.
 769

770 Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Chong Meng, Shuaiqiang Wang, Zhicong
 771 Cheng, Zhaochun Ren, and Dawei Yin. Knowing what llms do not know: A simple yet effective
 772 self-detection method. In *Proceedings of the 2024 conference of the north American chapter of*
 773 *the Association for Computational Linguistics: Human language technologies (Volume 1: Long*
 774 *Papers)*, pp. 7051–7063, 2024.
 775

776 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 777 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-a-Judge with MT-Bench and
 778 Chatbot Arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.
 779

780 Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
 781 Jimmy Ba. Large language models are human-level prompt engineers. In *The Eleventh Interna-*
 782 *tional Conference on Learning Representations*, 2022.
 783

784 Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbulin, and Jürgen
 785 Schmidhuber. GPTSwarm: Language Agents as Optimizable Graphs. In *Forty-first International*
 786 *Conference on Machine Learning*, 2024.
 787

788 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
 789 and transferable adversarial attacks on aligned language models. *arXiv:2307.15043*, 2023.
 790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A METHOD DETAILS
811812 A.1 USEFUL APPROXIMATIONS
813814 In general, MCMC can only be applied to Bayesian inference when the $g(\theta)$ is calculable, where
815 $g(\theta)$ is defined by

816
$$g(\theta) = p(\theta)p(\mathcal{D} | \theta) = p(\theta) \prod_{i=1}^n p(y_i | x_i, \theta). \quad (11)$$

817

818 In our context, certain terms in this equation are intractable and we instead estimate them stochastically.
819820 **Mini-batch estimates of $\prod_{i=1}^n p(y_i | x_i, \theta)$** Computing the term $\prod_{i=1}^n p(y_i | x_i, \theta)$ requires evaluating $\text{LBS}(x_i)$ for all $i \in \{1, \dots, n\}$. Training sets are often large enough to make running a full pass per MCMC step intractable. Instead, we use mini-batching. One way to mini-batch is to apply the MH adjustment of Seita et al. (2018), which involves a different accept/reject step; however, to avoid complexity we use a simple stochastic estimate of $\prod_{i=1}^n p(y_i | x_i, \theta)$ instead. Using a batch size of b , we make the estimate
821

822
$$\prod_{i=1}^n p(y_i | x_i, \theta) \approx \prod_{j=1}^b p(y_{i_j} | x_{i_j}, \theta)^{\frac{n}{b}}, \quad (12)$$

823

824 which is an unbiased estimate in log-space:
825

826
$$\sum_{i=1}^n \log p(y_i | x_i, \theta) = n \mathbb{E}_{(x,y) \sim \text{Uniform}(\mathcal{D})} [\log p(y | x, \theta)] \approx \frac{n}{b} \sum_{j=1}^b \log p(y_{i_j} | x_{i_j}, \theta), \quad (13)$$

827

828 where $\{(x_{i_1}, y_{i_1}), \dots, (x_{i_b}, y_{i_b})\}$ is a mini-batch of training datapoints. In experiments, we use a
829 batch size of $b = 1$.
830831 **Tempered posterior** A well-studied phenomenon in Bayesian deep learning is the *cold posterior*
832 effect wherein sampling from the “tempered” posterior $p_\tau(\theta | \mathcal{D}) \propto p(\mathcal{D} | \theta)^{1/\tau} p(\theta)$ with $0 < \tau <$
833 1 often results in better empirical performance than the standard Bayesian posterior (i.e., $\tau = 1$)
834 (Wenzel et al., 2020; Aitchison, 2021; Fortuin et al., 2022; Izmailov et al., 2021; Noci et al., 2021;
835 Kapoor et al., 2022; Nabarro et al., 2022). Following this practice, we apply a temperature τ , making
836 the final estimate equal to
837

838
$$\prod_{i=1}^n p(y_i | x_i, \theta)^{\frac{1}{\tau}} \approx \prod_{j=1}^b p(y_{i_j} | x_{i_j}, \theta)^{\frac{n}{\tau b}}. \quad (14)$$

839

840 For simplicity, we absorb the exponent into a single constant $\beta := \frac{n}{\tau b}$ and tune β for performance.
841 As per the hyperparameter details below, often $\beta < n$ is the most effective, indicating a *hot posterior*
842 effect in our case.
843844 **Monte Carlo estimates of $p(y_i | x_i, \theta)$ with surrogate models** For a single LLM call $y =$
845 $\text{LLM}(x; \theta)$ that outputs an answer directly, computing $p(y | x, \theta)$ is as simple as summing log-
846 probabilities across every token in y . However, complex LLM-based systems that include interme-
847 diate outputs and reasoning involve sources of stochasticity that are not captured in log-probabilities
848 associated with the tokens of y .
849850 Let z be a variable capturing all intermediate outputs in the computation of $y = \text{LBS}(x; \theta)$. This
851 includes internal LLM calls and reasoning text. We can express the generative process of sampling
852 y as
853

854
$$z \sim p(z | x, \theta), \quad y \sim p(y | z, x, \theta). \quad (15)$$

855 Then the probability $p(y | x, \theta)$ required for MHP would be computed as
856

857
$$p(y | x, \theta) = \sum_z p(y | z, x, \theta) p(z | x, \theta) = \mathbb{E}_{z \sim p(z | x, \theta)} [p(y | z, x, \theta)]. \quad (16)$$

858

864 As suggested by the second equality, this intractable sum is again amenable to Monte Carlo esti-
 865 mates. We use a single sample of z to estimate the likelihood in MHLP. We note that one alternative
 866 would be to remove all stochasticity from $z \sim p(z | x, \theta)$ by fixing a seed or setting the LLM tem-
 867 perature to 0 in the process of sampling z ; however, this would remove necessary stochasticity from
 868 the final model result and alter the underlying model.

869 When using closed-source model providers, log-probabilities and thus the value of $p(y | z, x, \theta)$
 870 itself is sometimes withheld. In this case, during MHLP only we substitute the final LLM call in our
 871 LLM-based system with an open source model.

872 Lastly, we point out that all of the tricks above apply to computing probability masses for any LLM-
 873 based system, including the proposal density $q(\theta' | \theta)$ also required for MHLP.

874 **A.2 UPDATES WITH TEXTGRAD**

875 In our experiments, we implement **UPDATE** as a TextGrad step (Yuksekgonul et al., 2025). Given
 876 a model output $y_{\text{pred}} = \text{LBS}(x; \theta)$, we compute a loss string ℓ using a textual loss function **LOSS**

$$877 \ell := \text{LOSS}(x, y_{\text{pred}}, y) := \text{LLM}(x, y_{\text{pred}}, y; p). \quad (17)$$

878 Where p is a dataset-specific prompt describing
 879 how to evaluate a given model output, such as

880 You will be given a question related to scientific
 881 research papers and an answer attempted by a
 882 language model. Evaluate the attempted
 883 answer. Be smart, logical, and very critical.
 884 Do not
 885 solve the question. Just provide concise feedback.
 886
 887 Question: { x }
 888 Attempted answer: { y_{pred} }
 889 True answer: { y }

890 TextGrad implements an autograd-style wrap-
 891 per for all textual variables. This wrapper provides the method $\ell.\text{BACKWARD}()$, which “back-
 892 propagates” variable-wise feedback from the evaluation ℓ . The TextGrad optimizer.**STEP()** method
 893 then incorporates this feedback to build a new parameter set θ' . Pseudocode is given in Alg. 2.

894 To run Metropolis-Hastings (Alg. 1), we also need to compute the proposal density value $q(\theta' | \theta)$,
 895 where in our case $\theta' = \text{UPDATE}(\theta)$. Using the approximations described in App. A.1, we need
 896 only compute logits from the final call optimizer.**STEP**, and so we always compute this step with
 897 an open-source LLM (Llama-3.1-Nemotron-70B-Instruct-HF (Wang et al., 2025; Bercovich et al.,
 898 2025)).

899 **B EXPERIMENT DETAILS**

900 **B.1 DATASET DETAILS**

901 AIME (MAA, 2024), released under the MIT license, contains problems from the American Invita-
 902 tional Mathematics Examination (AIME)—a prestigious high school competition known for its
 903 challenging mathematical questions. Each answer is an integer. The exam consists of 29 to 30 ques-
 904 tions per year. For evaluation, we used the 2024 exam, which was not included in GPT’s training
 905 data.

906 SimpleQA (Wei et al., 2024), released under the MIT license, is a benchmark that evaluates the
 907 ability of LLMs to answer short, fact-seeking questions. It covers a wide range of topics, including
 908 science, history, geography, history, politics, etc. Both its questions and answers are short and direct.
 909 In our experiments, we evaluated the models on a subset of 100 examples from the dataset.

910 QASPER (Dasigi et al., 2021), released under the CC-BY-4.0 license, is a free-form question-
 911 answering dataset focused on scientific research papers. It contains 5,049 questions across 1,585
 912 papers in the field of Natural Language Processing. Each question is based on the content of a spe-
 913 cific paper. In our experiments, we provided the model with a passage from the paper that contains

Algorithm 2: TextGrad Update

Require: $\theta^{(t-1)}$;
 optimizer \leftarrow textgrad.Optimizer($\theta^{(t-1)}$);
 optimizer.zero_grad();
 $y_{\text{pred}} \leftarrow \text{LBS}(x; \theta^{(t-1)})$;
 $\ell \leftarrow \text{LOSS}(x, y, y_{\text{pred}})$;
 $\ell.\text{BACKWARD}()$;
 $\theta' \leftarrow \text{optimizer.STEP}()$;
return θ' ;

918 the answer (i.e., the context), and then posed the question for it to answer using that context. We
 919 evaluated our model on 100 samples from this dataset under two different scenarios. In the first
 920 scenario, the context was entirely missing for 35 of the samples. In the second, 33 samples were
 921 provided with randomly selected context (Wen et al., 2024) that did not contain the correct answer.
 922 In both cases, the model was expected to abstain from answering.
 923

924 B.2 HYPERPARAMETERS

925 In the following experiments, we use the OpenAI API for calls to GPT-4o-mini and GPT-4o. As our
 926 surrogate model for probability mass estimates (see App. A.1), we use Llama-3.1-Nemotron-70B-
 927 Instruct-HF (Wang et al., 2025; Bercovich et al., 2025) through the Together AI API.
 928

929 For all LLM calls we use a temperature of 1. We ensure $m = 10$ final answers are sampled for
 930 each method. For the Chain-of-Thought baseline, we used the initial prompt and sampled 10 an-
 931 swers, then aggregated the resulting answers. For TextGrad, we use the sample initial prompt but
 932 run TextGrad for a given number of steps before sampling 10 answers from the final prompt. For
 933 MCMC, we sample 10 individual prompts from a single MCMC chain and sample 1 answer from
 934 each. We tune the MHLP parameter β (see App. A) separately for each dataset. GPT-4o was em-
 935 ployed for clustering and LLM-based evaluation. Further hyperparameter details are shown below
 936 and in our code (see especially the config files `qasper.yaml`, `aime.yaml`, and `simpleqa.yaml`).
 937

938 Table 4: Hyperparameters used for each dataset and method

939 Dataset	940 Method	941 Model	942 Steps (T)	943 β	944 Burn-in (d)	945 Thinning (h)
941 AIME	942 Chain-of-Thought	943 GPT-4o	944 0	945 –	946 –	947 –
	942 TextGrad		944 60	945 –	946 –	947 –
	942 MHLP		944 60	945 10	946 6	947 6
944 SimpleQA	945 Chain-of-Thought	946 GPT-4o	947 0	948 –	949 –	950 –
	945 TextGrad		947 60	948 –	949 –	950 –
	945 MHLP		947 60	948 100	949 6	950 6
947 QASPER	948 Chain-of-Thought	949 GPT-4o-mini	950 0	951 –	952 –	953 –
	948 TextGrad		950 20	951 –	952 –	953 –
	948 MHLP		950 20	951 100	952 2	953 2

950 For all methods, we fix a string at the end of the prompt describing standardized formatting instruc-
 951 tions for the model’s final answer. We extract this answer and evaluate likelihoods $p(y | z, x, \theta)$
 952 only on this value, relegating any reasoning beforehand to the z variable (see App. A.1).
 953

954 B.2.1 BASELINES

955 We adapted the perturber baselines from SPUQ (Gao et al., 2024), specifically selecting the Para-
 956 phrasing and System Message perturbers for comparison. For all runs, we used GPT-4o-mini and
 957 GPT-4o for a fair comparison. Our implementation differs from the original in several details:
 958

959 **Paraphrasing:** Rather than using a single LLM call with JSON formatting to produce all para-
 960 phrases, we made separate LLM calls for each paraphrase (to avoid invalid JSON outputs from the
 961 LLM with the original prompt). We used the following prompt:
 962

```
963 Suggest a way to paraphrase the text in triple quotes above.  

  964 If the original text is a question, please make sure that your answer is also a question.  

  965 If the original text has answer options, please make sure your answer also has those options in the same order  

  966 Answer should ONLY be the paraphrase and nothing else.
```

967 **System Message:** Instead of sampling with replacement from the available prompts, we expanded
 968 the set of system prompts and sampled without replacement. We appended these system prompts to
 969 the beginning of the message chain to preserve any existing system prompts. This was crucial for
 970 maintaining the output format required by the evaluator (e.g., answers ending with Answer: <THE
 971 ANSWER>). The set of system prompts used was:

```
"you are a helpful assistant"
```

```

972 "you are a question-answering assistant"
973 "you are a nice assistant"
974 "You are an AI support tool."
975 "You are a friendly helper."
976 "You are here to assist users."
977 "You provide useful answers."
978 "You are a kind AI agent."
979 "You offer good information."
980 "You are a smart assistant."
981 "You help with many tasks."
982 "You are a reliable AI."
983 "You give clear responses."
984 "You are an able assistant."
985 "You try to be useful."
986 "You are a positive AI."
987 "You guide users well."
988 "You are an adept helper."
989 "You simplify complex things."
990 "You are a virtual guide."
991 "You aim to be accurate."
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

```

B.2.2 CONFORMAL FACTUALITY

Factuality annotation Since there is no ground-truth output for the biography generation task, we assess the factuality of each generated answer by verifying its atomic sub-claims via web search. We use the GPT web search tool API⁵, which allows the model to retrieve external evidence before making a judgment. Each sub-claim is labeled as factual (1) or not (0) based on the retrieved information. We call the API as follows:

```

response = GPT_client.responses.create(
    model="gpt-4o-mini",
    tools=[
        {
            "type": "web_search_preview",
            "search_context_size": "low"
        }
    ],
    input=prompt,
)
response_content = response.output_text

```

Model and Prompt Setup We use GPT-4 for base biography generation and GPT-4o-mini for claim decomposition, factuality annotation, and frequency-based entailment scoring. Both the baseline frequency scoring and MHLP initialization use the same default system prompt: "You are a helpful assistant. Write a bio for people." For frequency scoring, we generate five alternative answers using this prompt. All prompts are listed in Table 5.

Hyperparameter We run a single Metropolis-Hastings chain with $T = 20$ total steps, a burn-in of $d = 4$, and a thinning interval of $h = 4$, resulting in $m = 4$ sampled prompts. Together with the initial prompt, we obtain 5 prompts in total, which are used to compute frequency scores.

B.3 EXAMPLES

In this section, we explore some examples of how the algorithm runs.

First, for SimpleQA and QASPER, we exhibit several example questions and answers comparing results from Textual Bayes to TextGrad. We show how the 10 answers sampled by each method are clustered, and the number of answers that fall into each cluster. Overall, we see that Textual Bayes's confidence levels are better calibrated to the model's correctness.

For AIME, we explore the algorithm's acceptance rate and individual accept/reject decisions over time.

⁵<https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses>

1026 **Subclaim Separator**

1027 Please breakdown the following input into a set of small, independent claims (make sure not to add any information), and
 1028 return the output as a jsonl, where each line is subclaim:[CLAIM], gpt-score:[CONF].\n The confidence score [CONF] should
 1029 represent your confidence in the claim, where a 1 is obvious facts and results like 'The earth is round' and '1+1=2'. A 0
 1030 is for claims that are very obscure or difficult for anyone to know, like the birthdays of non-notable people. If the input
 1031 is short, it is fine to only return 1 claim. The input is:

1031 **Frequency scoring**

1032 You will get a list of claims and piece of text. For each claim, score whether the text supports, contradicts, or is
 1033 unrelated to the claim. Directly return a jsonl, where each line is {"id": [CLAIM_ID], "score": [SCORE]}. Directly return
 1034 the jsonl with no explanation or other formatting. For the [SCORE], return 1 for supports, -1 for contradicts, and 0 for
 1035 unrelated. The claims are:\n{claim_string}\n\nThe text is:\n{output}

1035 **Factuality Annotation**

1036 Please verify if each of these claims is factual.\nClaims:\n[claims_text]\nReturn your answer as a JSON array, where each
 1037 element is an object with these keys: {"subclaim": "[CLAIM]", "factual": 1 or 0, "source": "source or explanation"}\nFormat
 1038 your response as a valid JSON array only, with no additional text or formatting.\n Example:\n[{"subclaim": "claim 1",
 1039 "factual": 1, "source": "source"}, {"subclaim": "claim 2", "factual": 0, "source": "source"}]\n]\n

1040 Table 5: Prompts for sub-claim separator, frequency scoring, and factuality annotation. Note both
 1041 sub-claim separator and frequency scoring prompts are the same as used in (Mohri & Hashimoto,
 1042 2024)

1043

1044

1045 **B.3.1 SIMPLEQA**

1046 The following examples are selected from the SimpleQA dataset. The second example represents a
 1047 case where the LLM appears truly to not know the answer; our method quantifies uncertainty better
 1048 by expressing much lower confidence (40%) than the TextGrad baseline.

1049

1050

Question: According to Medland, Sarah E.; Loesch, Danuta Z.; Mdzewski, Bogdan; Zhu, Gu;
 1051 Montgomery, Grant W.; Martin, Nicholas G. (September 28, 2007), what chromosome
 1052 location was identified as linked to the finger ridge counts of the ring, index,
 1053 and middle fingers through multivariate linkage analysis?

1054

Answer: 5q14.1

1055

1056

Table 6: Counts per semantic cluster for TextGrad and our method

1057

Semantic Cluster	TextGrad	Ours
5q14.1	3	7
5q14.3	3	0
5	1	1
15q14	1	0
21q22	1	0
3q26	1	0
5q13	0	1
5q35	0	1

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 **Question:** What was the population of the town of Lesbury in Northumberland, England in
 1081 the 2011 census?
 1082

1083 **Answer:** 1007

1084 Table 7: Counts per semantic cluster for TextGrad and our method
 1085

	Semantic Cluster	TextGrad	Ours
1088	1,154	7	4
1089	1,118	1	0
1090	1,057	1	0
1091	1,205	1	0
1092	1,264	0	1
1093	1,386	0	1
1094	1,122	0	1
1095	984	0	1
1096	1,187	0	1
	1,112	0	1

1097 **B.3.2 QASPER**

1099 The following examples are selected from the QASPER dataset. Note that for the second example,
 1100 the context given to the model is unrelated to the query, making the query unanswerable such that
 1101 one would expect a well-calibrated LLM to express a high degree of uncertainty.

1102 **Context:** We begin with a hate speech lexicon containing words and phrases identified by
 1103 internet users as hate speech, compiled by Hatebase.org. Using the Twitter API we
 1104 searched for tweets containing terms from the lexicon, resulting in a sample of
 1105 tweets from 33,458 Twitter users. We extracted the time-line for each user,
 1106 resulting in a set of 85.4 million tweets. From this corpus we then took a random
 1107 sample of 25k tweets containing terms from the lexicon and had them manually coded
 1108 by CrowdFlower (CF) workers. Workers were asked to label each tweet as one of three
 1109 categories: hate speech, offensive but not hate speech, or neither offensive nor
 1110 hate speech. They were provided with our definition along with a paragraph
 1111 explaining it in further detail. Users were asked to think not just about the words
 1112 appearing in a given tweet but about the context in which they were used. They
 1113 were instructed that the presence of a particular word, however offensive, did not
 1114 necessarily indicate a tweet is hate speech. Each tweet was coded by three or more
 1115 people. The intercoder-agreement score provided by CF is 92%. We use the majority
 1116 decision for each tweet to assign a label. Some tweets were not assigned labels as
 1117 there was no majority class. This results in a sample of 24,802 labeled tweets.

1116 **Question:** How long is their dataset?

1118 **Answer:** 85400000

1120 Table 8: Counts per semantic answer for TextGrad and our method
 1121

	Semantic Answer	TextGrad	Ours
1124	85.4 million tweets	1	6
1125	24,802 tweets	9	4

1126 **Random Context:** Figure FIGREF4 is the overview of the proposed method using character 3-
 1127 gram embeddings (char3-MS-vec). As illustrated in this figure, our proposed method
 1128 regards the sum of char3-MS-vec and the standard word embedding as an input of an
 1129 RNN. In other words, let $INLINEFORM0$ be $char\ INLINEFORM1 -MS-vec$ and we replace
 1130 Equation with the following: $DISPLAYFORM0$

1131 **Question:** Do they report results only on English data?

1133 **Answer:** Unanswerable

1134

Table 9: Counts per semantic answer for TextGrad and our method

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

B.3.3 AIME

1159

On the AIME dataset, we analyze the model’s accept/reject decisions over time. In Fig. 3, we find that the model’s acceptance rate over time closely matches the heuristic optimum of 0.234 prescribed by Gelman et al. (1997). Tab. 10 shows individual accept/reject decisions.

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

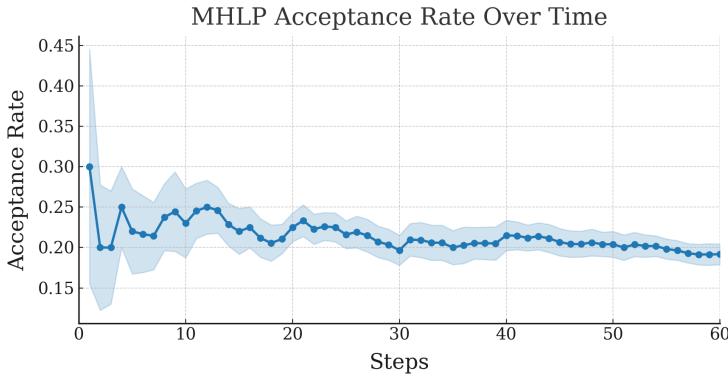


Figure 3: MHL acceptance rate over time.

1188

1189

1190

1191

1192

1193

Table 10: AIME MHL P Accept/Reject Decisions

Step	Current prompt	Proposed prompt	Accepted (Y/N)
1	Answer the math question. Think step-by-step.	Answer the math question by providing a step-by-step solution that explicitly considers all given conditions, such as divisibility requirements in terms of prime factor exponents. Employ appropriate combinatorial methods to account for problem constraints. Ensure accurate probability calculations based on correct combinatorial reasoning. Verify the simplification of your final answer, confirming the correct calculation of the greatest common divisor (GCD) if applicable. Present a clear, logical explanation for each step, and iteratively review and refine your solution to guarantee accuracy and clarity.	Y
20	Provide a concise, step-by-step solution to the math question, ensuring clear understanding by first restating the problem in your own words. Adopt a systematic approach, setting up relevant equations or congruences that directly address the problem’s conditions. Verify each step’s accuracy, correctly applying mathematical concepts such as modulo arithmetic, and maintain a logical flow by simplifying expressions where necessary. Ensure comprehensiveness by considering all possible solutions, and guarantee accuracy by cross-checking key calculations, ultimately leading to a precise final answer that encompasses all valid solution values.	Provide a concise, step-by-step solution to the math question, ensuring clear understanding by first restating the problem in your own words. Apply relevant geometric principles and formulas directly related to the problem, avoiding unnecessary assumptions and concepts. Structure your response in a logical, connected manner, justifying each step. Verify calculations for accuracy, cross-checking key steps to guarantee a precise final answer that encompasses all valid solution values, based solely on the provided information and pertinent mathematical concepts.	N
40	Provide a concise, step-by-step solution to the math question, ensuring clear understanding by explicitly stating the problem’s requirements and constraints. Justify your choice of coordinate systems and break down steps for deriving coordinates. Verify calculations, list and validate assumptions, and maintain a coherent logical flow with explanations for each decision. For geometric problems, explicitly calculate and present coordinates of critical intersection points and provide detailed, logically sound methods for calculating areas. Finally, re-evaluate your approach, cross-reference with alternative methods if possible, and verify the correctness of your answer to ensure accuracy and relevance.	Provide a concise, step-by-step solution to the math question, ensuring clarity and accuracy. Analyze the problem’s recursive definition (if applicable), explicitly describing the transformation of key elements (e.g., zeros, functions) at each step. Derive any formulas used for calculations from the given definitions, logically connecting each step. Include a detailed breakdown of intermediate calculations and explanations for each decision. Where applicable, utilize visual aids or specific examples to illustrate complex transformations. Finally, cross-verify your approach by considering alternative methods or perspectives, and validate your final answer to ensure accuracy and relevance.	Y

1239

1240

1241

1242 B.4 SEMANTIC ENTROPY
12431244 In the main text, we quantify uncertainty for our method and all baselines using confidence: the
1245 probability a model assigns to a given answer (or estimates thereof). Confidence is useful because
1246 it has a clear mathematical interpretation and can be used to assess calibration, but as outlined in
1247 Sec. 5, there are numerous other ways to compute uncertainty scores from LLM-based systems.1248 A popular uncertainty score among these is semantic entropy (Kuhn et al., 2023). In Tab. 11, we
1249 check whether our performance is robust to alternate ways of estimating model uncertainty by using
1250 semantic entropy as an abstention score on the QASPER dataset, where unanswerable questions are
1251 those with the context removed. We find that the relative performances of methods in Sec. 4 using
1252 confidence match those using semantic entropy.1253 Table 11: QASPER - Abstention ROC AUC (%) with Semantic Entropy
1254

Method	ROC
Paraphrasing+SE	50.0 ± 1.4
System-Message+SE	68.1 ± 1.7
CoT+SE	71.3 ± 1.8
TextGrad+SE	70.2 ± 1.1
MHLP+SE	78.2 ± 1.1

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295