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ABSTRACT

Although large language models (LLMs) are becoming increasingly capable of
solving challenging real-world tasks, accurately quantifying their uncertainty re-
mains a critical open problem—one that limits their applicability in high-stakes
domains. This challenge is further compounded by the closed-source, black-box
nature of many state-of-the-art LLMs. Moreover, LLM-based systems can be
highly sensitive to the prompts that bind them together, which often require sig-
nificant manual tuning (i.e., prompt engineering). In this work, we address these
challenges by viewing LLM-based systems through a Bayesian lens. We interpret
prompts as textual parameters in a statistical model, allowing us to use a small
training dataset to perform Bayesian inference over these prompts. This novel per-
spective enables principled uncertainty quantification over both the model’s tex-
tual parameters and its downstream predictions, while also incorporating prior be-
liefs about these parameters expressed in free-form text. To perform Bayesian in-
ference—a difficult problem even for well-studied data modalities—we introduce
Metropolis-Hastings through LLM Proposals (MHLP), a novel Markov chain
Monte Carlo (MCMC) algorithm that combines prompt optimization techniques
with standard MCMC methods. MHLP is a turnkey modification to existing LLM
pipelines, including those that rely exclusively on closed-source models. Empir-
ically, we demonstrate that our method yields improvements in both predictive
accuracy and uncertainty quantification (UQ) on a range of LLM benchmarks and
UQ tasks. More broadly, our work demonstrates a viable path for incorporating
methods from the rich Bayesian literature into the era of LLMs, paving the way
for more reliable and calibrated LLM-based systems.

1 INTRODUCTION

Large language models (LLMs) have become increasingly embedded in our daily lives, with grow-
ing adoption across domains such as customer support (Chaturvedi & Verma, 2023)), code genera-
tion (Wang et al.,|2021} |Chen et al., 2021), scientific research (Boiko et al.| 2023; Schmidgall et al.,
2025} |Yamada et al.f 2025)), and creative writing (Gémez-Rodriguez & Williams|, 2023)). As their
capabilities continue to advance, there is also mounting interest in deploying them in agentic sys-
tems, wherein they perform tasks autonomously on behalf of users (Wooldridge & Jennings| [1995;
Xi et al.| 2025). Despite their proliferation, however, trust in LLMs remains limited, largely due to
their propensity to generate hallucinated content (Maynez et al., 2020} Xu et al., | 2024) and their sus-
ceptibility to adversarial attacks and jailbreaking (Wei et al.,2023;|Zou et al.,[2023} Yan et al.,[2024)).
These vulnerabilities in LLM-based systems therefore must be addressed, especially to fully unlock
high-stakes domains such as finance and medicine. A key step towards mitigating these risks is to
reliably quantify the uncertainty of LLM-based systems. Accurate measures of uncertainty ensure
that, when unable to answer, LLM-based systems can abstain, defer to human experts, or augment
their context with subroutines based on retrieval or reasoning (Lewis et al., [2020; |Wei et al., 2022).

Despite recent progress, UQ for LLMs is far from solved and no consensus exists over exactly what
should be quantified (Kuhn et al.}[2023;Wang & Holmes|, 2024} [Yang et al.,2024b). In this work, we
propose to better quantify uncertainty in LLM-based systems by viewing them through a Bayesian
lens. In light of a model, observational data, and one’s prior beliefs, Bayesian inference uses Bayes’
rule to compute the distribution of possible model parameters. Commonly applied in classical statis-
tics and deep learning, Bayesian inference is a principled and mathematically grounded approach to
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Figure 1: In chain-of-thought (CoT) prompting (left), answers are generated by an LLM using a single fixed
prompt; this frequentist approach does not account for uncertainty about how the model should be prompted,
causing potential issues such as overconfidence on incorrect answers. In Textual Bayes (right), we sample
prompts from our Bayesian posterior and use each to generate answers from the LLM; this allows for principled
uncertainty quantification over both the prompts themselves and the resulting generated answers.

UQ (Bernardo & Smith| [2009). Bayesian techniques have led to high-profile successes in methods
like variational autoencoders (Kingma & Welling| 2014) and Bayesian neural networks (Blundell
et al.,[2015)). As with their 20th century forebears (e.g., (Duane et al.,[1987;|Saul et al.| |{1996)), these
methods estimate uncertainty over high-dimensional continuous variables. Here, we bring Bayesian
methods into the age of LLMs. In LLM-based systems, the main variables of interest are prompts,
since LLMs themselves are often black boxes that can only be accessed via an API. By treating
prompts as textual parameters in a statistical model, as illustrated in we can use Bayesian
inference to estimate distributions over their values. These distributions rigorously quantify our
uncertainty about the models themselves. Furthermore, they can be integrated into uncertainty es-
timates on the system’s downstream outputs via easy-to-compute Monte Carlo estimates. To the
best of our knowledge, we are the first to perform Bayesian inference over the space of free-form
prompts in LLM-based systems.

Adapting Bayesian methods to text has its challenges and advantages. On the one hand, textual vari-
ables are discrete, making it difficult to apply traditional Bayesian deep learning techniques such as
gradient-based Markov chain Monte Carlo (MCMC) (Welling & Tehl [2011) or variational inference
(Saul et al., [1996). We address this obstacle with a novel text-based MCMC method: Metropolis-
Hastings through LLM Proposals (MHLP). On the other hand, textual variables are better suited
conceptually to Bayesian modelling than high-dimensional continuous variables such as the weights
of a deep neural network. Bayesian inference famously requires the specification of prior beliefs
about a variable; textual variables are more amenable to human priors than neural network weights,
and as we show, prior beliefs can be readily incorporated into LLM-based systems as free-form text.

To advance and justify our proposed method, this work contains the following contributions:

1. We take a novel perspective on LLM-based systems in which prompts are viewed as Bayesian
textual parameters € in a model p(y | =, 6). We show how this formulation leads to a principled
way to incorporate prior beliefs about # while quantifying our inherent uncertainty in the model.

2. To implement our Bayesian approach, we propose Metropolis-Hastings through LLM Proposals
(MHLP), an MCMC algorithm to sample from intractable distributions over textual variables.
MHLP has broad potential applications even beyond Bayesian inference.

3. We propose a novel metric of model calibration, semantic expected calibration error, for quan-
tifying calibration, a form of UQ, on free-form textual outputs.

4. We systematically evaluate our method through standard LLM benchmarks and baselines, show-
ing that it improves performance while providing state-of-the-art UQ over model outputs.

2 BACKGROUND AND TERMINOLOGY

2.1 LLM-BASED SYSTEMS

The central object in this work is the LLM-based system. The most common LLM-based system
is one consisting of a single input x (e.g., a question), a prompt 6 (e.g., a system message defin-
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ing instructions for the model’s behaviour, shared across all x), and an output y (e.g., the model’s
predicted answer), which we denote

y = LLM(x; 0). (D)

We allow LLM(z; 0) to be any open- or closed-source model that we view as a random function
of x and 6, whose randomness depends on the underlying LLM sampling strategy (e.g., greedy,
temperature, nucleus). In general throughout the work, capitalized, boldface function names will
indicate random functions comprising one or more LLM calls.

LLM-based systems can be more complex than single-prompt models. Many recent works have
proposed to group LLM calls of arbitrary count and complexity into pipelines parameterized by
the prompts used at each step (Khattab et al., 2024; [Zhuge et al., |2024; [Yuksekgonul et al., 2025;
Cheng et al.| 2024} |[Hu et al.| 2024)). For example, Self-Refine (Madaan et al.| 2023)) iterates on an
initial LLM output by alternating between an LLM call providing feedback and one incorporating
the feedback into refinement. Fully agentic systems integrate multiple LLM and tool calls to arrive
at a final output. In full generality, we can describe a forward pass through an LLM-based system as

y = LBS(z;0), 2

where LBS(+; #) can be described as a directed acyclic graph with k& edges in which each edge e;
corresponds to an LLM call LLM(+; §,) parameterized by a prompt 6; and where we denote the
combination of all prompts in the system as § = (61, ..., 0x). Since each LLM call in the system is
potentially random, y is a random function of « parameterized by = (61, ..., ). The LLM-based
system thus forms a statistical model for y whose density we express as p(y | x, ), where sampling
y ~ p(y | x,0) is equivalent to computing y = LBS(z; 0).

Unlike a linear regressor or neural network where 6 denotes continuous model parameters, for
an LLM-based system 6 denotes fextual parameters. From the statistical modelling perspec-
tive, a natural next step is to find the optimal value of . For example, given an i.i.d. dataset
D ={(z1,v1),-- ., (®n,yn)}, one might want to perform maximum-likelihood:

n

0" = argmaxp(D | 0) = arg mgxgp(yi | z:,0). 3)

The discrete nature of textual parameters prevents us from applying gradient-based algorithms to
maximize likelihood in LLM-based systems. Prompt engineering can be understood as approximat-
ing 0* by having a human propose candidates 6 until adequate performance on a small dataset is
reached. However, this manual process lacks rigour, is lengthy and tedious, and does not scale well.

Past works have proposed heuristic approaches to automatically optimize prompts 6 in LLM-based
systems (Zhou et al., [2022; Khattab et al.} [2024} |Zhuge et al., [2024} |Cheng et al.| 2024). Here,
we focus on iterative prompt optimization methods, which we can express mathematically as a
stochastic update function UPDATE applied iteratively to an initial prompt #(%):

0) = UPDATE(9(~Y). (4)

For simplicity, we assume that UPDATE is Markovian; i.e., not a function of # values from earlier
than ¢ — 1. UPDATE, which consists of one or more LLM calls, is itself an LLM-based system.

One particularly relevant prompt optimization method is TextGrad (Yuksekgonul et al.| 2025). The
TextGrad framework conceptualizes constructive feedback on prompts as textual gradients and pro-
poses a method for “backpropagating” feedback through an LLM-based system akin to backprop-
agation in neural networks. Although this framework is highly analogous to backpropagation of
gradients for continuous variables, it does not formally optimize model likelihood.

2.2 BAYESIAN INFERENCE

In this section, we briefly review Bayesian inference. For a more in-depth introduction, we refer the
reader to |[MacKay| (2003). Here, we allow p(y | z,0) to be any statistical model for some variable
y given another variable x. From the Bayesian perspective, there is uncertainty about the true value
of 6, and hence the point estimate §* given by maximum-likelihood may be an overly reductive way
of summarizing a dataset D. Bayesian statistics provides a formal way of capturing this uncertainty.
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First, we encode our prior uncertainty (beliefs) about the true value of 0 as a prior distribution p(6).
Then, having observed a dataset D, we update our beliefs about 6 using Bayes’ rule as
o6 D)— POPD 1O pO)TT:plos | 7.0 s
p(D) 220 PO [1ip(yi | i, 6")
The posterior distribution p( | D) formally captures our uncertainty about 6 in light of (¢) our prior
beliefs and (i¢) the observed data. Given p(@ | D) and a new unobserved datapoint Zpey, We can
compute the posterior predictive distribution of yyey, via

p(ynew | xneW»D) = Zp(ynew ‘ xneW79)p(9 ‘ D) = EON;D(O\D) [p<ynew | Tnew 9)] . (6)
0

formalizes predictive uncertainty in terms of uncertainty over 6. Since it is expressed as an
expectation, we can estimate it via Monte Carlo sampling with draws from p(6 | D). The posterior
predictive has immediate practical value: its value represents confidence in the prediction ypey, and
its variability (as measured by, e.g., variance or entropy) formally quantifies uncertainty.

The central challenge of Bayesian inference thus lies in sampling from the posterior p(6 | D). As
p(y | x,0) or p(f) acquire even moderate complexity, sampling from p(6 | D) quickly becomes
intractable. In deep learning, Bayesian inference requires approximations such as gradient-based
MCMC (Welling & Tehl [2011)), variational inference (Blundell et al.|[2015), or Laplace approxima-
tions (Ritter et al., 2018). We highlight that all of these approaches rely on the differentiability of
p(0)p(D | 0) with respect to 6, so none can be readily applied to the context where 6 is a discrete
prompt in an LLM-based system.

2.3 MARKOV CHAIN MONTE CARLO AND THE METROPOLIS-HASTINGS ALGORITHM

In Bayesian statistics, MCMC algorithms are a common technique for tractably sampling from the
posterior p(f | D) when only its numerator in can be computed for any values of 6 and
D. First, fix D and let g(0) = p(0)p(D | 6) be the numerator of Given an unnormalized
density like g(6), an MCMC algorithm is a general-purpose technique that specifies a Markov chain
M 92 .. 91 . whose distribution converges to % =p(0 | D) as t — oo. In practice,

by generating enough samples from the Markov chain, we can approximate sampling from p(6 | D)
without needing to evaluate it.

The Metropolis-Hastings algorithm (MH) is a Algorithm 1: Metropolis-Hastings
generlc.and brogdly applicable form of MCMC Require: 0(©), a0’ | 0), g(0);

(for an introduction, see Robert| (2015)). Starting fort « 1to T do

with an initial sample 6(©) MH iterates from sam-

Sample proposal: 6 ~ (0’ | 9¢=1));

ple 0U~Y to §*) by generating a new proposal ¢’ Compute acceptance probability:

from a pre-defined proposal distribution q(0' | 0)

and then either accepting it (i.e., setting () := ") = min (1 g(0)) g0~V 10) \
or rejecting it (i.e., setting ) := §(*~1)) based on Tg(0t=1) q(0" | 61 )7

an acceptance probability v (Alg. ). Sample random number:

In MH, the main “tuneable hyperparameter”, the u ~ Uniform(0, 1);
choice of proposal distribution ¢(¢’ | 6), is con- if u < v then

strained only by very mild regularity conditions. ‘ Accept: 0() «— ¢/,
However, the choice of ¢ has a pronounced ef- else

fect on the practicality of the algorithm, with poor ‘ Reject: H(1) « =1,

choices (e.g., ones that perturb 6 too mildly or too return {H(t) VL
strongly at each step) taking an intractable amount =0
of time to converge to the limiting distribution p(# | D). The importance of ¢ is such that some
of the most popular MCMC algorithms (e.g., Langevin Monte Carlo and Hamiltonian Monte Carlo
(Duane et al., [1987; Neall [1996))) are simply special cases of MH with highly specialized choices
of ¢q. Our method, MHLP, will also fall into this category, being specialized for textual parameters
#. The choice of ¢ should be informed by any information available about the desired limiting dis-
tribution p(# | D) (Rosenthal, 2011). Indeed, the optimal g(8’ | 6) would be equal to the desired
limiting distribution itself; if this were possible, of course, there would be no need to run MH in the
first place. Nevertheless, we apply this intuition in[Sec. 3|as we adapt MH to textual data.
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3 TEXTUAL BAYES

In this section, we describe our method for Bayesian inference on LLM-based systems. We begin
with the setup described in an LLM-based system LBS(z; #) that gives rise to a statistical
model p(y | z,6), where z is the input, y is the output, and § = (61,...,0;) represents all the
textual parameters involved in the system. We assume that p(y | x, ) can be evaluated for any LLM-
based system we consider; to do this in full generality for closed source models, we require some
approximations, including selective use of open-source likelihoods as surrogates - see [App. A.T|for
more details. Our Bayesian inference algorithm will provide samples 61, ... (™) ~ p(@ | D),
which can in turn be used to quantify uncertainty over the system’s outputs as per[Eq. 6|

Textual priors To perform Bayesian inference, we must specify our prior beliefs about  in the
form of a distribution p(#). Although 6 lies in an infinite and semantically complex space of discrete
text, humans are well equipped to reason and express their beliefs about textual variables. For
example, a practitioner’s prior about a prompt 6; might be that it should describe the purpose of the
corresponding LLM call, guidelines for how to solve the task at hand, and the expected structure
of the output. To exploit this knowledge, we codify our beliefs about each parameter 6; as a free-
form human-written string of textual constraints s;, and provide it to an LLM to model the resulting
parameter as

6; = LLM(s;; "Generate an LLM prompt satisfying the given constraints.”). (7)

For simplicity, we construct our prior p(f) = H?Zl p(6;) by assuming that all textual variables are

independent, but this setup can be easily generalized by specifying joint constraints over multiple
parameters ¢; and modelling them in a single LLM call.

Metropolis-Hastings through LLM Proposals Having constructed our prior p(f), we now need
an algorithm to sample from p(6 | D). A generally applicable MCMC method for text could have
wide-ranging applications even beyond Bayesian inference. To this end, we propose Metropolis-
Hastings through LLM Proposals (MHLP), a text-specific variant of MH.

At the heart of MHLP is our proposal distribution. We could in theory achieve the correct limiting
distribution through almost any arbitrary choice of ¢(6’ | ), like randomly replacing letters or words
in 0. But it is easy to see that such a proposal would rarely change 6 semantically and never converge
in practice. Instead, to generate useful proposals, we turn to LLMs. Analogously to how Langevin
Monte Carlo uses gradient computation to exploit differentiable structure on p(6 | D), MHLP uses
LLM calls to exploit linguistic structure on p(f | D). Ideally, ¢(6’ | ) should be as similar to
p(0 | D) as possible. By this standard, as per the relationship p(6 | D) x p(D | 8)p(f), samples
0" ~ q(0' | 9) should roughly satisfy the following criteria: (i) 6’ should satisfy all the constraints
embodied by the prior p(6’), and (i¢) 6’ should provide strong downstream performance on D as
measured by p(D | ¢').

We take inspiration from the prompt optimization methods discussed in and use suggestions
from LLMs to propose values of ¢’ that implement these guidelines. The observation underpinning
MHLP is that iterative prompt optimization methods can be used to propose high-quality candidates
6'. Here we recall our formalization of prompt optimization as an iterated stochastic update function
UPDATE (Eq. 4), and sample from ¢(¢’ | §) by computing ¢’ = UPDATE(9)[]] Note that since
UPDATE is itself an LL.M-based system just like our model LBS, and so, like the model density
p(y | z,0), the value of ¢(6’ | #) can be estimated by using an open-source model for the final
LLM call of UPDATE and by using the approximations in Although MHLP is agnostic
to the underlying prompt optimization method, we use TextGrad (Yuksekgonul et al., 2025) in our
implementation. By analogy to numerical losses in standard gradient-based optimization, TextGrad
optimizes objectives described in natural language. We can thus express criteria () and (i) as ob-
jectives in natural language and use TextGrad to propose improvements to § based on these criteria.
This choice of objectives is specific to Bayesian inference, but in MHLP they can be easily replaced
or modified to suit any textual distribution, which broadens its potential impact. We demonstrate

one such example in

'Some prompt optimization methods, such as the momentum variant of TextGrad (Yuksekgonul et al.,
2025), make updates based on a history of multiple past € values. MHLP can take advantage of such methods
by running multiple steps of the optimizer per accept/reject decision, akin to Hamiltonian Monte Carlo.
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Method summary We define MHLP as the variant of MH (Alg. 1) acting on textual parame-
ters 6 in which the proposal step 8’ ~ q(6’ | =) is defined as a prompt optimization up-
date #’ = UPDATE(#*~1)). For our experiments, we implement UPDATE as a TextGrad step
(ATg. 2). Additionally, as is common practice in Bayesian deep learning (e.g., Blundell et al.| (2015);
Daxberger et al.|(2021)), we employ approximations for tractability, including a tempered posterior
(Wenzel et al., |2020) and stochastic minibatch estimates of certain quantities in (rather than
evaluating them exactly). Due to space constraints, approximation details are relegated to[App. A.T]

Having a collection {6(")}™  ~ p(@ | D) of prompt samples, we can now put them to use at

inference time to sample from the predictive posterior (Eq. 6). Given an input Ze,, We can generate
a set of samples {yﬁg&};’;l ~ D(Ynew | Tnew) Via
9(7«) ~ p(@ | D)7 1/152\2/ ~ p(ynew | Lnew 9(7"))’ ®)

that is, by running y,EQV = LBS(Zyew; ) for each sampled prompt ("), The variability of the

resulting answer set {yr(lé\z,}:”zl can be interpreted as the uncertainty of the LLM-based system.

4 EXPERIMENTS

In this section, we empirically evaluate our proposed Textual Bayes method. Specifically, we aim
to answer the following question: how does Bayesian inference on the prompts of an LLM-based
system with our MHLP algorithm translate into the system’s downstream predictive performance
and uncertainty quantification (UQ) abilities? In we demonstrate that our method out-
performs comparable baselines in accuracy, calibration, and abstention capabilities on challenging
LLM benchmarks. In we adapt Textual Bayes to reducing hallucinations with conformal
factuality (Mohri & Hashimoto, [2024])), a distinct context from traditional Bayesian inference.

Implementation For each dataset, we use MHLP to generate samples 0(1), ... 0™ ~ p(0 | D)
from a Markov chain of length 7. To increase sample diversity we employ burn-in, in which a
fixed number d of initial MCMC samples are discarded, and thinning, in which we take every h-th
sample thereafter until m samples are obtained. Given a datapoint x,ew, we sample values of ynew
using[Eq. 6|and quantify uncertainty on the basis of these downstream outputs. Because our research
focus is on compatibility with black-box LLMs, in this section we present experiments with GPT-
40 or, when possible, GPT-40-mini, depending on the difficulty of the dataset. For details such as
settings of d, h, m, and other dataset-specific hyperparameters, see [App. B|

4.1 UNCERTAINTY QUANTIFICATION WITH TEXTUAL BAYES

Setup We consider the canonical LLM-based system consisting of a single LLM as defined by
Hallucinations in such systems occur when a model responds confidently with incorrect or
ungrounded information, an issue that can be combatted with calibration (Kadavath et al.| 2022}
Wei et al.||2024). Calibration refers to the quality of a model’s confidence score, or the probability it
assigns to the correctness of its provided answer; in other words, how well the model “knows what
it knows”. Here, we test calibration in downstream responses resulting from Bayesian inference
over the LLM’s prompt. We compute confidences by generating 10 responses from each system and
measuring the frequency of each response. For MHLP, we initialize 8(°) to be a generic chain-of-
thought (CoT) (Wei et al., |2022) prompt: "Answer the question. Think step-by-step.”.

Baselines We compare our method against four frequentist baselines. Paraphrasing and System-
Message are two prompt perturbation methods proposed by |Gao et al.|(2024). These methods inject
prompt stochasticity by rephrasing the question or system prompt in a question-answering con-
text)’| To these we add two additional baselines: (i) CoT refers to sampling m predictions from
LBS(z;6®), and (i7) TextGrad refers to first performing T steps of prompt optimization and then
sampling m predictions from LBS(z; H(T)). Both TextGrad and MHLP require a one-time initial
fixed cost incurred by prompt optimization and MCMC, respectively, and we use the same value
of T for both. All methods use the same number m of LBS calls during inference to ensure a fair
comparison from a computational perspective.

2Our implementation has minor differences from the cited paper. For further details see[App. B.2.1
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We reiterate [Sec. 3in highlighting that we follow the common pipeline for quantifying uncertainty
in two steps: (i) generate a diverse answer set y(!), ..., 4("™) and (i7) summarize them into an uncer-
tainty score. Because ours is a method for step (), our baselines are methods designed specifically
to do the same. This means we omit direct comparison to means of performing step (ii) such as
semantic entropy (Kuhn et al.l 2023 and other methods described in[Sec. 5] Although these are also
UQ methods, they are orthogonal to our approach, and can be straightforwardly combined (for an
example, see [App. B.4). For direct comparison, all experiments in this section use confidence or
semantic confidence (described below) as the means of summarizing the uncertainty in every set of
answers.

Datasets We evaluate both predictive performance and model calibration on AIME 2024 (MAA,
2024), SimpleQA (Wei et al.l [2024), and QASPER (Dasigi et al.l [2021), representing question-
answering tasks that are closed-form, free-form, and free-form with context, respectively. We ran-
domly select and fix 100 samples from each of SimpleQA and QASPER for all experiments and
use all 30 available samples from AIME 2024. Notably, QASPER includes contextless questions,
which are explicitly marked as unanswerable. We use these instances to assess our method’s ability
to detect insufficient information and abstain from answering. See[App. B|for further dataset details.

In Tab. [T} we report accuracy for all datasets us-
ing exact-match on closed-form datasets and an
LLM judge (Zheng et al.| [2023) to assess seman- Method AIME SimpleQA___ QASPER
tic correctness on free-form datasets. In Tab. Paraphrasing 12.6+£0.7 43.7+0.5 43.7+1.3
t th ted calibrati (ECE) System-Message 7.2+ 0.7 47.3+0.7 59.7+0.6
we report the expected calibration error asa - cor 9.0+ 1.4 478406 56.5+08
measure of model calibration (Naeini et al.l 2015,  TextGrad 11.9+ 0.9 46.6+0.5 588=+1.0
Guo et al,2017). Additionally, for QASPER, we ~_MHLP(Ours) 15.0+0.7 48.6+0.6 609+1.0
estimate abstention ability on two types of unan-
swerable questions: questions with no context, and Table 2: ECE / SECE (%) across datasets
those with a random context. We use the same Method AIME SimpleQA  QASPER
confidence scores used to estimate calibration as ~ Paraphrasing ~21.1£0.8 18.7£0.7 285£1.1
. . System-Message 19.7 0.8 18.4+0.4 23.9+0.9
an al?stentlon metric and COmpute.the ROC AUC CoT 31.5+1.4 18.0+0.6 26.2+0.67
of this score when used as a classifier of answer-  TextGrad 274+1.6 17.7+£1.0 21.6+1.2
ability. Results are shown in Tab. [3] All results are MHLP Qur)  220+10 154+0.6 17.7+1.1
averaged over 10 independent runs with standard

errors to account for stochasticity.

Table 1: Accuracy (%) across datasets

Table 3: Abstention ROC AUC (%)

QASPER
. : Method No context ~Random context
Semantic ECE Standard ECE cannot be applied :

) A A Paraphrasing 482+ 1.1 62.1+1.6
to open-ended tasks since it requires a confidence System-Message 76.6 +£1.7 69.9 +1.3
score, which is nontrivial to compute in general CoT 756+ 1.1  67.4+0.9

TextGrad 66.6 £ 2.1 67.4+£0.9

due to the variability of possible correct responses.
To address this limitation, inspired by semantic en-
tropy (Kuhn et al.| 2023)), we propose an extension of ECE based on semantic clustering. Our met-
ric, semantic ECE (SECE), uses these clusters to estimate model confidence over free-form outputs.

MHLP (Ours) 779+1.2 71.7+£0.9

Specifically, for each input z;, we sample m outputs: yl(l)7 . ,yl(m). We then query an LLM to
group these outputs into semantic clusters. The empirical probability assigned by the model to each
cluster is defined as the proportion of the generated samples in that cluster. The maximum of these
probabilities is then taken as the model’s semantic confidence for input x;. Finally, we use this
value as the confidence for standard ECE computation, enabling estimation of model calibration for

free-form outputs.

Discussion Across tasks, MHLP is the only method to consistently outperform the rest. It only
trails in calibration (ECE) on AIME, but its accuracy exceeds the two best-calibrated methods by
a substantial margin. We hypothesize this outperformance is due to the high-posterior-valued sam-
ples of 6 generated by MHLP; it effectively performs stochastic prompt optimization, incorporating
quantitative performance into its accept/reject decisions. In contrast, TextGrad alone has no accep-
t/reject scheme and thus “always accepts”, leading to the inclusion of potentially less useful changes
to the initial prompt. For qualitative examples and diagnostics of accept/reject decisions, see[App. B|
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4.2 CONFORMAL FACTUALITY WITH MHLP

Background Conformal factuality (Mohri & Hashimoto| 2024) is a method for providing statis-
tical guarantees on the correctness of LLM-generated answers to open-ended questions based on
conformal prediction (CP) (Vovk et al., [2005; [Shafer & Vovk,|2008)). Generally, CP techniques use
a small set of n labeled datapoints to calibrate a prediction threshold. In conformal factuality, given a
question x, an LLM generates an answer y which is broken into a set of distinct claims {c1, ..., c¢}.
Each claim is assigned a factuality score F(c; §)—generated by an LLM-based system—with larger
values indicating increased confidence that c is a factual claim. Then, after using CP to calibrate a
threshold A, claims with F(c; 0) < A are filtered out, such that only high-confidence claims are re-
turned in the final answer y. CP guarantees that ¢ contains only factual claims with high probability,

l—a<Plisfactual Vee j] <1—a+
n+1

; 9

where the error rate « is user-defined. The quality of final answers can be gauged through the
fraction of claims which are retained, since longer answers with more claims are more useful {’| Bet-
ter calibrated expressions of confidence through F(¢; #) improve claim retention, and since MHLP
enables better calibration, we can use it to design a better factuality score.

Baseline (GPT-4 frequency scoring) The best performing option for F(c;#) from Mohri &
Hashimotol| (2024) is frequency scoring. Five alternative answers y(?) are generated for the same
question x from GPT-4 (Achiam et al., 2023) using unit temperature and a manually crafted prompt
6. For each claim in the original answer y, the number of times it appears across the y;, i.e. its
self-consistency (Wang et al.,|2023b; Manakul et al.||2023)), is used as the score F(c; 0).

Our method (MHLP frequency scoring) Like GPT-4 frequency scoring, our method estimates a
claim’s importance based on its frequency across alternative generations. However, instead of gener-
ating with a single fixed prompt, we produce diverse alternatives by sampling different § via MHLP
with zero temperature. Notably, in the factuality context, ground truth outputs {y1, ..., y,} are un-
available, so the unnormalized posterior p(8)p(D | 6) is unavailable. To surmount this obstacle, we
replace the unnormalized probability mass with a surrogate

900) = Epiyr ey 1 ey F(0)) (10)

which we estimate stochastically when running One alternative answer 3(P) is generated
per sampled prompt. The ability to sample from this surrogate distribution underscores MHLP’s
versatility in situations beyond conventional Bayesian inference.

Dataset We use FactScore (Min et al.,[2023), which is widely adopted for factuality tests of LLMs.
Following Mohri & Hashimoto| (2024), we focus on “person” entities from the biography genera-
tion subset and extract subclaims from the generated biographies using the same extraction method
across runs. We also follow |Mohri & Hashimoto|(2024) in using 50 samples for the calibration/test
sets and performing 1000 random splits of calibration and test data for each « value.

Implementation We initialize both scoring methods with the same prompt. For MHLP, we per-
form sampling using a separate set of 100 samples from FactScore and obtain five prompt samples.
Since there is no ground-truth answer in the open-ended QA setting, factuality is determined by
decomposing answers into claims (as in [Mohri & Hashimoto| (2024)) and annotating them using a
GPT web search tool. We use GPT-4 for answer generation, and GPT-40-mini for claim generation,
factuality annotation, frequency scoring, and MHLP proposals. See[App. B for more details.

Results First, we verify that both scoring methods achieve the target coverage from[Eq. 9} [Fig. 2al
shows that empirical factuality remains within the conformal bounds across all values of c. [Fig. 2b|
compares the removal rate, with error bars showing the standard deviation of the average removal
rate across the 1000 data splits. Our method consistently achieves lower removal, showing that
MHLP scoring provides a better uncertainty estimation of the factuality of LLM outputsﬂ

3Filtering out all claims guarantees that § does not contain false claims, but does not give a useful answer.
“The GPT-4 frequency scoring method shows slightly higher removal than reported by Mohri & Hashimoto
(2024), likely due to our use of a stricter web search—based factuality annotator.



Under review as a conference paper at ICLR 2026

1.0 (—e=" GPT4 frequency scoring P 104
o | " MHLP (ours) frequency scoring -
099 —— Conformal bounds s =09
Z o8 g 0.8
E 5
13
2 074 -2
507 o7
= B
; 0.6 5 064
é_ 0.5 gn 05
= 04 <°t>’ 0.4
034 —$— GPT-4 frequency scoring
: 0379 + 3+ MHLP (ours) frequency scoring
03 04 05 06 07 08 09 03 04 05 06 07 08 09
Target Factuality (1-o)) Empirical Factuality
(a) Empirical factuality vs. Target factuality 1 — o (b) Average removal rate vs. Empirical factuality

Figure 2: Comparison of conformal factuality for frequency scoring with a fixed prompt (Mohri & Hashimoto|
2024)), and with prompts sampled through MHLP. (a) The empirical factuality achieved in practice is consis-
tently within the bounds guaranteed by (b) MHLP achieves the same level of empirical factuality as
frequency scoring but removes fewer claims, indicating better calibrated confidence.

5 RELATED WORK

LLMs are applicable to a wide range of tasks and settings, which makes UQ inherently ambiguous—
there is no single, well-defined quantity that UQ aims to approximate. Although our main setting of
interest is where we have access to a pre-trained model and no fine-tuning is performed, we note that
popular methods for UQ in deep learning, such as ensembles (Lakshminarayanan et al., 2017) and
Laplace approximations (Ritter et al.| 2018} [Kristiadi et al.| [2020; [Daxberger et al.,|2021)), have been
successfully ported over for UQ when fine-tuning LLMs (Wang et al., [2023a} [Yang et al., [2024a)).
Within our setting of interest, some approaches estimate uncertainty by analyzing the variability in
outputs generated by an LLM given the same input (Kuhn et al., [2023; [Lin et al., 2024} Grewal
et al., 2024; Wang & Holmes| [2024} |Qiu & Miikkulainen) 2024; [Nikitin et al., |2024)), others do
so by perturbing or modifying the input itself (e.g. by paraphrasing) (Hou et al.l |2024; |Gao et al.,
2024;|Abbasi Yadkori et al., 2024} Zhang et al.| 2024 [Zhao et al., 2024} Feng et al.,[2025al), and still
others rely on directly asking the model to express its own confidence (Kadavath et al., 2022} |Yang
et al., 2024b). Unlike all these methods, we aim to quantify the uncertainty associated with LLM
prompts. Other methods for UQ within in-context learning tasks with LLMs have also leveraged
Bayesian ideas (Ling et al., [2024; Jesson et al., 2024} |Tonolini et al., [2024} |Feng et al., [2025b), but
we highlight that these works differ greatly from ours in that they do not directly perform Bayesian
inference over free-form text and, once again, they do not quantify uncertainty over prompts.

Lastly, we mention another line of work performing Metropolis-Hastings over text. Like ours, [Faria
et al.|(2024)) use LLMs to construct a proposal distribution within the MH algorithm. We nonetheless
highlight many differences with this work: their method is applied to machine translation and not to
UQ, they do not perform Bayesian inference, and their proposal is completely different and does not
rely on prompt optimization methods. Also, concurrently to our work, |[Faria & Smith| (2025) build
on top of [Faria et al|(2024) by applying their proposal to a Bayesian formulation of the alignment
problem wherein aligned model answers are sampled directly using MCMC. Investigating crossover
applications of our and their proposals are potential directions for future work.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this work, we propose Textual Bayes for quantifying uncertainty in LLM-based systems. Our
work represents a formalization of recent work conceptualizing LLM-based systems as models
whose parameters are their prompts. Textual Bayes furthers this framework by performing Bayesian
inference on these parameters, thus blending cutting-edge models with a formal statistical frame-
work for uncertainty quantification. To implement this framework, we propose Metropolis-Hastings
through LLM Proposals (MHLP), a novel MCMC algorithm for free-form text which finds applica-
tions in Bayesian inference and beyond. We test these frameworks on several uncertainty quantifi-
cation benchmarks and find that they consistently improve the frontier of accuracy and calibration.
We also show that MHLP can be adapted to a factuality-based objective, leading to more reliable
factual claims as quantified by the setting of conformal factuality.
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Although Textual Bayes and MHLP post strong performance against baselines, there remain avenues
for improvement. First, MCMC is costly; despite equivalent inference cost to leading baselines, Tex-
tual Bayes requires a one-time expensive application of MHLP. This cost might be addressed, for
example, by further engineering the underlying prompt optimization method or training a small
language model specifically for the task of generating proposals. Second, like many practical ap-
plications of Bayesian inference, our method requires approximations, which will inevitably cause
deviations from the true posterior. Third, our evaluations on free-form answering benchmarks re-
quire LLM-based clustering. These techniques, though fairly applied across methods, are imperfect
and a stronger evaluation signal might be obtained with improved fine-tuning, prompt engineering,
or human evaluation. Lastly, we expect future work to find broader applications for MHLP beyond
Bayesian inference. For example, we could use MHLP to modulate the outputs of LLM-based sys-
tems in accordance with unnormalized functions quantifying objectives such as alignment or safety.

Reproducibility Statement = We have provided code to reproduce our method and experiments
as supplemental material. Our method is described in full throughout [Sec. 3| and [App. A.1} with
experimental details in[Sec. 4|and [App. B.2| The datasets we benchmark on are publicly available.
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A METHOD DETAILS

A.1 USEFUL APPROXIMATIONS

In general, MCMC can only be applied to Bayesian inference when the g(6) is calculable, where
g(0) is defined by
9(0) = pO)p(D | 0) = p(0) [ [ (vi | :,0). (11)
i=1
In our context, certain terms in this equation are intractable and we instead estimate them stochasti-
cally.

Mini-batch estimates of ]\, p(y; | z;,6) Computing the term [}, p(y; | x, 0) requires eval-
uating LBS(z;) for all ¢ € {1,...,n}. Training sets are often large enough to make running a full
pass per MCMC step intractable. Instead, we use mini-batching. One way to mini-batch is to apply
the MH adjustment of [Seita et al.| (2018]), which involves a different accept/reject step; however, to
avoid complexity we use a simple stochastic estimate of [, p(y; | x;, ) instead. Using a batch
size of b, we make the estimate

b

i=1

Jj=1

which is an unbiased estimate in log-space:

b
Z ogp(yi, | 2i,,0),  (13)

D"\S

ZIng(yi | Ty, ) = nE(m y)~Uniform(D) [Ing(y ‘ €T, 9

where {(zi,,%i,),- .-, (zi,, ¥, )} is @ mini-batch of training datapoints. In experiments, we use a
batch size of b = 1.

Tempered posterior A well-studied phenomenon in Bayesian deep learning is the cold posterior
effect wherein sampling from the “tempered” posterior p, (6 | D) oc p(D | 6)Y/7p(#) with 0 < 7 <
1 often results in better empirical performance than the standard Bayesian posterior (i.e., 7 = 1)
(Wenzel et al., [2020; |Aitchison, 2021} |[Fortuin et al., 2022 [Izmailov et al., |2021}; |[Noc1 et al., [2021;
Kapoor et al.}[2022; Nabarro et al.,[2022). Following this practice, we apply a temperature 7, making
the final estimate equal to

b

Hp(yi | 24,0)7 ~ Hp(yij | @4;,0)75. (14)
i=1

Jj=1

For simplicity, we absorb the exponent into a single constant 3 := 7 and tune 3 for performance.
As per the hyperparameter details below, often 5 < n is the most effective, indicating a hot posterior
effect in our case.

Monte Carlo estimates of p(y; | z;,0) with surrogate models For a single LLM call y =
LLM(z; 6) that outputs an answer directly, computing p(y | z,0) is as simple as summing log-
probabilities across every token in y. However, complex LLM-based systems that include interme-
diate outputs and reasoning involve sources of stochasticity that are not captured in log-probabilities
associated with the tokens of y.

Let z be a variable capturing all intermediate outputs in the computation of y = LBS(z;6). This
includes internal LLM calls and reasoning text. We can express the generative process of sampling
y as

Then the probability p(y | =, 8) required for MHLP would be computed as
p(y | :ZZ,@) - Zp(y | 27I79)p(’2 | ,CE,@) = EZNp(z\xﬁ) [p(y | z,x,@)] . (16)
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As suggested by the second equality, this intractable sum is again amenable to Monte Carlo esti-
mates. We use a single sample of z to estimate the likelihood in MHLP. We note that one alternative
would be to remove all stochasticity from z ~ p(z | x, ) by fixing a seed or setting the LLM tem-
perature to O in the process of sampling z; however, this would remove necessary stochasticity from
the final model result and alter the underlying model.

When using closed-source model providers, log-probabilities and thus the value of p(y | z,x,6)
itself is sometimes withheld. In this case, during MHLP only we substitute the final LLM call in our
LLM-based system with an open source model.

Lastly, we point out that all of the tricks above apply to computing probability masses for any LLM-
based system, including the proposal density ¢(6’ | 6) also required for MHLP.

A.2 UPDATES WITH TEXTGRAD

In our experiments, we implement UPDATE as a TextGrad step (Yuksekgonul et al.,|2025). Given
a model output ypeq = LBS(; 6), we compute a loss string £ using a textual loss function LOSS

(= LOSS(Ia Ypred, y) = LLM(:I?, Ypred y;p)~ (17)

Where p is a dataset-specific prompt describing  Algorithm 2: TextGrad Update
how to evaluate a given model output, such as

CH. —1).
Require: 0(¢—1);
You will be given a question related to scientific
research papers and an answer attempted by a

optimizer < textgrad.Optimizer(#(*—1));

language model. Evaluate the attempted OptimiZe[‘_Zero,grad();
answer. Be smart, logical, and very critical. (t—l)
Do not Ypred — LBS(SU, 0 ),
solve the question. Just provide concise feedback. €<_ LOSS(J? Y, 9, d)'
b ) Jpref £
Question;‘ {z} EBACKWARD(),
Attempted answer: { Ypred } / f A .
True answer: { y } ere 0+ Optlmlzer.STEP(),
return ¢’;

TextGrad implements an autograd-style wrap-

per for all textual variables. This wrapper provides the method /. BACKWARD(), which “back-
propagates” variable-wise feedback from the evaluation ¢. The TextGrad optimizer.STEP() method
then incorporates this feedback to build a new parameter set §’. Pseudocode is given in

To run Metropolis-Hastings (Alg. I, we also need to compute the proposal density value ¢(¢, | ),
where in our case #/ = UPDATE(f). Using the approximations described in we need
only compute logits from the final call optimizer.STEP, and so we always compute this step with
an open-source LLM (Llama-3.1-Nemotron-70B-Instruct-HF (Wang et al.l |2025; Bercovich et al.,
2025)).

B EXPERIMENT DETAILS

B.1 DATASET DETAILS

AIME (MAA| [2024), released under the MIT license, contains problems from the American Invi-
tational Mathematics Examination (AIME)—a prestigious high school competition known for its
challenging mathematical questions. Each answer is an integer. The exam consists of 29 to 30 ques-
tions per year. For evaluation, we used the 2024 exam, which was not included in GPT’s training
data.

SimpleQA (Wei et al.| |2024), released under the MIT license, is a benchmark that evaluates the
ability of LLMs to answer short, fact-seeking questions. It covers a wide range of topics, including
science, history, geography, history, politics, etc. Both its questions and answers are short and direct.
In our experiments, we evaluated the models on a subset of 100 examples from the dataset.

QASPER (Dasigi et al., 2021), released under the CC-BY-4.0 license, is a free-form question-
answering dataset focused on scientific research papers. It contains 5,049 questions across 1,585
papers in the field of Natural Language Processing. Each question is based on the content of a spe-
cific paper. In our experiments, we provided the model with a passage from the paper that contains

17



Under review as a conference paper at ICLR 2026

the answer (i.e., the context), and then posed the question for it to answer using that context. We
evaluated our model on 100 samples from this dataset under two different scenarios. In the first
scenario, the context was entirely missing for 35 of the samples. In the second, 33 samples were
provided with randomly selected context (Wen et al.,|2024) that did not contain the correct answer.
In both cases, the model was expected to abstain from answering.

B.2 HYPERPARAMETERS

In the following experiments, we use the OpenAl API for calls to GPT-40-mini and GPT-40. As our
surrogate model for probability mass estimates (see [App. A.I), we use Llama-3.1-Nemotron-70B-
Instruct-HF (Wang et al., 2025} Bercovich et al., 2025) through the Together AT API.

For all LLM calls we use a temperature of 1. We ensure m = 10 final answers are sampled for
each method. For the Chain-of-Thought baseline, we used the initial prompt and sampled 10 an-
swers, then aggregated the resulting answers. For TextGrad, we use the sample initial prompt but
run TextGrad for a given number of steps before sampling 10 answers from the final prompt. For
MCMC, we sample 10 individual prompts from a single MCMC chain and sample 1 answer from
each. We tune the MHLP parameter 3 (see separately for each dataset. GPT-40 was em-
ployed for clustering and LLM-based evaluation. Further hyperparameter details are shown below
and in our code (see especially the config files gasper.yaml, aime.yaml, and simpleqga.yaml).

Table 4: Hyperparameters used for each dataset and method

Dataset Method Model Steps () (3  Burn-in (d) Thinning (k)
Chain-of-Thought 0 - - —
AIME TextGrad GPT-40 60 - - -
MHLP 60 10 6 6
Chain-of-Thought 0 - - —
SimpleQA  TextGrad GPT-40 60 - - -
MHLP 60 100 6 6
Chain-of-Thought 0 - - —
QASPER  TextGrad GPT-40-mini 20 - - -
MHLP 20 100 2 2

For all methods, we fix a string at the end of the prompt describing standardized formatting instruc-
tions for the model’s final answer. We extract this answer and evaluate likelihoods p(y | z,x,0)
only on this value, relegating any reasoning beforehand to the z variable (see|App. A.1).

B.2.1 BASELINES

We adapted the perturber baselines from SPUQ (Gao et al., [2024)), specifically selecting the Para-
phrasing and System Message perturbers for comparison. For all runs, we used GPT-40-mini and
GPT-4o for a fair comparison. Our implementation differs from the original in several details:

Paraphrasing: Rather than using a single LLM call with JSON formatting to produce all para-
phrases, we made separate LLM calls for each paraphrase (to avoid invalid JSON outputs from the
LLM with the original prompt). We used the following prompt:

Suggest a way to paraphrase the text in triple quotes above.
If the original text is a question, please make sure that your answer is also a question.
If the original text has answer options, please make sure your answer also has those options in the same order

Answer should ONLY be the paraphrase and nothing else.

System Message: Instead of sampling with replacement from the available prompts, we expanded
the set of system prompts and sampled without replacement. We appended these system prompts to
the beginning of the message chain to preserve any existing system prompts. This was crucial for
maintaining the output format required by the evaluator (e.g., answers ending with Answer: <THE
ANSWER>). The set of system prompts used was:

"you are a helpful assistant”
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"you are a question-answering assistant”
"you are a nice assistant”

"You are an AI support tool.”
"You are a friendly helper.”
"You are here to assist users.”
"You provide useful answers."”
"You are a kind AI agent."”

"You offer good information.”
"You are a smart assistant.”
"You help with many tasks."”
"You are a reliable AI."

"You give clear responses.”
"You are an able assistant.”
"You try to be useful.”

"You are a positive AI."

"You guide users well.”

"You are an adept helper.”

"You simplify complex things."
"You are a virtual guide.”

"You aim to be accurate.”

B.2.2 CONFORMAL FACTUALITY

Factuality annotation Since there is no ground-truth output for the biography generation task,
we assess the factuality of each generated answer by verifying its atomic sub-claims via web search.
We use the GPT web search tool AP]El, which allows the model to retrieve external evidence be-
fore making a judgment. Each sub-claim is labeled as factual (1) or not (0) based on the retrieved
information. We call the API as follows:

response = GPT_client.responses.create(
model="gpt-40-mini",
tools=[
{
"type"”: "web_search_preview"”,
"search_context_size"”: "low”
}
] ’
input=prompt,
)
response_content = response.output_text

Model and Prompt Setup We use GPT-4 for base biography generation and GPT-4o0-mini for
claim decomposition, factuality annotation, and frequency-based entailment scoring. Both the base-
line frequency scoring and MHLP initialization use the same default system prompt: "You are a
helpful assistant. Write a bio for people.” For frequency scoring, we generate five
alternative answers using this prompt. All prompts are listed in Table 5]

Hyperparameter We run a single Metropolis-Hastings chain with 7" = 20 total steps, a burn-in
of d = 4, and a thinning interval of A = 4, resulting in m = 4 sampled prompts. Together with the
initial prompt, we obtain 5 prompts in total, which are used to compute frequency scores.

B.3 EXAMPLES

In this section, we explore some examples of how the algorithm runs.

First, for SimpleQA and QASPER, we exhibit several example questions and answers comparing
results from Textual Bayes to TextGrad. We show how the 10 answers sampled by each method are
clustered, and the number of answers that fall into each cluster. Overall, we see that Textual Bayes’s
confidence levels are better calibrated to the model’s correctness.

For AIME, we explore the algorithm’s acceptance rate and individual accept/reject decisions over
time.

Shttps://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
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Subclaim Separator

Please breakdown the following input into a set of small, independent claims (make sure not to add any information), and
return the output as a jsonl, where each line is subclaim:[CLAIM], gpt-score:[CONF].\n The confidence score [CONF] should
represent your confidence in the claim, where a 1 is obvious facts and results like ‘The earth is round’ and ‘1+1=2". A @
is for claims that are very obscure or difficult for anyone to know, like the birthdays of non-notable people. If the input
is short, it is fine to only return 1 claim. The input is:

Frequency scoring

You will get a list of claims and piece of text. For each claim, score whether the text supports, contradicts, or is
unrelated to the claim. Directly return a jsonl, where each line is {"”id”:[CLAIM_.ID], "score”:[SCORE]}. Directly return
the jsonl with no explanation or other formatting. For the [SCORE], return 1 for supports, -1 for contradicts, and @ for
unrelated. The claims are:\n{claim.string}\n\nThe text is:\n{output}

Factuality Annotation

Please verify if each of these claims is factual.\nClaims:\n[claims_text]\nReturn your answer as a JSON array, where each

element is an object with these keys: {"subclaim”: "[CLAIM]", "factual”: 1 or @, "source": "source or explanation”}\n Format
your response as a valid JSON array only, with no additional text or formatting.\n Example:\n [\n {"subclaim”: "claim 1",
"factual”: 1, "source”: "source”},\n {"subclaim”: "claim 2", "factual”: @, "source”: "source”}\n I\n

Table 5: Prompts for sub-claim separator, frequency scoring, and factuality annotation. Note both
sub-claim separator and frequency scoring prompts are the same as used in (Mohri & Hashimoto,
2024)

B.3.1 SIMPLEQA

The following examples are selected from the SimpleQA dataset. The second example represents a
case where the LLLM appears truly to not know the answer; our method quantifies uncertainty better
by expressing much lower confidence (40%) than the TextGrad baseline.

According to Medland, Sarah E.; Loesch, Danuta Z.; Mdzewski, Bogdan; Zhu, Gu;
Montgomery, Grant W.; Martin, Nicholas G. (September 28, 2007), what chromosome
location was identified as linked to the finger ridge counts of the ring, index,
and middle fingers through multivariate linkage analysis?

Answer: 5q14.1

Table 6: Counts per semantic cluster for TextGrad and our method

Semantic Cluster TextGrad Ours

5q14.1 3 7
5q14.3 3

5 1 1
15q14 1 0
2122 1 0
3q26 1 0
5q13 0 1
5435 0 1
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What was the population of the town of Lesbury in Northumberland, England in
the 2011 census?

Answer: 1007

Table 7: Counts per semantic cluster for TextGrad and our method

Semantic Cluster TextGrad Ours

1,154 7
1,118
1,057
1,205
1,264
1,386
1,122
984

1,187
1,112

— e e e = OO O B
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B.3.2 QASPER

The following examples are selected from the QASPER dataset. Note that for the second example,
the context given to the model is unrelated to the query, making the query unanswerable such that
one would expect a well-calibrated LLM to express a high degree of uncertainty.

Context: We begin with a hate speech lexicon containing words and phrases identified by
internet users as hate speech, compiled by Hatebase.org. Using the Twitter API we
searched for tweets containing terms from the lexicon, resulting in a sample of
tweets from 33,458 Twitter users. We extracted the time-line for each user,
resulting in a set of 85.4 million tweets. From this corpus we then took a random
sample of 25k tweets containing terms from the lexicon and had them manually coded
by CrowdFlower (CF) workers. Workers were asked to label each tweet as one of three

categories: hate speech, offensive but not hate speech, or neither offensive nor
hate speech. They were provided with our definition along with a paragraph
explaining it in further detail. Users were asked to think not just about the words
appearing in a given tweet but about the context in which they were used. They
were instructed that the presence of a particular word, however offensive, did not
necessarily indicate a tweet is hate speech. Each tweet was coded by three or more
people. The intercoder-agreement score provided by CF is 92%. We use the majority
decision for each tweet to assign a label. Some tweets were not assigned labels as
there was no majority class. This results in a sample of 24,802 labeled tweets.

How long is their dataset?

Answer: 85400000

Table 8: Counts per semantic answer for TextGrad and our method

Semantic Answer TextGrad Ours

85.4 million tweets 1 6
24,802 tweets 9 4

Random Context: Figure FIGREF4 is the overview of the proposed method using character 3-
gram embeddings (char3-MS-vec). As illustrated in this figure, our proposed method
regards the sum of char3-MS-vec and the standard word embedding as an input of an
RNN. In other words, let INLINEFORM@ be char INLINEFORM1 -MS-vec and we replace
Equation with the following: DISPLAYFORM@

Do they report results only on English data?

Answer: Unanswerable
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Table 9: Counts per semantic answer for TextGrad and our method

Semantic Answer TextGrad Ours
Unclear / not specified in context 0 6
Results are only on English data 0 1
Results are not only on English 9 3
Formatting error in answer 1 0

MHLP Acceptance Rate Over Time
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Figure 3: MHLP acceptance rate over time.

B.3.3 AIME

On the AIME dataset, we analyze the model’s accept/reject decisions over time. In we find
that the model’s acceptance rate over time closely matches the heuristic optimum of 0.234 prescribed
by [Gelman et al.| (1997). shows individual accept/reject decisions.
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Table 10: AIME MHLP Accept/Reject Decisions

Step Current prompt

Proposed prompt

1

Answer the math question. Think
step-by-step.

Answer the math question by providing a
step-by-step solution that explicitly
considers all given conditions, such as
divisibility requirements in terms of
prime factor exponents. Employ
appropriate combinatorial methods to
account for problem constraints. Ensure
accurate probability calculations based
on correct combinatorial reasoning.
Verify the simplification of your final
answer, confirming the correct
calculation of the greatest common
divisor (GCD) if applicable. Present a
clear, logical explanation for each step,
and iteratively review and refine your
solution to guarantee accuracy and
clarity.

20

Provide a concise, step-by-step solution
to the math question, ensuring clear
understanding by first restating the
problem in your own words. Adopt a
systematic approach, setting up relevant
equations or congruences that directly
address the problem’s conditions. Verify
each step’s accuracy, correctly applying
mathematical concepts such as modulo
arithmetic, and maintain a logical flow
by simplifying expressions where
necessary. Ensure comprehensiveness by
considering all possible solutions, and
guarantee accuracy by cross-checking
key calculations, ultimately leading to a
precise final answer that encompasses all
valid solution values.

Provide a concise, step-by-step solution
to the math question, ensuring clear
understanding by first restating the
problem in your own words. Apply
relevant geometric principles and
formulas directly related to the problem,
avoiding unnecessary assumptions and
concepts. Structure your response in a
logical, connected manner, justifying
each step. Verify calculations for
accuracy, cross-checking key steps to
guarantee a precise final answer that
encompasses all valid solution values,
based solely on the provided information
and pertinent mathematical concepts.

40

Provide a concise, step-by-step solution
to the math question, ensuring clear
understanding by explicitly stating the
problem’s requirements and constraints.
Justify your choice of coordinate
systems and break down steps for
deriving coordinates. Verify calculations,
list and validate assumptions, and
maintain a coherent logical flow with
explanations for each decision. For
geometric problems, explicitly calculate
and present coordinates of critical
intersection points and provide detailed,
logically sound methods for calculating
areas. Finally, re-evaluate your approach,
cross-reference with alternative methods
if possible, and verify the correctness of
your answer to ensure accuracy and
relevance.

Provide a concise, step-by-step solution
to the math question, ensuring clarity
and accuracy. Analyze the problem’s
recursive definition (if applicable),
explicitly describing the transformation
of key elements (e.g., zeros, functions) at
each step. Derive any formulas used for
calculations from the given definitions,
logically connecting each step. Include a
detailed breakdown of intermediate
calculations and explanations for each
decision. Where applicable, utilize
visual aids or specific examples to
illustrate complex transformations.
Finally, cross-verify your approach by
considering alternative methods or
perspectives, and validate your final
answer to ensure accuracy and relevance.
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B.4 SEMANTIC ENTROPY

In the main text, we quantify uncertainty for our method and all baselines using confidence: the
probability a model assigns to a given answer (or estimates thereof). Confidence is useful because
it has a clear mathematical interpretation and can be used to assess calibration, but as outlined in
there a numerous other ways to compute uncertainty scores from LLM-based systems.

A popular uncertainty score among these is semantic entropy (Kuhn et al., [2023). In we
check whether our performance is robust to alternate ways of estimating model uncertainty by using
semantic entropy as an abstention score on the QASPER dataset, where unanswerable questions are
those with the context removed. We find that the relative performances of methods in using
confidence match those using semantic entropy.

Table 11: QASPER - Abstention ROC AUC (%) with Semantic Entropy
Method ROC
Paraphrasing+SE 50.0£14
System-Message+SE  68.1 + 1.7

CoT+SE 71.3+1.8
TextGrad+SE 70.2+1.1
MHLP+SE 7824+1.1
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