
Under review as a conference paper at ICLR 2024

SEIZING SERENDIPITY: EXPLOITING THE VALUE OF
PAST SUCCESS IN OFF-POLICY ACTOR-CRITIC

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning high-quality Q-value functions plays a key role in the success of many
modern off-policy deep reinforcement learning (RL) algorithms. Previous works
focus on addressing the value overestimation issue, an outcome of adopting function
approximators and off-policy learning. Deviating from the common viewpoint,
we observe that Q-values are indeed underestimated in the latter stage of the RL
training process, primarily related to the use of inferior actions from the current
policy in Bellman updates as compared to the more optimal action samples in the
replay buffer. We hypothesize that this long-neglected phenomenon potentially
hinders policy learning and reduces sample efficiency. Our insight to address this
issue is to incorporate sufficient exploitation of past successes while maintaining
exploration optimism. We propose the Blended Exploitation and Exploration (BEE)
operator, a simple yet effective approach that updates Q-value using both historical
best-performing actions and the current policy. The instantiations of our method in
both model-free and model-based settings outperform state-of-the-art methods in
various continuous control tasks and achieve strong performance in failure-prone
scenarios and real-world robot tasks1.

1 INTRODUCTION

Reinforcement learning (RL) has achieved impressive progress in solving many complex decision-
making problems in recent years (Mnih et al., 2015; Silver et al., 2016; Hutter et al., 2016; Ouyang
et al., 2022). Many of these advances are obtained by off-policy deep RL algorithms, where the ability
to leverage off-policy samples to learn high-quality value functions underpins their effectiveness.
Value overestimation (Fujimoto et al., 2018; Moskovitz et al., 2021) has long been recognized as
an important issue in off-policy RL, which is primarily associated with the function approximation
errors (Fujimoto et al., 2018) and the side-effect of off-policy learning (Auer et al., 2008; Jin et al.,
2018; Azar et al., 2017), and can potentially lead to suboptimal policies and sample inefficiency. To
tackle this issue, techniques for alleviating the overestimation errors of value functions have been
ubiquitously adopted in modern off-policy RL algorithms (Haarnoja et al., 2018a; Laskin et al., 2020;
Han & Sung, 2021; Moskovitz et al., 2021).

Intriguingly, we find in this paper that in most online off-policy actor-critic methods, the commonly
known value overestimation issue might disappear and be replaced by value underestimation when
the agent gradually starts to solve the task2. A concrete example is illustrated in Figure 1a: in a
failure-prone quadruped robot locomotion task DKittyWalkRandomDynamics (Ahn et al., 2020),
SAC could underestimate historical successful experiences in the latter part of the training process. A
possible explanation is that, the Q-value update could be negatively impacted by the actions a′ (i.e.,
target-update actions) from the current suboptimal policy as compared to using samples from the
scarce successful experiences in the replay buffer when computing the target Q-value Q(s′, a′). If
such circumstances occur, the RL agent would take a substantially longer time to re-encounter these
serendipities for training with decreased sample efficiency.

1Please refer to https://beeauthors.github.io for experiment videos and benchmark results.
2For comprehensive investigations of the underestimation issue in the under-exploitation stage, please see

Appendix E.

1

https://beeauthors.github.io

Under review as a conference paper at ICLR 2024

UnderestimationOverestimation

Success Rate of SAC

Success Rate of BAC

Gap in Q Estimation of SAC

Gap in Q Estimation of BAC

(a) Visualization on the underestimation issue.

𝑄(𝑠, 𝑎)

𝑄(𝑠′, 𝑎(!) 𝑄(𝑠′, 𝑎"′)⋯

𝑄(𝑠, 𝑎)

𝑎"# ∼ 𝜋$𝑎(" ∼ 𝜋" !$%!

Encountered Success
In Historical Polices

Perform Failure
In Current Policy

max
&'!∈)! "#$"

	𝑄(𝑠#, 𝑎(")	 𝔼&!%∼)#𝑄(𝑠
#, 𝑎"#)	

One should not underestimate the value of (𝑠, 𝑎)
due to the failure caused by the current policy

Expected 𝐐(𝐬, 𝐚):

𝑄(𝑠′, 𝑎(")

(b) Illustrative figure on target-update actions.

Figure 1: Motivating examples. (a) In the DKittyWalkRandomDynamics task, when current policy generated
action is inferior to the best action in the replay buffer, which usually occurs in the later stage of training (referred
to as the under-exploitation stage), SAC is more prone to underestimation pitfalls than BAC. The gap in Q
estimation is evaluated by comparing the SAC Q-values and the Monte-Carlo Q estimates using the trajectories
in the replay buffer. (b) We expect the Q value of (s, a) that ever observed with the successful successor (s′, a′)
to be high. But the Bellman evaluation operator, whose target-update actions a′ are only sampled from the
current policy, tends to underestimate it.

The above observation highlights the existence of an under-exploitation stage after the initial under-
exploration stage (Aytar et al., 2018; Ecoffet et al., 2019; 2021) in many robotic tasks, where the
Q-value can be underestimated due to the insufficient exploitation on the high-quality samples in the
replay buffer (illustrated in Figure 1b). Thus allowing the RL agent to swiftly seize the serendipities,
i.e., luckily successful experiences, can be a natural cure to resolve the underestimation issue without
introducing additional overestimation, while also providing potentially improved sample efficiency.

At the heart of this paper, we connect this intuition with Bellman operators: the Bellman Exploita-
tion operator enables effective exploitation of high-quality historical samples while the Bellman
Exploration operator targets maintaining exploration optimism. A simple but effective mechanism,
the Blended Exploration and Exploitation (BEE) operator, is then proposed to combine the merits
of both sides. BEE operator can provide superior Q-value estimation, especially in addressing the
“under-exploitation” issue. Moreover, it can be flexibly integrated into existing off-policy actor-critic
frameworks, leading to the instantiations of two practical algorithms: BAC (BEE Actor-Critic) for
model-free settings and MB-BAC (Model-based BAC) for model-based settings.

Both BAC and MB-BAC outperform other state-of-the-art methods on various MuJoCo, DMCon-
trol and Meta-World tasks by a large margin. On many failure-prone tasks such as DogRun and
HumanoidStandup, BAC achieves over 2x the evaluation scores of the strongest baseline. Crucially,
we conduct real-world experiments on four competitive quadruped robot locomotion tasks, and
BAC achieves strong performance owing to the capability of addressing the under-exploitation issue.
Furthermore, in our experiments, we observe unanimously improved performance when applying the
BEE operator to different backbone algorithms, highlighting its flexibility and generic nature.

2 RELATED WORKS

Off-policy actor-critic methods leverage a replay buffer to update the Q-function and policy (Casas,
2017; Mnih et al., 2016), providing higher sample efficiency than on-policy RL methods. The prior
works commonly rely on the standard policy gradient formulation (Peters & Schaal, 2008) for policy
improvement. Various attempts have been devoted to modifying the policy evaluation procedure,
primarily pursuing a high-quality value function to tackle the exploration or exploitation issue —
central concerns in online RL (Burda et al., 2019; Ecoffet et al., 2019).

Despite the ongoing interest in exploration and exploitation, most previous works devote to exploration
design following the optimism principle in the face of uncertainty (Auer et al., 2008; Fruit et al.,
2018; Szita & Lőrincz, 2008), but view exploitation as merely maximizing Q-function. The Bellman
evaluation operator, T Q(s, a) = r(s, a) + γEs′∼PEa′∼πQ(s′, a′), underpins the critic learning.
Existing efforts can be summarized into modifying this operator T in three main ways: 1) perturbing
action a′ with techniques such as ϵ-greedy, target policy smoothing (Fujimoto et al., 2018), and pink
noise (Eberhard et al., 2023); 2) augmenting reward r to foster exploration Ostrovski et al. (2017);
Burda et al. (2019); Badia et al. (2020); Zhang et al. (2021b); 3) directly adjusting Q values such

2

Under review as a conference paper at ICLR 2024

as max-entropy RL methods (Zhang et al., 2021a; Hazan et al., 2019; Lee et al., 2019; Islam et al.,
2019; Haarnoja et al., 2018a; Han & Sung, 2021) that infuse the operator with an entropy term,
and optimistic exploration methods that learn Upper Confidence Bound (UCB) (Ishfaq et al., 2021;
Auer, 2002; Nikolov et al., 2019) of ensemble Q-value networks (Bai et al., 2021; Ciosek et al.,
2019; Moskovitz et al., 2021). In essence, value overestimation might be associated with optimistic
exploration (Jin et al., 2018; Laskin et al., 2020; Moskovitz et al., 2021), alongside factors such as
off-policy learning and high-dimensional, nonlinear function approximation. Hence, attempts to
correct for overestimation, e.g., taking the minimum of two separate critics, have been widely adopted
in the above exploration-driven methods (Fujimoto et al., 2018; Haarnoja et al., 2018a; Han & Sung,
2021; Sun et al., 2022). Yet directly applying such a minimum may cause underestimation (Hasselt,
2010). To mitigate it, prior methods (Ciosek et al., 2019; Moskovitz et al., 2021) seek for a milder
form, assuming the epistemic uncertainty as the standard deviation of ensemble Q values. We
identify the value underestimation that particularly occurs in the latter training stages and uncover its
long-neglected culprit. Our findings suggest that incorporating sufficient exploitation into current
exploration-driven algorithms would be a natural solution and lead to an improved algorithm.

Experience Replay (ER) (Mnih et al., 2015) boosts exploitation in off-policy RL by enabling data
reuse. Recent works in prioritized replay (Schaul et al., 2015; Liu et al., 2021; Sinha et al., 2022)
propose various metrics to replay or reweight important transitions more frequently, benefiting
sample efficiency. We primarily implement BAC with the vanilla ER method for simplicity, yet
more advanced ER techniques could be integrated for further enhancement. Outside the online RL
paradigm, imitation learning (Pomerleau, 1988; Schaal, 1996; Ross et al., 2011) and offline RL
algorithms (Fujimoto et al., 2019; Kumar et al., 2019; 2020; Kostrikov et al., 2021; Zhan et al.,
2022) are known for their effective exploitation of provided datasets. Although the prospect of
integrating these techniques to enhance online RL is attractive, offline learning is often considered
overly-conservative and requires a reasonable-quality dataset for high performance (Li et al., 2022),
leading to limited success in improving online learning (Niu et al., 2022). In standard online RL, we
only have access to a dynamic and imperfect replay buffer, rather than a well-behaved dataset. As a
result, recent efforts are mainly under a two-stage paradigm, integrating these techniques as policy pre-
training for subsequent online training, such as initializing the policy with behavior cloning (Hester
et al., 2018; Shah & Kumar, 2021; Wang et al., 2022a; Baker et al., 2022) or performing offline RL
followed by online fine-tuning (Nair et al., 2020; Lee et al., 2022; Hansen-Estruch et al., 2023). By
contrast, our work suggests a new paradigm that incorporates exploitation ingredients from offline
RL to enhance pure online RL, as demonstrated in our proposed framework.

3 PRELIMINARIES

Markov decision process. We denote a discounted Markov decision process (MDP) as M =
(S,A, P, r, γ), where S denotes the state space, A the action space, r : S ×A ∈ [−Rmax, Rmax]
the reward function, and γ ∈ (0, 1) the discount factor, and P (· | s, a) stands for transition dynamics.

Policy mixture. During policy learning, we consider the historical policies at iteration step k as a
historical policy sequence Πk = {π0, π1, . . . , πk}. Given its corresponding mixture distribution αk,
the policy mixture πmix,k = (Πk, αk) is obtained by first sampling πi from αk and then following that
policy over subsequent steps. The mixture policy induces a state-action visitation density according to
dπmix,k(s, a) =

∑k
i=1 α

k
i d
πi(s, a) (Hazan et al., 2019; Zhang et al., 2021b; Wang et al., 2022b). While

the πmix,k may not be stationary in general, there exists a stationary policy µ such that dµ = dπmix,k .

Off-policy actor-critic RL. Online off-policy RL methods based on approximate dynamic pro-
gramming typically utilize an action-value function Q(s, a). For a given policy π, the Q-value can be
updated by repeatedly applying a Bellman evaluation operator T (Sutton, 1988; Watkins, 1989):

T Q(s, a) ≜ r(s, a) + γEs′∼P (·|s,a)Ea′∼π(·|s′)[Q(s′, a′)] (3.1)

Several works under the optimism-in-face-of-uncertainty (OFU) principle could be interpreted
as learning Q-value using a modified Bellman operator (Haarnoja et al., 2018a; Han & Sung,
2021; Moskovitz et al., 2021). We conclude them as a Bellman Exploration operator Texplore that
incorporates an exploration term ω(s′, a′|π),

TexploreQ(s, a) ≜ r(s, a) + γEs′∼P (·|s,a)Ea′∼π(·|s′)
[
Q(s′, a′)− ω(s′, a′|π)

]
(3.2)

3

Under review as a conference paper at ICLR 2024

❓ ❓

Start Point

End Point

(a) Q from pure Texploit

Start Point

End Point

(b) Q from pure Texplore

End Point

Start Point

(c) Q from our B

Start Point

End Point

(d) Optimal Q and actions

Figure 2: Comparison of different operators on a toy grid world. The agent’s goal is to navigate from the
bottom of the maze to the top left. The color of each square shows the learned value, red arrows reveal incorrect
actions, and question marks indicate unencountered states.

4 EXPLOITING PAST SUCCESS FOR OFF-POLICY OPTIMIZATION

In this section, we first propose the Blended Exploration and Exploitation (BEE) operator which has
good theoretical properties. Our thorough investigations highlight BEE’s superior Q-value estimation
and effectiveness in addressing the “under-exploitation” issue. Owing to its universality, we finally
arrive at both model-free and model-based algorithms based on the BEE operator.

4.1 BLENDED EXPLOITATION AND EXPLORATION (BEE) OPERATOR

To address the under-exploitation issue, a natural idea is to extract the best-performing actions for
updating the Q-target value. A straightforward solution might be the Bellman optimality operator,
i.e., ToptQ(s, a) = r(s, a) + γ ·maxa′∈A Es′∼P (s′|s,a)[Q(s′, a′)], however, it entails traversing all
possible actions, being intractable in large or continuous action spaces (Kumar et al., 2019; Garg et al.,
2023). In light of this, we consider the policy mixture µ induced by the replay buffer, which contains
many samples and varies per policy iteration. Based on µ, we introduce the Bellman Exploitation
operator Texploit to leverage the best-performing transitions from the historical policies:

T µexploitQ(s, a) = r(s, a) + γ · max
a′∈A

µ(a′|s′)>0

Es′∼P (s′|s,a)[Q(s′, a′)] (4.1)

It yields a Q-value estimation that is less affected by the optimality level of the current policy. Several
offline RL methods Kostrikov et al. (2021); Xu et al. (2023); Garg et al. (2023) have also focused on
computing maxQ constrained to the support of a pre-collected dataset for Bellman update, yet rely
on a stationary behavior policy, which could be viewed as a reduced form of the Texploit operator.

Meanwhile, to maintain the exploration optimism, we utilize the general Bellman Exploration operator
in Eq.(3.2), namely,

T πexploreQ(s, a) = r(s, a) + γ · Es′∼P (s′|s,a)Ea′∼π(a′|s′)[Q(s′, a′)− ω(s′, a′|π)] (4.2)
With the Bellman Exploitation and Bellman Exploration operators, which respectively capitalize on
past successes and promote the exploration of uncertain regions, we shift our focus to addressing
the balance between exploitation and exploration. Here, we opt for a simple linear combination to
regulate the trade-off preference, as presented below:
Definition 4.1. The Blended Exploitation and Exploration (BEE) Bellman operator B is defined as:

B{µ,π}Q(s, a) = λ · T µexploitQ(s, a) + (1− λ) · T πexploreQ(s, a) (4.3)

Here, µ is the policy mixture, π is the current policy, and λ ∈ (0, 1) is a trade-off hyperparameter.

The choice of λ in Eq.(4.3) impacts the exploitation-exploration trade-off, as shown in Figure 2.
Besides choosing a fixed number, λ can also be autonomously and adaptively tuned with multiple
methods as detailed in Appendix B.3.3. The single-operator design incurs comparable computa-
tional costs to general-purpose algorithms such as SAC (Haarnoja et al., 2018a), and is relatively
lightweight compared to other methods that require training a large number of Q-networks to tackle
the exploration-exploitation dilemma (Ciosek et al., 2019; Sun et al., 2022; Chen et al., 2021).

4.2 DYNAMIC PROGRAMMING PROPERTIES

For a better understanding of the BEE operator, we conduct a theoretical analysis of its dynamic
programming properties in the tabular MDP setting, covering policy evaluation, policy improvement,
and policy iteration. All proofs are included in Appendix A.

4

Under review as a conference paper at ICLR 2024

under-exploitation stage
90.6%

under-exploration stage
9.4%

under-exploration stage
4.7%

under-exploitation stage
95.3%

under-exploration stage
2.3%

under-exploitation stage
97.7%

under-exploration stage
1.9%

under-exploitation stage
98.1%

Figure 3: ∆(µ, π) across four different tasks using an SAC agent. Blue bars correspond to positive ∆(µ, π),
indicating the under-exploitation stage, while orange bars represent the under-exploration stage.

Proposition 4.2 (Policy evaluation). Consider an initial Q0 : S × A → R with |A| < ∞, and
define Qk+1 = B{µ,π}Qk. Then the sequence {Qk} converges to a fixed point Q{µ,π} as k →∞.

Proposition 4.3 (Policy improvement). Let {µk, πk} be the policies at iteration k, and
{µk+1, πk+1} be the updated policies, where πk+1 is the greedy policy of the Q-value. Then
for all (s, a) ∈ S ×A, |A| <∞, we have Q{µk+1,πk+1}(s, a) ≥ Q{µk,πk}(s, a).

Proposition 4.4 (Policy iteration). Assume |A| < ∞, by repeating iterations of the policy eval-
uation and policy improvement, any initial policies converge to the optimal policies {µ∗, π∗}, s.t.
Q{µ∗,π∗}(st, at) ≥ Q{µ′,π′}(st, at),∀µ′ ∈ Π, π′ ∈ Π,∀(st, at) ∈ S ×A.

With the approximate dynamic programming properties established, our BEE operator is well-defined
and flexible that could be integrated into various off-policy actor-critic algorithms.

4.3 SUPERIOR Q-VALUE ESTIMATION USING BEE OPERATOR

While being intuitively reasonable, BEE’s potential benefits require further verification. In the
following, we show that the BEE operator would facilitate the estimation of Q and thus improve
sample efficiency compared to the commonly used Bellman evaluation operator.

Investigation on the under-exploitation stage. As we argued in the introduction, we observe the
possible under-exploitation stage after the initial under-exploration stage. To quantify the existence
of under-exploitation, we compute the expected difference between the maximum Q-value from the
historical policies and the expected Q-value under the current policy (considering the exploration
bonus), stated as ∆(µk, πk) = Es

[
maxa∼µk(·|s) Q

µk(s, a) − Ea∼πk(·|s)[Q
πk(s, a) − ω(s, a|πk)]

]
with policy mixture µk and current policy πk. ∆(µk, πk) symbolizes the discrepancy between the
value of past successes and of current policy.

A positive ∆(µk, πk) indicates that the value of optimal target-update actions in the replay buffer
exceeds that of the actions generated by the current policy, even considering the exploration bonus.
This suggests that an optimal policy derived from the replay buffer would outperform the current
policy, implying a potential under-exploitation of valuable historical data. In Figure 3, we illustrate
∆(µk, πk) of SAC over training steps. Notably, a significant proportion of ∆(µk, πk) is positive in
the latter training stage, suggesting that the use of the common Bellman Exploration operator Texplore
does suffer from the under-exploitation issue. Further investigations on its existence and underlying
reasons refer to Appendix E.2 and E.3.

BEE mitigates the under-exploitation pitfalls. The prevalent positive ∆(µ, π) exposes the limita-
tions of the Bellman Exploration operator Texplore. The BEE operator alleviates the over-reliance on
the current policy and mitigates the “under-exploitation” pitfalls by allowing the value of optimal
actions in the replay buffer to be fully utilized in the Q-value update. To be more specific, when
the Texplore operator is stuck in underestimation, the BEE operator would output a higher Q-value,
as shown by the inequality Q

{µk,πk}
B (s, a) ≥ Qπk

Texplore
(s, a) + λγ∆(µk, πk). This agrees with the

findings in Figure 1a, the BEE operator exhibits lower underestimation bias and faster convergence
of success rate, indicating its better sample efficiency. For more results refer to Appendix E.5

BEE exhibits no extra overestimation. While the BEE operator seeks to alleviate underestimation,
it does not incite additional overestimation. This is in contrast to prior techniques that excessively
increase exploration bonuses or use optimistic estimation (Brafman & Tennenholtz, 2002; Kim et al.,
2019; Pathak et al., 2019), which may distort the Q-value estimates and potentially cause severe
overestimation (Ciosek et al., 2019). The Bellman Exploitation operator, Texploit does not introduce

5

Under review as a conference paper at ICLR 2024

Algorithm 1: Blended Exploitation and Exploration Actor-Critic (BAC)
initialize :Q networks Qϕ, policy πθ , replay buffer D with M samples by random policy
for policy training steps t = 1, 2, · · · , T do

Sample a mini-batch of N transitions (s, a, r, s′) from D
Compute TexploitQϕ by Eq.(4.1) ▷ multiple design choices available
Compute TexploreQϕ by Eq.(4.2) ▷ with a chosen exploration term ω(·|πθ)
Calculate the target Q value: BQϕ ← λTexploitQϕ + (1− λ)TexploreQϕ

for each environment step do
Collect (s, a, s′, r) with πθ from real environment; add to D

for each gradient step do
Update Qϕ by minϕ (BQϕ −Qϕ)

2

Update πθ by maxθ Qϕ(s, a)

artificial bonus items and instead relies solely on the policy mixture induced by the replay buffer to
calculate the maximum Q-value. Consequently, Texploit is grounded in real experiences.

0 1M
steps

0

1

N
or

m
al

iz
ed

 e
rr

or

Hopper
|Q k Q *

k |
|Q{ k, k} Q *

k |

0 1M
steps

0

1

N
or

m
al

iz
ed

 e
rr

or

Walker
|Q k Q *

k |
|Q{ k, k} Q *

k |

Figure 4: Q-value estimation error comparison.
Texplore is referred to as E for brevity. And Q∗

k is
obtained practically with Monte-Carlo estimation.

As illustrated in Figure 4, the Q-value function in-
duced by the BEE operator enjoys a lower level of
overestimation and underestimation. Further, as em-
pirically shown in Figure 1a and 2, with enhanced
exploitation, the BEE operator enables faster and
more accurate Q-value learning, thereby reducing
the chains of ineffective exploration on some inferior
samples, and leading to improved sample efficiency.
For more results refer to Appendix E.6.

4.4 ALGORITHMIC INSTANTIATION

We now describe two practical algorithmic instantiations based on the BEE operator B for both
model-free and model-based RL paradigms, namely BEE Actor-Critic (BAC) and Model-Based
BAC (MB-BAC), respectively. The implementation of our methods requires the specification of two
main design choices: 1) a practical way to optimize the objective value on the Bellman Exploitation
operator, and 2) a specific choice on the exploration term ω(·|π) in the Bellman Exploration operator.

To effectively compute the maxQ-target value in Eq.(4.1) subject to the samples in the replay buffer,
we utilize the in-sample learning objectives (Kostrikov et al., 2021; Garg et al., 2023; Xu et al., 2023)
to learn the maximum Q-value over actions in the replay buffer. This treatment not only avoids the
explicit computation of the policy mixture µ of replay buffer but also promotes the stability of Q
estimation by only extracting actions that have been previously encountered for the Bellman update.

For the exploration term ω(·|πθ), numerous options have been extensively explored in prior off-policy
actor-critic methods (Haarnoja et al., 2018a; Han & Sung, 2021; Eberhard et al., 2023). Here, we
employ the entropy regularization term from SAC to compute TexploreQϕ(s, a), where actions a′ for
target updating are extracted from πθ. For extensive design choices for BAC see Appendix B.3.

Integration into Dyna-style model-based RL. Our method could be invoked into the Dyna-style
model-based RL (MBRL) framework (Sutton, 1990; 1991; Kurutach et al., 2018; Buckman et al.,
2018; Luo et al., 2018). As observed in (Luo et al., 2018; Lambert et al., 2020; Ghugare et al., 2023),
a better policy optimizer could potentially further enhance the algorithm’s performance, this motivates
us to incorporate the BEE operator in existing model-based approaches. We propose a modification to
the general Dyna-style algorithm, where we replace the standard Q-value update rule with our BEE
operator, resulting in the Model-based BAC (MB-BAC) algorithm. In contrast to previous methods
that utilize SAC as policy optimization backbones (Janner et al., 2019; Lai et al., 2021; Pan et al.,
2020; Ji et al., 2022), our MB-BAC algorithm treats real and model-generated data differently. It
applies the Texploit to real data De, capitalizing on past successful experiences while employing the
Texplore on model rollout data Dm to explore new possibilities. This approach enhances the effective
use of valuable real data and fosters exploration in new regions of the state space. The practical

6

Under review as a conference paper at ICLR 2024

0 500K 1M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Hopper

0 500K 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

Walker

0 1M 2M
steps

0

50

100

150

av
er

ag
e

re
tu

rn

Swimmer

0 1M 2M 3M
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant

0 2.5M 5M
steps

0

2000

4000

6000

8000

av
er

ag
e

re
tu

rn

Humanoid

0 1M 2M
steps

100000

200000

300000

av
er

ag
e

re
tu

rn

HumanoidStandup

BAC SAC TD3 DAC RRS PPO

Figure 5: Training curves of BAC and five baselines on six continuous control benchmarks. Solid curves depict
the mean of five trials and shaded regions correspond to the one standard deviation.

0 50k 100k
steps

0

2000

4000

av
er

ag
e

re
tu

rn

Hopper

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Walker2d

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant

0 100k 200k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Humanoid

MB-BAC CMLO MBPO AutoMBPO SLBO PETS SAC convergence

Figure 6: Training curves of MB-BAC and six baselines on four continuous control benchmarks, averaged over
five trials. The dashed lines are the asymptotic performance of SAC (up to 3M) and MBPO.

implementation builds upon MBPO (Janner et al., 2019) by integrating the BAC as policy optimizer,
with the pseudocode in Appendix B.2.

5 EXPERIMENTS

Our experimental evaluation aims to investigate the following questions: 1) How effective is the
proposed BEE operator in model-based and model-free paradigms? 2) How effectively does BAC
perform in failure-prone scenarios, that highlight the ability to seize serendipity and fleeting successes,
particularly in various real-world tasks?

5.1 EVALUATION ON STANDARD CONTROL BENCHMARKS

To illustrate the effectiveness of the BEE operator across both model-based and model-free paradigms,
we evaluate BAC and MB-BAC on various continuous control benchmarks. Detailed results on a
total of 27 tasks from DMControl (Tunyasuvunakool et al., 2020) and Meta-World (Yu et al., 2019)
benchmark suites are provided in Appendix G.

Comparison of model-free methods. We compare BAC to several popular model-free baselines,
including: 1) SAC (Haarnoja et al., 2018a), regarded as the most popular off-policy actor-critic
method; 2) TD3 (Fujimoto et al., 2018), which introduces the Double Q-learning trick to reduce
function approximation error; 3) Diversity Actor-Critic (DAC) (Han & Sung, 2021), a variant of SAC,
using a sample-aware entropy regularization instead, which is a potential choice for our ω(·|s, a);
4) Random Reward Shift (RRS) (Sun et al., 2022), which learns multiple value functions (seven
double-Q networks) with different shifting constants for the exploration and exploitation trade-off; 5)
PPO (Schulman et al., 2017), a stable on-policy algorithm that discards historical policies.

We evaluate BAC and the baselines on a set of MuJoCo (Todorov et al., 2012) continuous control
tasks. BAC surpasses all baselines in terms of eventual performance, coupled with better sample
efficiency, as shown in Figure 5. Notably, the HumanoidStandup task, known for its high action
dimension and susceptibility to failure (Han & Sung, 2021), requires the algorithms to be able to
seize and value serendipity. In this task, BAC gains a significantly better performance, with average
returns up to 280,000 at 2.5M steps and 360,000 at 5M steps, which is 1.5x and 2.1x higher than the
strongest baseline, respectively. This echoes the hypothesis that BAC exploits past serendipities in
failure-prone environments. Trajectory visualizations in Figure 33 show that BAC agent could swiftly

7

Under review as a conference paper at ICLR 2024

1M 2M
steps

0

0.25

0.50

0.75

su
cc

es
s

ra
te

DKittyWalk-Medium
BAC
BEE-TD3
SAC
TD3

0 1M 2M
steps

500

1000

1500

av
er

ag
e

re
tu

rn

DKittyWalk-Medium
BAC
BEE-TD3
SAC
TD3

Figure 7: Success rate and average return in the
DKittyWalk-Medium task.

1M 2M 3M 4M
steps

0

0.25

0.50

0.75

su
cc

es
s

ra
te

DKittyWalk-Hard
BAC
BEE-TD3
SAC
TD3

1M 2M 3M 4M
steps

500

1000

1500

av
er

ag
e

re
tu

rn

DKittyWalk-Hard
BAC
BEE-TD3
SAC
TD3

Figure 8: Success rate and average return in the
DKittyWalk-Hard task.

Distance Moved
BAC
SAC
TD3

2.97
1.62

0.90
 Target at: 3 m

(a) Smooth road

Distance Moved
BAC
SAC
TD3

0.89
0.52

0.29
 Target at: 1 m

(b) Rough stone road

Distance Moved
BAC
SAC
TD3

0.89
0.48

0.08
 Target at: 1 m

(c) Uphill stone road

Distance Moved
BAC
SAC
TD3

0.87
0.23

0.04
 Target at: 1 m

(d) Grassland

Figure 9: Comparisons on four challenging real-world tasks. The bar plots show how far the agent walks toward
the goal for each algorithm averaged over 5 runs. For (a) and (b), we employ the policy trained in the -Medium
task, and for (c) and (d) use the policy trained in the -Hard task.

reach a stable standing, while the SAC agent ends up with a wobbling kneeling posture, the DAC
agent sitting on the ground, and the RRS agent rolling around.

Experiments on the more failure-prone tasks refer to Appendix F. Additionally, we integrate our BEE
into the TD3 algorithm and find that the ad-hoc BEE-TD3 also outperforms the original TD3 method
in 15 DMControl tasks, refer to Appendix G.1.

Comparison of model-based methods. We evaluate the performance of MB-BAC, which integrates
the BEE operator into the MBPO algorithm, against several model-based and model-free baselines.
Among the Dyna-style counterparts, MBPO (Janner et al., 2019), CMLO (Ji et al., 2022), and
AutoMBPO (Lai et al., 2021) use SAC as the policy optimizer, while SLBO (Luo et al., 2018)
employs TRPO (Schulman et al., 2015). PETS (Chua et al., 2018) is a planning-based method that
utilizes CEM (Botev et al., 2013) as the planner. Figure 6 showcases that MB-BAC learns faster than
other modern model-based RL methods and yields promising asymptotic performance compared
with model-free counterparts. Moreover, the result highlights the universality of the BEE operator.

5.2 EVALUATION IN REAL-WORLD QUADRUPED ROBOTS WALKING TASK

We evaluate BAC on a real quadruped robot D’Kitty (Ahn et al., 2020). We follow the sim2real
paradigm as in previous legged locomotion works (Agarwal et al., 2023; Ahn et al., 2020; Hwangbo
et al., 2019; Tan et al., 2018) where the agent is trained in simulated environments with randomized
terrains and then deployed in the real world without further training. The task is challenging, as
agents are prone to falling due to fluctuating terrain. As for real-world scenarios, the D’Kitty robot is
required to traverse various complex terrains, contending with unpredictable environmental factors.

Firstly, we construct two simulation task variants, DKittyWalk-Medium and DKittyWalk-Hard. The
-Medium variant features a random height region of 0.07m, while the -Hard variant has a height of
0.09m, which is 1.4 times and 1.8 times higher than the base task DKittyWalkRandomDynamics,
respectively. Given D’Kitty’s leg length of around 0.3m when standing, navigating uneven terrain
with height variations of over 0.2x to 0.3x the leg length poses a significant challenge, as a deviation
of 0.02m would lead to a considerable shift in the center of gravity. Figure 7 and 8 demonstrate that
BAC outperforms other algorithms in both tasks with clearer advantages. BAC achieves a success
rate surpassing SAC by approximately 50%. The ad-hoc BEE-TD3 also outperforms the TD3.

8

Under review as a conference paper at ICLR 2024

More crucially, BAC achieves superior performance when deployed in the real world across various
terrains, as shown in Figure 9. The policy learned in the -Medium variant is deployed on two terrains
— smooth road and rough stone road, with target points positioned at distances of 3m and 1m,
respectively. For more challenging terrains — uphill stone roads and grasslands, we employ the
policy trained in the -Hard variant, with a target point located 1m ahead. Specifically, the BAC
algorithm outperformed the TD3 and SAC agents in achieving stable movement across a variety of
terrains and displaying natural gaits. In contrast, the TD3 agent prefers lower postures, such as knee
walking, which makes it prone to falling on uneven terrain, while the SAC agent suffers from more
oscillatory gait patterns, as shown in the supplementary videos. The empirical results also shed light
on the necessity of algorithmic improvement for real-world robotics in addition to building better
environments and designing informative rewards.

5.3 ABLATION STUDY

0 25k 50k
steps

0

0.10

0.20

0.30

su
cc

es
s

ra
te

DKittyWalk-Medium
BAC
SAC

0 25k 50k
steps

0

200

400

600

av
er

ag
e

re
tu

rn

DKittyWalk-Medium
BAC
SAC

Figure 10: Comparison of the ability to seize
serendipity in the DKittyWalk-Medium task.
Left: success rate; Right: average return.

0 1M 2M
steps

0

500

1000

1500

Q
-v

al
ue

DKittyWalk-Medium
BAC
SAC

0 2M 4M
steps

0

500

1000

1500

Q
-v

al
ue

DKittyWalk-Hard
BAC
SAC

Figure 11: Q-value learning stability compari-
son. The experiments are run over 5 seeds.

0 500K 1M
steps

2500

5000

av
er

ag
e

re
tu

rn

Walker
= 0.00
= 0.35
= 0.40
= 0.45
= 1.00

0 1M 2M
steps

2000

4000

6000
av

er
ag

e
re

tu
rn

Humanoid
= 0.00
= 0.40
= 0.45
= 0.50
= 1.00

Figure 12: Parameter study on λ. The experi-
ments are run over 4 random seeds.

Ability to seize serendipity. To better understand
how well the BEE operator captures past well-
performing actions, we conduct experiments on the
DKittyWalk-Medium task. We initialize SAC and BAC
with the identical Q network, random policy, and replay
buffer. Next, we collected 15 trajectories (2400 transi-
tions in total) using an expert policy whose success rate
is 100% and adding them to the replay buffer. Keeping
all components and parameters the same as in the main
experiment, we train BAC and SAC on the blended
buffer harboring several successful actions. Figure 10
suggests that BAC recovers success faster than SAC,
indicating its supposed ability to seize serendipity.

More stable Q-value in practice. In failure-prone
scenarios, policy performance typically experiences
severe oscillation across iterations due to easily encoun-
tered failure samples from the current policy in Q-value
update if using the Bellman evaluation operator. The
Q-value learned by the BEE operator is less affected by
the optimality level of the current policy, thus it might
be expected of having better learning stability. The
smaller error bar across 5 runs in Figure 11 supports it.

Hyperparameters. Setting an appropriate weighted coefficient λ, BAC could balance the ex-
ploitation and exploration well. We may note that the algorithm is reduced to the online version of
IQL (Kostrikov et al., 2021) for an extreme value λ = 0. According to Figure 12, and the detailed
settings and hyperparameter studies in Appendix B.4, we find that a moderate choice of λ around 0.5
is sufficient to achieve the desired performance across all 35 locomotion and manipulation tasks we
have benchmarked. This underscores that BAC does not need heavy tuning for strong performance.

6 CONCLUSION

In this paper, we investigate the overlooked issue of value underestimation in off-policy actor-
critic methods, which stems from “under-exploitation” in the latter training steps that hinder sample
efficiency. These observations motivate us to propose the Blended Exploitation and Exploration (BEE)
operator, which leverages the value of past successes to enhance Q-value estimation and policy
learning. The proposed algorithms BAC and MB-BAC outperform both model-based and model-free
methods across various continuous control tasks. Remarkably, without further training, BAC shines
in real-robot tasks, emphasizing the need for improved general-purpose algorithms in real-world
robotics. Finally, our work sheds light on future work on fully fusing exploitation and exploration
techniques, e.g., incorporating up-to-date design choices for computing maxQ or exploration term,
in building strong RL methods.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged locomotion in chal-
lenging terrains using egocentric vision. In Conference on Robot Learning, 2023.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural
Information Processing Systems, 2021.

Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, and
Vikash Kumar. Robel: Robotics benchmarks for learning with low-cost robots. In Conference on
robot learning, 2020.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. In Advances in Neural Information Processing Systems, 2008.

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando De Freitas. Playing
hard exploration games by watching youtube. In Advances in Neural Information Processing
Systems, 2018.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International Conference on Machine Learning, 2017.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In International Conference on Learning
Representations, 2020.

Chenjia Bai, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng Liu, and Zhaoran Wang.
Principled exploration via optimistic bootstrapping and backward induction. In International
Conference on Machine Learning, 2021.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. In Advances in Neural Information Processing Systems, 2022.

Zdravko I Botev, Dirk P Kroese, Reuven Y Rubinstein, and Pierre L’Ecuyer. The cross-entropy
method for optimization. In Handbook of statistics, volume 31, pp. 35–59. Elsevier, 2013.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems, 2018.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

Noe Casas. Deep deterministic policy gradient for urban traffic light control. arXiv preprint
arXiv:1703.09035, 2017.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross. Randomized ensembled double q-learning:
Learning fast without a model. In International Conference on Learning Representations, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, 2018.

10

Under review as a conference paper at ICLR 2024

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with optimistic
actor critic. In Advances in Neural Information Processing Systems, 2019.

Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink noise is all you need:
Colored noise exploration in deep reinforcement learning. In International Conference on Learning
Representations, 2023.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained
exploration-exploitation in reinforcement learning. In International Conference on Machine
Learning, 2018.

S Fujimoto, H van Hoof, and D Meger. Addressing function approximation error in actor-critic
methods. Proceedings of Machine Learning Research, 80:1587–1596, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-gym: Open-
source goal-conditioned environments for robotic learning. arXiv preprint arXiv:2106.13687,
2021.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. In International Conference on Learning Representations, 2023.

Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine, and Russ Salakhutdinov.
Simplifying model-based rl: Learning representations, latent-space models, and policies with one
objective. In International Conference on Learning Representations, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Seungyul Han and Youngchul Sung. Diversity actor-critic: Sample-aware entropy regularization for
sample-efficient exploration. In International Conference on Machine Learning, 2021.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In ICML, 2022.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, 2019.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario Bellicoso, Vassilios Tsounis,
Jemin Hwangbo, Karen Bodie, Peter Fankhauser, Michael Bloesch, et al. Anymal-a highly mobile
and dynamic quadrupedal robot. In 2016 IEEE/RSJ international conference on intelligent robots
and systems, 2016.

11

Under review as a conference paper at ICLR 2024

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
and Lin Yang. Randomized exploration in reinforcement learning with general value function
approximation. In International Conference on Machine Learning, 2021.

Riashat Islam, Zafarali Ahmed, and Doina Precup. Marginalized state distribution entropy regulariza-
tion in policy optimization. arXiv preprint arXiv:1912.05128, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems, 2019.

Tianying Ji, Yu Luo, Fuchun Sun, Mingxuan Jing, Fengxiang He, and Wenbing Huang. When
to update your model: Constrained model-based reinforcement learning. Advances in Neural
Information Processing Systems, 2022.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient?
In Advances in Neural Information Processing Systems, 2018.

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. Emi:
Exploration with mutual information. In International Conference on Machine Learning, 2019.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In International Conference on Learning Representations, 2018.

Hang Lai, Jian Shen, Weinan Zhang, Yimin Huang, Xing Zhang, Ruiming Tang, Yong Yu, and
Zhenguo Li. On effective scheduling of model-based reinforcement learning. In Advances in
Neural Information Processing Systems, 2021.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. In Advances in Neural Information Processing Systems,
2020.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdinov.
Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, 2022.

Jianxiong Li, Xianyuan Zhan, Haoran Xu, Xiangyu Zhu, Jingjing Liu, and Ya-Qin Zhang. When
data geometry meets deep function: Generalizing offline reinforcement learning. In International
Conference on Learning Representations, 2022.

Xu-Hui Liu, Zhenghai Xue, Jingcheng Pang, Shengyi Jiang, Feng Xu, and Yang Yu. Regret
minimization experience replay in off-policy reinforcement learning. In Advances in Neural
Information Processing Systems, 2021.

12

Under review as a conference paper at ICLR 2024

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorith-
mic framework for model-based deep reinforcement learning with theoretical guarantees. In
International Conference on Learning Representations, 2018.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, 2016.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tactical
optimism and pessimism for deep reinforcement learning. In Advances in Neural Information
Processing Systems, 2021.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-directed
exploration for deep reinforcement learning. In International Conference on Learning Representa-
tions, 2019.

Haoyi Niu, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming HU, Xianyuan Zhan, et al. When to trust
your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning. In Advances in
Neural Information Processing Systems, 2022.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International Conference on Machine Learning, 2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems, 2022.

Feiyang Pan, Jia He, Dandan Tu, and Qing He. Trust the model when it is confident: Masked
model-based actor-critic. In Advances in Neural Information Processing Systems, 2020.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International Conference on Machine Learning, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, and Roberto Calandra. Mbrl-
lib: A modular library for model-based reinforcement learning. Arxiv, 2021. URL https:
//arxiv.org/abs/2104.10159.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in Neural
Information Processing Systems, 1988.

pranz24. pytorch-soft-actor-critic. https://github.com/pranz24/
pytorch-soft-actor-critic, 2018.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Artificial Intelligence and Statistics, 2011.

Stefan Schaal. Learning from demonstration. In Advances in Neural Information Processing Systems,
1996.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

13

https://arxiv.org/abs/2104.10159
https://arxiv.org/abs/2104.10159
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic

Under review as a conference paper at ICLR 2024

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rutav M Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In
International Conference on Machine Learning, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Samarth Sinha, Jiaming Song, Animesh Garg, and Stefano Ermon. Experience replay with likelihood-
free importance weights. In Learning for Dynamics and Control Conference, 2022.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Optimistic curiosity
exploration and conservative exploitation with linear reward shaping. In Advances in Neural
Information Processing Systems, 2022.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3:
9–44, 1988.

Richard S Sutton. Integrated architecture for learning, planning, and reacting based on approximating
dynamic programming. In International Conference on Machine Learning, 1990.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

István Szita and András Lőrincz. The many faces of optimism: a unifying approach. In International
conference on Machine learning, 2008.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems, 2012.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Che Wang, Xufang Luo, Keith W Ross, and Dongsheng Li. Vrl3: A data-driven framework for visual
deep reinforcement learning. In Advances in Neural Information Processing Systems, 2022a.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning. arXiv preprint arXiv:1907.02057, 2019.

Xiyao Wang, Wichayaporn Wongkamjan, and Furong Huang. Live in the moment: Learning dynamics
model adapted to evolving policy. In Decision Awareness in Reinforcement Learning Workshop at
ICML 2022, 2022b.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, Cambridge
University, Cambridge, England, 1989.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and
Xianyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
In International Conference on Learning Representations, 2023.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2019.

14

Under review as a conference paper at ICLR 2024

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason Lee. Offline reinforcement
learning with realizability and single-policy concentrability. In Conference on Learning Theory,
2022.

Chuheng Zhang, Yuanying Cai, Longbo Huang, and Jian Li. Exploration by maximizing rényi entropy
for reward-free rl framework. In Proceedings of the AAAI Conference on Artificial Intelligence,
2021a.

Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph E Gonzalez, and Stuart
Russell. Made: Exploration via maximizing deviation from explored regions. In Advances in
Neural Information Processing Systems, 2021b.

15

Contents of Appendices
A Omitted Proofs 17

B Implementation Details and Extensive Design Choices 19
B.1 Primary implementation details on BAC . 19
B.2 Primary implementation details on MB-BAC algorithm 19
B.3 Possible design choices and extensions . 21

B.3.1 More design choices on computing TexploitQ 21
B.3.2 More design choices on exploration term ω(·|π) 21
B.3.3 Extensions: automatic adaptive λ mechanisms 21

B.4 Hyperparameter settings . 23
B.5 Computing infrastructure and computational time 23

C Environment Setup 26
C.1 Environment setup for evaluating BAC . 26
C.2 Environment setup for evaluating MB-BAC . 28

D Baselines Implementation 28

E Investigations on the Underestimation Issue in the Under-exploitation Stage 30
E.1 Why underestimation and under-exploitation matters? 30
E.2 Culprits of the under-exploitation circumstance 30
E.3 The existence of under-exploitation stage . 30
E.4 Underestimation issue in under-exploitation stage 31
E.5 BEE mitigates the under-exploitation pitfalls . 32
E.6 BEE exhibits no extra overestimation . 32

F Effectiveness in Failure-prone Scenarios 34
F.1 The ability to counteract failure . 34
F.2 Effectiveness in noisy environments . 34
F.3 Illustrative example on the failure-prone scenario. 35
F.4 Effectiveness in sparse-reward tasks . 36
F.5 Task visualizations in failure-prone scenarios . 37

G More Benchmark Results 39
G.1 Evaluation on DMControl benchmark tasks . 39
G.2 Evaluation on Meta-World benchmark tasks . 42

16

Under review as a conference paper at ICLR 2024

A OMITTED PROOFS

Proposition A.1 (Policy evaluation). Consider an initial Q0 : S × A → R with |A| < ∞, and
define Qk+1 = B{µ,π}Qk. Then the sequence {Qk} converges to a fixed point Q{µ,π} as k →∞.

Proof. First, let us show that the BEE operator B is a γ-contraction operator in the L∞ norm.

Let Q1 and Q2 be two arbitrary Q functions, for the Bellman Exploitation operator Texploit, since
target-update actions a′ are extracted from µ, we have that,

∥T µexploitQ1 − T µexploitQ2∥∞ =max
s,a
|(r(s, a) + γEs′ max

a′∼µ
[Q1(s

′, a′)])− (r(s, a) + γEs′ max
a′∼µ

[Q2(s
′, a′)])|

=γmax
s,a
|Es′ [max

a′∼µ
Q1(s

′, a′)−max
a′∼µ

Q2(s
′, a′)]|

≤γmax
s,a

Es′ |max
a′∼µ

Q1(s
′, a′)−max

a′∼µ
Q2(s

′, a′)|

≤γmax
s,a
∥Q1 −Q2∥∞ = γ∥Q1 −Q2∥∞

Also, for the Bellman Exploration Operator Texplore, as a′ ∼ π, we have,

∥T πexploreQ1 − T πexploreQ2∥∞ =max
s,a
|γEs′

[
Ea′∼πQ1(s

′, a′)− γEa′∼πQ2(s
′, a′)

]
|

≤γmax
s,a

Es′ |Ea′∼πQ1(s
′, a′)− Ea′∼πQ2(s

′, a′)|

≤γmax
s,a

Es′Ea′∼π|Q1(s
′, a′)−Q2(s

′, a′)|

≤γmax
s,a
∥Q1 −Q2∥∞ = γ∥Q1 −Q2∥∞

Combining the results together, we have that the BEE operator satisfies γ-contraction property:

∥B{µ,π}Q1 − B{µ,π}Q2∥∞ =∥λ(T µexploitQ1 − T µexploitQ2) + (1− λ)(T πexploreQ1 − T πexploreQ2)∥∞
≤λ∥T µexploitQ1 − T µexploitQ2∥∞ + (1− λ)∥T πexploreQ1 − T πexploreQ2∥∞
≤λγ∥Q1 −Q2∥∞ + (1− λ)γ∥Q1 −Q2∥∞ = γ∥Q1 −Q2∥∞

we conclude that the BEE operator is a γ -contraction, which naturally leads to the conclusion that
any initial Q function will converge to a unique fixed point by repeatedly applying B{µ,π}.

Proposition A.2 (Policy improvement). Let {µk, πk} be the policies at iteration k, and
{µk+1, πk+1} be the updated policies, where πk+1 is the greedy policy of the Q-value. Then
for all (s, a) ∈ S ×A, |A| <∞, we have Q{µk+1,πk+1}(s, a) ≥ Q{µk,πk}(s, a).

Proof. At iteration k, µk denotes the policy mixture and πk the current policy, and the corresponding
value function is Q{µ,π}. We firstly update the policies from {µk, πk} to {µk, πk+1}, where πk+1 is
the greedy policy w.r.t Jπk,µk

(µk, π), i.e., πk+1 = argmaxπ Ea∼π[Q{µk,πk}(s, a)− ω(s, a|π)].

We commence with the proof that Q{µk,πk+1}(s, a) ≥ Q{µk,πk}(s, a) for all (s, a) ∈ S × A.
Since πk+1 = argmaxπ Jπk,µk

(µk, π), we have that Jπk,µk
(µk, πk+1) ≥ Jπk,µk

(µk, πk). Express-
ing Jπk,µk

(µk, πk+1) and Jπk,µk
(µk, πk) by their definition, we have Ea∼πk+1

[Q{µk,πk}(s, a) −
ω(s, a|πk+1)] ≥ Ea∼πk

[Q{µk,πk}(s, a)− ω(s, a|πk)].
In a similar way to the proof of the soft policy improvement (Haarnoja et al., 2018a), we come to the
following inequality:

17

Under review as a conference paper at ICLR 2024

Q{µk,πk}(st, at) =r(st, at) + γEst+1

{
λ · max

ãt+1∼µk

Q{µk,πk}(st+1, ãt+1)

+ (1− λ) · Eat+1∼πk
[Qµk,πk(st+1, at+1)− ω(st+1, at+1|πk)]

}
≤r(st, at) + γEst+1{λ · max

ãt+1∼µk

Q{µk,πk}(st+1, ãt+1)+

(1− λ) · Eat+1∼πk+1
[Q{µk,πk}(st+1, at+1)− ω(st+1, at+1|πk+1)]}

...

≤Q{µk,πk+1}(st, at)

Here, the inequality is obtained by repeatedly expanding Q{µk,πk} on the RHS through
Q{µk,πk}(s, a) = r(s, a)+γEs′

{
λ·maxã′∼µk

Q{µk,πk}(s′, ã′)+(1−λ)·Ea′∼πk
[Q{µk,πk}(s′, a′)−

ω(s′, a′|πk)]
}

and applying the inequality Ea∼πk+1
[Q{µk,πk}(s, a) − ω(s, a|πk+1)] ≥

Ea∼πk
[Q{µk,πk}(s, a)− ω(s, a|πk)]. Finally, we arrive at convergence to Q{µk,πk+1}(st, at).

Then, we expand the historical policy sequence Πk = {π0, π1, · · · , πk−1} by adding the pol-
icy πk, and obtain Πk+1 = {π0, π1, · · · , πk}. Next, we consider to prove Q{µk+1,πk+1}(s, a) ≥
Q{µk,πk+1}(s, a),∀(s, a) ∈ S × A. Recall that µk+1 is the stationary policy mixture of Πk+1,
if the state-action visitation density dπi(s, a) > 0, i = 0, . . . k, then the corresponding mixture
distribution dµ(s, a) > 0, hence the support region of µk is a subset of the support region of
µk+1, i.e., supp(µk) ∈ supp(µk+1). Since maxa∼µi Q(s, a) = maxa∈supp(µi) Q(s, a), then for any
Q : S ×A → R, the following inequality can be established:

max
a∼µk+1

Q(s, a) ≥ max
a∼µk

Q(s, a),∀s ∈ S

Hence, we expand the Q{π,µ} and utilize the above inequality repeatedly, then we obtain

Q{µk,πk+1}(s, a) =r(s, a) + λγ · Es′ [max
a′∼µk(·|s′)

Q{µk,πk+1}(s′, a′)]

+ (1− λ)γEs′Ea′∼πk+1
[Q{µk,πk+1}(s′, a′)]

≤r(s, a) + λγ · Es′ [max
a′∼µk+1(·|s′)

Q{µk,πk+1}(s′, a′)]

+ (1− λ)γEs′Ea′∼πk+1
[Q{µk,πk+1}(s′, a′)]

...

≤Q{µk+1,πk+1}(s, a)

With the inequalities of these two stages, the policy improvement property is satisfied,
Q{µk+1,πk+1}(s, a) ≥ Q{µk,πk}(s, a),∀(s, a) ∈ S ×A, |A| <∞.

Proposition A.3 (Policy iteration). Assume |A| < ∞, by repeating iterations of the policy eval-
uation and policy improvement, any initial policies converge to the optimal policies {µ∗, π∗}, s.t.
Q{µ∗,π∗}(st, at) ≥ Q{µ′,π′}(st, at),∀µ′ ∈ Π, π′ ∈ Π,∀(st, at) ∈ S ×A.

Proof. Let Π be the space of policy distributions and let {µi, πi} be the policies at iteration i.
By the policy improvement property in Proposition 4.3, the sequence Q{µi,πi} is monotonically
increasing. Also, for any state-action pair (st, at) ∈ S × A, each Qµi,πi is bounded due to the
discount factor γ. Thus, the sequence of {µi, πi} converges to some {µ∗, π∗} that are local optimum.
We will still need to show that {µ∗, π∗} are indeed optimal, we assume finite MDP, as typically
assumed for convergence proof in usual policy iteration (Sutton, 1988). At convergence, we get
Jµ∗,π∗(µ∗, π∗)[s] ≥ Jµ∗,π∗(µ′, π′)[s],∀π′ ∈ Π, µ′ ∈ Π. Using the same iterative augument as in
the proof of Proposition 4.3, we get Q{µ∗,π∗}(s, a) ≥ Q{µ′,π′}(s, a) for all (s, a) ∈ S ×A. Hence,
{µ∗, π∗} are optimal in Π.

18

Under review as a conference paper at ICLR 2024

B IMPLEMENTATION DETAILS AND EXTENSIVE DESIGN CHOICES

B.1 PRIMARY IMPLEMENTATION DETAILS ON BAC

Instantiating BAC amounts to specifying two main components: the use of in-sample learning for
calculating the Bellman Exploitation operator Texploit, and the application of entropy regularization
in the Bellman Exploration operator Texplore. Here we provide the details for our primary implemen-
tation. For a broader discussion of potential design choices and extensions refer to Section B.3.

In-sample learning for Texploit. We leverage a simple and efficient approach for policy extraction
using expectile regression (Kostrikov et al., 2021) to learn the value function, where only a hyper-
parameter τ is introduced. Considering that some large Q-values potentially are a result of “lucky”
samples, we introduce a state value function V which approximates a high expectile of Q(s, a) on the
replay buffer D. In this way, we can better account for the potential variance in Q-values, reducing
overestimation error risk and ensuring that our algorithm is not relying solely on “lucky” samples.

To be specific, we initialize a state value V network to capture the maximum of Q value. Given the
replay buffer D, we can update the V network by a high expectile τ of Q(s, a),

V (s)← argmin
V

E(s,a)∼D [|τ − 1(Q(s, a)− V (s) < 0)|(Q(s, a)− V (s))]
2

Given τ > 0.5, this asymmetric loss function would downweight the contributions of Q(s, a)
when Q(s, a) < V (s) while giving more weights to larger values. If τ → 1, we have V (s) →
maxa∼µk

Q(s, a). Hence, the target value of Texploit can be calculated by

TexploitQ(s, a) = r(s, a) + γEs′∼D [V (s′)] .

Entropy regularization in Texplore. Based on the follow-up actions a′ derived from fresh pol-
icy πθ, we compute TexploreQ(s, a), employing the entropy regularization α log π(at|st) from
SAC (Haarnoja et al., 2018a) as the ω(·|π). To ease the computational burden of learning a separate
V -function for Texplore, we opt to directly compute the expectation of the Q-value. Thus, the target
value of the Bellman Exploration operator Texploit can be calculated as follows:

TexploreQ(s, a) = r(s, a) + γEs′∼D
[
Ea′∼πQ(s′, a′)− α log π(a′|s′)

]
Algorithm overview on BAC. The pseudocode of our proposed BAC is provided in Algorithm 2.

Algorithm 2: Primary Implementation of BEE Actor-Critic (BAC)
initialize :Q networks Qϕ, V network Vψ , policy πθ, replay buffer D, Sample n tuple from

random policy and add to D.
repeat

for each gradient step do
Sample a mini-batch of N transitions (s, a, r, s′) from D
Update Vψ by minψ Es,a|τ − 1 (Qϕ(s, a) < Vψ(s)) | (Qϕ(s, a)− Vψ(s))

2

for each environment step do
Collect data with πθ from real environment; add to D

for each gradient step do
Compute TexploitQϕ(s, a)← r + γEs′ [Vψ(s′)]
Compute TexploreQϕ(s, a)← r + γEs′Ea′∼πθ

[Qϕ(s
′, a′)− α log πθ(a

′|s′)]
Calculate the target Q value: BQϕ ← λTExploitQϕ + (1− λ)TexploreQϕ

Update Qϕ by minϕ (BQϕ −Qϕ)
2

Update πθ by maxθ Qϕ(s, a)

until the policy performs well in the environment;

B.2 PRIMARY IMPLEMENTATION DETAILS ON MB-BAC ALGORITHM

Modeling and learning the dynamics models. We adopt the widely used model learning technique
in our baseline methods (Janner et al., 2019; Lai et al., 2021; Ji et al., 2022). To be specific, MB-BAC

19

Under review as a conference paper at ICLR 2024

uses a bootstrap ensemble of dynamics models {f̂ϕ1
, f̂ϕ2

, . . . , f̂ϕK
}. They are fitted on a shared

replay buffer De, with the data shuffled differently for each model in the ensemble. The objective is
to optimize the Negative Log Likelihood (NLL),

LH(ϕ) =

H∑
t

[µϕ(st, at)− st+1]
TΣ−1

ϕ (st, at)[µϕ(st, at)− st+1] + log detΣϕ(st, at).

The prediction for these ensemble models is, ŝt+1 = 1
K

∑K
i=1 f̂ϕi

(st, at). More details on network
settings are presented in Table 2.

Policy optimization and model rollouts. We employ BAC as the policy optimization oracle in
MB-BAC. Using the truncated short model rollouts strategy (Janner et al., 2019; Lai et al., 2021; Pan
et al., 2020; Ji et al., 2022), we generate model rollouts from the current fresh policy. In the policy
evaluation step, we repeatedly apply the BEE operator to the Q-value. We compute the V -function
for the Bellman Exploitation operator on the environment buffer De, which contains real environment
interactions collected by historical policies. And we compute the TexploreQ operation to the model
buffer Dm generated by the current policy π.

Algorithm overview on MB-BAC. We give an overview of MB-BAC in Algorithm 3.

Algorithm 3: Primary Implementation of Model-based BAC (MB-BAC)

initialize :Q networks Qϕ, V network Vψ , policy πθ, ensemble models {f̂ϕ1
, f̂ϕ2

, . . . , f̂ϕK
},

environment buffer De and model buffer Dm
repeat

for each environment step do
Collect data with πθ from real environment; add to De ▷ Interactions with real env

for each gradient step do
Train all models {f̂ϕ1

, f̂ϕ2
, . . . , f̂ϕK

} on De ▷ Model learning
for each model rollout step do

Perform h-step model rollouts using policy πθ; add to Dm ▷ Model rollouts

/* Policy optimization */

Update Vψ by minψ Es,a∼De
|τ − 1 (Qϕ(s, a) < Vψ(s)) | (Qϕ(s, a)− Vψ(s))

2

Compute TexploitQϕ(s, a) = r(s, a) + γEs′∼Dm
[Vϕ(s

′)].
Compute TexploreQϕ(s, a) = r(s, a) + γEs′∼Dm

Ea′∼π[Q(s′, a′)− α log πθ(a
′|s′)].

Calculate the target Q value: BQϕ ← λTexploitQϕ + (1− λ)TexploreQϕ

for each gradient step do
Update Qϕ by minϕ (BQϕ −Qϕ)

2

Update πθ by maxθ Qϕ(s, a) ▷ Policy optimization

until the policy performs well in the environment;

20

Under review as a conference paper at ICLR 2024

B.3 POSSIBLE DESIGN CHOICES AND EXTENSIONS

B.3.1 MORE DESIGN CHOICES ON COMPUTING TexploitQ

Towards computing TexploitQ based on the policy mixture µ, a direct solution might be using an
autoencoder to model µ (Fujimoto et al., 2019; Lyu et al., 2022). Unfortunately, in the online setting,
learning µ would be computationally expensive as it varies dynamically with policy iterations. In our
main implementation, we use the expectile regression, an in-sample approach, for the computation of
maxQ. Beyond this, here we introduce two other in-sample techniques that can be used to calculate
maxQ.

Sparse Q-learning. Sparse Q-learning (Xu et al., 2023) considers an implicit value regularization
framework by imposing a general behavior regularization term. When applied NeymanX 2-divergence
as the regularization term, the state value function can be trained by

V (s)← argmin
V

E(s,a)∼D

[
1

(
1 +

Q(s, a)− V (s)

2α
> 0

)(
1 +

Q(s, a)− V (s)

2α

)2

+
V (s)

2α

]
.

Exponential Q-learning. Similar to sparse Q-learning, exponential Q-learning (Xu et al., 2023)
utilizes Reverse KL divergence as the regularization term and the state value function V (s) can be
updated by

V (s)← argmin
V

E(s,a)∼D

[
exp

(
Q(s, a)− V (s)

α

)
+

V (s)

α

]
.

Based on the state value function V (s) learned by sparse Q-learning or exponential Q-learning, we
can compute the TexploitQ by,

TexploitQ(s, a) = r(s, a) + γEs′∼D [V (s′)] .

B.3.2 MORE DESIGN CHOICES ON EXPLORATION TERM ω(·|π)

0 1M 2M 3M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

Walker
TD3-BEE
TD3

Figure 13: Ablation on the target pol-
icy smoothing regularization variant.

In our primary implementation, we adopt the widely-used
entropy regularization proposed in SAC (Haarnoja et al.,
2018a). Various exploration terms ω(s, a|π), which has
been extensively explored in previous off-policy actor-critic
methods (Haarnoja et al., 2018a; Fujimoto et al., 2018; Han
& Sung, 2021), could be adopted in our algorithm.

Variant on target policy smoothing regularization. Here
we conduct an ablation study upon adopting the target policy
smoothing regularization which introduced by TD3 (Fuji-
moto et al., 2018), we term the variant of our algorithm
TD3-BEE. Compared to TD3, our method exhibits improve-
ments, as demonstrated in two experiments on D’Kitty in
the main paper, as well as the Walker2d-v2 experiment in
Figure 13.

Other possible extensions. Various up-to-date advances in exploration term designs can be incor-
porated into our algorithm. For instance, pink noise (Eberhard et al., 2023) could be utilized to
replace target policy smoothing regularization. Additionally, specially designed entropy terms, such
as state or state-action occupancy entropy based on Shannon entropy (Hazan et al., 2019; Islam et al.,
2019; Lee et al., 2019) or R’enyi entropy (Zhang et al., 2021a), could be considered. In certain
“hard-exploration” scenarios (Aytar et al., 2018; Ecoffet et al., 2019; 2021), it may be beneficial to
use specially tailored exploration terms, such as sample-aware entropy regularization (Han & Sung,
2021), particularly in sparse-reward or delayed-reward scenarios.

B.3.3 EXTENSIONS: AUTOMATIC ADAPTIVE λ MECHANISMS

In our main experiments, we use a fixed λ value for simplicity. Although the value of λ does not
fluctuate significantly in most of the environments we tested, specific scenarios may necessitate some
tuning effort to find an appropriate λ.

21

Under review as a conference paper at ICLR 2024

To circumvent this λ search, we present three possible automatic adaptation methods for λ. The first
two mechanisms involve using a binary value for λ, allowing the agent to freely switch between
exploration and exploitation.

• min(λ). The insight here is to choose the smaller of the target update values induced by the
Bellman Exploration operator and Bellman Exploitation operator, which might aid in alleviating
the overestimation issue and enhance learning stability. The possible drawback is that it might
prefer to exclusively choose the conservative Q-value. We formulate this mechanism as,

λ = 1 (TexploitQ(s, a)− TexploreQ(s, a) ≤ 0) .

where 1(x ≤ 0) is an indicator function

1(x ≤ 0) =

{
0 x > 0,

1 x ≤ 0.

• max(λ). This mechanism, conversely, selects the larger of the two values. This method might
yield unstable results due to the influence of function approximation error. We formulate this
mechanism as

λ = 1 (TexploitQ(s, a)− TexploreQ(s, a) ≥ 0) .

We also design a third mechanism for suggesting a continuous value of λ.

• ada(λ). Upon integrating new data into the replay buffer, the Bellman error variation would
be small if the data is well exploited, and larger if not. Hence, when the Bellman error on the
new-coming data is small, we may curtail reliance on executing Texploit in the replay buffer
and allocate more weight towards exploration. Motivated by this insight, we could adjust the
value of λ according to the Bellman error. In practice, we divide the current Bellman error δk by
the prior Bellman error δk−1 to focus more on the Bellman error caused by the introduction of
new-coming data. This way, λ can be automatically adapted during training as follows:

λ = clip

(
δk

δk−1
, 0, 1

)
.

Here, clip(·, 0, 1) clips the λ by removing the value outside of the interval [0, 1].

Remark 1: In Figure 14, we depict the learning curves of these three automatic λ adjustment
mechanisms on Walker2d and Humanoid tasks, along with the eventual performance of SAC and
the primary BAC. In these two settings, the ada(λ) mechanism generally yields competitive eventual
performance, while min(λ) and max(λ) are more influenced by the environment settings. For instance,
in the Humanoid task, we observed that the min(λ) mechanism almost entirely selects 0 after 1M
iterations, thus could be considered as reducing to SAC in the later stages, and its final performance
matches that of SAC; however, in the Walker2d environment, min(λ) results in a λ that switches
more frequently.

Remark 2: Additionally, the third mechanism ada(λ) often yields promising results. Although it
might introduce some oscillation, its advantage lies in providing guidelines for choosing λ, such as
setting it to a fixed constant. As shown in Figure 15, the final fixed values of λ chosen for these three
environments fall within the range of 0.4 to 0.5.

0 500K 1M
steps

2500

5000

av
er

ag
e

re
tu

rn

Walker
min()
max()
ada()
BAC@1M
SAC@1M

0 1M 2M
steps

1000

3000

5000

av
er

ag
e

re
tu

rn

Humanoid
min()
max()
ada()
BAC@2M
SAC@2M

Figure 14: Learning curves with different lambda mechanisms in
Walker2d and Humanoid tasks, where the dotted line indicates
the eventual performance of BAC and SAC.

0 1M 2M
steps

0.30

0.45

0.60

la
m

bd
a

va
lu

e

Lambda
Humanoid
Walker
DKittyWalkRandom

Figure 15: Curve of λ with
ada(λ) mechanism in different
environments.

22

Under review as a conference paper at ICLR 2024

B.4 HYPERPARAMETER SETTINGS

Hyperparameters for MuJoCo benchmark tasks. The hyperparameters used for training BAC
and MB-BAC on MuJoCo benchmark tasks are outlined in Table 1 and Table 2, respectively.

In MB-BAC, we follow the hyperparameters specified in MBPO (Janner et al., 2019). The symbol
“x→ y over epochs a→ b” denotes a linear function for establishing the rollout length. That is, at
epoch t, f(t) = min(max(x+ t−a

b−a · (y − x), x), y). And we set λ = 0.5 and τ = 0.7 for each task.

Hyperparameters for DMControl benchmark tasks. We present the τ and λ values for the 15
DMControl benchmark tasks in Table 7.

Hyperparameters for Meta-World benchmark tasks. We present the τ and λ values for the 12
Meta-World benchmark tasks in Table 8.

Hyperparameters for other tasks. For other tasks, including 3 ROBEL D’DKitty tasks, 4 noisy
environment tasks, and 6 sparse reward tasks, we fixed τ = 0.7 and λ = 0.5 for all these tasks.

Intuitions behind hyperparameter settings For practical use, λ = 0.5, τ = 0.7 may suffice.

• λ: We initiated from λ = 0.5 as a balanced weight for Texploit and Texplore. Figure 14 depicts
that moderate values around 0.5 obtain good performance. Besides, the automatic adaptive
mechanisms we provided in Appendix B.3.3 may suffice and circumvent tuning.

• τ : Our choice to primarily use 0.7 comes from the IQL paper (Kostrikov et al., 2021) which uses
0.7 for MuJoCo tasks. And τ = 0.7 already suffices for expected performance, thus we mostly
use 0.7 in DMControl and Meta-World tasks.

0 200k 400k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Reacher Hard

SAC
= 0.4, = 0.7
= 0.4, = 0.8
= 0.5, = 0.7
= 0.5, = 0.9
= 0.6, = 0.7

Figure 16: Learnings curves of BAC with a wider
set of hyperparameters on ReacherHard.

Additional hyperparamter study . We pro-
vide the performance comparison of a wider set
of hyperparameters in Figure 16. The results
reveal that utilizing a higher τ = 0.9 is not prob-
lematic and, in fact, enhances performance in
ReacherHard in comparison to τ = 0.7. Each
BAC instance with varied hyperparameters sur-
passes the SAC in ReacherHard.

Remark 3: A high (e.g., 0.9) τ may not be prob-
lematic in the online setting. This differs from
offline RL. In the offline setting, the peak distri-
butions will occur in various quantiles for dif-
ferent datasets, thus an unsuitable τ may cause
erroneous estimation. However, in online settings, ongoing interactions could enrich peak data. As
policy improves, the replay buffer accumulates high-value data, thus reducing sensitivity to τ .

Additional results with unified hyperparameter setting. The parameter set λ = 0.5, τ = 0.7 is
sufficient for practical use. Previously, in 41 of 50 experiments spanning diverse tasks and benchmarks
(MuJoCo, DMControl, MetaWorld, Robel, Panda-gym), this hyperparameter set consistently achieved
SOTA performance as reported in our paper. The remaining 9 tasks are only slightly tuned, as we
find that BAC can achieve even better performance. We demonstrate the results of BAC with
λ = 0.5, τ = 0.7 on the left 9 tasks in Figure 17 and 18. In a nutshell, using a unified setting of
hyperparameters is sufficient for strong performance.

B.5 COMPUTING INFRASTRUCTURE AND COMPUTATIONAL TIME

Table 3 presents the computing infrastructure used for training our algorithm BAC and MB-BAC on
benchmark tasks, along with the corresponding computational time.

Compared to SAC, the total training time of BAC only increased by around 8% for Humanoid (1.19
H for 5M steps). Thus. we believe the additional costs are acceptable. Further, for practical use, BAC
requires fewer interactions for similar performance, which may lower the needed computation time.

23

Under review as a conference paper at ICLR 2024

0 500K 1M
steps

0

1500

3000

av
er

ag
e

re
tu

rn

Hopper

0 500K 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

Walker

0 1M 2M
steps

0

50

100

150

av
er

ag
e

re
tu

rn

Swimmer

0 1M 2M 3M
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant

0 1M 2M
steps

100000

200000

300000

av
er

ag
e

re
tu

rn

HumanoidStandup

BAC BAC(= 0.5, = 0.7) SAC TD3 DAC RRS PPO

Figure 17: Training curves of BAC with (with λ = 0.5, τ = 0.7 and the hyperparameters in the
paper) on MuJoCo tasks. Solid curves depict the mean of five trials and shaded regions correspond to
the one standard deviation.

0 50k 100k
steps

0

500

1000

av
er

ag
e

re
tu

rn

CartPole Swingup

0 250k 500k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Walker Run

0 1.5M 3M
steps

0

500

1000
av

er
ag

e
re

tu
rn

Humanoid Walk

0 2M 4M
steps

0

250

500

av
er

ag
e

re
tu

rn

Dog Run

0 50k 100k
steps

0

2000

4000

av
er

ag
e

re
tu

rn

Hopper

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Walker2d

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn
Ant

0 100k 200k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Humanoid

BAC BAC(= 0.5, = 0.7) BEE-TD3 SAC TD3

Figure 18: Training curves of BAC with (with λ = 0.5, τ = 0.7 and the hyperparameters in the
paper) on DMControl tasks, averaged over five trials.

Table 1: Hyperparameter settings for BAC in MuJoCo benchmark tasks.

Hopper Walker2d Swimmer Ant Humanoid HumanoidStandup

Q-value
network MLP with hidden size 512

V -value
network MLP with hidden size 512

policy network Gaussian MLP with hidden size 512

discounted
factor 0.99

soft update
factor 0.005

learning rate 0.0003

batch size 512

policy updates
per step 1

value updates
per step 1

λ 0.4 0.45 0.5 0.5 0.5 0.5

τ 0.8 0.8 0.8 0.8 0.7 0.8

24

Under review as a conference paper at ICLR 2024

Table 2: Hyperparameter settings for MB-BAC in MuJoCo benchmark tasks.

Hopper Walker2d Ant Humanoid

dynamical
models
network

Gaussian MLP with 4 hidden layers of size 200

ensemble size 5

model rollouts
per policy

update
400

rollout
schedule

1→ 15
over epochs
20→ 100

1
1→ 25

over epochs
20→ 100

1→ 25
over epochs
20→ 300

policy network Gaussian with hidden size 512 Gaussian with hidden size 1024

policy updates
per step 40 20 20 20

Table 3: Computing infrastructure and the computational time for MuJoCo benchmark tasks.

Hopper Walker Swimmer Ant HumanoidStandup Humanoid

CPU AMD EPYC 7763 64-Core Processor (256 threads)

GPU NVIDIA GeForce RTX 3090 × 4

BAC
computation
time in hours

3.21 3.48 6.56 13.47 11.65 16.57

MB-BAC
computation
time in hours

18.35 19.51 - 27.57 - 30.86

25

Under review as a conference paper at ICLR 2024

C ENVIRONMENT SETUP

We evaluate the BEE operator across 35 diverse continuous control tasks, spanning MuJoCo, Robel,
DMControl, and Meta-World. It excels in both locomotion and manipulation tasks. Besides, we
conduct experiments on 4 noisy environments and 6 sparse reward tasks to further showcase the
effectiveness of BEE operator. As a versatile plugin, it seamlessly enhances performance with various
policy optimization methods, shining in model-based and model-free paradigms.

We also validate BAC using a cost-effective D’Kitty robot to navigate various complex terrains and
finally reach goal points and desired postures. The 4 real-world quadruped locomotion tasks highlight
BAC’s effectiveness in real-world scenarios.

⋆ Visualizations of these tasks are provided in Figure 19.

C.1 ENVIRONMENT SETUP FOR EVALUATING BAC

MuJoCo benchmark tasks. We benchmark BAC on six continuous control tasks in OpenAI
Gym (Brockman et al., 2016) with the MuJoCo (Todorov et al., 2012) physics simulator, including
Hopper, Walker2d, Swimmer, Ant, Humanoid, HumanoidStandup, using their standard versions.

D’Kitty simulated tasks. ROBEL (Ahn et al., 2020) is an open-source platform of cost-effective
robots designed for real-world reinforcement learning. The D’Kitty robot, with four legs, specializes
in agile-legged locomotion tasks. ROBEL platform provides a set of continuous control benchmark
tasks for the D’Kitty robot.

To construct more challenging locomotion tasks, we modify the base task DKittyWalkRandomDy-
namics by increasing terrain unevenness.

Details for the base task (DKittyWalkRandomDynamics):

• Task: D’Kitty moves from an initial position pt,kitty to a desired one pgoal while maintaining
balance and facing direction.

• Setting: Randomized joint parameters, damping, friction, and terrain with heights up to 0.05m.
• Reward function: The reward function contains five parts, the upright standing reward
rt,upright, the distance penalty dt,goal = ∥pgoal − pt,kitty∥2, the heading alignment ht,goal =
Ry,t,kitty(pgoal−pt,kitty)/dt,goal, a small task success bonus rbonus_small and a big task success
bonus rbonus_big . Thus, the reward function is defined as

rt = rt,upright − 4dt,goal + 2ht,goal + rbonus_small + rbonus_big.

• Success indicator: The success is defined by meeting distance and orientation criteria. The
formulation of success indicator is:

ϕse(π) = Eτ∼π
[
1

(
d
(τ)
T,goal < 0.5

)
∗ 1

(
u
(τ)
T,kitty > cos(25◦)

)]
.

The “Success Rate” in our experiments refers to the success percentage over 10 runs.

We conduct experiments on two more challenging variants:

• DKittyWalk-Hard: the randomized height field is generated with heights up to 0.07m.
• DKittyWalk-Medium: the randomized height field is generated with heights up to 0.09m.

D’Kitty real-world tasks. Our real-world validation experiments are performed using a cost-
effective D’Kitty robot. D’Kitty Ahn et al. (2020) is a twelve-DOF quadruped robot capable of agile
locomotion. It consists of four identical legs mounted on a square base. Its feet are 3D-printed parts
with rubber ends.

The D’Kitty robot is required to traverse various complex terrains, contending with unpredictable
environmental factors, and finally reach a target point. We evaluate BAC and baseline methods on
four different terrains: smooth road (with a target point at 3m), rough stone road (target point at 1m),
uphill stone road (target point at 1m), and grassland (target point at 1m).

26

Under review as a conference paper at ICLR 2024

DMControl tasks. The DeepMind Control Suite (DMControl) (Tunyasuvunakool et al., 2020),
provides a set of continuous control tasks with standardized structures and interpretable rewards. We
evaluate BAC BEE-TD3, SAC, and TD3 on 15 diverse benchmark tasks from DMControl, including
challenging high-dimensional tasks like Humanoid Walk, Humanoid Run, DogWalk, and DogRun.

Meta-World tasks. Meta-World (Yu et al., 2019) provides a suite of simulated manipulation tasks
with everyday objects, all of which are contained in a shared, tabletop environment with a simulated
Sawyer arm. We evaluate BAC in 12 individual Meta-World tasks. Note that we conduct experiments
on the goal-conditioned versions of the tasks from Meta-World-v2, which are considered harder than
the single-goal variant often used in other works.

Hopper-v2 Walker2d-v2 Swimmer-v2 Ant-v2 Humanoid-v2 HumanoidStandup-v2

(a) MuJoCo benchmark tasks

DKittyWalk-Medium DKittyWalk-Hard

(b) D’Kitty simulated tasks (c) D’Kitty real-world tasks

CartpoleSwingup-v0 FingerSpin-v0 Ball_in_cupCatch-v0 CheetahRun-v0 ReacherEasy-v0 ReacherHard-v0

HopperStand-v0 WalkerStand-v0 WalkerRun-v0 QuadrupedWalk-v0 HumanoidWalk-v0 HumanoidRun-v0

AcrobotSwingup-v0 DogWalk-v0 DogRun-v0

(d) DMControl benchmark tasks
hammer coffee push door open drawer open button press wall door unlock

window open plate slide hand insert basketball coffee button pick place

(e) Meta-World benchmark tasks

Figure 19: Visualization of 35 simulated tasks and 4 real-world robot tasks.

27

Under review as a conference paper at ICLR 2024

Table 4: Overview on environment settings for MB-BAC and model-based baselines. Here, θt denotes
the joint angle and zt denotes the height at time t.

State Space
Dimension

Action Space
Dimension Horizon Terminal Function

Hopper-v2 11 3 1000 zt ≤ 0.7 or θt ≥ 0.2

Walker2d-v2 17 6 1000 zt ≥ 2.0 or zt ≤ 0.8 or
θt ≤ −1.0 or θt ≥ 1.0

Ant-v2 27 8 1000 zt < 0.2 or zt > 1.0

Humanoid-v2 45 17 1000 zt < 1.0 or zt > 2.0

C.2 ENVIRONMENT SETUP FOR EVALUATING MB-BAC

We evaluate MB-BAC and its counterparts on four continuous control tasks in MuJoCo (Todorov
et al., 2012). To ensure a fair comparison, we follow the same settings as our model-based baselines
(MBPO (Janner et al., 2019), AutoMBPO (Lai et al., 2021), CMLO (Ji et al., 2022)), in which
observations are truncated. The details of the experimental environments are provided in Table 4.

D BASELINES IMPLEMENTATION

Model-free RL algorithms. We compare with five popular model-free baselines, Soft Actor-
Critic (SAC) (Haarnoja et al., 2018a), Diversity Actor-Critic (DAC) (Han & Sung, 2021), Random
Reward Shift (RRS) (Sun et al., 2022), Twin Delayed DDPG (TD3) (Fujimoto et al., 2018), Proximal
Policy Optimization (PPO) (Schulman et al., 2017). For RRS, we use the RRS-7 0.5 version as it
provides better performance across diverse environments compared to other alternatives (RRS-3
0.5, RRS-3 1.0, RRS-7 1.0). For MuJoCo tasks, the hyperparameters of DAC, RRS, TD3, and
PPO are kept the same as the authors’ implementations. We list the hyperparameters of TD3 in
Table 6. Note that we mostly follow the implementation of the original paper but improve upon
certain hyperparameter choices for DMControl and Meta-World tasks.

The implementation of SAC is based on the open-source repo (pranz24 (2018), MIT License). And
we use automating entropy adjustment (Haarnoja et al., 2018b) for automatic α tuning. On MuJoCo
benchmarks, we retain other parameters as used by the authors (Haarnoja et al., 2018a). On DM-
Control benchmarks, we followed the SAC hyperparameters suggested by TD-MPC paper (Hansen
et al., 2022). On Meta-World benchmarks, we followed the SAC hyperparameters suggested by
Meta-World paper (Yu et al., 2019). We list the hyperparameters of SAC in Table 5.

Model-based RL algorithms. As for model-based methods, we compare with four state-of-the-art
model-based algorithms, MBPO (Janner et al., 2019), SLBO (Luo et al., 2018), CMLO (Ji et al.,
2022), AutoMBPO (Lai et al., 2021). The implementation of SLBO is taken from an open-source
MBRL benchmark (Wang et al., 2019), while MBPO is implemented based on the MBRL-LIB
toolbox (Pineda et al., 2021). To facilitate a fair comparison, MB-BAC and MBPO are run with
identical network architectures and training configurations as specified by MBRL-LIB.

28

Under review as a conference paper at ICLR 2024

Table 5: Hyperparameter settings for SAC in MuJoCo and DMControl, Meta-World benchmark tasks.

MuJoCo DMControl Meta-World

optimizer for Q Adam(β1=0.9, β2=0.999)

optimizer for α Adam(β1=0.5, β2=0.999)

learning rate 3× 10−4 1× 10−4 (otherwise)
3× 10−4 (Dog) 3× 10−4

discount (γ) 0.99

number of hidden units per layer 256 1024 256

number of samples per minibatch 256 512 (otherwise)
2048 (Dog) 500

target smoothing coefficient (τ) 0.005

target update interval 1 2 1

gradient steps 1

Table 6: Hyperparameter settings for TD3 in MuJoCo and DMControl, Meta-World benchmark tasks.

MuJoCo DMControl Meta-World

optimizer for Q Adam(β1=0.9, β2=0.999)

exploration noise N (0, 0.1)

learning rate 3× 10−4 1× 10−4 (otherwise)
3× 10−4 (Dog) 3× 10−4

discount (γ) 0.99

hidden layers (400, 300) (512, 512) (512, 512)

number of samples per minibatch 100 256 (otherwise)
512 (Dog) 256

target smoothing coefficient (τ) 0.005

target update interval 1

29

Under review as a conference paper at ICLR 2024

E INVESTIGATIONS ON THE UNDERESTIMATION ISSUE IN THE
UNDER-EXPLOITATION STAGE

The underestimation issue from under-exploitation matters. While prior work focus more on reducing
overestimation, our work shows that mitigating underestimation itself may improve both performance
and sample efficiency. Let’s delve deeper.

E.1 WHY UNDERESTIMATION AND UNDER-EXPLOITATION MATTERS?

Underestimation in the under-exploitation stage would negatively impact Q-value estimation. Under-
estimating Q-values of (s, a) due to suboptimal current policy successors, ignoring high-value replay
buffer successors, hampers reselection of (s, a) . Two issues might arise,

• Reduce sample efficiency: The agent would require more samples to re-encounter such (s, a).

• Hinder policy learning: Misleading Q may trap the policy in ineffective exploration. The issue
is exacerbated in failure-prone scenarios where high-value tuples are serendipities and policy
performance oscillates.

E.2 CULPRITS OF THE UNDER-EXPLOITATION CIRCUMSTANCE

Many Actor-Critic algorithms commonly encounter the circumstance: the actions sampled from the
current policy π fall short of the optimal ones stored in the replay buffer D. It underscores a prevalent
challenge: the insufficient utilization of the potentially superior data collected from historical policies,
that why we term it as under-exploitation. Several factors contribute to this circumstance:

Exploration bias: Exploration bias often leads to the overestimation of Q-values, promoting policy
exploration of suboptimal actions.

AC framework nature: Consideration of the iterative update nature of the Actor-Critic (AC)
framework also brings two additional dimensions into play:

• Q-value estimation bias: During the training process, either underestimation or overestimation
is inevitable. In other words, the true Q-value of the sampled actions from the current policy
might be lower than some actions in the replay buffer.

• Suboptimal policy update: Ideally, each new policy should be the maximizer of the current Q
to ensure policy improvement. However, obtaining such an optimal policy w.r.t the current Q
function is practically unattainable with a few policy gradient updates.

E.3 THE EXISTENCE OF UNDER-EXPLOITATION STAGE

Existence without exploration bias. The existence of better actions in the replay buffer stems not
solely from entropy term. It also attributes to the particulars of the optimization in AC, as obtaining
an optimal policy w.r.t the current Q value is practically unattainable with a few policy gradient
updates. Many off-policy AC methods, relying solely on current policy for Q-value updates, may
face under-exploitation issue.

0 0.25M 0.5M 0.75M 1M
steps

-50

0

50

100

150

(
,

)

SAC with different in Hopper

SAC- = 0.0
SAC- = 0.1
SAC-automating tuning
BAC

Figure 20: Under-exploitation oc-
curs in SAC with different α.

Figure 21: Visualization of ∆(µ, π) on TD3 agent. Positive
∆(µ, π) indicates the under-exploitation stage.

30

Under review as a conference paper at ICLR 2024

Figure 20 illustrates the under-exploitation occurs in SAC with varying α. Notably, under-exploitation
is observed even in SAC instances with α = 0, indicating the presence of under-exploitation even
when there is no exploration bias. BAC mitigates under-exploitation pitfalls more, even equipped
with an exploration term, when compared to the SAC instance with α = 0.

Existence in TD3. Under-exploitation exists in many off-policy algorithms, not limited to SAC.
Figure 21 shows that TD3 also encounters under-exploitation stages during training.

Existence in many scenarios. Here we provide more results on the existence of under-exploitation
stage, as shown in Figure 22, that in various scenarios, positive ∆(µk, πk) occupies a significantly
larger portion than negative ∆(µk, πk), indicating that the common Bellman Exploration operator
Texplore suffers from under-exploitation stages for a prolonged period of time.

under-exploration stage
2.3%

under-exploitation stage
97.7%

under-exploration stage
4.7%

under-exploitation stage
95.3%

under-exploitation stage
90.6%

under-exploration stage
9.4%

under-exploration stage
1.9%

under-exploitation stage
98.1%

under-exploration stage
45.6%

54.4%
under-exploitation stage

under-exploration stage
12.7%

under-exploitation stage
87.3%

under-exploration stage
20.3%

under-exploitation stage
79.7%

under-exploration stage
28.9%

under-exploitation stage
71.1%

Figure 22: Visulization on under-exploitation stage on eight environments across MuJoCo and
DMControl benchmark tasks based on the SAC agent.

Positive ∆(µ, π) during later training stages. From the visualization figures above, we often
observe a positive ∆(µ, π) during later training stages, indicating that the initial under-exploration
stage is often followed by a subsequent under-exploitation stage. To give more insights,

• In the early training stages, the policy π performs poorly and possibly more randomly, resulting
in 1) low-reward samples in the replay buffer with corresponding low Q values; 2) the exploration
bonus improves the expected Q-value of the current policy.

• As training progresses, and the agent begins to solve the task, better actions than those generated
by π may appear in the replay buffer. It is partially attributed to the iterative update nature of the
Actor-Critic (AC) framework as discussed in Appendix E.2, which may lead to the existence of
inferior actions after policy updates compared to the optimal ones in the replay buffer.

E.4 UNDERESTIMATION ISSUE IN UNDER-EXPLOITATION STAGE

Previous works suggest that double-Q-trick may cause underestimation (Fujimoto et al., 2018;
Moskovitz et al., 2021). We identify that the underestimation problem also occurs in many off-policy
Actor-Critic (AC) algorithms independent of this trick. In this section, we investigate the causes
of underestimation in the AC framework, irrespective of the double-Q trick’s application. We also
empirically show that various off-policy AC algorithms, with or without the double-Q trick, are prone
to underestimation issues in many tasks.

The optimization procedure of AC framework can also contribute underestimation. Ideally, the
Bellman update needs to solve Q(s, a)← r(s, a) + γEs[maxaQ(s, a)]. However, as maxaQ(s, a)
operations are often impractical to calculate, so in the AC framework, we typically iteratively evaluate
target Q-value as Eπ[Q(s, a)], while implicitly conducting the max-Q operation in a separate policy
improvement step to learn policy π.

31

Under review as a conference paper at ICLR 2024

Note that the ideal π = argmaxa∼π Q(s, a) is not possible to achieve practically within only a few
policy gradient updates [2]. Hence, the actual target value used in AC Bellman update Es,a∼πQ(s, a)
can have a high chance to be smaller than Es[maxaQ(s, a)], causing underestimation. In other
words, the non-optimal current policy in the AC framework can also contribute to underestimation.

The existence of more optimal actions in the replay buffer than generated by current policy further
supports the actual gap to the optima. We identify that underestimation particularly occurs in the
latter training stage, where we see a notable shortfall in the exploitation of the more optimal actions
in the replay buffer. Thus, exploiting the more optimal actions in the replay buffer to bootstrap Q
would shorten the gap to the optima, hence mitigates underestimation.

Underestimation issue of TD3. AC algorithms are susceptible to the underestimation issue, as
shown in Figure 1b. To further illustrate this issue, we quantify the Q-value estimation gap of TD3
and BEE-TD3 in the DKittyWalkRandomDynamics task. The gap in Q estimation is evaluated by
comparing the TD3/BEE-TD3’s Q-values and the Monte-Carlo Q estimates using the trajectories in
the replay buffer.

Figure 23: TD3 is also prone to underestima-
tion pitfalls in the latter stage of training.

As shown in Figure 23, TD3 also experiences under-
estimation pitfalls during the later stages of training.
Notably, we observe that the BEE operator help to
mitigate this underestimation issue and finally bene-
fits performance.

Underestimation issue without doule-Q-trick.
While the double-Q-trick Fujimoto et al. (2018);
Haarnoja et al. (2018a) might lower Q-value esti-
mation Moskovitz et al. (2021), the underestimation
issue is not solely an outcome of the double-Q-trick.
To recap, the underestimation issue primarily arises
from the optimization procedure of the Actor-Critic
(AC) framework. Thus, this issue occurs even in the
SAC and TD3 instances without the double-Q-trick,
as shown in the visualization on 8 different tasks,
please refer to Figure 24.

E.5 BEE MITIGATES THE UNDER-EXPLOITATION PITFALLS

As detailed in Section 4.3, the BEE operator mitigates under-exploitation pitfalls by reducing its
reliance on the current policy and fully utilizing the value of optimal actions stored in the replay
buffer during the Q-value update.

To further illustrate this, we visualize the ∆(µ, π) metric for both SAC and BAC agents in Hopper
and Swimmer environments. As shown in Figure 25, BAC improves the metric ∆(µ, π) more
towards 0, indicating its ability to learn more accurate Q-values. BEE operator prevents a suboptimal
current policy from diminishing the value of these actions. Thus, BAC has a higher likelihood of
re-encountering these high-valued actions used for computing target Q-value, effectively mitigating
under-exploitation pitfalls.

E.6 BEE EXHIBITS NO EXTRA OVERESTIMATION

While the BEE operator seeks to alleviate underestimation, it does not incite additional overestimation.
In Figure 4, we observe that the Q-value function induced by the BEE operator enjoys a lower level
of overestimation and underestimation. Here we consider an extreme suitation, λ = 1. We plot
Q-estimation-error under λ = 1 in Figure 26, and find that it does not cause overestimation.

Actually, T µexploit, the reduced form BEE operator when λ = 1, relies on real experience and may
lead to conservative estimation. To give more insights, online learning’s dynamic replay memory
could be treated as a static dataset at a specific time step. Then in practice, the Bellman exploitation
operator T µexploit could be obtained by several effective techniques from offline RL. The pessimistic

32

Under review as a conference paper at ICLR 2024

(a) SAC with or without double-Q-trick faces underestimation in the latter stage of training.

(b) TD3 with or without double-Q-trick faces underestimation in the latter stage of training.

Figure 24: Off-policy Actor-Critic algorithms with or without double-Q-trick are prone to underesti-
mation pitfalls.

0 0.25M 0.5M 0.75M 1M
steps

-10

0

10

(
,

)

Swimmer
SAC
BAC

0 0.25M 0.5M 0.75M 1M
steps

-40

0

90

180

(
,

)

Hopper
SAC
BAC

Figure 25: Visualization of ∆(µ, π) with SAC and BAC agent
in Hopper and Swimmer tasks. Here, BAC improves the metric
more towards 0 compared to SAC.

0 1M
steps

0

1

N
or

m
al

iz
ed

 e
rr

or

Hopper
|Q k

explore
Q *

k |
|Q{ k, k} Q *

k |
|Q k

exploit
Q *

k |

Figure 26: Q-value estimation
error of different operators.

treatments in offline RL penalize overestimation heavily. Thus a pure exploitation operator practically
even might help to reduce overestimation.

33

Under review as a conference paper at ICLR 2024

F EFFECTIVENESS IN FAILURE-PRONE SCENARIOS

In our main paper, we have shown the effectiveness of the BEE operator in terms of ability to seize
serendipity and more stable Q-value in practice. Here, we investigate the superiority of the BEE
operator in terms of ability to seize serendipity and effectiveness in noisy environments.

F.1 THE ABILITY TO COUNTERACT FAILURE

The BEE operator can not only grasp success but also counteract failure. Here, we conduct some
extreme experiments to show it. We simultaneously train SAC and BAC, and at 100k steps, both
have reached a certain level of performance. This suggests that there already exists several high-
value (successful) samples in the replay buffer. At this point, we abruptly apply a massive perturbation
to the policy and value networks (i.e., at 100k steps, we substitute the current policy with a random
one and reinitialize the value networks). Keep other components the same, we continue the training.
This setup is a magnification of a situation often seen in failure-prone scenarios: the agent is prone
to performance drop, which consequently disrupts the Q value estimate and necessitates additional
sampling for recovery, thus forming a stark gap in the learning curve.

As shown in Figure 27, we can observe that the degree of performance drop in BAC after 100k steps
is significantly less than that in SAC, coupled with a faster recovery speed, demonstrating its better
resilience against failure. This capability possibly stems from the fact that the learned Q value by the
BEE operator is less influenced by the optimal level of the current policy.

774

517

44

796

↓ 33.2%

↓ 94.4%

Random Policy
and initial Q value

296

42

235
↓ 34.5%

↓ 82.1%

Random Policy
and initial Q value

194

Figure 27: Comparison of the ability to counteract failure. BAC exhibits less performance drop
(33.2% in ReachEasy and 34.5% in CheetahRun) and faster recovery.

F.2 EFFECTIVENESS IN NOISY ENVIRONMENTS

We conduct experiments in noisy environments to investigate the robustness of the BEE operator.
Noisy environments are created by adding Gaussian noise to the agent’s action at each step. Specif-
ically, the environment executes a′ = a + WN(σ2) as the action, where a is the agent’s original
action, and WN(σ2) is an unobserved Gaussian white noise with a standard deviation of σ.

Despite the noisy settings that can destabilize Q values and impede sample efficiency, as shown in
Figure 28, BAC demonstrates desirable performance, even outperforming SAC more significantly
than in noise-free environments.

0 50k 100k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Finger Spin
BAC
SAC

0 50k 100k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Walker Stand
BAC
SAC

(a) σ = 0.1

0 250k 500k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Walker Run
BAC
SAC

0 200k 400k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Hopper Stand
BAC
SAC

(b) σ = 0.2

Figure 28: Results in noisy environments: (a) in noisy FingerSpin and WalkerStand tasks with
σ = 0.1; (b) in noisy WalkerRun and HopperStand tasks with a server noise σ = 0.2.

34

Under review as a conference paper at ICLR 2024

F.3 ILLUSTRATIVE EXAMPLE ON THE FAILURE-PRONE SCENARIO.

We provide a typical failure-prone scenario to illustrate the effectiveness of our operator.

Task description. As shown in Figure 29, a small particle spawns in a 2D continuous space of
[0, 10]× [0, 10]. The particle could take any random moves inside the space with a length of 0.1. The
objective is to let the particle hit the small hole of radius 0.1 at (10, 5). In other words, the particle
receives a non-zero reward if and only if it is in the hole. Starting from a random policy, the particle
has to explore the space and find the hole.

State Space:
2D continuous space (0, 0) – (10, 10)

Action Space:
(𝐴 cos 𝜃, 𝐴 sin 𝜃) where 𝐴 = 0.1 and 𝜃 ∈ [0, 2𝜋]

Reward Function:

𝑟 𝑥, 𝑦 = 51, if	 𝑥 − 10 ! + 𝑦 − 5 ! < 0.01
0, otherwise

(0, 0) (10, 0)

(0, 10) (10, 10)Random Walk

Figure 29: We construct a failure-prone scenario: Random Walk. The yellow particle has to explore
the 2D space, and the target is to reach the small hole around (10, 5) (pink star).

Q-value comparison. Only 10 of 100000 samples have reached the hole in the replay buffer. Figure
30 shows the Q-value heatmaps with the standard Bellman operator and our proposed BEE operator
after 100, 200, and 500 Q-learning iterations. Q-values learned by BEE operator are much closer to
the expected ones in limited iterations.

Let’s dive deeper. Given s̄ is one of the successor of a tuple (s, a), the target update r +
γEa′∼πQ(s′, a′) for Standard Bellman Operator, only focuses on actions a′ from the current policy
π, ignoring a more optimal one ā′. Thus Q(s, a) which should be valued higher is underestimated.
Then next policy derived from current misleading Q may perfer not to sample (s, a) again as it
does not have a high value. Thus, algorithms based on the standard Bellman operator might take
a substantially longer time to re-encounter these serendipities for training with decreased sample
efficiency. In contrast, the BEE operator extracts the best actions in the replay buffer to construct
referenced value to the Q-value function thus mitigates such underestimation issue.

Figure 30: Q-value heatmaps with standard Bellman operator and the BEE operator after 100, 200
and 500 iterations.

35

Under review as a conference paper at ICLR 2024

F.4 EFFECTIVENESS IN SPARSE-REWARD TASKS

We conduct experiments in sparse reward tasks to further demonstrate the generalizability of BEE
operator. We evaluate in both robot locomotion and manipulation tasks, based on the sparse reward
version of benchmark tasks from Meta-World (Yu et al., 2019), panda-gym (Gallouédec et al., 2021),
ROBEL (Ahn et al., 2020). Here is the task description:

Meta-World manipultation tasks are based on a Sawyer robot with end-effector displacement control.

• coffee button: Push a button on the coffee machine whose position is randomized.
• hand insert: Insert the gripper into a hole.
• door open: Open a door with a revolving joint. Randomize door positions.

Panda-gym manipultation tasks are based on a Franka Emika Panda robot with joint angles control.

• PandaReachJoints: A target position must be reached with the gripper. This target position is
randomly generated in a volume of 30cm× 30cm× 30cm.

ROBEL quadruped locomotion tasks are based on a D’Kitty robot with 12 joint positions control.

• DKittyStandRandom: The D’Kitty robot needs to reach a pose while being upright from a random
initial configuration. A successful strategy requires maintaining the stability of the torso via the
ground reaction forces.

• DKittyOrientRandom: The D’Kitty robot needs to change its orientation from an initial facing
direction to a random target orientation. A successful strategy requires maneuvering the torso via
the ground reaction forces while maintaining balance.

As shown in Figure 31, our BAC surpasses the baselines by a large margin.

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

coffee button (sparse)

TD3
SAC
BAC

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

hand insert (sparse)

TD3
SAC
BAC

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

door open (sparse)

TD3
SAC
BAC

(a) Meta-World manipulation tasks on end-effector displacement control, using a Sawyer robot.

0 50K 100K
steps

0

0.5

1

su
cc

es
s

ra
te

PandaReachJoints (sparse)

TD3
SAC
BAC

(b) Panda-gym manipulation
tasks on joint angles control, using
a Franka Emika Panda robot.

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

DKittyOrientRandom (sparse)

TD3
SAC
BAC

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

DKittyStandRandom (sparse)

TD3
SAC
BAC

(c) ROBEL quadruped locomotion tasks, on 12 joint positions control,
using a ROBEL D’Kitty robot.

Figure 31: Sparse reward tasks. BAC outperforms the baselines on six sparse reward tasks across
various control types and robotic platforms, including manipulation and locomotion tasks.

36

Under review as a conference paper at ICLR 2024

F.5 TASK VISUALIZATIONS IN FAILURE-PRONE SCENARIOS

0 2.5M 5M
steps

100000

200000

300000

400000

av
er

ag
e

re
tu

rn

HumanoidStandup
BAC
SAC
DAC
RRS

Figure 32: Learning curves of BAC and other
baselines on HumanoidStandup task.

HumanoidStandup. HumanoidStandup, provided
by MuJoCo (Todorov et al., 2012), is a challenging
locomotion task. The environment begins with the
humanoid lying on the ground, and the goal is to
enable the humanoid to stand up and then keep it
standing by applying torques on the various hinges.
The agent takes a 17-element vector for actions.

In the HumanoidStandup task, BAC demonstrates
a significantly superior performance than all other
algorithms. With average returns reaching approxi-
mately 280,000 at 2.5 million steps and 36,000 at 5
million steps, BAC surpasses other algorithms whose
asymptotic performance peak at around 170,000, as
illustrated in Figure 32.

Visualization in Figure 33 depicts that the BAC agent can quickly achieve a stable standing pose. In
contrast, SAC agent ends up in an unstable, swaying kneeling position, DAC ends up sitting on the
ground, and the RRS agent, regrettably, is seen rolling around.

time −→

D
A

C
R

R
S

SA
C

BA
C

1
BA

C
2

Figure 33: Visualization on HumanoidStandup task. BAC1 is the visualization using the learned
policy at 2.5M steps, and BAC2 reveals the behaviors learned at 5M steps. For DAC, RRS and SAC,
we visualize the learned policy at 5M steps.

37

Under review as a conference paper at ICLR 2024

0 2M 4M
steps

0

200

400

av
er

ag
e

re
tu

rn

DogRun
BAC
TD3
SAC
XQL
RRS

Figure 34: Learning curves BAC and other
baselines on DogRun task.

DogRun. DogRun, provided by the DMCon-
trol (Tunyasuvunakool et al., 2020), is a challenging
task with a high-dimensional action space (A ∈ R38).
The task is based on a sophisticated model of a
Pharaoh Dog, including intricate kinematics, skin-
ning weights, collision geometry, as well as mus-
cle and tendon attachment points. This complexity
makes the DogRun task extremely difficult for algo-
rithms to learn and control effectively.

We conducted extensive experiments in the DogRun
task to compare the performance of BAC against
other state-of-the-art algorithms. Here, we include
Extreme Q-Learning (XQL) (Garg et al., 2023) as
our baseline, which falls into the MaxEntropy RL
framework but directly models the maximal Q value. The results, depicted in Figure 34, reveal that
BAC significantly surpasses its counterparts, attaining higher average returns in fewer interactions. It
demonstrates a remarkable capability of learning to control the high-dimensional, complex robot,
such as facilitating the dog’s run. To the best of our knowledge, it is the first documented result of
model-free methods effectively tackling the challenging DogRun task.

In addition to the quantitative results, we also offer a visualization of keyframes in the trajectory in
Figure 35. Here, the superior performance of BAC becomes even more apparent. While competing
algorithms struggle to prevent the dog from falling, BAC successfully achieves a running motion. This
aptitude for handling complex, high-dimensional tasks further reaffirms the efficacy and robustness
of BAC when dealing with failure-prone scenarios.

time −→

X
Q

L
R

R
S

SA
C

T
D

3
BA

C

Figure 35: Visualization on DogRun task. We visualize the keyframes of the trajectories induced by
the learned policy of each algorithm at 4M steps.

38

Under review as a conference paper at ICLR 2024

G MORE BENCHMARK RESULTS

Given that MuJoCo benchmark tasks have been solved well by popular baselines, we conduct
experiments on the more complex locomotion and manipulation tasks from DMControl and Meta-
World for further evaluation of BAC and the baselines. Currently, several tasks in DMControl and
Meta-World pose a formidable challenge that stumps most model-free methods. Notably, BAC has
demonstrated its effectiveness by successfully solving many of these challenging tasks.

G.1 EVALUATION ON DMCONTROL BENCHMARK TASKS

We tested BAC and its variant, BEE-TD3, on 15 continuous control tasks from DMControl. BAC
successfully solves many challenging tasks like HumanoidRun, DogWalk, and DogRun, where both
SAC and TD3 fail. Also, BEE-TD3 boosts TD3’s performance by a large margin, demonstrating the
generalizability of the BEE operator.

Performance comparison. Training curves for 15 DMControl tasks are shown in Figure 36. For
simple locomotion/manipulation tasks (e.g., HopperStand, WalkerStand, CupCatch), we generally
find that while SAC’s eventual performance is competitive with BAC, BAC shows better sample
efficiency. In the more complex, failure-prone tasks (e.g., HumanoidWalk, HumanoidRun, DogWalk,
and DogRun), BAC significantly surpasses SAC. As shown in the visualizations3, SAC struggles to
learn meaningful behaviors in Dog Run, whereas the BAC agent yields superior performance.

Additional Metrics. We report additional (aggregate) performance metrics of BAC and SAC on the
set of 15 DMControl tasks using the rliable toolkit (Agarwal et al., 2021). As shown in Figure 37,
BAC outperforms SAC in terms of Median, interquantile mean (IQM), Mean, and Optimality Gap.

Hyperparameters for DMControl tasks. The corresponding hyperparameters are listed in Table 7.

Table 7: Hyperparameter settings for BAC in DMControl tasks.

CartPole Swingup Finger Spin Cup Catch Cheetah Run Reacher Easy

λ 0.4 0.5 0.5 0.5 0.5

τ 0.7 0.7 0.7 0.7 0.7
Reacher Hard Hopper Stand Walker Stand Walker Run Quadruped Walk

λ 0.5 0.5 0.5 0.5 0.5

τ 0.7 0.7 0.7 0.8 0.7
Humanoid Walk Humanoid Run Acrobot Swingup Dog Walk Dog Run

λ 0.4 0.5 0.5 0.5 0.6

τ 0.7 0.7 0.7 0.7 0.7

3Please refer to https://beeauthors.github.io for videos or Section D.4 for key frames.

39

https://beeauthors.github.io

Under review as a conference paper at ICLR 2024

0 50k 100k
steps

0

500

1000
av

er
ag

e
re

tu
rn

CartPole Swingup

0 50k 100k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Finger Spin

0 50k 100k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Cup Catch

0 200k 400k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Cheetah Run

0 100k 200k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Reacher Easy

0 200k 400k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Reacher Hard

0 200k 400k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Hopper Stand

0 50k 100k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Walker Stand

0 250k 500k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Walker Run

0 200k 400k
steps

0

500

1000

av
er

ag
e

re
tu

rn

Quadruped Walk

0 1.5M 3M
steps

0

500

1000

av
er

ag
e

re
tu

rn

Humanoid Walk

0 2M 4M
steps

0

200

400

av
er

ag
e

re
tu

rn

Humanoid Run

0 500k 1M
steps

0

200

400

av
er

ag
e

re
tu

rn

Acrobot Swingup

0 2M 4M
steps

0

500

1000

av
er

ag
e

re
tu

rn

Dog Walk

0 2M 4M
steps

0

250

500

av
er

ag
e

re
tu

rn

Dog Run

0 250k 500k
0

2000

4000

6000

0 50k 100k
steps

0

2000

4000

av
er

ag
e

re
tu

rn

Hopper

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Walker2d

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant

0 100k 200k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Humanoid

BAC BEE-TD3 SAC TD3

Figure 36: DMControl tasks. Training curves of BAC , BEE-TD3, SAC, TD3 in DMControl
benchmark tasks. Solid curves depict the mean of four trials and shaded regions correspond to the
one standard deviation.

600 700 800

BAC

BEE-TD3

SAC

TD3

Median

600 700 800

IQM

600 700

Mean

300 400

Optimality Gap

Normalized Score
Figure 37: Reliable metrics on DMControl tasks. Median, IQM, Mean (higher values are better),
and Optimality Gap (lower values are better) performance of BAC , BEE-TD3 and baselines (SAC,
TD3) on the 15 DMControl tasks.

40

Under review as a conference paper at ICLR 2024

Trajectory Visualizations. Figure 38 provides visualizations of trajectories generated by BAC on
five tasks from DMControl. For each trajectory, we display seven keyframes.

time −→

Q
ua

dr
up

ed
W

al
k

D
og

W
al

k
D

og
R

un
H

um
an

oi
d

W
al

k
H

um
an

oi
d

R
un

Figure 38: Trajectory Visualizations. Visualizations of the learned policy of BAC on five DMControl
benchmark tasks.

41

Under review as a conference paper at ICLR 2024

G.2 EVALUATION ON META-WORLD BENCHMARK TASKS

Performance comparison. In Figure 39, we present learning curves of both the success rate and
average return for twelve individual Meta-World tasks. Note that we conduct experiments on the
goal-conditioned versions of the tasks from Meta-World-v2, which are considered harder than the
single-goal variant.

In tasks typically categorized as simple, where both SAC and TD3 succeed within 1M steps, it is
noteworthy that BAC still outperforms in terms of sample efficiency.

In tasks involving complex manipulation, such as pick place, basketball, hand insert, coffee push
and hammer, BAC exhibits strong performance. Consider the hammer task, while SAC and TD3
occasionally achieve serendipitous successes before reaching 500K steps, their Q-value estimations
are susceptible to misguidance by the inferior follow-up actions that occur frequently, resulting in a
sustained low success rate. In contrast, BAC efficiently exploits the value of success and mitigates the
impact of inferior samples on the Q-value, leading to a significant performance improvement beyond
500K steps, and finally surpasses SAC and TD3 by a large margin in terms of success rate.

These results highlight the promising potential of BAC in manipulation tasks.

Trajectory Visualizations. Successful trajectories for one simple task and five aforementioned
complex tasks are visualized in Figure 40. For each trajectory, we display seven keyframes.

Hyperparameters for Meta-World tasks. The corresponding hyperparameters are listed in Table 8.
We use a simple set of hyperparameters of λ = 0.5 and τ = 0.7 for these twelve tasks, which already
yields satisfactory performance, without the need for intensive hyperparameter-tuning efforts.

Table 8: Hyperparameter settings for BAC in Meta-World tasks.

basketball button press wall coffee button coffee push door open door unlock

λ 0.5 0.5 0.5 0.5 0.5 0.5

τ 0.7 0.7 0.7 0.7 0.7 0.7
drawer open hammer hand insert pick place plate slide window open

λ 0.5 0.5 0.5 0.5 0.5 0.5

τ 0.7 0.7 0.7 0.7 0.7 0.7

42

Under review as a conference paper at ICLR 2024

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

basketball

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

basketball

(a) basketball

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

button press wall

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

button press wall

(b) button press wall

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

coffee button

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

coffee button

(c) coffee button

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

coffee push

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

coffee push

(d) coffee push

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

door open

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

door open

(e) door open

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

door unlock

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

door unlock

(f) door unlock

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

drawer open

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

drawer open

(g) drawer open

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

hammer

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

hammer

(h) hammer

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

hand insert

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

hand insert

(i) hand insert

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

pick place

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

pick place

(j) pick place

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

plate slide

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

plate slide

(k) plate slide

0 500k 1M
steps

0

0.5

1

su
cc

es
s

ra
te

window open

0 500k 1M
steps

0

2500

5000

av
er

ag
e

re
tu

rn

window open

(l) window open
0 50k 100k

steps

0

2000

4000

av
er

ag
e

re
tu

rn

Hopper

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Walker2d

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant

0 100k 200k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Humanoid

BAC SAC TD3

Figure 39: Individual Meta-World tasks. Success rate and average return of BAC , SAC, TD3 on
twelve manipulation tasks from MetaWorld (sorted alphabetically). Solid curves depict the mean of
four trials and shaded regions correspond to the one standard deviation.

43

Under review as a conference paper at ICLR 2024

time −→

D
ra

w
er

O
pe

n
B

as
ke

tb
al

l
H

am
m

er
C

of
fe

e
Pu

sh
H

an
d

In
se

rt
Pi

ck
Pl

ac
e

Figure 40: Trajectory Visualizations. We visualize trajectories generated by BAC on six Meta-World
tasks. Our method (BAC) is capable of solving each of these tasks within 1M steps.

44

	Introduction
	Related works
	Preliminaries
	Exploiting past success for off-policy optimization
	Blended Exploitation and Exploration (BEE) operator
	Dynamic programming properties
	Superior Q-value estimation using BEE operator
	Algorithmic instantiation

	Experiments
	Evaluation on standard control benchmarks
	Evaluation in real-world quadruped robots walking task
	Ablation study

	Conclusion
	Omitted Proofs
	Implementation Details and Extensive Design Choices
	Primary implementation details on BAC
	Primary implementation details on MB-BAC algorithm
	Possible design choices and extensions
	More design choices on computing TexploitQ
	More design choices on exploration term ()
	Extensions: automatic adaptive mechanisms

	Hyperparameter settings
	Computing infrastructure and computational time

	Environment Setup
	Environment setup for evaluating BAC
	Environment setup for evaluating MB-BAC

	Baselines Implementation
	Investigations on the Underestimation Issue in the Under-exploitation Stage
	Why underestimation and under-exploitation matters?
	Culprits of the under-exploitation circumstance
	The existence of under-exploitation stage
	Underestimation issue in under-exploitation stage
	BEE mitigates the under-exploitation pitfalls
	BEE exhibits no extra overestimation

	Effectiveness in Failure-prone Scenarios
	The ability to counteract failure
	Effectiveness in noisy environments
	Illustrative example on the failure-prone scenario.
	Effectiveness in sparse-reward tasks
	Task visualizations in failure-prone scenarios

	More Benchmark Results
	Evaluation on DMControl benchmark tasks
	Evaluation on Meta-World benchmark tasks

