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Abstract

High-quality training datasets are crucial for the development of effective
protein design models, but existing synthetic datasets often include unfavorable
sequence-structure pairs, impairing generative model performance. We leverage
ProteinMPNN, whose sequences are experimentally favorable as well as amenable
to folding, together with structure prediction models to align high-quality synthetic
structures with recoverable synthetic sequences. In that way, we create a new
dataset designed specifically for training expressive, fully atomistic protein
generators. By retraining La-Proteina, which models discrete residue type and
side chain structure in a continuous latent space, on this dataset, we achieve new
state-of-the-art results, with improvements of +54% in structural diversity and
+27% in co-designability. To validate the broad utility of our approach, we further
introduce Proteina-Atomistica, a unified flow-based framework that jointly learns
the distribution of protein backbone structure, discrete sequences, and atomistic side
chains without latent variables. We again find that training on our new sequence-
structure data dramatically boosts benchmark performance, improving Proteina-
Atomistica’s structural diversity by +73% and co-designability by +5%. Our work
highlights the critical importance of aligned sequence-structure data for training
high-performance de novo protein design models. All data will be publicly released.

1 Introduction

De novo protein design aims to generate functional proteins from scratch, making it a central challenge
in molecular biology [39, 20, 26, 25]. Recent generative models have made impressive progress to
design protein backbones using diffusion and flow-based approaches [22, 47, 50, 6, 27]. Several
methods have begun to move beyond backbone-only modeling to enable all-atom generation [15, 9,
37]. Since the sequence serves as the actual design specification for synthesis, and side chains are
pivotal in biochemical interactions, generating complete atomistic structures is crucial for structure-
guided protein design. As models must reason about the generated sequence and structure to ensure
cross consistency, fully atomistic training data plays a crucial role in fully atomistic de novo design.

We identify a critical limitation in commonly used training datasets derived from the AlphaFold
Database (AFDB) [43]. Specifically, the (real sequence, synthetic structure) pairs in the AFDB
are largely not co-designable by ESMFold [29] (see Fig. 1), AlphaFold2 [23], or Boltz-1 [48],'
meaning the sequences do not likely fold into their given structures to the best of available in silico
approximations. This is surprising, given that the AFDB was created through computational structure
prediction. Hence, this data is not well-suited for training joint sequence-structure models, as the data
pairs are not consistently reproducible via common folding models. This motivated us to construct

'We used single-sequence mode as well as multiple sequence alignments (MSAs) with different databases,
but we were not able to reliably reproduce the AFDB structures.
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Figure 1: Co-designability
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e structures show only 26.6% of
e protein backbones and 19.1%
of the all-atom structures are
0.00 \ . ) ) \ ) ) ) considered designable. As a
0 20 40 60 80 0 20 40 60 80 result, most AFDB synthetic
RMSDc, (A) RMSDas (A) structures are not recoverable.

a high-quality dataset from scratch: We leverage ProteinMPNN [10], which is known for strong
in silico success and wetlab validation [47, 34], and generate several sequences for each Foldseek
AFDB cluster representative structure [28, 5]. We then re-folded all new synthetic sequences to
obtain corresponding fully atomistic structures for the new synthetic sequences. By generating fully
atomistic sequence-structure pairs in this manner, we construct a more aligned dataset ideally suited
for the training of expressive atomistic protein generators. We will publicly release the dataset.

Next, we used our new dataset to train fully atomistic protein generative models that need to capture
the intricate relationship between atomistic structures and amino acid identity. Side-chain coordinates
cannot be determined without knowledge of the sequence, either explicitly or implicitly, and co-
generating diverse and consistent sequences and atomistic structures is challenging. Therefore,
many methods rely on a multistage process: generating the backbone, predicting the sequence, and
optionally packing side-chains using rotamers [19, 4, 18, 8]. Recent efforts have made progress
toward full-atom co-design by incorporating all-atom representations during structure generation [9,
37, 31, 8]. However, these methods still do not explicitly model the joint distribution of sequences and
atomistic structures in a unified framework. Recently, La-Proteina [15] jointly learned sequences and
side-chain structures via a continuous latent space, achieving strong performance in de novo design
and atomistic motif scaffolding. Training La-Proteina on our new data significantly improves the
model samples’ structural diversity (+54%) and co-designability (+27%), highlighting the importance
of well-aligned training data to accurately model the complex sequence-structure relationship.

To validate the generality of our approach, we further propose a multi-modal framework that operates
in the explicit observable space, providing a complementary approach to La-Proteina’s latent space
method. Specifically, we introduce Proteina-Atomistica, a unified flow-based framework that jointly
learns the distribution over fully atomistic protein structure and sequence. We treat this as a joint multi-
modal generation task with three co-dependent modalities (Fig. 2): (i) C, atom positions capture
large-scale backbone structure. (ii) categorical amino acid identities define the protein sequence. (iii)
non-C,, backbone and side-chain atoms represent local details. We again observe that training on
our new aligned sequence-structure data dramatically boosts the model’s performance—structural
diversity by 73% and co-designability by 5%. This confirms the broad utility of our newly created,
aligned data for training different types of fully atomistic protein generative models.

Our experiments emphasize that consistent synthetic sequences play a significant role in enhancing
structural diversity. We also show in ablation studies that simply replacing AFDB structures with those
from ESMFold to create a “100% designable” dataset degrades both the ESMFold-based designability
and structural diversity of generated proteins. This observation served as a key motivation to leverage
ProteinMPNN for predicting new sequences, thereby creating a fundamentally new training dataset
that consists of both synthetic structures and synthetic sequences, in contrast to the AFDB. Since our
models are directly trained on ProteinMPNN sequences and are the first to surpass ProteinMPNN in
co-designability, they remove the need for ProteinMPNN-based re-design at the end of generation—a
common step in existing pipelines that requires subsequent side-chain redesign to accommodate
changes in sequence space.

Contributions: (i) We find that AFDB structures are not recoverable with common structure
prediction models and argue that the low consistency of AFDB-derived datasets is a critical limiting
factor for atomistic structure and sequence co-generation. (ii) To overcome this limitation, we
introduce a new high-quality dataset consisting of aligned synthetic sequences and structures, ideally
suited for the training of high-performance fully atomistic protein generators. (iii) We introduce
Proteina-Atomistica, a novel unified multi-modal flow-based generative framework that jointly and
explicitly models the distribution over fully atomistic protein structures and sequences. (iv) We show
that when trained on our new data Proteina-Atomistica outperforms all prior non-unified methods
and La-Proteina achieves new state-of-the-art performance in fully atomistic protein generation.
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2 Related Work

Protein design has witnessed significant progress through generative models focusing on either
sequence or structure. Sequence generation often relies on autoregressive models [32, 14] or discrete
diffusion [3, 45], trained on large datasets. For protein backbones, diffusion models have shown
remarkable success, with seminal works like Chroma [22] and RFDiffusion [47]. Subsequent works
employ diffusion or flow matching on frame-based representations [50, 6, 49, 44, 21], while other
works apply diffusion to C,, coordinates [27, 41]. Scaling data and model size in Genie2 [28] and
Proteina [16] has led to near-perfect backbone designability metrics. These methods showcase diverse
parameterizations and architectures within the broader diffusion/flow matching framework.

However, these single-modality generation methods typically decouple sequence and structure. They
either generate a sequence first and then fold it with ESMFold [29] or AlphaFold2 [23], or generate a
structure and then infer a sequence with ProteinMPNN [10]. In contrast, recent efforts have focused
on co-design methods that aim to jointly model sequence and backbone structure distributions within
a single generative framework, such as diffusion/flow-based ProteinGenerator [30], MultiFlow [7] and
DPLM-2 [46], energy-based CarbonNovo [38], and language model-based ESM3 [17]. MultiFlow [7]
also distills synthetic training sequences and structures to boost co-generation performance, similarly
to us leveraging ProteinMPNN, but at a smaller scale and without analyses of the AFDB.

Despite progress in protein co-design, achieving accurate atomistic detail remains challenging. Early
all-atom diffusion attempts like Protpardelle [9] yield poor results. Pallatom’s [37] use of Atom14
representations could lead to atom-type ambiguities, hindering performance or downstream tasks [37].
Other methods explore latent spaces [31], modular design [8], or specific tasks [2].

2.1 La-Proteina

More recently, La-Proteina [15] introduced a partially latent protein representation that combines
explicit and implicit modeling. In this approach, the coarse C,-backbone structure is modeled
explicitly as in Proteina, while sequence and atomistic (non-C,,) details are captured through per-
residue latent variables of fixed dimensionality. This hybrid representation sidesteps the challenges
associated with explicit side-chain representations, through the training of an initial autoencoder.
By applying flow matching in this partially latent space, La-Proteina effectively models the joint
distribution over sequences and full-atom structures. See paper for details [15]. We use both Proteina-
Atomistica and La-Proteina to explore the impact of synthetic data on all-atom protein generation.

3 Aligning Synthetic Protein Sequence and Structure

Our investigation into constructing a new training dataset for explicit all-atom protein generation
was motivated by the limitations of the Foldseek-clustered AFDB dataset [42, 5], which was used
for instance by Genie2 [28] (DarpB—clstr ~0.6M). We assessed the in-silico co-designability of
DarpB—cIstr by folding its sequences (length€[32,512]) with ESMFold and computing the C,, and
all-atom RMSD between the folded and original AFDB structures. Surprisingly, only 19.1% of the
dataset met the standard 2A co-designability threshold based on all-atom RMSD (Fig. 1). Further
analysis using other public structure prediction models on a random subset of DA rpp_cistr revealed
that even the best co-designability achieved, ~65% with ColabFold using MSAs, fell short of the
expected 100% designability under AlphaFold2 (AF2) [23, 33]. This significant sequence-structure
misalignment poses a substantial challenge to scaling fully atomistic protein generative models with
existing sources of large-scale high-quality synthetic sequence-structure data. Furthermore, Boltz-1
obtains scores roughly the same as ESMFold when using MSAs. Without MSAs it exhibited the
lowest consistent recovery. Although we do not expect ESMFold and Boltz-1 to be highly consistent
with the AFDB, it is crucial to understand the limitations of relying on the AFDB for training protein
design models due to the severe disagreement with other popular structure prediction models.

To address this, we create a novel dataset (Dsyn—_ours) that targets the joint alignment between
synthetic sequence and synthetic structure, as follows: (i) For each cluster representative in
DAFDB—clstr With an average pLDDT ,p, > 0.8, (ii) we produce four sequences with ProteinMPNN,
(iii) refold each recording the C,,-RMSD between the AFDB- and ESMFold-generated structures
(using C'y, as different sequences have different side chains), (iv) select the sequence with the lowest
RMSD, and (v) filter the structures to include those with pLDDTgqyr,q = 0.8. This results in
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Multimodal Figure 2: Proteina-Atomistica.
Flow Matching | We use a multimodal flow
matching framework to learn a
mapping from noise distributions
of C, atoms (x;), amino acid
sequences (r:), and non-Cy
atoms (z;) to realistic atomistic
structures. We prevent leakage
by initiating the generation of

[LYS]

{ non-C\, atoms z; only after their
corresponding residues in the
sequence r; are unmasked.

~0.43M high-quality samples. Consequently, DsyN—_ours identifies confident regions of overlap
between folding and inverse folding models, to enabling the modeling of a better recoverable joint
sequence-to-structure relationship. In contrast to MultiFlow [7], which replaces PDB sequences with
ProteinMPNN ones, we start from a large structurally diverse dataset and refold to recover side chains.

4 Proteina-Atomistica

On the one hand, we use our new data to retrain La-Proteina [15], see Sec. 5. To make general
conclusions and to also see the data’s effect when training a model without a special latent framework,
we additionally develop a novel, “data-space” fully-atomistic protein generator without latent
variables, called Proteina-Atomistica, which we now introduce.

4.1 Explicit Multi-Modal Flow Matching Framework

Atomistic protein modeling can be decomposed into explicit modeling of the protein backbone,
amino acid sequence, and side-chain atoms. A significant challenge within this breakdown lies in the
modeling of side chains, primarily due to the fact that an amino acid residue and its side-chain structure
encode the same underlying information in discrete and continuous forms, respectively. Specifically,
during a generation process that involves discrete residue tokens, the set of side-chain atoms associated
with a residue dynamically changes whenever the residue type is altered or unmasked. Therefore,
a robust atomistic modeling framework must effectively handle this variable number of atoms and
also provide a good initialization strategy for these newly generated side-chain atoms (as detailed in
Sec. 4.2). This inherent complexity makes extending existing backbone or backbone-sequence design
methods to joint fully atomistic modeling non-trivial.

To tackle the challenge posed by the variable number of atoms, we adopt the Atom37 representation
for protein structures [23]. In this representation, each potential heavy atom of a residue is assigned
a unique position within a 37-dimensional array. This choice offers an advantage over the Atom14
representation used by Pallatom [37], as Atom37 avoids interpretation ambiguities where a single
position can correspond to multiple atom types. For any non-existent atoms of a given residue, their
corresponding positions in the Atom37 array are set to zero and they are subsequently masked out
in the model’s sequence track (see Sec. 4.2).

Proteina-Atomdistica achieves fully atomistic protein generation through multi-modal flow matching
over C,, coordinates x € RL*3_ amino acid sequence r € {0, .., 19}L, and non-C', atom coordinates
z € REX36X3 agillustrated in Fig. 2. In addition, while both C,, and non-C,, atoms are in Euclidean
space, their roles differ: C, define the global structure and non-C,, specify local residue details.
This functional difference, coupled with the variable number of non-C\, atoms, presents a significant
challenge in extending backbone and backbone-sequence models to full atomistic generation, a
challenge that our multi-modal approach effectively addresses. We now present the details of the
Proteina-Atomistica modeling framework:

1. Flow Matching for C,, Atoms. Following Proteina [16], we define a flow 1), that pushes
an easy-to-sample noise distribution py to a data distribution p; through intermediate densities
pr = [¢]; * po, where “«” denotes push-forward and ¢ € [0, 1] is a time variable. This flow is
parameterized by an ODE dx; = v?(x;,t)dt, defined through a learnable vector field v?(x;, t) with
parameters 6, with xo ~ pg and x; ~ p;. By the continuity equation, the true vector field u, satisfies
Ope /0t = =V, - (pr uy), but uy is intractable. To address this, conditional flow matching (CFM)
constructs for each data sample x; a tractable conditional path p;(x;|x1). We draw xo ~ pg and
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Figure 3: Proteina-Atomistica samples, ranging from 100 to 400 residues. All shown samples co-designable.

interpolate linearly x; = tx; + (1 — t)Xo, so that the exact velocity x; — Xg is known. The CFM
objective then regresses the learnable field v?(x;, t) onto this target across random ¢, X¢, and x;. At
convergence, v¥ approximates the true uy, enabling generation of C,, coordinates.

2. Flow Matching for Amino-Acid Sequence. The flow matching framework for amino acid
sequences operates in the discrete space of residue types {0, .., 19}. Following MultiFlow [7], we
introduce a mask token M and define the flow to push an all-mask prior pg = §{M} toward the
target sequence distribution p; = d{r;}, where §{i} denotes the Kronecker delta (i.e., a one-hot
distribution centered at token ¢). To learn the "velocity", i.e. the rate matrix in probability space, we
define a conditional path p;(r¢|r1) = t6{r;} + (1 — t) 6{M}. This path interpolates between the
masked and target sequences. In practice, it corresponds to a simple stochastic masking scheme: each
residue is independently masked with probability 1 — ¢ and kept with probability ¢.

3. Flow Matching for Non-C', Atoms. We adopt the same flow matching formulation used for C,,
atoms. Specifically, we define a linear interpolant z; = tz; + (1 — )z, and train the parameterized
velocity field v¥(z;, t) to match the exact velocity z; — zg. There are two key differences with the
C, case. First, as each residue contains only a subset of the 36 possible non-C|, atoms determined by
its residue type, we mask out non-existent atoms during interpolation. Second, revealing the presence
or absence of specific atoms may leak residue type information for masked positions in the sequence,
making the sequence denoising task trivial. To prevent this, we remove all non-C|, atoms for residues
masked in r; during training. During generation, to align with training, we only denoise non-C|,
atoms once its residues are unmasked. Therefore, it is crucial to provide a good initialization for the
non-C,, coordinates when a residue is unmasked—an issue we discuss in the following sections.

Local Coordinate Modeling for Non-C, Atoms. Non-C,, atoms are structurally organized around
their corresponding C\, atoms. To leverage this property, we offer two local coordinate modeling
strategies, simplifying the learning task by predicting offsets rather than global coordinates and
facilitating better initialization of non-C,, atoms. The first approach calculates the relative position of
non-C,, atoms directly with respect to their corresponding C,, atom: z°? = z, — x;. The second
strategy, inspired by related work [28], constructs a residue-centric local coordinate frame (t;, R;)
with frame translations t; and frame rotations R; using the C,, coordinates of three neighboring
residues (x;_1, X;, X;+1) via the Gram-Schmidt process. Non-C|, coordinates z; are then transformed
to local ones via z\°-" — R~!(z; — t,). Notably, while local coordinate transformations are a
common technique in structure prediction models [23, 29], their application in atomistic structure
generation remains underexplored [13].

4.2 Proteina-Atomistica Architecture

The Proteina-Atomistica architecture consists of two primary components: a core residue-level
Transformer trunk and an atom-level Transformer encoder-decoder (Fig. 7). The residue-level
trunk is responsible for the global backbone processing and is a high-capacity, non-equivariant
architecture that leverages a stack of biased self-attention layers to predict the vector field for flow-
based generation from noisy inputs. To address the complexities of atomistic modeling, our atom-level
Transformer modules are designed to tackle three key challenges: handling the variable number of
atoms, generalizing to atomistic representations, and initializing the fully masked non-C,, atoms of
masked residues. We elaborate on our approach to these challenges in the subsequent paragraphs.
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Atom Sequence Expansion. Each residue does not possess all 36 possible non-C, atoms, resulting
in empty dimensions in z € RZ*36%3 that cannot be directly featurized. To address this, we expand
the Atom37 representations into an atom sequence containing only existing atoms, following a default
atom order. For masked residues, where all non-C,, atoms are absent, we represent them with a
pseudo-atom token [M] in the atom sequence as a special atom type and set its coordinate to zero,
and residue type to a mask token. For instance:

[ALA]-[M]-[CYS] = [N-CA-C-O-CB]-[CA-M]-[N-CA-C-O-CB-SG]

amino-acid sequence atom sequence

We then expand all associated residue-level features to match the atom sequence, allowing us to
treat the atom sequence similarly to the residue sequence and reuse architectural modules. The
Transformer’s ability to handle variable-length inputs resolves the varying atom number problem.

Atom-Level Encoding and Decoding. Inspired by AlphaFold3 [1], we encode atom-level
information using atom encoders followed by a cross-attention layer that integrates residue and
atom features before the main backbone processing trunk. We note unlike prior methods our models
do not use any triangle update layers. After this trunk, another cross-attention layer updates both
representations, followed by atom decoders for further atom-level refinement [1]. At the output stage,
residue-level representations are used to predict C,, vector field vi,t and the residue type probability
logits cf‘ ;» while atom-level representations are used to predict the non-C,, vector field vﬁ_’t.

Initialization Prediction for Masked Residues. To predict the structure of non-C,, atoms of masked
residues, we introduce a prediction head that leverages the pseudo-atom token’s learned representation
and context from neighboring atoms and residues. Our initial experiments revealed that, as expected,
directly predicting the clean coordinates z is challenging as the number of atoms to predict is
unknown. To address this, we propose learning an initialization z{ ., , through an augmented objective.
We refer to this as an initialization as it is used only when the residue transitions from a masked to a
non-mask state (see Alg. 2). During training, this initialization head is regressed towards z — €, where
€, is a randomly sampled Gaussian noise vector. Notably, the standard conditional flow matching
objective relies on learning a vector field conditioned on noisy inputs; however, for side-chain
initialization, there is no noisy input available, as the residue type is unknown. As a result, the model
effectively learns to predict the expected clean state z, representing an average side-chain structure
across the 20 possible residue types. This initialization is refined into a realistic atomistic structure
in the remaining denoising iterations during inference. Note that the initialization becomes easier
to learn as the denoising process progresses, as more context is available and the remaining structure
is less noisy, aligning with our choice of schedules for each explicit modality (Fig. 9). This approach
also aligns the magnitude of the training target with that of vector fields, facilitating the training
process. At generation time, this initialization serves as a reasonable approximation for the initial
structure of non-C,, atoms in initially masked residues. See Appendix Sec. D.4 for more details.

5 Experiments

We trained two 200M parameter unconditional Proteina- Atomistica models, for lengths (i) 32-400
and (ii) 32-256 using local coordinates without frames to align with prior baselines [37] (alternative
coordinate modeling schemes are ablated in Table 4). For La-Proteina we train an autoencoder
from scratch and a subsequent flow matching model according to the procedure described in La-
Proteina [15] for lengths 32-500. The only difference between the original and our La-Proteina is

Table 1: Proteina-Atomistica and La-Proteina de novo fully atomistic protein generation performance
when trained on DsyN—ours compared to baselines. All models generate 100 proteins for lengths € [50, 400]
with step size 50. We report multimodal sampling configurations that generate the (i) most all-atom co-designable
(codes), (ii) most diverse samples (div), and (iii) an optimal trade-off (opt). The best values are bolded.

Method CODES-AA (%)1 DES-MI1 (%)1 DIV-AA1T NOV-PDB-AA| NOV-AFDB-AA |
ProteinGenerator 10.0 57.1 28 0.75 0.78
Protpardelle 13.6 62.8 25 0.74 0.76
PLAID 22.3 34.9 63 0.85 0.88
Pallatom 51.6 62.5 282 0.66 0.71
La-Proteina (DArDpB—clstr) 70.6 85.5 314 0.77 0.84
Proteina-Atomistica ¢odes 87.8 88.1 263 0.77 0.81
Proteina-Atomistica p¢ 83.1 85.8 321 0.76 0.80
Proteina-Atomistica gy 71.6 72.0 333 0.75 0.80
La-Proteina codes, Dsyn—oure 92.6 92.5 418 0.75 0.83
La-Proteina div, Dgyn_oure 87.8 87.4 475 0.74 0.82
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the change of training data. We emphasize that data is a critical hyperparameter in all prior de novo
protein design methods. While we show Proteina-Atomistica and La-Proteina to be state-of-the-art
performers in Sec. 5.1, we also analyze the impact of Dgyn—_ours Specifically, in Sec. 5.2. As all
included baselines leverage different datasets or combinations of AFDB/PDB/UniRef/etc., we intend
for the public release of DgyN_ours to offer another alternative that can be leveraged for its synthetic
consistency. We further ablate our new explicit data-space method by comparing against recent
backbone-only and backbone-sequence (no side chain) models in Appendix Tables 5-6, including a
no-side-chain version of Protefna-Atomistica itself (see Appendix Sec. C.1).

We evaluate our models using standard de novo protein design metrics, extending them to backbone-
sequence co-design and all-atom (AA) contexts, following prior work [16, 37, 7]. De novo success
metrics include Designability (DES), the ability to inverse fold the generated protein backbone with
ProteinMPNN and refold the generated sequences [47], with variants DES-M1 (single-shot) and
DES-MS (standard for backbone-only; best of 8 sequences); Co-designability (CODES), similar to
DES-M1 but using the model’s output sequence; and All-Atom Co-designability (CODES-AA), an
extension of CODES using all-atom scRMSD. CODES and CODES-AA are reported for models
that produce backbone and sequence, and atomistic side-chain structures, respectively. We also
report structural Diversity and Novelty of the (co-)designable samples, for C,, design (M8 and M1),
backbone-sequence co-design, and all-atom contexts. For metric details see Geffner et al. [16].

5.1 De Novo All-Atom Protein Generation

In Table 1, we compare Proteina-Atomistica and La-Proteina trained on DgyN_ours to recent fully
atomistic generative models. Using multimodal low temperature sampling, both Proteina-Atomistica
and La-Proteina leverage the known trade-off [16, 28] between designability and diversity. We also
plot the Pareto frontier for both all-atom and backbone-only co-designability in Fig. 4

Notably, Proteina-Atomistica generates highly designable and diverse structures (Fig. 3) while
achieving competitive novelty scores, indicating that our model does not overfit to PDB or AFDB.
These improvements are further surpassed by La-Proteina when trained on our DsyN—ours, Which
obtains state-of-the-art performance with all-atom co-designability of 87.8% and 475 clusters when
steered towards structural diversity via low temperature sampling. Furthermore, both Proteina-based
models on average generate 66-70% «-helices and 6-10% [-sheets. We further demonstrate that both
Proteina-Atomistica and La-Proteina obtain comparable geometric side chain accuracy metrics in
Appendix Fig. 11. The impact of synthetic consistency up to length 400 is evident in the comparison
of La-Proteina with DArpB_cistr and DsyN—ours, Where we observe a best-case improvement in all-
atom co-designability of 31% and diversity of 51%, respectively, establish new state-of-the-art results.
We further discuss the generalization of performance gains due to synthetic consistent data in Sec. 5.2.

5.2 Understanding the Impact of Synthetic Data

To demonstrate that Darpp—cistr 1 challenging for facilitating joint learning of sequence and
structure, we further investigated the impact of synthetic data. To this end, we constructed two further
synthetic datasets based on DaArpB—cistr: (1) Drsmrold and (2) Dyes. In Desmrold, samples have
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Table 2: Impact of Synthetic Data. All models generate 100 proteins for lengths € [50, 100, 150,
200, 250]. Training on ESMFold structures or filtering for ESMFold designability hurts performance
unless those synthetic ESMFold structures are coupled with recoverable sequences.

Model CODES-AA (%)1 DES-MI1 (%)1 DIV-AAT
Protefna-Atomistica p, .pp ..., 76.8 87.6 154
Protefna-Atomistica pygyp1q 71.0 86.0 132
Proteina-Atomistica p,,, 72.2 87.2 120
La-Proteina p, .5 e 81.0 89.8 213
Protefna-Atomistica pgyy_ e 81.2 82.4 267
La-Proteina pgyy_ .. 92.2 93.2 283

the same sequences as in DArpp—_clstr but the structures are computed by ESMFold with a filter of
pLDDT > 0.8. Dps is a subset of Darpp_cistr (uses direct AFDB structures) with all structures
passing the DES-MS filter. Both Drgmrold and Dpes contain ~0.16M samples.

Table 2 demonstrates that, counterintuitively, neither using 100% designable structures Dgsnirold
for training nor leveraging the designable subset Dps improves the performance of the model, even
when the goal is to generate designable and diverse structures. As a side, Table 2 also confirms that
the new Proteina-Atomistica architecture trained on DgynN _ours, Which combines AFDB’s structural
diversity with ProteinMPNN sequences (subsequently refolded with ESMFold to recover consistent
full atomistic detail), achieves highly accurate and diverse fully atomistic generation (see Sec. 3 for
DgyN—ours procedure). This highlights the importance of utilizing better-aligned synthetic sequences
and structures to facilitate scalable co-design over both modalities. Furthermore by training on
DsyN—ours La-Proteina sees co-designability and diversity improvements of 13.8% and 32.9%.

5.3 Latent vs. Explicit Modeling of Protein Sequences

Table 2 shows that La-Proteina’s latent approach better learns aligned sequence-structure co-
generation compared to Proteina-Atomistica in particular when trained on DArpp—_cistr- We found
that this is due to lower co-designability at longer lengths, also implying lower diversity scores
(diversity is calculated among designable samples only). La-Proteina’s autoencoder bypasses the
challenge of aligning explicit, discrete, and continuous modalities, generating more diverse and
co-designable samples. The latent variable framework avoids minimizing a complex joint continuous
and discrete objective during the generative model training. Moreover, La-Proteina’s autoencoder
component effectively learns to tie together consistent sequences and structures rather than trying to
learn how to explicitly match them through separate modality-based objectives. Although learning
the structure-to-sequence mapping in the explicit data space is more challenging, Proteina-Atomistica
establishes a strong alternative for future work that relies on direct access to explicit observables.

Switching to DsyN—_ours Significantly improves Proteina-Atomistica’s co-designability, dramatically
boosts diversity, and yields competitive results with La-Proteina. The model now learns a more
empirically recoverable sequence distribution from its structures (Fig. 6). Notably, both La-
Proteina and Proteina-Atomistica show significant improvements on DgyN—ours, gnerating more co-
designable and diverse samples when compared to training on Darpp—cisty- Furthermore, sequences
generated from our models trained on DsyN_ours fold better into their co-generated structures
than those from ProteinMPNN (Appendix Table 7; see >DES-M1). This alleviates the need for
ProteinMPNN re-design of generated backbones, a common component in design pipelines.

Please see our Appendix for ablation studies, experiment, dataset, and model architecture details.
6 Conclusions

Our study finds that AFDB structures are not recoverable with publicly available protein structure
predictions models, which motivated us to create a carefully curated, yet diverse dataset of aligned
sequences and structures. We also introduce and successfully validate Proteina-Atomistica, a new
unified multi-modal flow-based framework for de novo atomistic protein design that represents
sequence, backbone, and side chains explicitly, without latent variables. Training both Proteina-
Atomistica and La-Proteina on Dgyn_ours dramatically improves their performance, achieving
new state-of-the-art results. This demonstrates the critical importance of consistent and recoverable
sequence-structure training data for atomistic protein design. Future work could address the consistent
generation of longer atomistic proteins and analyze the importance of aligned sequence-structure data
in the context of conditional tasks such as motif scaffolding and binder design.
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ss. A Additional Proteina-Atomistica Sample Visualizations

s34+ In Fig. 5, we show additional fully atomistic proteins generated by Proteina-Atomistica. Our model
outputs diverse (co-)designable samples, including realistic side chain structures.

Figure 5: Proteina-Atomistica Samples. Additional fully atomistic proteins generated by our model, ranging
from 100 to 400 residues, including side chains. All shown samples are co-designable.
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Figure 6: Amino acid sequence distribution for Darpp—cistr (natural) and DgyN—ours (synthetic) for
sequence length € [32, 256].

B Dataset Details

B.1 Dealing with the inconsistency between structure and sequence data of AFDB

DArDB—clstr 18 the dataset used in Genie2 [28] for training a protein backbone generative model. It is
a subset of the AlphaFold Database (AFDB) [43] containing proteins clustered with both MMseqs?2 [5]
based on sequence similarity and Foldseek [42] based on structure similarity. DArpB—_clstr only
contains one structure per cluster (the cluster representative). After filtering with Nyesique € [32, 256]
and pLDDT>80, DArpB—_clstr contains 588,318 structures.

We analyzed the co-designability of structure-sequence pairs in Darpp—cistr by folding the sequences
with ESMFold and checking if the lowest RMSD between folded structure and the AFDB structure is
less than 2A. We discovered that only 26.6% of DarpB_cistr are co-designable by C,, RMSD and
even less by all-atom RMSD (Fig. 1). The low co-designability of Darpp_cisty pOses a significant
challenge to multimodal protein generation model training: even if the model fit both sequence and
structure distributions of the dataset very well, the generated protein structure will not be consistent
with the generated sequence. To address this challenge, we explored three other synthetic datasets
based on downstream augmentations of DAppB—_clstr-

B.2 Datasets with designable structures

Our initial explorations began with targeting the structure-sequence inconsistency at the structural
level. We hypothesized that refolding Darpp—_cistr With ESMFold would, by definition, yield
100% co-designable samples, and that training on these designable samples would improve model
performance. To test this hypothesis, we created two datasets:

1. Desmrola: We took sequences in the original Darpp—cistr and folded them with ESMFold. We
applied a filter of pLDDT gy ro1q = 80 on the folded structures. As a result, all remaining structures
should be co-designable with a high confidence score. Dggymrola contained 163,552 samples.

2. Dpes: We took sequences in the original Dappp—cisty and folded them with ESMFold. We
computed the all-atom RMSD between the ESMFold-folded structure and the original AFDB structure.
We then filtered DarpB—_cistr based on the all-atom RMSD with 2A cutoff to create the D ges dataset
containing 155,957 samples. Hence, in contrast to Dggnrold, here we are relying on the original
DArDB—clIstr Structures and filtering them to a designable subset.

We trained Proteina-Atomistica on both Dggyvpolq and Dges. Both datasets reduced the model’s
performance on all metrics (Table 2) and caused sequence overfitting (structure losses remained
unaffected) despite the sequences for both datasets remaining unchanged. The results suggest that
jointly modeling natural sequences and synthetic structures (predicted by either ESMFold or AF2)
remains challenging when those structures cannot be easily recovered with both ESMFold and AF2.
While Darpp_cistr provides a diverse sequence and structure space, realigning the structures to the

2ColabFold with MSAs yields ~65% co-designability on a random subset of 100 samples from DArpB—clstr-
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sequences using ESMFold and filtering by its confidence score may inadvertently reduce both data
diversity and volume. This process may also contribute to the observed overfitting.

B.3 Details of Our Synthetic Data DsyN_ours

Given that a sequence must reasonably fold into its given structure to be co-designable, and enforcing
co-designability at the structural level worsened all models, we shifted our focus to the sequences.
We observed that ProteinMPNN-based sequence resampling can significantly improve designability
(see Sec. F.2.2 for detailed discussion), prompting us to create a dataset with synthetic sequences to
target the central issue of inconsistent sequence-structure pairs. This choice is further motivated by
the fact that ProteinMPNN is widely used for the “inverse folding” step in the standard multi-step
“backbone generation”-“inverse folding”-“forward folding” pipeline employed by most de novo
protein generative models, owing to its validated performance in wet-lab experiments [47, 10, 12].

It is crucial to note that, since we are modeling fully atomistic protein structures, we cannot utilize
the given AFDB structures if there are any residue changes in the predicted synthetic sequences. This
is because a change in sequence implies a different side-chain structure, potentially with a different
number of atoms. Consequently, to use synthetic sequences, we refold the new sequences to ensure
all-atom compatibility. We visualize both the natural and synthetic sequence distributions in Fig. 6.

To address the problems discussed in Sec. B.2 while preserving scale and diversity, we created Do des
through the following steps: (i) generating four ProteinMPNN sequences for each DArpp—cistr
structure with lengths between 32 and 400, (ii) folding the ProteinMPNN sequences with ESMFold
due to its computational efficiency, being ~ 60X faster than AF2, and (iii) selecting the sequence-
structure pair with the lowest C', RMSD to the original AFDB structure to preserve the structural
diversity, as the original AFDB structures are cluster representatives. After filtering out samples
with an average ESMFold pLDDT below 80, our curated dataset, which combines knowledge from
ProteinMPNN and the confident predictions of both ESMFold and AF2, results in 429,965 high-
quality samples. Furthermore, rather than relying on redesigning the sequence after structure-based
generation and regenerating the side chains each time, D, 4es €nables learning a consistent sequence-
structure distribution, facilitating accurate single-step, fully atomistic design. It is worth mentioning
that FoldComp [24] was used to store and access all datasets we prepared efficiently.

We present the amino acid residue distribution of all training samples, ranging in length from 32 to
256, in Fig. 6 for both the natural Darpp—cistr Sequences and those generated using ProteinMPNN
in DsyN_ours. We chose ProteinMPNN for its robust wetlab validation [10, 12]. However, it does
overrepresent certain residue types, particularly charged species (E, K). While this overrepresentation
is not inherently problematic for de novo design, as it allows the model to generate fully atomistic
structures with high fidelity without redesign, it is still an important consideration for downstream
usage.

C Architecture Details

Here we introduce the model versions in order of complexity. Starting with Proteina we add
discrete sequence co-generation to create Proteina-Co-Design. We then extend this with side-chain
co-generation to yield the full Proteina-Atomistica framework.

C.1 Proteina-Co-Design

For the co-design setting, we start from the ~ 60 Proteina architecture configuration that shows an
optimal balance of accuracy and speed in the backbone-only setting (See Appendix C.2 of Geffner
et al. [16] for Proteina speed analysis). To enable joint backbone-sequence modeling from a pure
backbone model, we add three features:

(i) residue type index embeddings
(i1) argmax residue type index predictions for self-conditioning,

(iii) the independent residue type time variable, which dictates how much noise or, in this case,
the percentage of tokens to be replaced with MASK tokens
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Table 3: Hyperparameters for Proteina-Atomistica model training. Rows highlighed in grey are
specfic to the all-atom architecture. We denote two versions of Proteina-Atomistica the one trained
on shorter lengths up to 256 and the standard model trained to max length 400.

Model Proteina-
Co-design | Atomistica (256) | Atomistica (400) | Atomistica Motif | Atomistica-tri

Architecture Component

initialization random random random random random
sequence repr dim 512 768 768 512 768
# registers 10 10 10 10 10
sequence cond dim 128 512 512 128 512
t sinusoidal enc dim 196 256 512 196 512
idx. sinusoidal enc dim 196 128 256 196 256
pair repr dim 196 512 256 196 256
seq separation dim 128 128 128 128 128
pair distances dim (x;) 64 64 64 64 64
pair distances dim (x(x¢)) 128 128 128 128 128
pair distances min (A) 1 1 1 1 1
pair distances max (A) 30 30 30 30 30
residue type embedding dim 196 512 512 196 512
# attention heads 12 12 12 12 12

# transformer layers 12 15 15 12 15

# triangle layers 0 0 0 0 3

# number of atom layers 0 5 5 5 5
atom cond dim 0 128 128 128 128
atom dim 0 128 128 128 128
atom type embedding dim 0 128 128 128 128
# atom attention heads dim 0 8 8 8 8

# atom cross attention heads 0 8 8 8 8
side chain coords N/A local trans local frame local trans local frame
# trainable parameters 59.3M 221M 222M | 73.6M 226M
Training Details

# train steps (length€[32, 256]) 100K 190k 210k 100K 145k
# finetune steps (lengthe[32, 400]) | N/A N/A 100k N/A N/A
train batch size per GPU 28 8 12 8 4
finetune batch size per GPU N/A N/A 1 N/A N/A
# GPUs 96 96 96 96 96

# grad. acc. steps 1 1 1 1 1

% forward folding 10 5 10 5 10

% inverse folding 10 5 10 5 10

% side chain packing 0 0 5 0 5

We note that both the C, coordinates and residue types leverage self-conditioning, where in 50% of
the training iterations, we run a first model forward pass to obtain predictions of the current structure
and sequence and use those as additional inputs to the model during a second forward pass. This
is a common technique for improving diffusion models and can be viewed as a form of recycling
employed by AlphaFold2 [16, 23].

For the Co-design task only, we sample the sequence time from B(1.0,2.5), where B(-,-) is the
Beta distribution. This is a severely left-skewed distribution, which gives more weight to noisy
times (sequences with a higher masking rate). For reference, we found that this did not make an
impact in the all-atom task. Instead, we used the standard uniform distribution, given that we were
directly modeling the structure-sequence duality with residue types and their structures. For co-design
training, 10% of the batch iterations are used for forward and inverse folding, respectively. This was
done to pin the two independent schedules so that when both structure and sequence time reach one,
the structure and sequences are trained to align. Please see Table 3 for complete model configurations
and compute resources used.

C.2 Proteina-Atomistica

More architectural components are illustrated in Fig. 8.

C.3 Optional Triangle Multiplicative Updates

In addition to the highly scalable Proteina-Atomistica demonstrated by Fig. 7, we trained another
variant, Proteina-Atomistica-tri, with triangle multiplicative layers, which were used to update the pair

17



638
639

(a) Create Sequence Representation (b) Create Sequence Conditioning  (c) Create Pair Representation (d) Create Atom Sequence Representation

\
[sinkne]  [Tinear | [ Embea ] [sinEnc ] [[sin Ene.] [P Disis] Pair Dists][seq: Dise sin. Ene. |[sin. Enc. | [Snim] [Tinear | [Embod | [Comoea |

Concat. Concat.
| Sequence Repr. ” Registers | | Sequence Cond. ” Zero l’ad.l |
Concat. Concat. (e) Create Atom Sequence Conditioning
Sequence Repr. ‘Sequence Cond, SiniBnc H MLP H ‘Atom Cond.
u [ B |
(f) Neural Network Processing Stack
Atom Encoder Trunk Backbone Processing Trunk Atom Decoder Trunk Prediction Heads
A A A A

r

AtomRepr. | —— o
Adaptive Biased

Multi-Head Attention
+

Linear Vector field v5,

Adaptive Biased
Multi-Head Attention —| Atom Repr.
+

z z
cond. %’_’ %: 9
""""" Adaptive Transition || 5 - s Adaptive Transition Init Zinie
: B |:
4 T o
| | @ é
cond. = > 5
Sequence Cond. o Adaptive Biased & Vector field v,
u g Multi-Head Attention Z
g g

¥ /e
Sequence Repr. — Adaptive Transition . Prob. logits ¢f|

Figure 7: Proteina-Atomistica’s transformer architecture. (a)-(c) First generate an initial sequence
representation, sequence conditioning features, and a pair representation. (d)-(e) Create atom representations and
atom conditioning features for the expanded atom sequence. (f) Process these representations iteratively through
trunks, moving from atom-level to sequence-level and back to atom-level. Each trunk incorporates conditioned
multi-head attention layers, biased by the pair representation. Adaptive cross-attention is employed between
trunks to update atom and sequence representations (see Appendix).
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Figure 8: Additional modules of Proteina-Atomistica transformer architecture. (a) Adaptive attention
and transition. (b) Optional pair representation update with triangle multiplicative layers. (c) Adaptive cross
attention.

representation. Fig. 8(b) shows how triangle multiplicative layers are used in the Proteina-Atomistica
architecture. During training, the pair representation was updated every 5 backbone processing layers,
where the backbone processing layers are the core transformer layers shown in Fig. 8(a), resulting
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Algorithm 1 Proteina-Atomistica Training Algorithm 2 Proteina-Atomistica Sampling

1: while not converged do . . R .. .
& 1: Initialize x, r, z from noise distribution

2 Sample protein (x,r, z) from dataset
3 Sample time steps tx, tr, t, for each modality 2: fori =0to N — 1do
4:  Convert global z to local coordinates using x 3 Predict Vi,t, Vz,t, zi?m,ts C?\t
5:  Sample noisy input x;, r¢, z; for each modality 4 if dtx > 0 then
g Zero out z; for masked residues in r; 5 Update x with Eq. (1)
8 Predict v5 ,, v8 ;, 20, and c‘f‘t 6 ,end if
9:  Compute loss across modalities 7 if d¢; > 0 then
100 Ly V0, — (x—e)|3 8: Unmask r with prob. d¢, - llt—"f:
11: Ly« CrossEntrOpy(CfH ,T) 9: Remask r with prob. dt, - n
12:  for each residue ¢ do 10 end if
1B: Lai Ve — (@ e )[Bifre M 11 e qs 5 0 then
}‘51 Lo ||Zineei = (25 — €z) 2, if e =M 12 for each residue j do
: end for .
16: L L (Lut Lot L) 13 If unmasked: update z; with Eq. (2)
17:  Calculate gradient and update model parameters 14: If newly unmasked: set z; < zﬁm,t
18: end while 15: If masked: setz; < 0
16: end for
17:  endif
18: end for

in 3 updates in total and ~ 4M parameters in triangle multiplicative layers. Table 9 demonstrates
that Proteina-Atomistica-tri exhibits improved performance on all metrics, especially the all-atom
diversity. Considering that the triangle multiplicative layers are highly memory-intensive, we keep
them as an optional and sparse add-on to our model architecture.

D Proteina-Atomistica Training and Inference Details

D.1 Proteina-Atomistica Training

The training process is outlined in Alg. 1. We start by sampling time steps to create noisy inputs for
each modality (Sec. 4.1) and feeding them into the model. Both C,, and non-C, sample time from the
mixed uniform-beta distribution from Proteina [16] and the sequence time is sampled from 2/(0, 1).
The training objectives are as follows: for C,, atoms, we use the standard conditional flow matching
objective, while for amino acid sequences, we use a standard cross-entropy loss. For non-C,, atoms
(1) for unmasked residues, we apply the flow matching loss to existing atoms, similar to C, atoms; (ii)
for masked residues, we regress the predicted pseudo-velocity z?. , towards an augmented objective
as discussed in Sec. 4.2. See Appendix for further training details.

D.2 Proteina-Atomistica Sampling

We sample C, atoms by simulating the learned flow via an SDE. Since our flow is Gaussian, it relates

to the score function as: s, , = (tv% , — x;)/(1 —t). This allows us to define an SDE for sampling
dx; = vl dt + gu(t)sh , dt + /295 (t) 1= WV, 1)

with noise scale % and Wiener process W;. Setting yx=1 produces the model’s marginal distribution,
while reducing vx can boost designability by lowering noise during generation, at the cost of diversity.

Following MultiFlow [7], for sequence sampling, we effectively perform iterative unmasking and
remasking. Starting with a fully masked sequence [M]”, at each timestep ¢, we predict residue
type logits cfl , and sharpen the distribution using a temperature 7 to obtain probabilities py|,.(r) =
softmax(cf‘ ./7T). Each masked residue is then unmasked with probability dt - (14 nt)/(1 —t),

where 7 controls sampling stochasticity, and its type is sampled from p;,.(r). To maintain balance,
each unmasked residue is subsequently remasked with probability dt - 7. We also explore recent
advances in discrete diffusion sampling algorithms [40, 36].

The generation of non-C', atoms depends on the sequence generation process. Following the flow
matching framework in Sec. 4.1, we begin generating non-C,, atoms for a residue only after it is
unmasked. Accordingly, the generation process falls into three cases: (1) If the residue is already
unmasked, we update its non-C|, coordinates using the same SDE as for C, atoms:

dzy = Vi, dt + g,(t)sh , dt + /204 ()72 AWV )
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(2) if the residue is newly unmasked at the current step, we initialize its atom coordinates using
a single step Euler integration using the the predicted initialization Z?mr,:s; (3) if the residue is still
masked or has been remasked, we set z to zero. This framework enables the concurrent generation
of side chains alongside backbones and sequences, contrasting with methods that generate side
chains after backbone and sequence generation. This simultaneous approach allows for an increased

influence of side chains on the local structure while retaining the flexibility to alter sequence identities.

The sampling process is detailed in Alg. 2. As we use distinct time schedules for the three modalities,
we denote their respective timesteps with corresponding subscripts and use N to denote the number
of timesteps. Our flexible and general framework, in principle, allows for sampling modalities in any
order by adjusting these time schedules.

D.3 Defining Noise Schedules via the Time Distribution

Training Time Sampling Distribution. A key design choice in diffusion and flow matching models is
the time sampling distribution p(t), which effectively controls how the training objective is weighted
across different stages of the generative process. Here, since we consider three distinct modalities,
we sample time steps independently for each. Proteina-Atomistica proposes to bias sampling toward
later timesteps (¢ ~ 1) to encourage the model to allocate more capacity to generating fine-grained
local structure. Specifically, for flow matching in Euclidean space—i.e., for x and z—we use a mixed
Beta distribution [16] for t« and ¢,.

p(t) = 0.022(0,1) + 0.98 B(1.9,1.0),

where B(-,-) is the Beta distribution. For the discrete modality r, we sample ¢, from 2/(0,1).
Additionally, following [7], we give the options to allocate a small percentage of each training batch
to forward folding (¢, = 1), inverse folding ({x = 1) and also extend to side chain packing (tx = 1
and t, = 1). Please see Table 4 for specific ratios for each model configuration.

D.4 Side Chain Initialization

In Fig. 7, the initialization zfmt’t is predicted from atom representations that are also used for the

vector field vﬁ’t. Notably, the model does not have access to z; for masked residues due to the
structures being undefined for unknown residue types. This differs from the standard flow matching
objective, which predicts a vector field conditioned on the noisy input. We have found that separating
the initialization from the standard structure-to-structure vector field works best in practice (Table 11).

In Table 11 we empirically observed that directly predicting clean coordinates is challenging due
to their high variance and our model’s non-equivariant nature. To address this, we introduce an
auxiliary objective that predicts z — €,, where €, is standard Gaussian noise not visible to the
model. This formulation is effective for two reasons: (1) it aligns with the vector field objective
for existing atoms, and (2) since €, is not known to the model, the optimal prediction converges
to E[z — €,] = E[z] — E[e,] = E[z], ensuring that the prediction converges to the average clean
coordinates. This, in turn, properly initializes newly unmasked side chain atoms.

An alternative interpretation of this augmented objective is that we aim to learn an augmented vector
field that transforms a random starting point with average E[e,] = 0 to the average clean data E[z].
During generation, we can then obtain an initialization by performing a single-step Euler integration
from noise (¢pre-inic = 0) towards “clean data” (¢;nie = 1) using the learned vector field. We assume the
side-chain structures for masked residues originate from zero. This conceptually means the side-chain
coordinates are initially hidden behind the C', atoms (in local coordinates) before being unmasked.

D.5 Two Stage Training

We used a training + finetuning strategy to train Proteina-Atomistica on DsyN_ours- The model
was first trained on a subset of DgyN—_ours cOntaining proteins with lengths ranging from 32 to 256.
The model is then finetuned on the full DgyN—_ours With protein lengths ranging from 32 to 400.
The model with triangle multiplicative layers (Proteina-Atomistica-tri) was only trained on protein
lengths ranging from 32 to 256. We recorded the number of steps and learning rate in both training
and finetuning stages for each variant of the model in Table 4.
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D.6 Details in Multimodal Flow Matching

We present the detailed version of our training algorithm in Alg. 3. Here, SampleTimestep() is the
function to sample timesteps for each modality based on the training time distributions in Sec. D.3
and Global2Local() is the function to transform global coordinates to local coordinates, where the
transformation scheme (local translations or local frames) is chosen as a hyperparameter.

Global2Local: Non-C', atoms are structurally organized around their corresponding C, atoms. We
offer two local coordinate modeling strategies to leverage this property, simplifying the learning
task by predicting offsets rather than global coordinates and facilitating better initialization of
non-C,, atoms. The first approach calculates the relative position of non-C,, atoms directly with
respect to their corresponding C,, atom: zli"”ll = z; — x;. The second strategy, inspired by related
work [28], constructs a residue-centric local coordinate frame (t;, R;) using the C,, coordinates of
three neighboring residues (x;_1, X;, X;+1) via the Gram-Schmidt process. Non-C, coordinates z;

are then transformed to local ones via z*#-m¢ — R ~1(z; — t,). In the following sections, models

i =y
denoted by local trans employ the local translation parameterization, while those denoted by local
frame utilize the frame-based parameterization.

Algorithm 3 Proteina-Atomistica Training

Input: C,, atom x € RE*3, amino-acid sequence r € {0, ..., 19}%, non-C,, atom z € RE*36x3

1:
2:
3: while not converged do

4:  # Step 1: Noising Process

5:  tx,tr,ts; < SampleTimestep()

6: 1y ~t0{r}+1—1t.0M)

7. ex ~N(0,I) € RE%3 e, ~ N(0,T) € REX36x3

8 Xy txx+ (1 —tx)ex

9:  z + Global2Local(z, x) # if using local coordinates
10: zp +— t,z+ (1 —t,)€,

11:  Zero out non-existing atoms in z; based on r;
12:
13:  # Step 2: Neural Network
14: v8 . vi, 2l c‘f‘t < Transformer(x;, s, z¢, 0,0, 0, tx, tr, )

x,t) init,t
15:  ifrand(0, 1) > 0.5 then
16: I < argmaxc‘flt
17: X x+ (1 —te)vh,
18: z< 2z + (1—t,)vl,
19: Vz,u vgjt, zf’nit,t, c‘flt < Transformer(x;, r¢, z¢, sg(X), sg(T), sg(z), tx, tr, tz)
20:  endif

21:

22:  # Step 3: Loss Calculation

23 Ly CrossEntropy(cf‘ ;T)

24: Ly %va{’t —(x—€)|]3
25:  for each residue 7 do

26: »Cz,z' < HVit’i — (Zi — GZJ’)H%,ifI‘t,i 7é M
27: Loi |20 — (20 — €.0)[3,ifre s =M
28:  end for

29: L+ L (Lx+Le+ L)

30:

31:  Calculate gradient and update model parameters
32: end while

E Inference Details and Hyperparameters

We present a detailed version of the sampling algorithm in Alg. 4.
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Algorithm 4 Proteina-Atomistica Multimodal Sampling

1: Input: discretized timesteps for three modalities {tx;}o.n, {tr.i}o.n, and {t,;}o. N,
stochasticity schedules gy (t) and g, (t), noise scales yx, 7z, 7, sSequence temperature T

2: Output: generated proteins (x,r,z)
3: x ~N(0,I) € REX3
4: 7z ~ N(0,I) € RL*36%3
5:r ¢+ [M}L
6: fori =0to N —1do
7 vVl cflt < Transformer(x, r,2,0, 0,0, tx i, tr,is i)
8.  if self-condition then
9: I < arg maxcf‘t
10: X x+ (11— txﬂ;)vi’t
11: z 2+ (1 —tz)vh,
12: Vits Vit Zinig e €1 ¢ Transformer(x;, ve, 2¢, X, T, 2, tx,is tr,is ts,i)
13:  end if
14:
15:  # Update CA Atoms
16: dtx = tx,i+1 — tx,i
17: if dtx > 0 then
18: % x+ v dtx + gx(txi)8S At + /20x (Exi) 1 AV
19:  endif 7 7
20:
21:  # Update Amino-Acid Sequence
22: dtr = tr,i+l - trﬂ‘
23: if dt, > 0 then
24: if sampling_alg = PURITY then
25: T purity_sample(cflt, dt,,n, 7, ) (Algorithm 5)
26: else if sampling_alg = P2 then
27 T p2_sample(cflt7 dt,,n, 7, #) (Algorithm 6)
28: else
29: ry ~ Softmax(c?lt/r)
30: Punmask < dt, - (1 + ntr,i)/(l - tr,i)
31: Premask < dtr N
32: for j =1to L do
33: if r; = M then
34: f‘j ~ (1 - punmask)é{M} + punmaské{fl,j}
35: else
36: IA‘j ~ (1 - premask)5{rj} + premaské{M}
37: end if
38: end for
39: end if
40:  end if
41:
42:  # Update Non-CA Atoms
43: dtz = tz7i+1 - tz,i
44: if dt, > 0 then
45: for j = 1to L do
46: ifr; # Mandt; # M then
47: Z; < z; + vz,t’jdtz + 9 (tm)sg_’thjdtz + v/2095(t2,i) vz AWV,
48: elseifr; = Mandt; # M then
49: Zj Zigmt,t,j
50: else
51: Z; = 0
52: end if
53: end for
54:  endif
55:  X,r,z< X,r,2
56: end for

57: Return (x,r,2z)
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E.1 Inference Time Schedules

We sample from Protefna-Atomistica following Alg. 2 for the C, coordinates, residue types, and
non-C|, backbone and side chain atoms, integrating from ¢ = 0 to ¢ = 1. For the coordinates of C,,
(x) and non-C, atoms (z), we simulate the SDE (Eq. 1 and Eq. 2) with the following definition for
g(t):
g(t) =1/(t+0.01), te€]0,0.99
g(t)=0, te€(0.99,1)
We use Nx = 500 and N, = 600 steps to discretize the unit interval into logarithmically spaced
points. The PyTorch [35] code snippet to generate the logarithmic discretization is as follows:
t = 1.0 - torch.logspace(-2, O, nsteps + 1).f1lip(0)
t =t - torch.min(t)
t =t / torch.max(t)
which ensures that ¢ € [0, 1]. For the sampling of residue types (r), we use the N, = 500 steps to
discretize the unit interval into quadratically spaced points. x; and r; are padded with ones for extra
100 steps to match the total number of 600 steps of the simulation. Fig. 9 visualizes the discretized
t-schedule of different modalities during sampling.
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Figure 9: Discretized ¢ schedule during sampling for backbone C\, (x;), amino acid residue types (r;), and
all non-C'y, atoms (z.). The last 100 steps of x; and r; are padded with 1.

E.2 Backbone-Sequence Co-Design

For both the backbone-sequence co-design and all-atom generation tasks, our models perform best
with a combination of the offset schedules defined above and various low-temperature settings across
the explicit data modalities that the model has access to (backbone C,,, residue types, other backbone
and side chain atoms). Here we detail the specific parameters and how they impact the generated
results.

E.2.1 Low Temperature Sampling for Backbone C,,

The stochasticity of backbone sampling is handled in the same way as done in Proteina [16]. This
means we have a single noise scale to decrease the impact of the noise in relation to the score and
vector field contributions. This can be seen in Eq. 1 where 7« refers to the backbone noise scale
shown in Table 4.

E.2.2 Discrete Diffusion Sampling for Residue Types

As detailed in Algorithm 4, we investigate two discrete diffusion sampling algorithms to refine the
incorporation of stochasticity in the masking and unmasking processes. We adopt purity sampling [40]
(Algorithm 5), which prioritizes unmasking tokens with high confidence, and self-path planning (P2)
sampling [36] (Algorithm 6), which instead encourages remasking tokens with low confidence.
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Algorithm 5 Purity Sampling

1: Input: predicted logits c(;‘ ;» time step ¢, time delta d, sampling temperature 7, stochasticity 7,
current sequence ry

: Output: updated sequence t

: probs < Softmax(c{|, /)

: MaxLogProb <+ max(log(probs), dim = —1)

: MaxLogProb < MaxLogProb — (r; # M) - co

: SortedIndices < ArgSort(MaxLogProb, descending = True)
¢ Punmask ¢ min(1, dt - 1;‘—_":)

: ToUnMask < (Uniform(0, 1) < pypmask) A (r: = M)
9: NumToUnmask < > (ToUnMask)

10: Fgampres ~ Categorical (probs)

11: f‘ — Iy

12: for i = 1 to NumToUnmask do

13:  idx <« SortedIndices][i]

14: Pigx < IA‘samples,idx

15: end for

16: Premask <— dt - 1

17: ToReMask « (Uniform(0,1) < premask) A (t + dt < 1)
18: T < r - (1 — ToReMask) + M - ToReMask

19: return r

00 N NN R W

Algorithm 6 P2 Sampling

Input: predicted logits c‘f‘t, sampling temperature 7, stochasticity 7, current sequence r

Ouput: updated sequence 1

K(t)=1—1t

€ ~ Gumbel(0, 1)

logprob, ry = LogSoftmax(c‘l)lt /T + €).max(dim=-1)
score <— logprob

score[r; # M| < score[ry # M| xn

ToMask <— Top-K-Lowest, ;, (score)

9: T+ f‘l

10: for j € ToMask do

11:  if [r]; # M then

PR RN 2

12: [I’]j +~ M
13:  end if
14: end for

15: for j ¢ ToMask do
16:  if [r]; = M then

17: [I‘b‘ < [f‘l]j
18:  endif
19: end for

In total, three hyperparameters define the discrete flow matching sampling: (1) the sampling algorithm
type, either purity or P2; (2) the temperature 7, which directly controls the predicted logits, with
7 < 1 emphasizing likely residue types and 7 > 1 acting as a distribution smoothing parameter; and
(3) the stochasticity (1), which governs the remasking ratio.

We test both purity and P2 sampling for all models and select the optimal settings based on the
empirical results.

E.3 Stochastic Side Chain and Non-C,, Sampling
Once a residue is unmasked, side chains and non-C', atoms are updated with the same stochastic

SDE as used for backbone C', generation. This can be seen in Eq. 2 where ~, refers to the side chain
and non-C,, noise scale shown in Table 4. When the residue is masked, we do not update the side
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chain structure as there is not yet a residue to predict the structure of. In the event of a residue being
unmasked we follow the steps described in Sec. D.4

Our flow matching design is tailored to accommodate dynamic changes in residue types during
generation, enabling flexible atom sequence lengths, i.e. a variable number of side chain atoms as
a function of time. For example, consider a single residue during generation where 0 <t, < tg <
t, < 1. Att,, the current residue is alanine with associated structures x;_, 2. At tg, the alanine
is replaced with a mask token, and the side chain and non-C|, backbone structure z; , is zeroed out
since the structure of an unknown residue is undefined. Then, at ¢, the residue token is unmasked to
lysine, requiring the initialization of the side chain structure with a different number of atoms than
previously used at £,,.

F Ablation Studies

Table 4: Inference Parameters for Proteina-Atomistica, Proteina-Co-design, and La-Proteina for
backbone (', sequence, and side chain/non-C', modalities. For La-Proteina we report the local latent
temperature as side chain noise scale.

Backbone Sequence Side Chain
Model Where Train Length | Local Coord | Noise Scale | Algo. Temperature Noise Scale | Noise Scale
Proteina-Atomistica g;y Table 7, 8 256 trans 0.62 P2 0.20 5.0 0.45
Proteina-Atomistica ¢oqes | Table 7, 8 256 trans 0.20 P2 0.45 5.0 0.60
Proteina-Atomistica qjy Table 7, 8 256 frame 0.60 Purity 0.20 0 0.60
Proteina-Atomistica coqes | Table 7, 8 256 frame 0.30 Purity 0.20 0 0.45
Proteina-Atomistica g;y Table 9 400 frame 0.60 Purity 0.45 0 0.1
Proteina-Atomistica op¢ Table 9 400 frame 0.45 Purity 0.30 0 0.1
Proteina-Atomistica ¢odes Table 9 400 frame 0.35 Purity 0.30 0 0.1
Proteina-Atomistica-trigpy | Table9 | 256 | frame | 0.5 | Purity 0.45 0 | 0.3
Protefna-Co-design qiy Table 7 256 N/A 0.60 Purity 0.20 5.0 N/A
Proteina-Co-design codes Table 7 256 N/A 0.30 Purity 0.20 5.0 N/A
La-Proteina g;y Table 7, 8 512 N/A 0.30 N/A N/A N/A 0.1
La-Proteina ¢odes Table 7, 8 512 N/A 0.10 N/A N/A N/A 0.1

Model Specifications. Table 4 details the specific hyperparameters for the Proteina-Atomistica and
Proteina-Co-design variants used in Table 1, Fig. 10, Table 7, and Table 8. All models follow a
similar paradigm: the lower the noise scale, the lower the diversity and the higher the designability.
The choices between the various discrete flow matching parameters were based on settings that
yielded optimal results, focusing on a strong trade-off between diversity and designability. Please
see the end of Sec. 4.1 for precise definitions of (i) local translational, and (ii) local frame-based
coordinates.

Ablation Strategy. Since Proteina-Atomistica generates backbone C', atoms, amino acid residues,
and atomistic side chains with non-C', atoms simultaneously, our ablation study follows a hierarchical
structure, incrementally integrating data modalities, starting from the simplest representation: (1) Cl,
only (Sec. F.1), (2) backbone-sequence co-design (Sec. F.2), and (3) fully atomistic proteins (Sec.
E.3).

F.1 Backbone C,, Only Design

We start with comparing architectures designed for backbone C, generation, and analyzing the role
synthetic sequences play on structure-based benchmarks. Table 5 presents the primary subset of de
novo backbone design benchmarks for recent models, following Geffner et al. [16]. We include both
M1 (single-shot) and M8 (standard best of 8 ProteinMPNN samples) variants to quantify the impact
of ProteinMPNN and its learned sequence distribution on structure-based protein design.

The overall ranking of models in Table 5 changes depending on whether M1 or M8 is used to evaluate
designability and diversity. Notably, a large portion of undesignable samples can be made designable
by resampling the possible sequence, as shown by the percentage of designable samples, which
increases by 10-28% when moving from M1 to M8.

We also introduce Genie2-Flow in Table 5, a variant of the Genie2 model that replaces the backbone
diffusion process with the flow matching training and inference procedure of Proteina. Genie2-Flow
achieves the best balance between designability and diversity at both the M1 and M8 levels.
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Table 5: Performance of de novo backbone generation for C, only models. All models generate
100 proteins for lengths € [50, 100, 150, 200, 250]. Genie2-Flow uses the Genie2 architecture with
the conditional flow matching training of Proteina. Here M8 refers results gain through best of 8
ProteinMPNN sequences. M1 denotes using the first ProteinMPNN sequence.

Method Dataset DES-MS (%)1 DES-MI1 (%)? DIV-M81 DIV-M11 NOV-PDB |
FrameFlow PDB 88.6 61.2 236 (0.53) 160 (0.52) 0.69
RFDiffusion PDB 94.4 77.8 217 (0.46) 158 (0.34) 0.71
Genie2 AFDB 95.2 743 281 (0.59) 233 (0.49) 0.63
FoldFlow-2 PDB 97.4 83.2 239 (0.49) 200 (0.48) 0.68
FoldFlow-2 (reft) PDB 81.6 53.2 218 (0.53) 131 (0.49) 0.65
Protefna S04 Genie2 98.4 87.8 139 (0.28) 127 (0.29) 0.75
Proteina 1o Genie2 95.8 79.2 250 (0.52) 203 (0.51) 0.70
Genie2-Flow—g 55 Genie2 96.6 78.2 359 (0.74) 284 (0.73) 0.62

F.2 Backbone-Sequence Co-Design

Now, we examine the backbone-sequence co-design task to gain a deeper understanding of how
sequences influence the generated structures during explicit joint learning.

F.2.1 Extended Discussion of Explicit Co-Design

First, we see that Proteina-Co-design and Proteina-Atomistica generate more consistent designable
proteins compared to having a separate ProteinMPNN step. This is shown by the > DES-M1 column
of Table 7, where the sequences generated by our models yield higher designability than a separate
ProteinMPNN call. This is important because it demonstrates that we have an accurate model that
can operate without the need for always trying to redesign a more fitting sequence (and side chain
structure by definition) to the already generated structure, as done in standard multi-stage design
pipelines. DES-M8 is always higher than both CODES and DES-M1, signifying that many sequences
can fold into similar structures, which we know to be true fundamentally. While our model does
not eliminate the potential need for inverse folding-based post-optimization to maximize M8 scores,
it achieves high single-shot accuracy with superior side chain structures (Fig. 11), setting a strong
foundation for further optimization. Although DES-MB8 is higher than M1, finding the best of eight
different sequences would require redesigning the side chain structures afterwards. In contrast,
Proteina-Atomistica generates accurate fully atomistic structures with an aligned sequence in one go.

Second, the success of Proteina-Atomistica and Proteina-Co-design is not just due to solving the
consistency issues present in using AFDB for fully atomistic training. In Table 6, we see that
when we take three prominent model architectures (Proteina, MultiFlow/FrameFlow, Genie2) and
train them on the same data Dappp—_cistr, our Proteina-Co-design outperforms them significantly.
Furthermore, we observe that when MultiFlow is trained with its distilled data (comprising PDB
and model-generated structures, all with ProteinMPNN sequences), Proteina-Co-design trained on
DArDB—clstr achieves competitive performance. Additionally, we find that removing the adversarial

Table 6: Ablation of popular architectures for codesign on AFDB. Results for Multiflow base
without distillation are taken from their original paper. We trained Multiflow and Genie2-flow-
codesign, and evaluated all models by generating 100 proteins for lengths € [50, 100, 150, 200, 250].

Method CODES-CA (%)1 DIV-CA1
MultiFlow (PDB) 42.0 72
MultiFlow (PDB & distilled) 86.7 160
MultiFlow (DArDB—clstr) 40.0 52
Genie2-Flow-Co-design (DAFDB—clstr) 83.0 79
Proteina-Co-design (DArpB—clstr) 86.4 153
Proteina-Co-design (DsyN—ours) 87.0 226
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or inconsistent structure-sequence pairs and replacing them with in-silico consistent ones (i.e. training
on DsyN_ours) increases the accuracy for both co-designability and diversity. As a result, we
demonstrate that both architecture and framework as well as data make non-trivial contributions.
This result mirrors the behavior observed in Table 5, where instead of relying on noisy best-of-8
ProteinMPNN sampling, here we can learn a diverse and consistent structure-sequence distribution.

F.2.2 What led us to build a more consistent dataset?

We observed that ProteinMPNN-based sequence resampling can significantly improve designability,
as evident from the disparity in designability between M1 and M8 in Table 5. Notably, up to 28%
of the generated backbones can transition from undesignable to designable simply by resampling
the sequence and selecting the best of 8. This suggests that suitable sequences exist for these
novel de novo structures, but generating them in a single shot is non-trivial. Moreover, even with
ProteinMPNN, the most likely sequence is not guaranteed to be the best, highlighting the need for
low-temperature sampling in many of its applications [49, 12].

The observed disparity, combined with the fact that the clustered AFDB is only 19.1% co-designable-
all-atom (Fig. 1), led us to investigate the role of ProteinMPNN in enabling consistency in modeling
the joint distribution of protein structure and sequence. Given that finding the proper sequence
significantly affects sequence-free model performance (Table 5), training on largely non-co-designable
data seemed problematic.

We emphasize that simply aligning the structures to known sequences (i.e., training on ESMFold
structures) is insufficient and even hurts performance (Fig. 2). To clarify, although we aim to push our
models to generate the best designability possible, training on a large amount of diverse and 100%
designable structures hurts performance compared to a largely non-designable dataset. To gain a
deeper understanding, we investigated the effects of architecture and data on explicitly learning the
joint backbone-sequence distribution in the de novo co-design setting (Table 6).

Also see related discussions in Sec. B.

F.2.3 Backbone success does not always translate to multi-modal tasks

Table 6 shows that while Genie2-Flow sets new state-of-the-art results for backbone design, it
performs poorly when extended to backbone-sequence co-design. Specifically, Genie2-Flow exhibits
a 3.6x diversity drop when comparing ProteinMPNN single-shot (M1) diversity to that of the model-
generated sequences (CA). We note that Proteina, Genie2, Genie2-Flow, and Proteina-Co-design
were trained on identical datasets, with Proteina-Co-design being identical to the 60M Proteina but
with sequence features and discrete flow matching training.

Furthermore, we found that Proteina-Co-design, trained on the unaltered clustered AFDB, matches
MultiFlow’s performance when trained on PDB and model-generated structures with distilled
ProteinMPNN sequences. In contrast, training MultiFlow on the same Genie2 data resulted in co-
designability and diversity collapse compared to its distilled form. This highlights the core Proteina
transformer’s accurate and robust usage for both backbone and backbone-sequence co-design, across
natural and synthetic sequence datasets.

F.2.4 Extended Co-Design Results

Table 7 presents the full benchmark performance of the models captured in Fig. 10. Overall, Proteina-
Co-design outperforms all prior baselines. Furthermore, how we model the side chains and non-C|,
atoms with respect to their central C', (local vs. frame) greatly impacts the diversity metric. Lastly, by
comparing our backbone C',-sequence co-design model, Proteina-Co-design, to Proteina-Atomistica,
we observe that significant backbone diversity can be achieved through the incorporation of all-atom
modeling (non-C, backbone atoms and side chains). Here both models are trained on DgyN—ours for
fair comparisons.

F.3 Fully Atomistic De Novo Protein Generation

Building on the findings from our backbone C,,-sequence co-design model, Proteina-Co-design, we
investigate key aspects of Proteina-Atomistica model, including its architecture, stochastic multi-
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Table 7: Backbone-Sequence Co-design performance compared to baselines. All models generate 100
proteins for lengths € [50, 100, 150, 200, 250]. We report the two multi-modal sampling configurations
that generate the (i) most co-designable (codes) and (ii) most diverse samples (div). The best model for co-
designability and diversity is emphasized. For parameterization definitions see Table 4. All Proteina-Atomistica
and Proteina-Co-design are trained with DsyN—_ours- The > DES-M1 column refers to models in which the
co-generated sequences offer higher co-designability than ProteinMPNN redesign (1 sample).

Method Backbone-Sequence Co-design Backbone-Only Design
> DES-M1 CODES (%)1 DIV-CA1 DES (%) DIV
M8t MI1T M81T MIT
ProteinGenerator X 32.0 48 86.2 73.0 85 82
Protpardelle X 65.8 41 95.8 75.0 59 51
PLAID X 34.0 79 492 364 117 81
DPLM-2 (650M, co-generation) X 40.6 90 59.0 428 133 100
Multiflow X 86.7 160 99.6 920 191 173
CarbonNovo v 76.0 161 89.6 704 201 148
P(all-atom) X 80.0 263 98.2 954 349 299
Proteina-Co-design codes v 97.0 156 992  97.0 158 155
Proteina-Co-design gy v 87.0 226 96.2 852 256 223
Proteina-Atomistica codes, local frame v 96.2 162 99.4 93.8 166 162
Proteina-Atomistica giv,local frame v 82.4 230 94.8 81.8 260 227
Proteina-Atomistica codes, local trans v 97.2 136 99.2  96.0 134 130
Proteina-Atomistica giv,iocal trans v 84.2 274 964 824 320 268
Proteina-Atomistica-tri jocal frame v 88.6 236 97.0 87.8 257 227
La-Proteina codes, Darps_cieir X 88.6 221 99.0 95.0 249 235
La-Proteina div, Dappp_ o X 84.6 221 98.6 89.8 259 233
La-Proteina codes, Dsyn_oure v 96.8 244 99.6 96.6 249 242
La-Proteina qgiv, Deyn_oure v 93.6 285 99.2 932 298 278

Table 8: All Atom max length 250 performance compared to baselines. All models generate 100 proteins
for lengths € [50, 100, 150, 200, 250]. We report the two multimodal sampling configurations that generate
the (i) most all atom codesignable (codes) and (ii) most diverse samples (div). For parameterization definitions
see Table 4.

Method CODES-AA (%)1 DES-MI1 (%)1 DIV-AA1T NOV-PDB-AA| NOV-AFDB-AA |
ProteinGenerator 16.0 73.0 24 0.75 0.78
Protpardelle 19.2 75.0 22 0.74 0.77
PLAID 25.4 36.4 56 0.83 0.87
P(all-atom) 76.8 87.2 251 0.67 0.73
Proteina-Atomistica codes,local frame 95.4 94.0 163 0.76 0.81
Proteina-Atomistica giv,local frame 77.0 81.8 215 0.74 0.80
Proteina- Atomistica ¢odes,local trans 96.2 96.0 135 0.78 0.81
Proteina-Atomistica giv,local trans 81.4 82.4 267 0.73 0.79
Proteina- Atomistica-tri jocal frame 86.4 87.8 235 0.75 0.80
La-Proteina codes, Darps—cisir 84.4 95.0 208 0.80 0.87
La-Proteina div,Dsppp_ oo 81.0 89.8 213 0.79 0.86
La-Proteina-tri codes, D arps_cise 89.2 95.0 124 0.81 0.87
La-Proteina-tri qiv, D, rpp_ e 83.6 90.2 176 0.78 0.85
La-Proteina codes, Dsyn_ours 96.2 96.6 242 0.78 0.85
La-Proteina div, Dgyx—oure 92.2 93.2 283 0.78 0.85

modal sampling procedure, and side chain initialization method, and assess their individual impacts
on model performance.

F.3.1 Extended Atomistic Benchmarks and Side Chain Representations

Tables 8 and 9 demonstrate the impact of varying noise scale parameters on the trade-off between
designability and diversity (codes vs. div vs. opt settings, see Table 4).

Moreover, we find that both local translation and frame-based side chain parameterizations are useful
(local frame vs. local trans), but their relative effectiveness depends on the specific goals of the task.
In particular, the local frame is advantageous in high co-designability settings, where it achieves
better diversity with comparable co-designability. In contrast, local translation is more effective
in high diversity settings, where it yields better co-designability and diversity. See Sec. D.6 for
definitions of local translation and frame-based parameterizations.
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Figure 10: Pareto frontier of the co-designability-diversity trade-off. We show metrics of proteins with
length € [50,400]. Solid and hollow markers represent metrics calculated on all-atom and C, basis, respectively.
For atomistic models, the all-atom and C, scores for the same generated proteins are connected by gray dashed
line, and obtained from the same model.

Tables 8 and 9 also illustrate the effect of incorporating triangle updates, which demonstrate improved
performance up to a length of 400, despite being trained only up to 256. This is notable, especially
when compared to the other Proteina-Atomistica variants, which were finetuned to a length of 400.
Further details on the triangle update layers can be found in Appendix C.3.

Table 10 further demonstrates the impact of our introduced consistent synthetic data on even longer
lengths that the original La-Proteina was trained and evaluated on.

Table 9: Max length 400 performance of Proteina-Atomistica on de novo all atom generation compared
to baselines. All models generate 100 proteins for lengths € [50, 400] with step size 50. We report the three
multimodal sampling configurations that generate the (i) most all-atom co-designable (codes), (ii) most diverse
samples (div), and (iii) an optimal trade-off (opt). The best values are bolded. All instances of Proteina-
Atomistica here use local frames for the side chains. For parameterization definitions see Table 4.

Method CODES-AA (%)1 DES-MI1 (%) DIV-AA1T NOV-PDB-AA| NOV-AFDB-AA |
ProteinGenerator 10.0 57.1 28 0.75 0.78
Protpardelle 13.6 62.8 25 0.74 0.76
PLAID 22.3 349 63 0.85 0.88
Pallatom 51.6 62.5 282 0.66 0.71
Proteina-Atomistica ¢odes 87.8 88.1 263 0.77 0.81
Proteina-Atomistica ,p¢ 83.1 85.8 321 0.76 0.80
Proteina-Atomistica gy 71.6 72.0 333 0.75 0.80
Proteina-Atomistica-tri op¢ 87.6 88.3 396 0.73 0.77
La-Proteina codes, Darps_cistr 76.0 90.1 308 0.77 0.85
La-Proteina qiv, Dyppp_ oo 70.6 85.5 314 0.77 0.84
La-Proteina-tri codes, Darps —cistr 84.8 90.1 161 0.81 0.87
La-Proteina-tri qiv, Darps e 75.0 84.3 268 0.78 0.84
La-Proteina codes, Dgyn—oure 90.6 91.2 460 0.75 0.83
La-Proteina div, Dgyn_ours 87.9 87.4 475 0.74 0.82
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Table 10: Impact of consistent synthetic data on La-Proteina. All models generate 100 proteins for
lengths € [100, 500] with step size 100. Baselines taken directly from [15].

Model CODES-AA (%)1 DIV-AA1T
P(all-atom) 36.7 134
La-Proteina (DAFDB_clstr) 68.4 206
La-Proteina (DsyN—ours) 86.8 318

Table 11: Ablation of the side chain initialization. All results here use the same model weights and
sampling hyperparameters for a Proteina-Atomistica model with “local trans” non-C,, coordinates.

Method CODES-AA (%)1 DIV-AAT
Gaussian Initialization 56.8 177
Zero Initialization 60.8 196
Learned clean data objective 38.2 76
Learned vector field (default) 81.4 262

F.3.2 Pareto Frontier

We include Fig. 10, an updated pareto frontier to include Proteina-Atomistica trained with additional
triangle multiplicative updates. Adding 4M worth of triangle multiplicative updates to our 222M
Proteina-Atomistica further pushes the Pareto frontier. We emphasize that Proteina-Atomistica-tri
is only trained up to length 256 but shows the ability to generalize to longer proteins. Given the
increased time and memory costs, we leave further improvements of the Proteina and Proteina-
Atomistica transformers to future work. These triangle operations are typically seen as required for
protein modeling success. In contrast, we are able to take advantage of scaling our data and simpler
transformer architectures to yield strong performance.

F.3.3 Atomistic Side Chain Initialization

The side chain structures of proteins generated by Proteina-Atomistica are of variable atom sequence
length as a function of generation time, because the residue types may change during the generation
process (through a series of remasking and unmasking operations). As a result Proteina-Atomistica
must be able to handle the resetting and regeneration of accurate side chain structures subject to
the discrete sampling process of the discrete flow matcher (see Sec. D.4). This dynamic coupling
requires careful handling of the initialization point as seen in Table 11, demonstrating the importance
of learning a meaningful side chain initialization, instead of using naive zero or random Gaussian
initialization. Furthermore, we see that if using a “clean data prediction objective”, where we try to
predict the side chain structure from the mask token directly rather than using our introduced vector
field-like augmentation (c.f. Sec. D.4), the model struggles to generate accurate side chains.

F.4 Atomistic Side Chain Evaluation

To evaluate the generated atomistic protein structures, we compute: (1) MolProbity score [11],
(2) clash scores, (3) bond length outliers, and (4) angle outliers, as shown in Fig. 11. MolProbity
(MP) score is a composite evaluation metric of macromolecular structures. It measures geometric
and stereochemical quality, including steric clashes, backbone dihedral angles, and side-chain
conformations. Lower MP score indicates higher structure quality. The clash, bond and angle metrics
focus on measuring the physical correctness of the atomistic details of the generated side-chains.
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Figure 11: Side chain structure evaluations. Lower scores indicate higher side chain quality.

G Metric Definitions and Baselines

G.1 De Novo Design Metrics

To assess the performance of our models, we employ standardized metrics [16, 47, 37] for de novo
protein design, adapting them for backbone-sequence co-design and all-atom contexts. The metrics
used include:

1. Designability (DES): This measures the ability to inverse fold a generated protein backbone
using ProteinMPNN [10] and refold the generated sequences. We report two variants:
DES-M1 (single shot) and DES-MS8 (best of 8 sequences), where DES-M1 evaluates the
designability of a single sequence generated by ProteinMPNN, and DES-MS evaluates the
designability of the best sequence out of 8 generated sequences.

2. Co-designability (CODES): Similar to DES-M1, but using the model’s output sequence
instead of ProteinMPNN-generated sequences. We also report All-Atom Co-designability
(CODES-AA), an extension of CODES that uses all-atom scRMSD.

3. Diversity: We evaluate the structural diversity of samples by counting the number of
Foldseek [42] clusters formed by the filtered subset of backbones, using a TM-score
threshold of 0.5. Higher cluster counts indicate greater diversity.

* DIV-AA: Diversity metric filtered for All-Atom Co-designable samples (CODES-AA)
* DIV-CA: Diversity metric filtered for Co-designable samples (CODES)
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* DIV-MS: Diversity metric filtered for Designable samples (DES-M8)
* DIV-M1: Diversity metric filtered for Designable samples (DES-M1)

4. Novelty: This metric evaluates a model’s ability to generate structures that are distinct from
those in predefined reference sets (PDB and Dgepiez). We report the average maximum
TM-score between designable structures and the reference sets, with lower scores indicating
greater novelty. Specifically, we report PDB novelty for co-designable samples (NOV-PDB)
and all-atom co-designable samples (NOV-PDB-AA), as well as their counterparts with
respect to Genie2 (NOV-AFDB and NOV-AFDB-AA).

Our evaluation protocol involves generating samples across a range of lengths, from 50 to 250 to align
with prior work such as P(all-atom) as well as 50 to 400 to evaluate a more difficult spectrum. We then
compute the aforementioned metrics across these samples. For designability, we use ProteinMPNN
to generate sequences for each backbone and ESMFold [29] to predict structures, calculating the
self-consistency RMSD (scRMSD) between predicted and original structures. A sample is considered
designable if its scRMSD is under 2A.

G.2 Side Chain Accuracy Metrics

To evaluate the atomistic protein structures generated by Proteina-Atomistica, we compute several
metrics that assess the accuracy and physical correctness of the generated side chains. These metrics
include:

1. MolProbity Score: The MolProbity (MP) score is a composite evaluation metric that
assesses the geometric and stereochemical quality of macromolecular structures [11]. Itis a
combination of several individual metrics, including:

* Clashscore: Measures the number of steric clashes between atoms in the protein
structure.

* Ramachandran outliers: Refers to the percentage of residues with dihedral angles (¢
and 1) that fall outside the allowed regions of the Ramachandran plot.

* Rotamer outliers: Refers to the percentage of residues with side-chain conformations
that are inconsistent with the expected rotameric states.

A lower MolProbity (MP) score indicates higher structure quality. Notably, a score of
> 3 indicates significant stereochemical issues, highlighting potential problems with the
structure’s accuracy. The MP score is a widely used and reliable metric for evaluating
protein structure quality.

2. Clash Scores: Clash scores measure the number of steric clashes between atoms in the
protein structure. Steric clashes occur when two or more atoms are too close to each other,
resulting in unfavorable interactions. A lower clash score indicates fewer steric clashes and
a more physically realistic structure.

3. Bond Length Outliers: Bond length outliers refer to the percentage of bonds in the protein
structure that deviate significantly from their expected lengths. A lower percentage of bond
length outliers indicates a more accurate structure.

4. Angle Outliers: Angle outliers refer to the percentage of bond angles in the protein structure
that deviate significantly from their expected values. A lower percentage of angle outliers
indicates a more accurate structure.

These metrics provide a comprehensive evaluation of the accuracy and physical correctness of the
generated side chains. By assessing the MolProbity score, clash scores, bond length outliers, and
angle outliers, we can better understand the strengths and weaknesses of Proteina-Atomistica and
prior atomistic models in generating accurate atomistic protein structures.

Across all lengths, Proteina-Atomistica generates more accurate side chains compared to prior
methods (Fig. 11). Proteina-Atomistica achieves a length-averaged MP score of 2.097 compared
to 4.307 of P(all-atom) (the next closest performing model from Table 1). The next closest
is ProteinGenerator, which has an average MP score of 2.940 but has the lowest all-atom co-
designability.
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G.3 Baselines

In this section, we discuss the sampling configurations of the baselines we compared to in this paper.
For backbone design methods not included below nor introduced by us, the results were taken from
Geffner et al. [16].

Pallatom: We used the code and checkpoint from the public Pallatom repository. We used the default
configuration suggested: t_min=0.01, t_max=1, gamma=0.2, step_scale=2.25, and T=200. No
training code is provided at this time.

Protpardelle: We used the code and checkpoint from the public Protpardelle repository. We used
the default uncond_sampling.yml file provided in the repository for unconditional sampling. For
motif scaffolding, we prepared the .pdb files of each task based on the corresponding contigs and
then used the provided cond_sampling.yml configuration for sampling.

ProteinGenerator: We used the code from the public ProteinGenerator repository. We used the base
checkpoint set in the repository. We followed the default configuration for unconditional sampling
except for the number of sampling steps. Since we sampled proteins with length up to 400 residues,
we increased the number of sampling steps from the default 25 to 100 for better generation quality, as
recommended in the repository.

PLAID: We used the code from the public PLAID repository. We used the 100M parameter
checkpoint hosted on the PLAID HuggingFace repo as it is the only loadable option. Since PLAID
only supports sampling proteins with length divisible by 4, the actual length we sampled are
[48,96, 152, 200, 248, 296, 352, 400]. We used the default unconditional sampling configuration
in the repository.

DPLM-2: We use the code from the DPLLM Repository specifically the pull request from DPLM-
2 branch. We follow the instructions in the README.md to generate proteins from their 650M
co-generation model using the indicated inference configuration and settings.

MultiFlow: We use the code from the MultiFlow Repository. We use the provided
inference_unconditional config provided adjusted for the appropriate length intervals.

CarbonNovo: We use the code from the CarbonNovo Repository. We use the provided predict.py to
generate proteins of the desired lengths.

FoldFlow-2: We use the code from the FoldFlow Repository. We use the runner/inference.py
script with both provided FoldFlow-2 weights with model=£ff2. We use the default sampling
parameters provided in inference.yaml.

H Limitations

While Proteina-Atomistica performs well, it faces challenges in balancing natural sequence
distribution learning with generated sample diversity. Key limitations include: increased
computational cost and decreased speed associated with full-atom modeling compared to backbone-
only approaches; the inability to capture protein dynamics; and the lack of guarantees for desired
function or binding affinity. These limitations highlight exciting directions for future research. Future
work can additionally explore similar techniques for conditional tasks such as motif scaffolding and
binder design, as well as the generation of even longer protein sequences as done in La-Proteina [15].

I Broader Impact

Our method advances the field of de novo protein design by enabling joint generation of sequences
and all-atom structures, with potential applications in drug discovery, enzyme engineering, and
biomaterials. While this capability could accelerate the development of novel therapeutics and
sustainable biocatalysts, it raises ethical considerations, such as the risk of misuse for harmful
purposes. Additionally, the model’s performance depends on the quality of training data, which
may inherit biases from structure prediction tools like AlphaFold2 and ESMFold. We emphasize
responsible use and encourage further research into safety measures and bias mitigation to ensure
positive societal impact.
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