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Abstract

High-quality training datasets are crucial for the development of effective1

protein design models, but existing synthetic datasets often include unfavorable2

sequence-structure pairs, impairing generative model performance. We leverage3

ProteinMPNN, whose sequences are experimentally favorable as well as amenable4

to folding, together with structure prediction models to align high-quality synthetic5

structures with recoverable synthetic sequences. In that way, we create a new6

dataset designed specifically for training expressive, fully atomistic protein7

generators. By retraining La-Proteína, which models discrete residue type and8

side chain structure in a continuous latent space, on this dataset, we achieve new9

state-of-the-art results, with improvements of +54% in structural diversity and10

+27% in co-designability. To validate the broad utility of our approach, we further11

introduce Proteína-Atomística, a unified flow-based framework that jointly learns12

the distribution of protein backbone structure, discrete sequences, and atomistic side13

chains without latent variables. We again find that training on our new sequence-14

structure data dramatically boosts benchmark performance, improving Proteína-15

Atomística’s structural diversity by +73% and co-designability by +5%. Our work16

highlights the critical importance of aligned sequence-structure data for training17

high-performance de novo protein design models. All data will be publicly released.18

1 Introduction19

De novo protein design aims to generate functional proteins from scratch, making it a central challenge20

in molecular biology [39, 20, 26, 25]. Recent generative models have made impressive progress to21

design protein backbones using diffusion and flow-based approaches [22, 47, 50, 6, 27]. Several22

methods have begun to move beyond backbone-only modeling to enable all-atom generation [15, 9,23

37]. Since the sequence serves as the actual design specification for synthesis, and side chains are24

pivotal in biochemical interactions, generating complete atomistic structures is crucial for structure-25

guided protein design. As models must reason about the generated sequence and structure to ensure26

cross consistency, fully atomistic training data plays a crucial role in fully atomistic de novo design.27

We identify a critical limitation in commonly used training datasets derived from the AlphaFold28

Database (AFDB) [43]. Specifically, the (real sequence, synthetic structure) pairs in the AFDB29

are largely not co-designable by ESMFold [29] (see Fig. 1), AlphaFold2 [23], or Boltz-1 [48],130

meaning the sequences do not likely fold into their given structures to the best of available in silico31

approximations. This is surprising, given that the AFDB was created through computational structure32

prediction. Hence, this data is not well-suited for training joint sequence-structure models, as the data33

pairs are not consistently reproducible via common folding models. This motivated us to construct34

1We used single-sequence mode as well as multiple sequence alignments (MSAs) with different databases,
but we were not able to reliably reproduce the AFDB structures.
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Figure 1: Co-designability
of DAFDB−clstr. Histograms
of Cα and all-atom RMSD
between AFDB and ESMFold
structures show only 26.6% of
protein backbones and 19.1%
of the all-atom structures are
considered designable. As a
result, most AFDB synthetic
structures are not recoverable.

a high-quality dataset from scratch: We leverage ProteinMPNN [10], which is known for strong35

in silico success and wetlab validation [47, 34], and generate several sequences for each Foldseek36

AFDB cluster representative structure [28, 5]. We then re-folded all new synthetic sequences to37

obtain corresponding fully atomistic structures for the new synthetic sequences. By generating fully38

atomistic sequence-structure pairs in this manner, we construct a more aligned dataset ideally suited39

for the training of expressive atomistic protein generators. We will publicly release the dataset.40

Next, we used our new dataset to train fully atomistic protein generative models that need to capture41

the intricate relationship between atomistic structures and amino acid identity. Side-chain coordinates42

cannot be determined without knowledge of the sequence, either explicitly or implicitly, and co-43

generating diverse and consistent sequences and atomistic structures is challenging. Therefore,44

many methods rely on a multistage process: generating the backbone, predicting the sequence, and45

optionally packing side-chains using rotamers [19, 4, 18, 8]. Recent efforts have made progress46

toward full-atom co-design by incorporating all-atom representations during structure generation [9,47

37, 31, 8]. However, these methods still do not explicitly model the joint distribution of sequences and48

atomistic structures in a unified framework. Recently, La-Proteína [15] jointly learned sequences and49

side-chain structures via a continuous latent space, achieving strong performance in de novo design50

and atomistic motif scaffolding. Training La-Proteína on our new data significantly improves the51

model samples’ structural diversity (+54%) and co-designability (+27%), highlighting the importance52

of well-aligned training data to accurately model the complex sequence-structure relationship.53

To validate the generality of our approach, we further propose a multi-modal framework that operates54

in the explicit observable space, providing a complementary approach to La-Proteína’s latent space55

method. Specifically, we introduce Proteína-Atomística, a unified flow-based framework that jointly56

learns the distribution over fully atomistic protein structure and sequence. We treat this as a joint multi-57

modal generation task with three co-dependent modalities (Fig. 2): (i) Cα atom positions capture58

large-scale backbone structure. (ii) categorical amino acid identities define the protein sequence. (iii)59

non-Cα backbone and side-chain atoms represent local details. We again observe that training on60

our new aligned sequence-structure data dramatically boosts the model’s performance—structural61

diversity by 73% and co-designability by 5%. This confirms the broad utility of our newly created,62

aligned data for training different types of fully atomistic protein generative models.63

Our experiments emphasize that consistent synthetic sequences play a significant role in enhancing64

structural diversity. We also show in ablation studies that simply replacing AFDB structures with those65

from ESMFold to create a “100% designable” dataset degrades both the ESMFold-based designability66

and structural diversity of generated proteins. This observation served as a key motivation to leverage67

ProteinMPNN for predicting new sequences, thereby creating a fundamentally new training dataset68

that consists of both synthetic structures and synthetic sequences, in contrast to the AFDB. Since our69

models are directly trained on ProteinMPNN sequences and are the first to surpass ProteinMPNN in70

co-designability, they remove the need for ProteinMPNN-based re-design at the end of generation—a71

common step in existing pipelines that requires subsequent side-chain redesign to accommodate72

changes in sequence space.73

Contributions: (i) We find that AFDB structures are not recoverable with common structure74

prediction models and argue that the low consistency of AFDB-derived datasets is a critical limiting75

factor for atomistic structure and sequence co-generation. (ii) To overcome this limitation, we76

introduce a new high-quality dataset consisting of aligned synthetic sequences and structures, ideally77

suited for the training of high-performance fully atomistic protein generators. (iii) We introduce78

Proteína-Atomística, a novel unified multi-modal flow-based generative framework that jointly and79

explicitly models the distribution over fully atomistic protein structures and sequences. (iv) We show80

that when trained on our new data Proteína-Atomística outperforms all prior non-unified methods81

and La-Proteína achieves new state-of-the-art performance in fully atomistic protein generation.82
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2 Related Work83

Protein design has witnessed significant progress through generative models focusing on either84

sequence or structure. Sequence generation often relies on autoregressive models [32, 14] or discrete85

diffusion [3, 45], trained on large datasets. For protein backbones, diffusion models have shown86

remarkable success, with seminal works like Chroma [22] and RFDiffusion [47]. Subsequent works87

employ diffusion or flow matching on frame-based representations [50, 6, 49, 44, 21], while other88

works apply diffusion to Cα coordinates [27, 41]. Scaling data and model size in Genie2 [28] and89

Proteína [16] has led to near-perfect backbone designability metrics. These methods showcase diverse90

parameterizations and architectures within the broader diffusion/flow matching framework.91

However, these single-modality generation methods typically decouple sequence and structure. They92

either generate a sequence first and then fold it with ESMFold [29] or AlphaFold2 [23], or generate a93

structure and then infer a sequence with ProteinMPNN [10]. In contrast, recent efforts have focused94

on co-design methods that aim to jointly model sequence and backbone structure distributions within95

a single generative framework, such as diffusion/flow-based ProteinGenerator [30], MultiFlow [7] and96

DPLM-2 [46], energy-based CarbonNovo [38], and language model-based ESM3 [17]. MultiFlow [7]97

also distills synthetic training sequences and structures to boost co-generation performance, similarly98

to us leveraging ProteinMPNN, but at a smaller scale and without analyses of the AFDB.99

Despite progress in protein co-design, achieving accurate atomistic detail remains challenging. Early100

all-atom diffusion attempts like Protpardelle [9] yield poor results. Pallatom’s [37] use of Atom14101

representations could lead to atom-type ambiguities, hindering performance or downstream tasks [37].102

Other methods explore latent spaces [31], modular design [8], or specific tasks [2].103

2.1 La-Proteína104

More recently, La-Proteína [15] introduced a partially latent protein representation that combines105

explicit and implicit modeling. In this approach, the coarse Cα-backbone structure is modeled106

explicitly as in Proteína, while sequence and atomistic (non-Cα) details are captured through per-107

residue latent variables of fixed dimensionality. This hybrid representation sidesteps the challenges108

associated with explicit side-chain representations, through the training of an initial autoencoder.109

By applying flow matching in this partially latent space, La-Proteína effectively models the joint110

distribution over sequences and full-atom structures. See paper for details [15]. We use both Proteína-111

Atomística and La-Proteína to explore the impact of synthetic data on all-atom protein generation.112

3 Aligning Synthetic Protein Sequence and Structure113

Our investigation into constructing a new training dataset for explicit all-atom protein generation114

was motivated by the limitations of the Foldseek-clustered AFDB dataset [42, 5], which was used115

for instance by Genie2 [28] (DAFDB−clstr ∼0.6M). We assessed the in-silico co-designability of116

DAFDB−clstr by folding its sequences (length∈[32,512]) with ESMFold and computing the Cα and117

all-atom RMSD between the folded and original AFDB structures. Surprisingly, only 19.1% of the118

dataset met the standard 2Å co-designability threshold based on all-atom RMSD (Fig. 1). Further119

analysis using other public structure prediction models on a random subset of DAFDB−clstr revealed120

that even the best co-designability achieved, ∼65% with ColabFold using MSAs, fell short of the121

expected 100% designability under AlphaFold2 (AF2) [23, 33]. This significant sequence-structure122

misalignment poses a substantial challenge to scaling fully atomistic protein generative models with123

existing sources of large-scale high-quality synthetic sequence-structure data. Furthermore, Boltz-1124

obtains scores roughly the same as ESMFold when using MSAs. Without MSAs it exhibited the125

lowest consistent recovery. Although we do not expect ESMFold and Boltz-1 to be highly consistent126

with the AFDB, it is crucial to understand the limitations of relying on the AFDB for training protein127

design models due to the severe disagreement with other popular structure prediction models.128

To address this, we create a novel dataset (DSYN−ours) that targets the joint alignment between129

synthetic sequence and synthetic structure, as follows: (i) For each cluster representative in130

DAFDB−clstr with an average pLDDTAF2 ≥ 0.8, (ii) we produce four sequences with ProteinMPNN,131

(iii) refold each recording the Cα-RMSD between the AFDB- and ESMFold-generated structures132

(using Cα, as different sequences have different side chains), (iv) select the sequence with the lowest133

RMSD, and (v) filter the structures to include those with pLDDTESMFold ≥ 0.8. This results in134
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Multimodal
Flow Matching

Figure 2: Proteína-Atomística.
We use a multimodal flow
matching framework to learn a
mapping from noise distributions
of Cα atoms (xt), amino acid
sequences (rt), and non-Cα

atoms (zt) to realistic atomistic
structures. We prevent leakage
by initiating the generation of
non-Cα atoms zt only after their
corresponding residues in the
sequence rt are unmasked.

∼0.43M high-quality samples. Consequently, DSYN−ours identifies confident regions of overlap135

between folding and inverse folding models, to enabling the modeling of a better recoverable joint136

sequence-to-structure relationship. In contrast to MultiFlow [7], which replaces PDB sequences with137

ProteinMPNN ones, we start from a large structurally diverse dataset and refold to recover side chains.138

4 Proteína-Atomística139

On the one hand, we use our new data to retrain La-Proteína [15], see Sec. 5. To make general140

conclusions and to also see the data’s effect when training a model without a special latent framework,141

we additionally develop a novel, “data-space” fully-atomistic protein generator without latent142

variables, called Proteína-Atomística, which we now introduce.143

4.1 Explicit Multi-Modal Flow Matching Framework144

Atomistic protein modeling can be decomposed into explicit modeling of the protein backbone,145

amino acid sequence, and side-chain atoms. A significant challenge within this breakdown lies in the146

modeling of side chains, primarily due to the fact that an amino acid residue and its side-chain structure147

encode the same underlying information in discrete and continuous forms, respectively. Specifically,148

during a generation process that involves discrete residue tokens, the set of side-chain atoms associated149

with a residue dynamically changes whenever the residue type is altered or unmasked. Therefore,150

a robust atomistic modeling framework must effectively handle this variable number of atoms and151

also provide a good initialization strategy for these newly generated side-chain atoms (as detailed in152

Sec. 4.2). This inherent complexity makes extending existing backbone or backbone-sequence design153

methods to joint fully atomistic modeling non-trivial.154

To tackle the challenge posed by the variable number of atoms, we adopt the Atom37 representation155

for protein structures [23]. In this representation, each potential heavy atom of a residue is assigned156

a unique position within a 37-dimensional array. This choice offers an advantage over the Atom14157

representation used by Pallatom [37], as Atom37 avoids interpretation ambiguities where a single158

position can correspond to multiple atom types. For any non-existent atoms of a given residue, their159

corresponding positions in the Atom37 array are set to zero and they are subsequently masked out160

in the model’s sequence track (see Sec. 4.2).161

Proteína-Atomística achieves fully atomistic protein generation through multi-modal flow matching162

over Cα coordinates x ∈ RL×3, amino acid sequence r ∈ {0, .., 19}L, and non-Cα atom coordinates163

z ∈ RL×36×3, as illustrated in Fig. 2. In addition, while both Cα and non-Cα atoms are in Euclidean164

space, their roles differ: Cα define the global structure and non-Cα specify local residue details.165

This functional difference, coupled with the variable number of non-Cα atoms, presents a significant166

challenge in extending backbone and backbone-sequence models to full atomistic generation, a167

challenge that our multi-modal approach effectively addresses. We now present the details of the168

Proteína-Atomística modeling framework:169

1. Flow Matching for Cα Atoms. Following Proteína [16], we define a flow ψt that pushes170

an easy-to-sample noise distribution p0 to a data distribution p1 through intermediate densities171

pt = [ψ]t ∗ p0, where “∗” denotes push-forward and t ∈ [0, 1] is a time variable. This flow is172

parameterized by an ODE dxt = vθ(xt, t)dt, defined through a learnable vector field vθ(xt, t) with173

parameters θ, with x0 ∼ p0 and x1 ∼ p1. By the continuity equation, the true vector field ut satisfies174

∂pt/∂t = −∇xt ·
(
pt ut

)
, but ut is intractable. To address this, conditional flow matching (CFM)175

constructs for each data sample x1 a tractable conditional path pt(xt|x1). We draw x0 ∼ p0 and176
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Figure 3: Proteína-Atomística samples, ranging from 100 to 400 residues. All shown samples co-designable.

interpolate linearly xt = tx1 + (1− t)x0, so that the exact velocity x1 − x0 is known. The CFM177

objective then regresses the learnable field vθ(xt, t) onto this target across random t, x0, and x1. At178

convergence, vθ
t approximates the true ut, enabling generation of Cα coordinates.179

2. Flow Matching for Amino-Acid Sequence. The flow matching framework for amino acid180

sequences operates in the discrete space of residue types {0, .., 19}. Following MultiFlow [7], we181

introduce a mask token M and define the flow to push an all-mask prior p0 = δ{M} toward the182

target sequence distribution p1 = δ{r1}, where δ{i} denotes the Kronecker delta (i.e., a one-hot183

distribution centered at token i). To learn the "velocity", i.e. the rate matrix in probability space, we184

define a conditional path pt(rt|r1) = t δ{r1} + (1 − t) δ{M}. This path interpolates between the185

masked and target sequences. In practice, it corresponds to a simple stochastic masking scheme: each186

residue is independently masked with probability 1− t and kept with probability t.187

3. Flow Matching for Non-Cα Atoms. We adopt the same flow matching formulation used for Cα188

atoms. Specifically, we define a linear interpolant zt = tz1 + (1− t)z0, and train the parameterized189

velocity field vθ(zt, t) to match the exact velocity z1 − z0. There are two key differences with the190

Cα case. First, as each residue contains only a subset of the 36 possible non-Cα atoms determined by191

its residue type, we mask out non-existent atoms during interpolation. Second, revealing the presence192

or absence of specific atoms may leak residue type information for masked positions in the sequence,193

making the sequence denoising task trivial. To prevent this, we remove all non-Cα atoms for residues194

masked in rt during training. During generation, to align with training, we only denoise non-Cα195

atoms once its residues are unmasked. Therefore, it is crucial to provide a good initialization for the196

non-Cα coordinates when a residue is unmasked—an issue we discuss in the following sections.197

Local Coordinate Modeling for Non-Cα Atoms. Non-Cα atoms are structurally organized around198

their corresponding Cα atoms. To leverage this property, we offer two local coordinate modeling199

strategies, simplifying the learning task by predicting offsets rather than global coordinates and200

facilitating better initialization of non-Cα atoms. The first approach calculates the relative position of201

non-Cα atoms directly with respect to their corresponding Cα atom: zlocal
i = zi − xi. The second202

strategy, inspired by related work [28], constructs a residue-centric local coordinate frame (ti,Ri)203

with frame translations ti and frame rotations Ri using the Cα coordinates of three neighboring204

residues (xi−1, xi, xi+1) via the Gram-Schmidt process. Non-Cα coordinates zi are then transformed205

to local ones via zlocal_frame
i = R−1

i (zi − ti). Notably, while local coordinate transformations are a206

common technique in structure prediction models [23, 29], their application in atomistic structure207

generation remains underexplored [13].208

4.2 Proteína-Atomística Architecture209

The Proteína-Atomística architecture consists of two primary components: a core residue-level210

Transformer trunk and an atom-level Transformer encoder-decoder (Fig. 7). The residue-level211

trunk is responsible for the global backbone processing and is a high-capacity, non-equivariant212

architecture that leverages a stack of biased self-attention layers to predict the vector field for flow-213

based generation from noisy inputs. To address the complexities of atomistic modeling, our atom-level214

Transformer modules are designed to tackle three key challenges: handling the variable number of215

atoms, generalizing to atomistic representations, and initializing the fully masked non-Cα atoms of216

masked residues. We elaborate on our approach to these challenges in the subsequent paragraphs.217
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Atom Sequence Expansion. Each residue does not possess all 36 possible non-Cα atoms, resulting218

in empty dimensions in z ∈ RL×36×3 that cannot be directly featurized. To address this, we expand219

the Atom37 representations into an atom sequence containing only existing atoms, following a default220

atom order. For masked residues, where all non-Cα atoms are absent, we represent them with a221

pseudo-atom token [M] in the atom sequence as a special atom type and set its coordinate to zero,222

and residue type to a mask token. For instance:223

[ALA]-[M]-[CYS]︸ ︷︷ ︸
amino-acid sequence

=⇒ [N-CA-C-O-CB]-[CA-M]-[N-CA-C-O-CB-SG]︸ ︷︷ ︸
atom sequence

We then expand all associated residue-level features to match the atom sequence, allowing us to224

treat the atom sequence similarly to the residue sequence and reuse architectural modules. The225

Transformer’s ability to handle variable-length inputs resolves the varying atom number problem.226

Atom-Level Encoding and Decoding. Inspired by AlphaFold3 [1], we encode atom-level227

information using atom encoders followed by a cross-attention layer that integrates residue and228

atom features before the main backbone processing trunk. We note unlike prior methods our models229

do not use any triangle update layers. After this trunk, another cross-attention layer updates both230

representations, followed by atom decoders for further atom-level refinement [1]. At the output stage,231

residue-level representations are used to predict Cα vector field vθ
x,t and the residue type probability232

logits cθ1|t, while atom-level representations are used to predict the non-Cα vector field vθ
z,t.233

Initialization Prediction for Masked Residues. To predict the structure of non-Cα atoms of masked234

residues, we introduce a prediction head that leverages the pseudo-atom token’s learned representation235

and context from neighboring atoms and residues. Our initial experiments revealed that, as expected,236

directly predicting the clean coordinates z is challenging as the number of atoms to predict is237

unknown. To address this, we propose learning an initialization zθinit,t through an augmented objective.238

We refer to this as an initialization as it is used only when the residue transitions from a masked to a239

non-mask state (see Alg. 2). During training, this initialization head is regressed towards z−ϵz, where240

ϵz is a randomly sampled Gaussian noise vector. Notably, the standard conditional flow matching241

objective relies on learning a vector field conditioned on noisy inputs; however, for side-chain242

initialization, there is no noisy input available, as the residue type is unknown. As a result, the model243

effectively learns to predict the expected clean state z, representing an average side-chain structure244

across the 20 possible residue types. This initialization is refined into a realistic atomistic structure245

in the remaining denoising iterations during inference. Note that the initialization becomes easier246

to learn as the denoising process progresses, as more context is available and the remaining structure247

is less noisy, aligning with our choice of schedules for each explicit modality (Fig. 9). This approach248

also aligns the magnitude of the training target with that of vector fields, facilitating the training249

process. At generation time, this initialization serves as a reasonable approximation for the initial250

structure of non-Cα atoms in initially masked residues. See Appendix Sec. D.4 for more details.251

5 Experiments252

We trained two 200M parameter unconditional Proteína-Atomística models, for lengths (i) 32-400253

and (ii) 32-256 using local coordinates without frames to align with prior baselines [37] (alternative254

coordinate modeling schemes are ablated in Table 4). For La-Proteína we train an autoencoder255

from scratch and a subsequent flow matching model according to the procedure described in La-256

Proteína [15] for lengths 32-500. The only difference between the original and our La-Proteína is257

Table 1: Proteína-Atomística and La-Proteína de novo fully atomistic protein generation performance
when trained on DSYN−ours compared to baselines. All models generate 100 proteins for lengths ∈ [50, 400]
with step size 50. We report multimodal sampling configurations that generate the (i) most all-atom co-designable
(codes), (ii) most diverse samples (div), and (iii) an optimal trade-off (opt). The best values are bolded.

Method CODES-AA (%) ↑ DES-M1 (%) ↑ DIV-AA ↑ NOV-PDB-AA ↓ NOV-AFDB-AA ↓
ProteinGenerator 10.0 57.1 28 0.75 0.78
Protpardelle 13.6 62.8 25 0.74 0.76
PLAID 22.3 34.9 63 0.85 0.88
Pallatom 51.6 62.5 282 0.66 0.71
La-Proteína (DAFDB−clstr) 70.6 85.5 314 0.77 0.84

Proteína-Atomística codes 87.8 88.1 263 0.77 0.81
Proteína-Atomística opt 83.1 85.8 321 0.76 0.80
Proteína-Atomística div 71.6 72.0 333 0.75 0.80
La-Proteína codes,DSYN−ours 92.6 92.5 418 0.75 0.83
La-Proteína div,DSYN−ours 87.8 87.4 475 0.74 0.82
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Figure 4: Pareto frontier
of the co-designability-
diversity trade-off of
Proteína-Atomística and
La-Proteína for proteins with
length ∈ [50, 400]. Solid
and hollow markers represent
metrics calculated on all-atom
and Cα basis, respectively.
For atomistic models, the
all-atom and Cα scores for the
same generated proteins are
connected by gray dashed line.

the change of training data. We emphasize that data is a critical hyperparameter in all prior de novo258

protein design methods. While we show Proteína-Atomística and La-Proteína to be state-of-the-art259

performers in Sec. 5.1, we also analyze the impact of DSYN−ours specifically, in Sec. 5.2. As all260

included baselines leverage different datasets or combinations of AFDB/PDB/UniRef/etc., we intend261

for the public release of DSYN−ours to offer another alternative that can be leveraged for its synthetic262

consistency. We further ablate our new explicit data-space method by comparing against recent263

backbone-only and backbone-sequence (no side chain) models in Appendix Tables 5-6, including a264

no-side-chain version of Proteína-Atomística itself (see Appendix Sec. C.1).265

We evaluate our models using standard de novo protein design metrics, extending them to backbone-266

sequence co-design and all-atom (AA) contexts, following prior work [16, 37, 7]. De novo success267

metrics include Designability (DES), the ability to inverse fold the generated protein backbone with268

ProteinMPNN and refold the generated sequences [47], with variants DES-M1 (single-shot) and269

DES-M8 (standard for backbone-only; best of 8 sequences); Co-designability (CODES), similar to270

DES-M1 but using the model’s output sequence; and All-Atom Co-designability (CODES-AA), an271

extension of CODES using all-atom scRMSD. CODES and CODES-AA are reported for models272

that produce backbone and sequence, and atomistic side-chain structures, respectively. We also273

report structural Diversity and Novelty of the (co-)designable samples, for Cα design (M8 and M1),274

backbone-sequence co-design, and all-atom contexts. For metric details see Geffner et al. [16].275

5.1 De Novo All-Atom Protein Generation276

In Table 1, we compare Proteína-Atomística and La-Proteína trained on DSYN−ours to recent fully277

atomistic generative models. Using multimodal low temperature sampling, both Proteína-Atomística278

and La-Proteína leverage the known trade-off [16, 28] between designability and diversity. We also279

plot the Pareto frontier for both all-atom and backbone-only co-designability in Fig. 4280

Notably, Proteína-Atomística generates highly designable and diverse structures (Fig. 3) while281

achieving competitive novelty scores, indicating that our model does not overfit to PDB or AFDB.282

These improvements are further surpassed by La-Proteína when trained on our DSYN−ours, which283

obtains state-of-the-art performance with all-atom co-designability of 87.8% and 475 clusters when284

steered towards structural diversity via low temperature sampling. Furthermore, both Proteína-based285

models on average generate 66-70% α-helices and 6-10% β-sheets. We further demonstrate that both286

Proteína-Atomística and La-Proteína obtain comparable geometric side chain accuracy metrics in287

Appendix Fig. 11. The impact of synthetic consistency up to length 400 is evident in the comparison288

of La-Proteína with DAFDB−clstr and DSYN−ours, where we observe a best-case improvement in all-289

atom co-designability of 31% and diversity of 51%, respectively, establish new state-of-the-art results.290

We further discuss the generalization of performance gains due to synthetic consistent data in Sec. 5.2.291

5.2 Understanding the Impact of Synthetic Data292

To demonstrate that DAFDB−clstr is challenging for facilitating joint learning of sequence and293

structure, we further investigated the impact of synthetic data. To this end, we constructed two further294

synthetic datasets based on DAFDB−clstr: (1) DESMFold and (2) Ddes. In DESMFold, samples have295
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Table 2: Impact of Synthetic Data. All models generate 100 proteins for lengths ∈ [50, 100, 150,
200, 250]. Training on ESMFold structures or filtering for ESMFold designability hurts performance
unless those synthetic ESMFold structures are coupled with recoverable sequences.

Model CODES-AA (%) ↑ DES-M1 (%) ↑ DIV-AA ↑
Proteína-Atomística DAFDB−clstr

76.8 87.6 154
Proteína-Atomística DESMFold

71.0 86.0 132
Proteína-Atomística DDes

72.2 87.2 120
La-Proteína DAFDB−clstr

81.0 89.8 213

Proteína-Atomística DSYN−ours
81.2 82.4 267

La-Proteína DSYN−ours 92.2 93.2 283

the same sequences as in DAFDB−clstr but the structures are computed by ESMFold with a filter of296

pLDDT ≥ 0.8. DDes is a subset of DAFDB−clstr (uses direct AFDB structures) with all structures297

passing the DES-M8 filter. Both DESMFold and DDes contain ∼0.16M samples.298

Table 2 demonstrates that, counterintuitively, neither using 100% designable structures DESMFold299

for training nor leveraging the designable subset DDes improves the performance of the model, even300

when the goal is to generate designable and diverse structures. As a side, Table 2 also confirms that301

the new Proteína-Atomística architecture trained on DSYN−ours, which combines AFDB’s structural302

diversity with ProteinMPNN sequences (subsequently refolded with ESMFold to recover consistent303

full atomistic detail), achieves highly accurate and diverse fully atomistic generation (see Sec. 3 for304

DSYN−ours procedure). This highlights the importance of utilizing better-aligned synthetic sequences305

and structures to facilitate scalable co-design over both modalities. Furthermore by training on306

DSYN−ours La-Proteína sees co-designability and diversity improvements of 13.8% and 32.9%.307

5.3 Latent vs. Explicit Modeling of Protein Sequences308

Table 2 shows that La-Proteína’s latent approach better learns aligned sequence-structure co-309

generation compared to Proteína-Atomística in particular when trained on DAFDB−clstr. We found310

that this is due to lower co-designability at longer lengths, also implying lower diversity scores311

(diversity is calculated among designable samples only). La-Proteína’s autoencoder bypasses the312

challenge of aligning explicit, discrete, and continuous modalities, generating more diverse and313

co-designable samples. The latent variable framework avoids minimizing a complex joint continuous314

and discrete objective during the generative model training. Moreover, La-Proteína’s autoencoder315

component effectively learns to tie together consistent sequences and structures rather than trying to316

learn how to explicitly match them through separate modality-based objectives. Although learning317

the structure-to-sequence mapping in the explicit data space is more challenging, Proteína-Atomística318

establishes a strong alternative for future work that relies on direct access to explicit observables.319

Switching to DSYN−ours significantly improves Proteína-Atomística’s co-designability, dramatically320

boosts diversity, and yields competitive results with La-Proteína. The model now learns a more321

empirically recoverable sequence distribution from its structures (Fig. 6). Notably, both La-322

Proteína and Proteína-Atomística show significant improvements on DSYN−ours, generating more co-323

designable and diverse samples when compared to training on DAFDB−clstr. Furthermore, sequences324

generated from our models trained on DSYN−ours fold better into their co-generated structures325

than those from ProteinMPNN (Appendix Table 7; see ≥DES-M1). This alleviates the need for326

ProteinMPNN re-design of generated backbones, a common component in design pipelines.327

Please see our Appendix for ablation studies, experiment, dataset, and model architecture details.328

6 Conclusions329

Our study finds that AFDB structures are not recoverable with publicly available protein structure330

predictions models, which motivated us to create a carefully curated, yet diverse dataset of aligned331

sequences and structures. We also introduce and successfully validate Proteína-Atomística, a new332

unified multi-modal flow-based framework for de novo atomistic protein design that represents333

sequence, backbone, and side chains explicitly, without latent variables. Training both Proteína-334

Atomística and La-Proteína on DSYN−ours dramatically improves their performance, achieving335

new state-of-the-art results. This demonstrates the critical importance of consistent and recoverable336

sequence-structure training data for atomistic protein design. Future work could address the consistent337

generation of longer atomistic proteins and analyze the importance of aligned sequence-structure data338

in the context of conditional tasks such as motif scaffolding and binder design.339
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A Additional Proteína-Atomística Sample Visualizations533

In Fig. 5, we show additional fully atomistic proteins generated by Proteína-Atomística. Our model534

outputs diverse (co-)designable samples, including realistic side chain structures.

Figure 5: Proteína-Atomística Samples. Additional fully atomistic proteins generated by our model, ranging
from 100 to 400 residues, including side chains. All shown samples are co-designable.

535
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Figure 6: Amino acid sequence distribution for DAFDB−clstr (natural) and DSYN−ours (synthetic) for
sequence length ∈ [32, 256].

B Dataset Details536

B.1 Dealing with the inconsistency between structure and sequence data of AFDB537

DAFDB−clstr is the dataset used in Genie2 [28] for training a protein backbone generative model. It is538

a subset of the AlphaFold Database (AFDB) [43] containing proteins clustered with both MMseqs2 [5]539

based on sequence similarity and Foldseek [42] based on structure similarity. DAFDB−clstr only540

contains one structure per cluster (the cluster representative). After filtering with Nresidue ∈ [32, 256]541

and pLDDT≥80, DAFDB−clstr contains 588,318 structures.542

We analyzed the co-designability of structure-sequence pairs inDAFDB−clstr by folding the sequences543

with ESMFold and checking if the lowest RMSD between folded structure and the AFDB structure is544

less than 2Å. We discovered that only 26.6% of DAFDB−clstr are co-designable by Cα RMSD and545

even less by all-atom RMSD (Fig. 1). The low co-designability of DAFDB−clstr poses a significant546

challenge to multimodal protein generation model training: even if the model fit both sequence and547

structure distributions of the dataset very well, the generated protein structure will not be consistent548

with the generated sequence. To address this challenge, we explored three other synthetic datasets549

based on downstream augmentations of DAFDB−clstr.550

B.2 Datasets with designable structures551

Our initial explorations began with targeting the structure-sequence inconsistency at the structural552

level. We hypothesized that refolding DAFDB−clstr with ESMFold would, by definition, yield553

100% co-designable samples, and that training on these designable samples would improve model554

performance. To test this hypothesis, we created two datasets:555

1. DESMFold: We took sequences in the original DAFDB−clstr and folded them with ESMFold. We556

applied a filter of pLDDTESMFold ≥ 80 on the folded structures. As a result, all remaining structures557

should be co-designable with a high confidence score. DESMFold contained 163,552 samples.558

2. DDes: We took sequences in the original DAFDB−clstr and folded them with ESMFold. We559

computed the all-atom RMSD between the ESMFold-folded structure and the original AFDB structure.560

We then filtered DAFDB−clstr based on the all-atom RMSD with 2Å cutoff to create the Ddes dataset561

containing 155,957 samples. Hence, in contrast to DESMFold, here we are relying on the original562

DAFDB−clstr structures and filtering them to a designable subset.563

We trained Proteína-Atomística on both DESMFold and Ddes. Both datasets reduced the model’s564

performance on all metrics (Table 2) and caused sequence overfitting (structure losses remained565

unaffected) despite the sequences for both datasets remaining unchanged. The results suggest that566

jointly modeling natural sequences and synthetic structures (predicted by either ESMFold or AF2)567

remains challenging when those structures cannot be easily recovered with both ESMFold and AF22.568

While DAFDB−clstr provides a diverse sequence and structure space, realigning the structures to the569

2ColabFold with MSAs yields∼65% co-designability on a random subset of 100 samples fromDAFDB−clstr.
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sequences using ESMFold and filtering by its confidence score may inadvertently reduce both data570

diversity and volume. This process may also contribute to the observed overfitting.571

B.3 Details of Our Synthetic Data DSYN−ours572

Given that a sequence must reasonably fold into its given structure to be co-designable, and enforcing573

co-designability at the structural level worsened all models, we shifted our focus to the sequences.574

We observed that ProteinMPNN-based sequence resampling can significantly improve designability575

(see Sec. F.2.2 for detailed discussion), prompting us to create a dataset with synthetic sequences to576

target the central issue of inconsistent sequence-structure pairs. This choice is further motivated by577

the fact that ProteinMPNN is widely used for the “inverse folding” step in the standard multi-step578

“backbone generation”-“inverse folding”-“forward folding” pipeline employed by most de novo579

protein generative models, owing to its validated performance in wet-lab experiments [47, 10, 12].580

It is crucial to note that, since we are modeling fully atomistic protein structures, we cannot utilize581

the given AFDB structures if there are any residue changes in the predicted synthetic sequences. This582

is because a change in sequence implies a different side-chain structure, potentially with a different583

number of atoms. Consequently, to use synthetic sequences, we refold the new sequences to ensure584

all-atom compatibility. We visualize both the natural and synthetic sequence distributions in Fig. 6.585

To address the problems discussed in Sec. B.2 while preserving scale and diversity, we createdDcodes586

through the following steps: (i) generating four ProteinMPNN sequences for each DAFDB−clstr587

structure with lengths between 32 and 400, (ii) folding the ProteinMPNN sequences with ESMFold588

due to its computational efficiency, being ∼ 60× faster than AF2, and (iii) selecting the sequence-589

structure pair with the lowest Cα RMSD to the original AFDB structure to preserve the structural590

diversity, as the original AFDB structures are cluster representatives. After filtering out samples591

with an average ESMFold pLDDT below 80, our curated dataset, which combines knowledge from592

ProteinMPNN and the confident predictions of both ESMFold and AF2, results in 429,965 high-593

quality samples. Furthermore, rather than relying on redesigning the sequence after structure-based594

generation and regenerating the side chains each time, Dcodes enables learning a consistent sequence-595

structure distribution, facilitating accurate single-step, fully atomistic design. It is worth mentioning596

that FoldComp [24] was used to store and access all datasets we prepared efficiently.597

We present the amino acid residue distribution of all training samples, ranging in length from 32 to598

256, in Fig. 6 for both the natural DAFDB−clstr sequences and those generated using ProteinMPNN599

in DSYN−ours. We chose ProteinMPNN for its robust wetlab validation [10, 12]. However, it does600

overrepresent certain residue types, particularly charged species (E, K). While this overrepresentation601

is not inherently problematic for de novo design, as it allows the model to generate fully atomistic602

structures with high fidelity without redesign, it is still an important consideration for downstream603

usage.604

C Architecture Details605

Here we introduce the model versions in order of complexity. Starting with Proteína we add606

discrete sequence co-generation to create Proteína-Co-Design. We then extend this with side-chain607

co-generation to yield the full Proteína-Atomística framework.608

C.1 Proteína-Co-Design609

For the co-design setting, we start from the ∼ 60M Proteína architecture configuration that shows an610

optimal balance of accuracy and speed in the backbone-only setting (See Appendix C.2 of Geffner611

et al. [16] for Proteína speed analysis). To enable joint backbone-sequence modeling from a pure612

backbone model, we add three features:613

(i) residue type index embeddings614

(ii) argmax residue type index predictions for self-conditioning,615

(iii) the independent residue type time variable, which dictates how much noise or, in this case,616

the percentage of tokens to be replaced with MASK tokens617
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Table 3: Hyperparameters for Proteína-Atomística model training. Rows highlighed in grey are
specfic to the all-atom architecture. We denote two versions of Proteína-Atomística the one trained
on shorter lengths up to 256 and the standard model trained to max length 400.

Model Proteína-
Co-design Atomística (256) Atomística (400) Atomística Motif Atomística-tri

Architecture Component
initialization random random random random random
sequence repr dim 512 768 768 512 768
# registers 10 10 10 10 10
sequence cond dim 128 512 512 128 512
t sinusoidal enc dim 196 256 512 196 512
idx. sinusoidal enc dim 196 128 256 196 256
pair repr dim 196 512 256 196 256
seq separation dim 128 128 128 128 128
pair distances dim (xt) 64 64 64 64 64
pair distances dim (x̂(xt)) 128 128 128 128 128
pair distances min (Å) 1 1 1 1 1
pair distances max (Å) 30 30 30 30 30
residue type embedding dim 196 512 512 196 512
# attention heads 12 12 12 12 12
# transformer layers 12 15 15 12 15
# triangle layers 0 0 0 0 3
# number of atom layers 0 5 5 5 5
atom cond dim 0 128 128 128 128
atom dim 0 128 128 128 128
atom type embedding dim 0 128 128 128 128
# atom attention heads dim 0 8 8 8 8
# atom cross attention heads 0 8 8 8 8
side chain coords N/A local trans local frame local trans local frame
# trainable parameters 59.3M 221M 222M 73.6M 226M

Training Details
# train steps (length∈[32, 256]) 100K 190k 210k 100K 145k
# finetune steps (length∈[32, 400]) N/A N/A 100k N/A N/A
train batch size per GPU 28 8 12 8 4
finetune batch size per GPU N/A N/A 1 N/A N/A
# GPUs 96 96 96 96 96
# grad. acc. steps 1 1 1 1 1
% forward folding 10 5 10 5 10
% inverse folding 10 5 10 5 10
% side chain packing 0 0 5 0 5

We note that both the Cα coordinates and residue types leverage self-conditioning, where in 50% of618

the training iterations, we run a first model forward pass to obtain predictions of the current structure619

and sequence and use those as additional inputs to the model during a second forward pass. This620

is a common technique for improving diffusion models and can be viewed as a form of recycling621

employed by AlphaFold2 [16, 23].622

For the Co-design task only, we sample the sequence time from B(1.0, 2.5), where B(·, ·) is the623

Beta distribution. This is a severely left-skewed distribution, which gives more weight to noisy624

times (sequences with a higher masking rate). For reference, we found that this did not make an625

impact in the all-atom task. Instead, we used the standard uniform distribution, given that we were626

directly modeling the structure-sequence duality with residue types and their structures. For co-design627

training, 10% of the batch iterations are used for forward and inverse folding, respectively. This was628

done to pin the two independent schedules so that when both structure and sequence time reach one,629

the structure and sequences are trained to align. Please see Table 3 for complete model configurations630

and compute resources used.631

C.2 Proteína-Atomística632

More architectural components are illustrated in Fig. 8.633

C.3 Optional Triangle Multiplicative Updates634

In addition to the highly scalable Proteína-Atomística demonstrated by Fig. 7, we trained another635

variant, Proteína-Atomística-tri, with triangle multiplicative layers, which were used to update the pair636
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Figure 7: Proteína-Atomística’s transformer architecture. (a)-(c) First generate an initial sequence
representation, sequence conditioning features, and a pair representation. (d)-(e) Create atom representations and
atom conditioning features for the expanded atom sequence. (f) Process these representations iteratively through
trunks, moving from atom-level to sequence-level and back to atom-level. Each trunk incorporates conditioned
multi-head attention layers, biased by the pair representation. Adaptive cross-attention is employed between
trunks to update atom and sequence representations (see Appendix).
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Figure 8: Additional modules of Proteína-Atomística transformer architecture. (a) Adaptive attention
and transition. (b) Optional pair representation update with triangle multiplicative layers. (c) Adaptive cross
attention.

representation. Fig. 8(b) shows how triangle multiplicative layers are used in the Proteína-Atomística637

architecture. During training, the pair representation was updated every 5 backbone processing layers,638

where the backbone processing layers are the core transformer layers shown in Fig. 8(a), resulting639
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Algorithm 1 Proteína-Atomística Training
1: while not converged do
2: Sample protein (x, r, z) from dataset
3: Sample time steps tx, tr, tz for each modality
4: Convert global z to local coordinates using x
5: Sample noisy input xt, rt, zt for each modality
6: Zero out zt for masked residues in rt
7:
8: Predict vθ

x,t, vθ
z,t, zθinit,t and cθ1|t

9: Compute loss across modalities
10: Lx ← ∥vθ

x,t − (x− ϵx)∥22
11: Lr ← CrossEntropy(cθ1|t, r)
12: for each residue i do
13: Lz,i ← ∥vθ

z,t,i − (zi − ϵz,i)∥22, if rt,i ̸= M
14: Lz,i ← ∥zθinit,t,i − (zi − ϵz,i)∥22, if rt,i = M
15: end for
16: L ← 1

L
(Lx + Lr + Lz)

17: Calculate gradient and update model parameters
18: end while

Algorithm 2 Proteína-Atomística Sampling
1: Initialize x, r, z from noise distribution
2: for i = 0 to N − 1 do
3: Predict vθ

x,t, vθ
z,t, zθinit,t, c

θ
1|t

4: if dtx > 0 then
5: Update x with Eq. (1)
6: end if
7: if dtr > 0 then
8: Unmask r with prob. dtr · 1+ηtr

1−tr
9: Remask r with prob. dtr · η

10: end if
11: if dtz > 0 then
12: for each residue j do
13: If unmasked: update zj with Eq. (2)
14: If newly unmasked: set zj ← zθinit,t
15: If masked: set zj ← 0
16: end for
17: end if
18: end for

in 3 updates in total and ∼ 4M parameters in triangle multiplicative layers. Table 9 demonstrates640

that Proteína-Atomística-tri exhibits improved performance on all metrics, especially the all-atom641

diversity. Considering that the triangle multiplicative layers are highly memory-intensive, we keep642

them as an optional and sparse add-on to our model architecture.643

D Proteína-Atomística Training and Inference Details644

D.1 Proteína-Atomística Training645

The training process is outlined in Alg. 1. We start by sampling time steps to create noisy inputs for646

each modality (Sec. 4.1) and feeding them into the model. Both Cα and non-Cα sample time from the647

mixed uniform-beta distribution from Proteína [16] and the sequence time is sampled from U(0, 1).648

The training objectives are as follows: for Cα atoms, we use the standard conditional flow matching649

objective, while for amino acid sequences, we use a standard cross-entropy loss. For non-Cα atoms650

(i) for unmasked residues, we apply the flow matching loss to existing atoms, similar to Cα atoms; (ii)651

for masked residues, we regress the predicted pseudo-velocity zθinit,t towards an augmented objective652

as discussed in Sec. 4.2. See Appendix for further training details.653

D.2 Proteína-Atomística Sampling654

We sample Cα atoms by simulating the learned flow via an SDE. Since our flow is Gaussian, it relates655

to the score function as: sθx,t = (tvθ
x,t − xt)/(1− t). This allows us to define an SDE for sampling656

dxt = vθ
x,t dt+ gx(t)s

θ
x,t dt+

√
2gx(t)γx dWt, (1)

with noise scale γx and Wiener processWt. Setting γx=1 produces the model’s marginal distribution,657

while reducing γx can boost designability by lowering noise during generation, at the cost of diversity.658

Following MultiFlow [7], for sequence sampling, we effectively perform iterative unmasking and659

remasking. Starting with a fully masked sequence [M]L, at each timestep t, we predict residue660

type logits cθ1|t and sharpen the distribution using a temperature τ to obtain probabilities p1|r(r) =661

softmax(cθ1|t/τ). Each masked residue is then unmasked with probability dt · (1 + ηt)/(1− t),662

where η controls sampling stochasticity, and its type is sampled from p1|r(r). To maintain balance,663

each unmasked residue is subsequently remasked with probability dt · η. We also explore recent664

advances in discrete diffusion sampling algorithms [40, 36].665

The generation of non-Cα atoms depends on the sequence generation process. Following the flow666

matching framework in Sec. 4.1, we begin generating non-Cα atoms for a residue only after it is667

unmasked. Accordingly, the generation process falls into three cases: (1) If the residue is already668

unmasked, we update its non-Cα coordinates using the same SDE as for Cα atoms:669

dzt = vθ
z,t dt+ gz(t)s

θ
z,t dt+

√
2gz(t)γz dWt; (2)
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(2) if the residue is newly unmasked at the current step, we initialize its atom coordinates using670

a single step Euler integration using the the predicted initialization zθinit,t; (3) if the residue is still671

masked or has been remasked, we set z to zero. This framework enables the concurrent generation672

of side chains alongside backbones and sequences, contrasting with methods that generate side673

chains after backbone and sequence generation. This simultaneous approach allows for an increased674

influence of side chains on the local structure while retaining the flexibility to alter sequence identities.675

The sampling process is detailed in Alg. 2. As we use distinct time schedules for the three modalities,676

we denote their respective timesteps with corresponding subscripts and use N to denote the number677

of timesteps. Our flexible and general framework, in principle, allows for sampling modalities in any678

order by adjusting these time schedules.679

D.3 Defining Noise Schedules via the Time Distribution680

Training Time Sampling Distribution. A key design choice in diffusion and flow matching models is681

the time sampling distribution p(t), which effectively controls how the training objective is weighted682

across different stages of the generative process. Here, since we consider three distinct modalities,683

we sample time steps independently for each. Proteína-Atomística proposes to bias sampling toward684

later timesteps (t ≈ 1) to encourage the model to allocate more capacity to generating fine-grained685

local structure. Specifically, for flow matching in Euclidean space—i.e., for x and z—we use a mixed686

Beta distribution [16] for tx and tz.687

p(t) = 0.02U(0, 1) + 0.98B(1.9, 1.0),

where B(·, ·) is the Beta distribution. For the discrete modality r, we sample tr from U(0, 1).688

Additionally, following [7], we give the options to allocate a small percentage of each training batch689

to forward folding (tr = 1), inverse folding (tx = 1) and also extend to side chain packing (tx = 1690

and tr = 1). Please see Table 4 for specific ratios for each model configuration.691

D.4 Side Chain Initialization692

In Fig. 7, the initialization zθinit,t is predicted from atom representations that are also used for the693

vector field vθ
z,t. Notably, the model does not have access to zt for masked residues due to the694

structures being undefined for unknown residue types. This differs from the standard flow matching695

objective, which predicts a vector field conditioned on the noisy input. We have found that separating696

the initialization from the standard structure-to-structure vector field works best in practice (Table 11).697

In Table 11 we empirically observed that directly predicting clean coordinates is challenging due698

to their high variance and our model’s non-equivariant nature. To address this, we introduce an699

auxiliary objective that predicts z − ϵz, where ϵz is standard Gaussian noise not visible to the700

model. This formulation is effective for two reasons: (1) it aligns with the vector field objective701

for existing atoms, and (2) since ϵz is not known to the model, the optimal prediction converges702

to E[z − ϵz] = E[z] − E[ϵz] = E[z], ensuring that the prediction converges to the average clean703

coordinates. This, in turn, properly initializes newly unmasked side chain atoms.704

An alternative interpretation of this augmented objective is that we aim to learn an augmented vector705

field that transforms a random starting point with average E[ϵz] = 0 to the average clean data E[z].706

During generation, we can then obtain an initialization by performing a single-step Euler integration707

from noise (tpre-init = 0) towards “clean data” (tinit = 1) using the learned vector field. We assume the708

side-chain structures for masked residues originate from zero. This conceptually means the side-chain709

coordinates are initially hidden behind the Cα atoms (in local coordinates) before being unmasked.710

D.5 Two Stage Training711

We used a training + finetuning strategy to train Proteína-Atomística on DSYN−ours. The model712

was first trained on a subset of DSYN−ours containing proteins with lengths ranging from 32 to 256.713

The model is then finetuned on the full DSYN−ours with protein lengths ranging from 32 to 400.714

The model with triangle multiplicative layers (Proteína-Atomística-tri) was only trained on protein715

lengths ranging from 32 to 256. We recorded the number of steps and learning rate in both training716

and finetuning stages for each variant of the model in Table 4.717
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D.6 Details in Multimodal Flow Matching718

We present the detailed version of our training algorithm in Alg. 3. Here, SampleTimestep() is the719

function to sample timesteps for each modality based on the training time distributions in Sec. D.3720

and Global2Local() is the function to transform global coordinates to local coordinates, where the721

transformation scheme (local translations or local frames) is chosen as a hyperparameter.722

Global2Local: Non-Cα atoms are structurally organized around their corresponding Cα atoms. We723

offer two local coordinate modeling strategies to leverage this property, simplifying the learning724

task by predicting offsets rather than global coordinates and facilitating better initialization of725

non-Cα atoms. The first approach calculates the relative position of non-Cα atoms directly with726

respect to their corresponding Cα atom: zlocal
i = zi − xi. The second strategy, inspired by related727

work [28], constructs a residue-centric local coordinate frame (ti,Ri) using the Cα coordinates of728

three neighboring residues (xi−1, xi, xi+1) via the Gram-Schmidt process. Non-Cα coordinates zi729

are then transformed to local ones via zlocal_frame
i = R−1

i (zi − ti). In the following sections, models730

denoted by local trans employ the local translation parameterization, while those denoted by local731

frame utilize the frame-based parameterization.732

Algorithm 3 Proteína-Atomística Training

1: Input: Cα atom x ∈ RL×3, amino-acid sequence r ∈ {0, ..., 19}L, non-Cα atom z ∈ RL×36×3

2:
3: while not converged do
4: # Step 1: Noising Process
5: tx, tr, tz ← SampleTimestep()
6: rt ∼ trδ{r}+ 1− trδ(M)
7: ϵx ∼N (0, I) ∈ RL×3, ϵz ∼N (0, I) ∈ RL×36×3

8: xt ← txx+ (1− tx)ϵx
9: z← Global2Local(z,x) # if using local coordinates

10: zt ← tzz+ (1− tz)ϵz
11: Zero out non-existing atoms in zt based on rt
12:
13: # Step 2: Neural Network
14: vθ

x,t,v
θ
z,t, z

θ
init,t, c

θ
1|t ← Transformer(xt, rt, zt, ∅, ∅, ∅, tx, tr, tz)

15: if rand(0, 1) > 0.5 then
16: r̄← argmax cθ1|t
17: x̄← xt + (1− tx)vθ

x,t

18: z̄← zt + (1− tz)vθ
z,t

19: vθ
x,t,v

θ
z,t, z

θ
init,t, c

θ
1|t ← Transformer(xt, rt, zt, sg(x̄), sg(r̄), sg(z̄), tx, tr, tz)

20: end if
21:
22: # Step 3: Loss Calculation
23: Lr ← CrossEntropy(cθ1|t, r)
24: Lx ← 1

L ||v
θ
x,t − (x− ϵx)||22

25: for each residue i do
26: Lz,i ← ∥vθ

z,t,i − (zi − ϵz,i)∥22, if rt,i ̸= M
27: Lz,i ← ∥zθinit,t,i − (zi − ϵz,i)∥22, if rt,i = M
28: end for
29: L ← 1

L (Lx + Lr + Lz)
30:
31: Calculate gradient and update model parameters
32: end while

E Inference Details and Hyperparameters733

We present a detailed version of the sampling algorithm in Alg. 4.734
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Algorithm 4 Proteína-Atomística Multimodal Sampling

1: Input: discretized timesteps for three modalities {tx,i}0..N , {tr,i}0..N , and {tz,i}0..N ,
stochasticity schedules gx(t) and gz(t), noise scales γx, γz, η, sequence temperature τ

2: Output: generated proteins (x, r, z)
3: x ∼N (0, I) ∈ RL×3

4: z ∼N (0, I) ∈ RL×36×3

5: r← [M]L

6: for i = 0 to N − 1 do
7: vθ

x,t,v
θ
z,t, z

θ
init,t, c

θ
1|t ← Transformer(x, r, z, ∅, ∅, ∅, tx,i, tr,i, tz,i)

8: if self-condition then
9: r̄← argmax cθ1|t

10: x̄← xt + (1− tx,i)vθ
x,t

11: z̄← zt + (1− tz,i)vθ
z,t

12: vθ
x,t,v

θ
z,t, z

θ
init,t, c

θ
1|t ← Transformer(xt, rt, zt, x̄, r̄, z̄, tx,i, tr,i, tz,i)

13: end if
14:
15: # Update CA Atoms
16: dtx = tx,i+1 − tx,i
17: if dtx > 0 then
18: x̂← x+ vθ

x,tdtx + gx(tx,i)s
θ
x,tdtx +

√
2gx(tx,i)γx dWt

19: end if
20:
21: # Update Amino-Acid Sequence
22: dtr = tr,i+1 − tr,i
23: if dtr > 0 then
24: if sampling_alg = PURITY then
25: r̂← purity_sample(cθ1|t, dtr, η, τ, r̂) (Algorithm 5)
26: else if sampling_alg = P2 then
27: r̂← p2_sample(cθ1|t, dtr, η, τ, r̂) (Algorithm 6)
28: else
29: r̂1 ∼ Softmax(cθ1|t/τ)
30: punmask ← dtr · (1 + ηtr,i)/(1− tr,i)
31: premask ← dtr · η
32: for j = 1 to L do
33: if rj = M then
34: r̂j ∼ (1− punmask)δ{M}+ punmaskδ{r̂1,j}
35: else
36: r̂j ∼ (1− premask)δ{rj}+ premaskδ{M}
37: end if
38: end for
39: end if
40: end if
41:
42: # Update Non-CA Atoms
43: dtz = tz,i+1 − tz,i
44: if dtz > 0 then
45: for j = 1 to L do
46: if rj ̸= M and r̂j ̸= M then
47: ẑj ← zj + vθ

z,t,jdtz + gz(tz,i)s
θ
z,t,jdtz +

√
2gz(tz,i)γz dWt

48: else if rj = M and r̂j ̸= M then
49: zj ← zθinit,t,j
50: else
51: zj = 0
52: end if
53: end for
54: end if
55: x, r, z← x̂, r̂, ẑ
56: end for
57: Return (x, r, z)
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E.1 Inference Time Schedules735

We sample from Proteína-Atomística following Alg. 2 for the Cα coordinates, residue types, and736

non-Cα backbone and side chain atoms, integrating from t = 0 to t = 1. For the coordinates of Cα737

(x) and non-Cα atoms (z), we simulate the SDE (Eq. 1 and Eq. 2) with the following definition for738

g(t):739 {
g(t) = 1/(t+ 0.01), t ∈ [0, 0.99]

g(t) = 0, t ∈ (0.99, 1)

We use Nx = 500 and Nz = 600 steps to discretize the unit interval into logarithmically spaced740

points. The PyTorch [35] code snippet to generate the logarithmic discretization is as follows:741

t = 1.0 - torch.logspace(-2, 0, nsteps + 1).flip(0)742

t = t - torch.min(t)743

t = t / torch.max(t)744

which ensures that t ∈ [0, 1]. For the sampling of residue types (r), we use the Nr = 500 steps to745

discretize the unit interval into quadratically spaced points. xt and rt are padded with ones for extra746

100 steps to match the total number of 600 steps of the simulation. Fig. 9 visualizes the discretized747

t-schedule of different modalities during sampling.748

Figure 9: Discretized t schedule during sampling for backbone Cα (xt), amino acid residue types (rt), and
all non-Cα atoms (zt). The last 100 steps of xt and rt are padded with 1.

E.2 Backbone-Sequence Co-Design749

For both the backbone-sequence co-design and all-atom generation tasks, our models perform best750

with a combination of the offset schedules defined above and various low-temperature settings across751

the explicit data modalities that the model has access to (backbone Cα, residue types, other backbone752

and side chain atoms). Here we detail the specific parameters and how they impact the generated753

results.754

E.2.1 Low Temperature Sampling for Backbone Cα755

The stochasticity of backbone sampling is handled in the same way as done in Proteína [16]. This756

means we have a single noise scale to decrease the impact of the noise in relation to the score and757

vector field contributions. This can be seen in Eq. 1 where γx refers to the backbone noise scale758

shown in Table 4.759

E.2.2 Discrete Diffusion Sampling for Residue Types760

As detailed in Algorithm 4, we investigate two discrete diffusion sampling algorithms to refine the761

incorporation of stochasticity in the masking and unmasking processes. We adopt purity sampling [40]762

(Algorithm 5), which prioritizes unmasking tokens with high confidence, and self-path planning (P2)763

sampling [36] (Algorithm 6), which instead encourages remasking tokens with low confidence.764
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Algorithm 5 Purity Sampling

1: Input: predicted logits cθ1|t, time step t, time delta dt, sampling temperature τ , stochasticity η,
current sequence rt

2: Output: updated sequence r̂
3: probs← Softmax(cθ1|t/τ)
4: MaxLogProb← max(log(probs), dim = −1)
5: MaxLogProb← MaxLogProb− (rt ̸= M) · ∞
6: SortedIndices← ArgSort(MaxLogProb, descending = True)
7: punmask ← min(1, dt · 1+ηt

1−t )

8: ToUnMask← (Uniform(0, 1) ≤ punmask) ∧ (rt = M)
9: NumToUnmask←

∑
(ToUnMask)

10: r̂samples ∼ Categorical(probs)
11: r̂← rt
12: for i = 1 to NumToUnmask do
13: idx← SortedIndices[i]
14: r̂idx ← r̂samples,idx
15: end for
16: premask ← dt · η
17: ToReMask← (Uniform(0, 1) < premask) ∧ (t+ dt < 1)
18: r̂← r̂ · (1− ToReMask) + M · ToReMask
19: return r̂

Algorithm 6 P2 Sampling

1: Input: predicted logits cθ1|t, sampling temperature τ , stochasticity η, current sequence rt
2: Ouput: updated sequence r̂
3: κ(t) = 1− t
4: ϵ ∼ Gumbel(0, 1)
5: logprob, r̂1 = LogSoftmax(cθ1|t/τ + ϵ).max(dim=-1)
6: score← logprob
7: score[rt ̸=M ]← score[rt ̸=M ] ∗ η
8: ToMask← Top-K-Lowestκ(t)(score)
9: r̂← r̂1

10: for j ∈ ToMask do
11: if [r]j ̸= M then
12: [r]j ← M
13: end if
14: end for
15: for j /∈ ToMask do
16: if [r]j = M then
17: [r]j ← [r̂1]j
18: end if
19: end for

In total, three hyperparameters define the discrete flow matching sampling: (1) the sampling algorithm765

type, either purity or P2; (2) the temperature τ , which directly controls the predicted logits, with766

τ < 1 emphasizing likely residue types and τ > 1 acting as a distribution smoothing parameter; and767

(3) the stochasticity (η), which governs the remasking ratio.768

We test both purity and P2 sampling for all models and select the optimal settings based on the769

empirical results.770

E.3 Stochastic Side Chain and Non-Cα Sampling771

Once a residue is unmasked, side chains and non-Cα atoms are updated with the same stochastic772

SDE as used for backbone Cα generation. This can be seen in Eq. 2 where γz refers to the side chain773

and non-Cα noise scale shown in Table 4. When the residue is masked, we do not update the side774
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chain structure as there is not yet a residue to predict the structure of. In the event of a residue being775

unmasked we follow the steps described in Sec. D.4776

Our flow matching design is tailored to accommodate dynamic changes in residue types during777

generation, enabling flexible atom sequence lengths, i.e. a variable number of side chain atoms as778

a function of time. For example, consider a single residue during generation where 0 < tα < tβ <779

tω < 1. At tα, the current residue is alanine with associated structures xtα , ztα . At tβ , the alanine780

is replaced with a mask token, and the side chain and non-Cα backbone structure ztα is zeroed out781

since the structure of an unknown residue is undefined. Then, at tω , the residue token is unmasked to782

lysine, requiring the initialization of the side chain structure with a different number of atoms than783

previously used at tα.784

F Ablation Studies785

Table 4: Inference Parameters for Proteína-Atomística, Proteína-Co-design, and La-Proteína for
backbone Cα, sequence, and side chain/non-Cα modalities. For La-Proteína we report the local latent
temperature as side chain noise scale.

Backbone Sequence Side Chain
Model Where Train Length Local Coord Noise Scale Algo. Temperature Noise Scale Noise Scale
Proteína-Atomística div Table 7, 8 256 trans 0.62 P2 0.20 5.0 0.45
Proteína-Atomística codes Table 7, 8 256 trans 0.20 P2 0.45 5.0 0.60
Proteína-Atomística div Table 7, 8 256 frame 0.60 Purity 0.20 0 0.60
Proteína-Atomística codes Table 7, 8 256 frame 0.30 Purity 0.20 0 0.45

Proteína-Atomística div Table 9 400 frame 0.60 Purity 0.45 0 0.1
Proteína-Atomística opt Table 9 400 frame 0.45 Purity 0.30 0 0.1
Proteína-Atomística codes Table 9 400 frame 0.35 Purity 0.30 0 0.1

Proteína-Atomística-triopt Table 9 256 frame 0.5 Purity 0.45 0 0.3

Proteína-Co-design div Table 7 256 N/A 0.60 Purity 0.20 5.0 N/A
Proteína-Co-design codes Table 7 256 N/A 0.30 Purity 0.20 5.0 N/A

La-Proteína div Table 7, 8 512 N/A 0.30 N/A N/A N/A 0.1
La-Proteína codes Table 7, 8 512 N/A 0.10 N/A N/A N/A 0.1

Model Specifications. Table 4 details the specific hyperparameters for the Proteína-Atomística and786

Proteína-Co-design variants used in Table 1, Fig. 10, Table 7, and Table 8. All models follow a787

similar paradigm: the lower the noise scale, the lower the diversity and the higher the designability.788

The choices between the various discrete flow matching parameters were based on settings that789

yielded optimal results, focusing on a strong trade-off between diversity and designability. Please790

see the end of Sec. 4.1 for precise definitions of (i) local translational, and (ii) local frame-based791

coordinates.792

Ablation Strategy. Since Proteína-Atomística generates backbone Cα atoms, amino acid residues,793

and atomistic side chains with non-Cα atoms simultaneously, our ablation study follows a hierarchical794

structure, incrementally integrating data modalities, starting from the simplest representation: (1) Cα795

only (Sec. F.1), (2) backbone-sequence co-design (Sec. F.2), and (3) fully atomistic proteins (Sec.796

F.3).797

F.1 Backbone Cα Only Design798

We start with comparing architectures designed for backbone Cα generation, and analyzing the role799

synthetic sequences play on structure-based benchmarks. Table 5 presents the primary subset of de800

novo backbone design benchmarks for recent models, following Geffner et al. [16]. We include both801

M1 (single-shot) and M8 (standard best of 8 ProteinMPNN samples) variants to quantify the impact802

of ProteinMPNN and its learned sequence distribution on structure-based protein design.803

The overall ranking of models in Table 5 changes depending on whether M1 or M8 is used to evaluate804

designability and diversity. Notably, a large portion of undesignable samples can be made designable805

by resampling the possible sequence, as shown by the percentage of designable samples, which806

increases by 10-28% when moving from M1 to M8.807

We also introduce Genie2-Flow in Table 5, a variant of the Genie2 model that replaces the backbone808

diffusion process with the flow matching training and inference procedure of Proteína. Genie2-Flow809

achieves the best balance between designability and diversity at both the M1 and M8 levels.810
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Table 5: Performance of de novo backbone generation for Cα only models. All models generate
100 proteins for lengths ∈ [50, 100, 150, 200, 250]. Genie2-Flow uses the Genie2 architecture with
the conditional flow matching training of Proteína. Here M8 refers results gain through best of 8
ProteinMPNN sequences. M1 denotes using the first ProteinMPNN sequence.

Method Dataset DES-M8 (%) ↑ DES-M1 (%) ↑ DIV-M8 ↑ DIV-M1 ↑ NOV-PDB ↓

FrameFlow PDB 88.6 61.2 236 (0.53) 160 (0.52) 0.69
RFDiffusion PDB 94.4 77.8 217 (0.46) 158 (0.34) 0.71
Genie2 AFDB 95.2 74.3 281 (0.59) 233 (0.49) 0.63
FoldFlow-2 PDB 97.4 83.2 239 (0.49) 200 (0.48) 0.68
FoldFlow-2 (reft) PDB 81.6 53.2 218 (0.53) 131 (0.49) 0.65
Proteína 60M no tri

γ=0.25 Genie2 98.4 87.8 139 (0.28) 127 (0.29) 0.75
Proteína 60M no tri

γ=0.45 Genie2 95.8 79.2 250 (0.52) 203 (0.51) 0.70
Genie2-Flowγ=0.25 Genie2 96.6 78.2 359 (0.74) 284 (0.73) 0.62

F.2 Backbone-Sequence Co-Design811

Now, we examine the backbone-sequence co-design task to gain a deeper understanding of how812

sequences influence the generated structures during explicit joint learning.813

F.2.1 Extended Discussion of Explicit Co-Design814

First, we see that Proteína-Co-design and Proteína-Atomística generate more consistent designable815

proteins compared to having a separate ProteinMPNN step. This is shown by the ≥ DES-M1 column816

of Table 7, where the sequences generated by our models yield higher designability than a separate817

ProteinMPNN call. This is important because it demonstrates that we have an accurate model that818

can operate without the need for always trying to redesign a more fitting sequence (and side chain819

structure by definition) to the already generated structure, as done in standard multi-stage design820

pipelines. DES-M8 is always higher than both CODES and DES-M1, signifying that many sequences821

can fold into similar structures, which we know to be true fundamentally. While our model does822

not eliminate the potential need for inverse folding-based post-optimization to maximize M8 scores,823

it achieves high single-shot accuracy with superior side chain structures (Fig. 11), setting a strong824

foundation for further optimization. Although DES-M8 is higher than M1, finding the best of eight825

different sequences would require redesigning the side chain structures afterwards. In contrast,826

Proteína-Atomística generates accurate fully atomistic structures with an aligned sequence in one go.827

Second, the success of Proteína-Atomística and Proteína-Co-design is not just due to solving the828

consistency issues present in using AFDB for fully atomistic training. In Table 6, we see that829

when we take three prominent model architectures (Proteína, MultiFlow/FrameFlow, Genie2) and830

train them on the same data DAFDB−clstr, our Proteína-Co-design outperforms them significantly.831

Furthermore, we observe that when MultiFlow is trained with its distilled data (comprising PDB832

and model-generated structures, all with ProteinMPNN sequences), Proteína-Co-design trained on833

DAFDB−clstr achieves competitive performance. Additionally, we find that removing the adversarial834

Table 6: Ablation of popular architectures for codesign on AFDB. Results for Multiflow base
without distillation are taken from their original paper. We trained Multiflow and Genie2-flow-
codesign, and evaluated all models by generating 100 proteins for lengths ∈ [50, 100, 150, 200, 250].

Method CODES-CA (%) ↑ DIV-CA ↑
MultiFlow (PDB) 42.0 72
MultiFlow (PDB & distilled) 86.7 160
MultiFlow (DAFDB−clstr) 40.0 52

Genie2-Flow-Co-design (DAFDB−clstr) 83.0 79

Proteína-Co-design (DAFDB−clstr) 86.4 153
Proteína-Co-design (DSYN−ours) 87.0 226
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or inconsistent structure-sequence pairs and replacing them with in-silico consistent ones (i.e. training835

on DSYN−ours) increases the accuracy for both co-designability and diversity. As a result, we836

demonstrate that both architecture and framework as well as data make non-trivial contributions.837

This result mirrors the behavior observed in Table 5, where instead of relying on noisy best-of-8838

ProteinMPNN sampling, here we can learn a diverse and consistent structure-sequence distribution.839

F.2.2 What led us to build a more consistent dataset?840

We observed that ProteinMPNN-based sequence resampling can significantly improve designability,841

as evident from the disparity in designability between M1 and M8 in Table 5. Notably, up to 28%842

of the generated backbones can transition from undesignable to designable simply by resampling843

the sequence and selecting the best of 8. This suggests that suitable sequences exist for these844

novel de novo structures, but generating them in a single shot is non-trivial. Moreover, even with845

ProteinMPNN, the most likely sequence is not guaranteed to be the best, highlighting the need for846

low-temperature sampling in many of its applications [49, 12].847

The observed disparity, combined with the fact that the clustered AFDB is only 19.1% co-designable-848

all-atom (Fig. 1), led us to investigate the role of ProteinMPNN in enabling consistency in modeling849

the joint distribution of protein structure and sequence. Given that finding the proper sequence850

significantly affects sequence-free model performance (Table 5), training on largely non-co-designable851

data seemed problematic.852

We emphasize that simply aligning the structures to known sequences (i.e., training on ESMFold853

structures) is insufficient and even hurts performance (Fig. 2). To clarify, although we aim to push our854

models to generate the best designability possible, training on a large amount of diverse and 100%855

designable structures hurts performance compared to a largely non-designable dataset. To gain a856

deeper understanding, we investigated the effects of architecture and data on explicitly learning the857

joint backbone-sequence distribution in the de novo co-design setting (Table 6).858

Also see related discussions in Sec. B.859

F.2.3 Backbone success does not always translate to multi-modal tasks860

Table 6 shows that while Genie2-Flow sets new state-of-the-art results for backbone design, it861

performs poorly when extended to backbone-sequence co-design. Specifically, Genie2-Flow exhibits862

a 3.6x diversity drop when comparing ProteinMPNN single-shot (M1) diversity to that of the model-863

generated sequences (CA). We note that Proteína, Genie2, Genie2-Flow, and Proteína-Co-design864

were trained on identical datasets, with Proteína-Co-design being identical to the 60M Proteína but865

with sequence features and discrete flow matching training.866

Furthermore, we found that Proteína-Co-design, trained on the unaltered clustered AFDB, matches867

MultiFlow’s performance when trained on PDB and model-generated structures with distilled868

ProteinMPNN sequences. In contrast, training MultiFlow on the same Genie2 data resulted in co-869

designability and diversity collapse compared to its distilled form. This highlights the core Proteína870

transformer’s accurate and robust usage for both backbone and backbone-sequence co-design, across871

natural and synthetic sequence datasets.872

F.2.4 Extended Co-Design Results873

Table 7 presents the full benchmark performance of the models captured in Fig. 10. Overall, Proteína-874

Co-design outperforms all prior baselines. Furthermore, how we model the side chains and non-Cα875

atoms with respect to their central Cα (local vs. frame) greatly impacts the diversity metric. Lastly, by876

comparing our backbone Cα-sequence co-design model, Proteína-Co-design, to Proteína-Atomística,877

we observe that significant backbone diversity can be achieved through the incorporation of all-atom878

modeling (non-Cα backbone atoms and side chains). Here both models are trained on DSYN−ours for879

fair comparisons.880

F.3 Fully Atomistic De Novo Protein Generation881

Building on the findings from our backbone Cα-sequence co-design model, Proteína-Co-design, we882

investigate key aspects of Proteína-Atomística model, including its architecture, stochastic multi-883
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Table 7: Backbone-Sequence Co-design performance compared to baselines. All models generate 100
proteins for lengths ∈ [50, 100, 150, 200, 250]. We report the two multi-modal sampling configurations
that generate the (i) most co-designable (codes) and (ii) most diverse samples (div). The best model for co-
designability and diversity is emphasized. For parameterization definitions see Table 4. All Proteína-Atomística
and Proteína-Co-design are trained with DSYN−ours. The ≥ DES-M1 column refers to models in which the
co-generated sequences offer higher co-designability than ProteinMPNN redesign (1 sample).

Method Backbone-Sequence Co-design Backbone-Only Design
≥ DES-M1 CODES (%) ↑ DIV-CA ↑ DES (%) DIV

M8 ↑ M1 ↑ M8 ↑ M1 ↑
ProteinGenerator ✗ 32.0 48 86.2 73.0 85 82
Protpardelle ✗ 65.8 41 95.8 75.0 59 51
PLAID ✗ 34.0 79 49.2 36.4 117 81
DPLM-2 (650M, co-generation) ✗ 40.6 90 59.0 42.8 133 100
Multiflow ✗ 86.7 160 99.6 92.0 191 173
CarbonNovo ✓ 76.0 161 89.6 70.4 201 148
P(all-atom) ✗ 80.0 263 98.2 95.4 349 299

Proteína-Co-design codes ✓ 97.0 156 99.2 97.0 158 155
Proteína-Co-design div ✓ 87.0 226 96.2 85.2 256 223

Proteína-Atomística codes,local frame ✓ 96.2 162 99.4 93.8 166 162
Proteína-Atomística div,local frame ✓ 82.4 230 94.8 81.8 260 227
Proteína-Atomística codes,local trans ✓ 97.2 136 99.2 96.0 134 130
Proteína-Atomística div,local trans ✓ 84.2 274 96.4 82.4 320 268
Proteína-Atomística-tri local frame ✓ 88.6 236 97.0 87.8 257 227

La-Proteína codes,DAFDB−clstr
✗ 88.6 221 99.0 95.0 249 235

La-Proteína div,DAFDB−clstr
✗ 84.6 221 98.6 89.8 259 233

La-Proteína codes,DSYN−ours
✓ 96.8 244 99.6 96.6 249 242

La-Proteína div,DSYN−ours
✓ 93.6 285 99.2 93.2 298 278

Table 8: All Atom max length 250 performance compared to baselines. All models generate 100 proteins
for lengths ∈ [50, 100, 150, 200, 250]. We report the two multimodal sampling configurations that generate
the (i) most all atom codesignable (codes) and (ii) most diverse samples (div). For parameterization definitions
see Table 4.

Method CODES-AA (%) ↑ DES-M1 (%) ↑ DIV-AA ↑ NOV-PDB-AA ↓ NOV-AFDB-AA ↓
ProteinGenerator 16.0 73.0 24 0.75 0.78
Protpardelle 19.2 75.0 22 0.74 0.77
PLAID 25.4 36.4 56 0.83 0.87
P(all-atom) 76.8 87.2 251 0.67 0.73
Proteína-Atomística codes,local frame 95.4 94.0 163 0.76 0.81
Proteína-Atomística div,local frame 77.0 81.8 215 0.74 0.80
Proteína-Atomística codes,local trans 96.2 96.0 135 0.78 0.81
Proteína-Atomística div,local trans 81.4 82.4 267 0.73 0.79
Proteína-Atomística-tri local frame 86.4 87.8 235 0.75 0.80

La-Proteína codes,DAFDB−clstr
84.4 95.0 208 0.80 0.87

La-Proteína div,DAFDB−clstr
81.0 89.8 213 0.79 0.86

La-Proteína-tri codes,DAFDB−clstr
89.2 95.0 124 0.81 0.87

La-Proteína-tri div,DAFDB−clstr
83.6 90.2 176 0.78 0.85

La-Proteína codes,DSYN−ours
96.2 96.6 242 0.78 0.85

La-Proteína div,DSYN−ours
92.2 93.2 283 0.78 0.85

modal sampling procedure, and side chain initialization method, and assess their individual impacts884

on model performance.885

F.3.1 Extended Atomistic Benchmarks and Side Chain Representations886

Tables 8 and 9 demonstrate the impact of varying noise scale parameters on the trade-off between887

designability and diversity (codes vs. div vs. opt settings, see Table 4).888

Moreover, we find that both local translation and frame-based side chain parameterizations are useful889

(local frame vs. local trans), but their relative effectiveness depends on the specific goals of the task.890

In particular, the local frame is advantageous in high co-designability settings, where it achieves891

better diversity with comparable co-designability. In contrast, local translation is more effective892

in high diversity settings, where it yields better co-designability and diversity. See Sec. D.6 for893

definitions of local translation and frame-based parameterizations.894
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Figure 10: Pareto frontier of the co-designability-diversity trade-off. We show metrics of proteins with
length ∈ [50, 400]. Solid and hollow markers represent metrics calculated on all-atom and Cα basis, respectively.
For atomistic models, the all-atom and Cα scores for the same generated proteins are connected by gray dashed
line, and obtained from the same model.

Tables 8 and 9 also illustrate the effect of incorporating triangle updates, which demonstrate improved895

performance up to a length of 400, despite being trained only up to 256. This is notable, especially896

when compared to the other Proteína-Atomística variants, which were finetuned to a length of 400.897

Further details on the triangle update layers can be found in Appendix C.3.898

Table 10 further demonstrates the impact of our introduced consistent synthetic data on even longer899

lengths that the original La-Proteína was trained and evaluated on.900

Table 9: Max length 400 performance of Proteína-Atomística on de novo all atom generation compared
to baselines. All models generate 100 proteins for lengths ∈ [50, 400] with step size 50. We report the three
multimodal sampling configurations that generate the (i) most all-atom co-designable (codes), (ii) most diverse
samples (div), and (iii) an optimal trade-off (opt). The best values are bolded. All instances of Proteína-
Atomística here use local frames for the side chains. For parameterization definitions see Table 4.

Method CODES-AA (%) ↑ DES-M1 (%) ↑ DIV-AA ↑ NOV-PDB-AA ↓ NOV-AFDB-AA ↓
ProteinGenerator 10.0 57.1 28 0.75 0.78
Protpardelle 13.6 62.8 25 0.74 0.76
PLAID 22.3 34.9 63 0.85 0.88
Pallatom 51.6 62.5 282 0.66 0.71
Proteína-Atomística codes 87.8 88.1 263 0.77 0.81
Proteína-Atomística opt 83.1 85.8 321 0.76 0.80
Proteína-Atomística div 71.6 72.0 333 0.75 0.80
Proteína-Atomística-tri opt 87.6 88.3 396 0.73 0.77

La-Proteína codes,DAFDB−clstr
76.0 90.1 308 0.77 0.85

La-Proteína div,DAFDB−clstr
70.6 85.5 314 0.77 0.84

La-Proteína-tri codes,DAFDB−clstr
84.8 90.1 161 0.81 0.87

La-Proteína-tri div,DAFDB−clstr
75.0 84.3 268 0.78 0.84

La-Proteína codes,DSYN−ours
90.6 91.2 460 0.75 0.83

La-Proteína div,DSYN−ours
87.9 87.4 475 0.74 0.82
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Table 10: Impact of consistent synthetic data on La-Proteína. All models generate 100 proteins for
lengths ∈ [100, 500] with step size 100. Baselines taken directly from [15].

Model CODES-AA (%) ↑ DIV-AA ↑
P(all-atom) 36.7 134
La-Proteína (DAFDB−clstr) 68.4 206

La-Proteína (DSYN−ours) 86.8 318

Table 11: Ablation of the side chain initialization. All results here use the same model weights and
sampling hyperparameters for a Proteína-Atomística model with “local trans” non-Cα coordinates.

Method CODES-AA (%) ↑ DIV-AA ↑
Gaussian Initialization 56.8 177
Zero Initialization 60.8 196
Learned clean data objective 38.2 76
Learned vector field (default) 81.4 262

F.3.2 Pareto Frontier901

We include Fig. 10, an updated pareto frontier to include Proteína-Atomística trained with additional902

triangle multiplicative updates. Adding 4M worth of triangle multiplicative updates to our 222M903

Proteína-Atomística further pushes the Pareto frontier. We emphasize that Proteína-Atomística-tri904

is only trained up to length 256 but shows the ability to generalize to longer proteins. Given the905

increased time and memory costs, we leave further improvements of the Proteína and Proteína-906

Atomística transformers to future work. These triangle operations are typically seen as required for907

protein modeling success. In contrast, we are able to take advantage of scaling our data and simpler908

transformer architectures to yield strong performance.909

F.3.3 Atomistic Side Chain Initialization910

The side chain structures of proteins generated by Proteína-Atomística are of variable atom sequence911

length as a function of generation time, because the residue types may change during the generation912

process (through a series of remasking and unmasking operations). As a result Proteína-Atomística913

must be able to handle the resetting and regeneration of accurate side chain structures subject to914

the discrete sampling process of the discrete flow matcher (see Sec. D.4). This dynamic coupling915

requires careful handling of the initialization point as seen in Table 11, demonstrating the importance916

of learning a meaningful side chain initialization, instead of using naive zero or random Gaussian917

initialization. Furthermore, we see that if using a “clean data prediction objective”, where we try to918

predict the side chain structure from the mask token directly rather than using our introduced vector919

field-like augmentation (c.f. Sec. D.4), the model struggles to generate accurate side chains.920

F.4 Atomistic Side Chain Evaluation921

To evaluate the generated atomistic protein structures, we compute: (1) MolProbity score [11],922

(2) clash scores, (3) bond length outliers, and (4) angle outliers, as shown in Fig. 11. MolProbity923

(MP) score is a composite evaluation metric of macromolecular structures. It measures geometric924

and stereochemical quality, including steric clashes, backbone dihedral angles, and side-chain925

conformations. Lower MP score indicates higher structure quality. The clash, bond and angle metrics926

focus on measuring the physical correctness of the atomistic details of the generated side-chains.927
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Figure 11: Side chain structure evaluations. Lower scores indicate higher side chain quality.

G Metric Definitions and Baselines928

G.1 De Novo Design Metrics929

To assess the performance of our models, we employ standardized metrics [16, 47, 37] for de novo930

protein design, adapting them for backbone-sequence co-design and all-atom contexts. The metrics931

used include:932

1. Designability (DES): This measures the ability to inverse fold a generated protein backbone933

using ProteinMPNN [10] and refold the generated sequences. We report two variants:934

DES-M1 (single shot) and DES-M8 (best of 8 sequences), where DES-M1 evaluates the935

designability of a single sequence generated by ProteinMPNN, and DES-M8 evaluates the936

designability of the best sequence out of 8 generated sequences.937

2. Co-designability (CODES): Similar to DES-M1, but using the model’s output sequence938

instead of ProteinMPNN-generated sequences. We also report All-Atom Co-designability939

(CODES-AA), an extension of CODES that uses all-atom scRMSD.940

3. Diversity: We evaluate the structural diversity of samples by counting the number of941

Foldseek [42] clusters formed by the filtered subset of backbones, using a TM-score942

threshold of 0.5. Higher cluster counts indicate greater diversity.943

• DIV-AA: Diversity metric filtered for All-Atom Co-designable samples (CODES-AA)944

• DIV-CA: Diversity metric filtered for Co-designable samples (CODES)945
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• DIV-M8: Diversity metric filtered for Designable samples (DES-M8)946

• DIV-M1: Diversity metric filtered for Designable samples (DES-M1)947

4. Novelty: This metric evaluates a model’s ability to generate structures that are distinct from948

those in predefined reference sets (PDB and DGenie2). We report the average maximum949

TM-score between designable structures and the reference sets, with lower scores indicating950

greater novelty. Specifically, we report PDB novelty for co-designable samples (NOV-PDB)951

and all-atom co-designable samples (NOV-PDB-AA), as well as their counterparts with952

respect to Genie2 (NOV-AFDB and NOV-AFDB-AA).953

Our evaluation protocol involves generating samples across a range of lengths, from 50 to 250 to align954

with prior work such as P(all-atom) as well as 50 to 400 to evaluate a more difficult spectrum. We then955

compute the aforementioned metrics across these samples. For designability, we use ProteinMPNN956

to generate sequences for each backbone and ESMFold [29] to predict structures, calculating the957

self-consistency RMSD (scRMSD) between predicted and original structures. A sample is considered958

designable if its scRMSD is under 2Å.959

G.2 Side Chain Accuracy Metrics960

To evaluate the atomistic protein structures generated by Proteína-Atomística, we compute several961

metrics that assess the accuracy and physical correctness of the generated side chains. These metrics962

include:963

1. MolProbity Score: The MolProbity (MP) score is a composite evaluation metric that964

assesses the geometric and stereochemical quality of macromolecular structures [11]. It is a965

combination of several individual metrics, including:966

• Clashscore: Measures the number of steric clashes between atoms in the protein967

structure.968

• Ramachandran outliers: Refers to the percentage of residues with dihedral angles (ϕ969

and ψ) that fall outside the allowed regions of the Ramachandran plot.970

• Rotamer outliers: Refers to the percentage of residues with side-chain conformations971

that are inconsistent with the expected rotameric states.972

A lower MolProbity (MP) score indicates higher structure quality. Notably, a score of973

≥ 3 indicates significant stereochemical issues, highlighting potential problems with the974

structure’s accuracy. The MP score is a widely used and reliable metric for evaluating975

protein structure quality.976

2. Clash Scores: Clash scores measure the number of steric clashes between atoms in the977

protein structure. Steric clashes occur when two or more atoms are too close to each other,978

resulting in unfavorable interactions. A lower clash score indicates fewer steric clashes and979

a more physically realistic structure.980

3. Bond Length Outliers: Bond length outliers refer to the percentage of bonds in the protein981

structure that deviate significantly from their expected lengths. A lower percentage of bond982

length outliers indicates a more accurate structure.983

4. Angle Outliers: Angle outliers refer to the percentage of bond angles in the protein structure984

that deviate significantly from their expected values. A lower percentage of angle outliers985

indicates a more accurate structure.986

These metrics provide a comprehensive evaluation of the accuracy and physical correctness of the987

generated side chains. By assessing the MolProbity score, clash scores, bond length outliers, and988

angle outliers, we can better understand the strengths and weaknesses of Proteína-Atomística and989

prior atomistic models in generating accurate atomistic protein structures.990

Across all lengths, Proteína-Atomística generates more accurate side chains compared to prior991

methods (Fig. 11). Proteína-Atomística achieves a length-averaged MP score of 2.097 compared992

to 4.307 of P(all-atom) (the next closest performing model from Table 1). The next closest993

is ProteinGenerator, which has an average MP score of 2.940 but has the lowest all-atom co-994

designability.995
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G.3 Baselines996

In this section, we discuss the sampling configurations of the baselines we compared to in this paper.997

For backbone design methods not included below nor introduced by us, the results were taken from998

Geffner et al. [16].999

Pallatom: We used the code and checkpoint from the public Pallatom repository. We used the default1000

configuration suggested: t_min=0.01, t_max=1, gamma=0.2, step_scale=2.25, and T=200. No1001

training code is provided at this time.1002

Protpardelle: We used the code and checkpoint from the public Protpardelle repository. We used1003

the default uncond_sampling.yml file provided in the repository for unconditional sampling. For1004

motif scaffolding, we prepared the .pdb files of each task based on the corresponding contigs and1005

then used the provided cond_sampling.yml configuration for sampling.1006

ProteinGenerator: We used the code from the public ProteinGenerator repository. We used the base1007

checkpoint set in the repository. We followed the default configuration for unconditional sampling1008

except for the number of sampling steps. Since we sampled proteins with length up to 400 residues,1009

we increased the number of sampling steps from the default 25 to 100 for better generation quality, as1010

recommended in the repository.1011

PLAID: We used the code from the public PLAID repository. We used the 100M parameter1012

checkpoint hosted on the PLAID HuggingFace repo as it is the only loadable option. Since PLAID1013

only supports sampling proteins with length divisible by 4, the actual length we sampled are1014

[48, 96, 152, 200, 248, 296, 352, 400]. We used the default unconditional sampling configuration1015

in the repository.1016

DPLM-2: We use the code from the DPLM Repository specifically the pull request from DPLM-1017

2 branch. We follow the instructions in the README.md to generate proteins from their 650M1018

co-generation model using the indicated inference configuration and settings.1019

MultiFlow: We use the code from the MultiFlow Repository. We use the provided1020

inference_unconditional config provided adjusted for the appropriate length intervals.1021

CarbonNovo: We use the code from the CarbonNovo Repository. We use the provided predict.py to1022

generate proteins of the desired lengths.1023

FoldFlow-2: We use the code from the FoldFlow Repository. We use the runner/inference.py1024

script with both provided FoldFlow-2 weights with model=ff2. We use the default sampling1025

parameters provided in inference.yaml.1026

H Limitations1027

While Proteína-Atomística performs well, it faces challenges in balancing natural sequence1028

distribution learning with generated sample diversity. Key limitations include: increased1029

computational cost and decreased speed associated with full-atom modeling compared to backbone-1030

only approaches; the inability to capture protein dynamics; and the lack of guarantees for desired1031

function or binding affinity. These limitations highlight exciting directions for future research. Future1032

work can additionally explore similar techniques for conditional tasks such as motif scaffolding and1033

binder design, as well as the generation of even longer protein sequences as done in La-Proteína [15].1034

I Broader Impact1035

Our method advances the field of de novo protein design by enabling joint generation of sequences1036

and all-atom structures, with potential applications in drug discovery, enzyme engineering, and1037

biomaterials. While this capability could accelerate the development of novel therapeutics and1038

sustainable biocatalysts, it raises ethical considerations, such as the risk of misuse for harmful1039

purposes. Additionally, the model’s performance depends on the quality of training data, which1040

may inherit biases from structure prediction tools like AlphaFold2 and ESMFold. We emphasize1041

responsible use and encourage further research into safety measures and bias mitigation to ensure1042

positive societal impact.1043

1044
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