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ABSTRACT

Emerging 3D geometric foundation models, such as DUSt3R (Wang et al., 2024),
offer a promising approach for in-the-wild 3D vision tasks. However, due to the
high-dimensional nature of the problem space and scarcity of high-quality 3D
data, these pre-trained models still struggle to generalize to many challenging cir-
cumstances, such as limited view overlap or low lighting. To address this, we pro-
pose LoRA3D, an efficient self-calibration pipeline to specialize the pre-trained
models to target scenes using their own multi-view predictions. Taking sparse
RGB images as input, we leverage robust optimization techniques to refine multi-
view predictions and align them into a global coordinate frame. In particular, we
incorporate prediction confidence into the geometric optimization process, auto-
matically re-weighting the confidence to better reflect point estimation accuracy.
We use the calibrated confidence to generate high-quality pseudo labels for the
calibrating views and use low-rank adaptation (LoRA) to fine-tune the models
on the pseudo-labeled data. Our method does not require any external priors or
manual labels. It completes the self-calibration process on a single standard PU
within just 5 minutes. Each low-rank adapter requires only 18MB of storage.
We evaluated our method on more than 160 scenes from the Replica, TUM and
Waymo Open datasets, achieving up to 88% performance improvement on 3D
reconstruction, multi-view pose estimation and novel-view rendering.

1 INTRODUCTION

Figure 1: Given sparse RGB images, our self-calibration pipeline efficiently specializes a pre-trained
3D foundation model to a target scene to improve its performance for a variety of 3D vision tasks.

Recently, many 3D geometric foundation models have emerged as a potential solution for in-the-
wild 3D computer vision tasks such as 3D reconstruction, camera pose estimation and novel view
rendering (Wang et al., 2024; Barroso-Laguna et al., 2024; Leroy et al., 2024; Hong et al., 2023).
These models, typically enabled by large scale Transformer pre-training, can quickly establish cross-
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view correspondences and directly regress 3D scene geometry from sparse RGB images. They
generalize to a broad range of data and exhibit a strong zero-shot performance on novel tasks.

However, the performance of these pre-trained models can falter under challenging circumstances.
For instance, as highlighted in the upper left sub-figure in Fig. 1, DUSt3R’s pairwise reconstruction
accuracy significantly degrades under low visual overlaps, where certain regions are observed from
only a single viewpoint. This decline is rooted in the inherent complexity of 3D geometric inference
task, which requires much larger-scale data to fully represent the distribution of real-world 3D data.
Unfortunately, the difficulty of annotating in-the-wild 3D data has led to the shortage of high-quality
training datasets, limiting the performance of the pre-trained models.

To mitigate the problem, we propose an efficient self-calibration pipeline (Fig. 2), taking only sparse
RGB images to specialize pre-trained 3D foundation models to the target scene. Our method requires
no manual labeling, camera calibration, or external priors. We only leverage the multi-view consis-
tency of 3D point positions to refine and select pre-trained models’ predictions for pseudo labeling.
To ensure the pseudo label accuracy, we develop a robust global optimization method to align and
refine multi-view predictions while calibrating the prediction confidence. The calibrated confidence
strongly correlates with pseudo-label accuracy, allowing us to select high-confidence data for LoRA
fine-tuning of the pre-trained model. Our method is tested on 161 test scenes for a variety of 3D
vision tasks. It is able to finish the self-calibration process within 5 minutes on a single GPU and
deliver performance improvements of up to 88%. The major contributions of our work include (1)
the self-calibration pipeline, (2) the robust global optimization method, and (3) the efficient LoRA
fine-tuning strategy for DUSt3R self-calibration.

Figure 2: Overview of our self-calibration pipeline. (a) Predict: We pair sparse input RGB images
and use the pre-trained 3D foundation model to predict per-pair point maps and confidence maps.
(b) Robust Global Optimization: We apply robust optimization techniques to concurrently refine
multi-view point predictions and calibrate prediction confidence. (c) Confidence-Based Pseudo-
Labeling: Refined point maps with high calibrated confidence are used to generate pseudo-labels
on calibration views. (d) LoRA Fine-Tuning: Using the pseudo-labeled data, we efficiently fine-
tune the pre-trained model with LoRA. While the figure illustrates our method using DUSt3R, our
approach generalizes to other 3D foundation models.

2 RELATED WORK

2.1 FOUNDATION MODEL SPECIALIZATION

Foundation model specialization through fine-tuning or adaptation has become the standard ap-
proach to customizing pre-trained foundation models for specific tasks or domains. Various meth-
ods have been developed for the specialization of large language models (Brown, 2020; Gururangan
et al., 2020), vision-language models (Liu et al., 2024b;a), and vision foundation models (Hu et al.,
2023; Yue et al., 2024). These approaches typically employ parameter-efficient adaptation tech-
niques (Hu et al., 2021; Dettmers et al., 2024; He et al., 2022) to adapt the pre-trained models in
either a supervised or unsupervised fashion. However, few works have explored the specialization of
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3D geometric foundation models. MASt3R (Leroy et al., 2024) and Spanner3D (Wang & Agapito,
2024) fine-tuned DUSt3R (Wang et al., 2024) to re-purpose it for image matching and incremental
reconstruction respectively. Jiang et al. (2024) applied self-training to scale up large reconstruction
models (Hong et al., 2023) with real-world images. However, most of these methods still rely on vast
amounts of labeled data. In contrast, our method uses only sparse RGB images for self-calibration
and requires no ground truth labels.

2.2 SELF-SUPERVISED GEOMETRIC PERCEPTION

Self-supervised learning has been successfully applied to a range of geometric perception tasks, in-
cluding monocular depth prediction (Godard et al., 2019), optical flow prediction (Liu et al., 2019),
camera pose estimation (Yang et al., 2021), and structure-from-motion (Zhou et al., 2017), signifi-
cantly enhancing the performance of pre-trained geometric models. Among these, Yang et al. (2021)
is particularly relevant to our approach, as it utilizes robust optimization techniques to generate ge-
ometric pseudo-labels for model fine-tuning. However, this method and most others are tailored
to adapt smaller-scale pre-trained models for specific tasks. In this work, we extend the pseudo-
labeling strategy for self-supervised learning to 3D foundation models. Leveraging the versatility of
these models, we can improve their performance on various 3D vision tasks.

3 PRELIMINARIES

Our pipeline is primarily tested on DUSt3R (Wang et al., 2024). Below, we provide key details
about DUSt3R to give readers the necessary context for understanding our contributions.

3.1 DUST3R

As shown in Fig. 2, DUSt3R takes an RGB image pair (Ii, Ij) as input and directly regresses the
pixel-wise point maps and confidence maps:

(Xi,i, Ci,i), (Xj,i, Cj,i) = DUSt3R(Ii, Ij) (1)

Here, Xi,i, Xj,i ∈ RH×W×3 are the point maps for view i and view j, both expressed in the camera
coordinate frame of view i, and are regressed up to a unknown scale. Their corresponding confidence
maps are denoted as Ci,i, Cj,i ∈ RH×W 1.

3.2 RECOVERING CAMERA PARAMETERS

The camera intrinsics can be recovered from the predicted point maps in Eq. 1. Assuming a pinhole
camera model with square pixels and principal points at image centers, the camera i’s focal length
fi can be estimated by solving the following optimization problem using Weiszfeld algorithm:

f∗
i = argmin

fi

HW∑
p=1

Ci,i
p

∥∥∥(u′
p, v

′
p

)
− fi(X

i,i
p,0, X

i,i
p,1)/X

i,i
p,2

∥∥∥ (2)

where (u′
p, v

′
p) = (up −W/2, vp −H/2) represents the re-centered image coordinates for pixel p.

The relative camera poses are estimated by comparing the predictions for image pair (Ii, Ij) and
(Ij , Ii). With point maps Xi,i and Xi,j , we can apply Procrustes alignment (Luo & Hancock, 1999)
to estimate the relative pose Ti,j ∈ SE(3) from camera i to j and the point map scale σi,j :

(Ti,j , σi,j)
∗ = argmin

Ti,j ,σi,j

∑
p

Ci,i
p Ci,j

p

∥∥σi,jTi,jX
i,i
p −Xi,j

p

∥∥2 (3)

where we omit the homogenization of point maps for brevity.

1See App. A.1 for details on the training loss of DUSt3R.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.3 MULTI-VIEW POINT MAP ALIGNMENT

Given multiple images {I1, I2, . . . , IN} captured in a 3D scene, the multi-view DUSt3R-predicted
point maps are aligned to form a global point cloud. Different from bundle adjustment, this align-
ment is formalized as an 3D-3D-projection-based optimization problem over a connectivity graph
G(V, E), in which the vertices V represent the N images and the edges E represent all image pairs
with visual overlaps.

To initialize the optimization parameters, the highest-confidence spanning tree is extracted from the
graph. Anchoring the most confident image pair at the origin, the initial estimates of focal lengths,
point map scales and relative poses, as derived from Eq. 2,3, are propagated along the tree edges
to all N views, yielding initial focal lengths {fi|i = 1, . . . , N}, point maps {χi ∈ RH×W×3}
and image-pair scales {σ(i,j) ∈ R} and poses {T (i,j) ∈ SE(3)}, all expressed in a unified global
coordinate frame.

These initial estimates are further refined by minimizing the 3D-3D projection error between the
global point maps χ and the transformed predicted point maps:

(χ, T, σ)∗ = argmin
χ,T,σ

∑
(i,j)∈E

∑
v∈{i,j}

HW∑
p=1

Cv,i
p

∥∥∥χv
p − σ(i,j)T (i,j)Xv,i

p

∥∥∥ (4)

Note that the global point maps χv
p can be further re-parameterize via depth back-projection:

χv
p = TvK

−1
v Dp(up, vp, 1)

T = Tv
Dp

fv
(u′

p, v
′
p, 1)

T (5)

where Kv and Tv represent the intrinsics and extrinsics for view v and Dp is the depth value for
pixel p. The optimization problem can therefore be reformulated as:

(T, σ, f,D)∗ = argmin
T,σ,f,D

∑
(i,j)

∑
v

∑
p

Cv,i
p

∥∥∥∥Tv
Dp

fv
(u′

p, v
′
p, 1)

T − σ(i,j)T (i,j)Xv,i
p

∥∥∥∥ (6)

Here, the per-image-pair poses T (i,j) and per-image poses Ti represent the same transformations
but are parameterized separately to allow for additional optimization flexibility. The optimization is
solved by a few hundred steps of standard gradient descent. To avoid trivial optimum of σ(i,j) = 0,
Π(i,j)σ(i,j) = 1 is enforced during the optimization.

4 METHODOLOGY

We aim to adapt a 3D geometric foundation model, such as DUSt3R (Wang et al., 2024), to a target
scene using a sparse set of uncalibrated RGB images {I1, I2, . . . , IN}. The goal is to enhance the
pre-trained model’s performance on test images {IN+1, IN+2, . . . , IN+M} from the same scene.
Our approach generates compact LoRA adapters, which integrate with the pre-trained model to
produce a scene-calibrated model.

4.1 SELF-CALIBRATION PIPELINE

Fig. 2 shows our self-calibration pipeline. We start by using the pre-trained DUSt3R, as in Eq. 1, to
predict point and confidence maps for all calibration image pairs. In challenging conditions, such as
under limited camera view overlap, DUSt3R’s predictions may include errors and outliers, and the
prediction confidence may not precisely reflect the prediction accuracy (See Fig. 3 for an example
of overconfident prediction). For this reason, directly relying on predicted confidence for pseudo
label selection may hurt the model performance (see Sec. 8 (a,b)).

However, each 3D point in the scene is co-observed by many camera view pairs. We could leverage
accurate DUSt3R predictions from well-conditioned, e.g. high-visual-overlap, view pairs to refine
and identify inaccurate point map predictions. We therefore develop a robust multi-view point map
alignment method (Sec. 4.2) to (1) optimize the point map and (2) calibrate the prediction confi-
dence. We then use the refined point maps and calibrated confidence to pseudo-label the calibration
images {Ii}Ni=1 (Sec. 4.3), after which we fine-tune the pre-trained DUSt3R model using LoRA on
the pseudo-labeled data (Sec. 4.4).
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4.2 ROBUST MULTI-VIEW POINT MAP ALIGNMENT WITH CONFIDENCE CALIBRATION

We develop a robust multi-view point map alignment method by incorporating the prediction con-
fidence into the global optimization in Eq. 6. Specifically, we re-parameterize the confidence term
Cv,i

p in Eq. 6 as an optimizable weight term wv,i
p to automatically tune each point prediction’s con-

tribution to the optimization. While the predicted confidence can be imprecise in challenging cases,
it still remains informative for prediction accuracy. Thus we intend to introduce a regularization
term that encourages the weights to remain close to the predicted confidence, and also avoid trivial
solutions.

(a) Image pair (b) Pred. confidence (c) Error map
(d) Pred. error v.s. Confidence

Figure 3: Pre-trained DUSt3R’s (b) prediction confidence and (c) error map on (a) an example
image pair: In cases of limited visual overlap, DUSt3R may produce overconfident predictions (★).
Our robust multi-view alignment method effectively reduces this overconfidence, maintaining high
confidence for accurate predictions (+, ×) and low confidence for outlier predictions (•).

We found our objective to be surprisingly aligned with Geman-McClure robust M-estimator (Geman
et al., 1992), which essentially uses a regularization term (an outlier process in robust optimization
terminology) to encourage weights to be close to unity in least-squares optimizations. Inspired by
this, we designed our regularization term to follow a similar structure. The optimization in Eq. 6 is
therefore reformulated as:

(T, σ, f,D,W)∗ = argmin
T,σ,f,D,W

∑
(i,j)

∑
v

∑
p

wv,i
p ∥ev,ip ∥+ µ(

√
wv,i

p −
√
Cv,i

p )2 (7)

where ev,ip = TvDp(u
′
p, v

′
p, 1)

T/fv − σ(i,j)T (i,j)Xv,i
p represents the pixel-wise residual error and µ

is a constant hyper-parameter to control the regularization strength.

Rather than updating the weights in the joint optimization loss Eq. 7 via gradient back-propagation,
we draw inspiration from the iterative re-weighted least squares approach (Rao & Kreutz-Delgado,
1999) for robust M-estimation, to derive a closed-form weight update rule for fast confidence re-
weighting:

wv,i
p = Cv,i

p /(1 + ∥ev,ip ∥/µ)2 (8)

(a) Calibrated confidence (b) Point estimation error (c) Pixels to pseudo-label (d) Pseudo labels

Figure 4: Pseudo-labeling with (a) calibrated confidence, which is a good measure of the (b) point
estimation accuracy. We select high-calibrated-confidence point predictions as pseudo labels (d) for
DUSt3R finetuning.
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With this update rule, we can still solve the original optimization problem (Eq. 6) while periodically
applying the weight updates. As demonstrated in Appendix A.2, this is equivalent to solving the
joint optimization.

The weight update rule can be understood as follows: point predictions with lower residual errors,
meaning those that are more consistent with predictions from other image pairs, will maintain confi-
dence similar to the predicted value. In contrast, point predictions that are inconsistent across views
will have their confidence significantly reduced. This method effectively minimizes confidence for
overly confident predictions, as illustrated in Fig. 3, ensuring that confidence becomes more closely
correlated with point estimation accuracy and provides better guidance for global optimization and
pseudo-labeling.

4.3 PSEUDO LABELING WITH CALIBRATED CONFIDENCE

We use the calibrated confidence and optimized point maps for confidence-based pseudo-labeling.
To compute pseudo labels for the calibration image pairs, we need to transform the global optimiza-
tion results from Eq. 7 to local image-pair coordinate frame. Following Eq. 5, we back-project the
optimized depth maps Dp to 3D and transform the points to the image-pair coordinate frame. We
then threshold the point estimations with a confidence cutoff wcutoff and retain the high-confidence
ones as pseudo labels. The pseudo labeling rule can be summarized as:

X̃j,i
p = T ∗−1

i T ∗
j

D∗
p

f∗
j

(u′
p, v

′
p, 1)

T, where p ∈ {p|w∗j,i
p > wcutoff} (9)

We experimentally found that setting wcutoff = 1.5 works effectively for most test scenes.

Note that our method is naturally robust to dynamic elements in the scene (See Tab. 3). This is
because the dynamic points break the multi-view consistency assumption and will be filtered out by
pseudo labeling with calibrated confidence.

4.4 FINE-TUNING WITH LORA

On the pseudo-labeled data, we fine-tune the pre-trained DUSt3R with LoRA (Hu et al., 2021)
and the same pre-training loss (as Eq. 12). LoRA freezes the pretrained model weights and injects
trainable rank decomposition matrices into layers of Transformer architecture, greatly reducing the
number of trainable parameters. This (1) improves the runtime- and memory-efficiency of self-
calibration and (2) reduces the catastrophic forgetting of the pre-training data.

Figure 5: What is the best DUSt3R fine-tuning strategy? We plot the mean prediction errors on test
images against the number of trainable parameters for various fine-tuning options on an example
test scene (Replica “office0”). We found adapting all attention weights with rank-16 LoRA (i.e. ★)
achieves the best trade-off between performance and efficiency on most test scenes.

To find the optimal DUSt3R fine-tuning strategy, we conducted extensive experiments to compare
different fine-tuning options across multiple test scenes. Please see Fig. 5 for an example, where
we plot the test errors (defined in Sec. 5) against trainable parameter counts for different LoRA
and direct fine-tuning strategies. We found adapting all attention weights with rank-16 LoRA often
leads to the best trade-off between performance and efficiency. It reduces the number of trainable
parameters by more than 99% and has a on-par performance with directly fine-tuning the attention
or all weights.

Using rank-16 LoRA, fine-tuning on 10 calibration images converges in under 3.5 minutes with a
batch size of 2. Peak GPU memory usage during fine-tuning stays under 20GB, enabling the process
to run on a single standard GPU. And each LoRA adapter require less than 18MB of disk storage.
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5 EXPERIMENTS

We evaluated our method on 161 test scenes for the tasks of 3D reconstruction, multi-view camera
parameter estimation and novel view rendering.

Datasets We tested our method on all available test scenes from the Replica (Straub et al., 2019)
and Waymo Open Dataset (Sun et al., 2020), as well as on three test scenes from the TUM RGBD
dataset (Schubert et al., 2018) that are most frequently tested in literature. This amounts to a total of
161 test scenes, all of which are distinct from the DUSt3R pre-training scenes.

The Replica dataset comprises eight indoor scenes, each containing 2000 RGB-D images rendered
by Sucar et al. (2021). For each scene, the first 1000 RGB images serve as the calibration split and
the remaining as the test split. The depth images are not utilized during self-calibration; they are
used solely to compute the ground truth point maps. We randomly sample2 10 images from the
calibration split as the calibration images.

The Waymo Open Dataset has in total 150 test data segments. In each segment, only forward-looking
camera images are adopted, where the first 100 form the calibration split and the remaining ∼100
images belong to the test split. We sample 10 images from the calibration split for self-calibration.

Please refer to App. A.4 for details about the data splits and tasks for the TUM RGBD dataset.

Tasks On the Replica dataset, we evaluate our method for pairwise and multi-view reconstruction
tasks. For pairwise reconstruction, we sample 100 image pairs with visual overlaps from the test
split as test images. For multi-view reconstruction, we sample 10 views from the test split.

On the Waymo dataset, we evaluate our method for the tasks of multi-view camera parameter esti-
mation and novel view rendering. For novel view rendering, we use InstantSplat (Fan et al., 2024),
which adopts DUSt3R-predicted point cloud and camera parameters as initialization, to train 3D
Gaussian Splatting (3DGS) models and render novel-view images. From the test split, we select
every 10th images (i.e. 0th, 10th, 20th, · · · ) for camera pose estimation evaluation and InstantSplat
training. Images at indices 5, 15, 25, · · · are used as novel views to evaluate the InstantSplat renders.
Note that although our method is robust to dynamic environments, InstantSplat relies on the static
world assumption to train 3DGS. We therefore selected segments 10084, 10649, and 10802 – that
are mostly static – from the first 10 test segments for the novel view rendering evaluation.

Baselines The two most important comparison models for our self-calibrated DUSt3R (DUSt3R-
Self-Calib) are the pre-trained DUSt3R (DUSt3R-Pretrain) and the fine-tuned DUSt3R on ground
truth point maps of calibration image pairs (DUSt3R-GT-FT). The ground-truth fine-tuned model
is considered as the upper limit of ours, serving as an oracle model.

Both methods are evaluated in most tests, with the exception of the TUM dataset, where no ground
truth depth is available. In this case, we use noisy depth measurements for fine-tuning, referred to as
DUSt3R-Depth-FT. On the Waymo dataset, we use the high-quality Lidar point clouds for ground-
truth-based fine-tuning. For a fair comparison, the training hyperparameters for ground-truth and
depth-based fine-tuning are kept consistent with those used in our method.

For multi-view stereo reconstruction, we also use COLMAP (MVS)(Schonberger & Frahm, 2016;
Schönberger et al., 2016), FlowMap Smith et al. (2024) and MASt3R Leroy et al. (2024) as base-
lines, all of which perform dense reconstructions with un-calibrated images.

COLMAP (MVS) is a standard SfM and MVS pipeline for which we adopt the default setups.

FlowMap is a differentiable SfM model for RGB videos. It relies on optical flow and point tracking
algorithms to bootstrap its scene parameter optimization process.

MASt3R re-purposes DUSt3R for image matching. Beyond 3D point regression, it establishes accu-
rate cross-view correspondences, and leverages both 3D-3D and 2D-3D correspondences for global
point map alignment. We adopt the pre-trained MASt3R with default hyper-parameters.

For a fair comparison, we don’t apply confidence-based filtering for DUSt3R and MASt3R recon-
structions and retain all points for evaluation.

2Unless specified otherwise, all random sampling use seed=0 for re-producibility.
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For multi-view camera parameter estimation, we use COLMAP, RelPose++ Lin et al. (2024),
PoseDiffusion Wang et al. (2023), RayDiffusion Zhang et al. (2024), FlowMap Smith et al. (2024)
and MASt3R Leroy et al. (2024) as the additional baselines.

RelPose++ uses a pairwise scoring network and a multi-view reasoning transformer to predict multi-
view camera poses.

PoseDiffusion develops a diffusion-based bundle adjustment method to estimate multi-view camera
parameters. A geometry-guided sampling (GGS) scheme is applied to enforce epipolar constraints
across views. We adopt the GGS-enabled PoseDiffusion with the CO3Dv2 checkpoint.

RayDiffusion re-parameterize cameras as rays and applies a ray diffuser network to denoise camera
rays and recover camera parameters.

All three methods above are pre-trained on domain-specific data without further fine-tuning.

For novel view rendering, we use the pre-trained, self-calibrated and finetuned DUSt3R for In-
stantSplat’s 3DGS initialization, and the different variants for InstantSplat are refered to as: In-
stantSplat Fan et al. (2024), InstantSplat-Self-Calib, InstantSplat-GT-FT.

Evaluation Metrics For DUSt3R pairwise reconstruction, we use the average point prediction error
as the evaluation metric. This is the average Euclidean distance calculated between the predicted and
ground truth point maps within local image-pair coordinate frames, with predicted maps normalized
and re-scaled to align with ground truth.

We assess multi-view stereo reconstructions based on accuracy and completeness relative to the
ground truth Replica mesh models (Straub et al., 2019). Accuracy measures the average distance of
reconstructed points to their nearest mesh points, while completeness measures the average distance
of mesh points to their nearest reconstructed points. Following Zhu et al. (2022), we exclude mesh
parts invisible to the test images.

The multi-view camera parameter estimations are evaluated with the absolute trajectory error (ATE)
and the average focal length estimation error (AFE).

The quality of novel view renders is assessed with Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS).

5.1 RESULTS

For the Replica dataset, we report pairwise and multi-view reconstruction results in Tab. 1 and Tab. 2.
Compared to the pre-trained DUSt3R, our method reduces point prediction errors by up to 38% and
reconstructs models that are up to 61% more accurate and 41% more complete. As Fig. 6 shows,
our approach is particularly effective at reducing outlier point predictions, thanks to the multi-view
consistent pseudo labels 3. The remaining performance gap compared to the fine-tuned DUSt3R is
attributed to differences in data size and label accuracy.

Since cameras in Replica are mostly facing inward, it is easier for COLMAP and MASt3R to estab-
lish accurate cross-view feature matches, resulting in better accuracy and completeness on certain
test scenes, even surpassing the fine-tuned DUSt3R. On the other hand, FlowMap struggles due to
the discontinuous calibration images, which disrupt the optical flow and point tracking it relies on.

Table 1: Quantitative evaluation of pairwise reconstructions on the Replica dataset. We report
the average point prediction errors (cm) for direct DUSt3R predictions.

Methods office0 office1 office2 office3 office4 room0 room1 room2
DUSt3R-Pretrain 14.29 11.02 14.03 15.44 14.96 13.11 27.99 16.82

DUSt3R-Self-Calib 8.84 9.38 11.05 14.41 13.92 13.02 19.88 13.65
DUSt3R-GT-FT 7.12 7.95 10.55 12.88 12.29 9.27 17.40 12.58

The multi-view camera parameter estimation results on the Waymo dataset are presented in Tab. 3.
Compared to the pre-trained DUSt3R, our method reduces camera trajectory estimation errors by
up to 88% and focal length estimation errors by up to 79%. Out of 150 total test scenes (detailed in

3Please check out A.9 for qualitative comparison of the reconstructions with the ground truth mesh model.
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Table 2: Quantitative evaluation of multi-view reconstructions on the Replica dataset. We report
the accuracy (Acc. [cm] ↓) and completeness (Comp. [cm] ↓) of 3D reconstructions against the
ground truth meshes. Please refer to App.Tab. 9 for the remaining results omitted due to space limit.

Methods office0 office1 office2 office3 office4
Acc. Comp. Acc. Comp. Acc. Comp. Acc. Comp. Acc. Comp.

DUSt3R-Pretrain 5.22 6.78 9.21 9.27 6.57 8.35 8.43 11.89 12.97 15.89
DUSt3R-Self-Calib 4.43 6.08 3.56 5.48 4.75 6.89 6.60 11.00 7.81 12.22

DUSt3R-GT-FT 3.51 5.29 3.26 5.53 3.93 6.72 4.02 7.42 5.53 11.25
COLMAP (dense) 2.61 89.87 58.15 158.83 4.87 194.16 5.51 162.53 6.42 120.84

FlowMap 51.78 152.05 142.81 107.17 24.16 189.86 19.58 248.16 15.34 153.64
MASt3R 4.69 6.05 3.92 4.87 4.09 7.39 7.17 9.42 4.87 11.52

(a) Before self-calibration (b) After self-calibration

(c) Before self-calibration (d) After self-calibration

Figure 6: Qualitative results on the Replica (a,b) and TUM (c,d) datasets. After DUSt3R self-
calibration, we observe much fewer outlier points in the reconstruction of the Replica scene “of-
fice0”. On the TUM scene “fr2 xyz”, the green and red frustums represent the estimated and ground
truth cameras respectively. The camera pose estimates are made more accurate by self-calibration.

App.A.11), our approach successfully improves camera parameter estimation results on 116 scenes.
Most failures occur when the test vehicle remains mostly static for the test images (e.g. segment-
10488). This degenerate case expect the model to predict zero relative pose across views and fails
to distinguish different methods.

By comparison, COLMAP fails, and MASt3R shows degraded performance on Waymo due to the
presence of dynamic objects and the larger baselines between forward-facing cameras, which make
feature matching more difficult. FlowMap still struggles due to the abrupt visual changes across
views. RelPose++, PoseDiffusion and RayDiffusion, without domain- or scene-specific training,
fails to provide accurate estimates on the out-of-distribution data.

The novel view rendering results on Waymo are presented in Tab. 4 and Fig. 7. Our method effec-
tively reduces floating artifacts in the optimized 3DGS, resulting in quality improvements of up to
0.97 dB in PSNR, 0.09 in SSIM, and 0.04 in LPIPS.

The quantitative results on the TUM dataset are presented and analyzed in App. A.4.

Table 3: Quantitative evaluation of camera parameter estimates on Waymo Open Dataset. We
report the absolute trajectory error (ATE (m) ↓) and average focal error (AFE (%) ↓) for test camera
views. Please see App. A.11 for full evaluation results on 150 test scenes.

Methods segment-10084 segment-10149 segment-10649 segment-10802 segment-10980
ATE AFE ATE AFE ATE AFE ATE AFE ATE AFE

DUSt3R-Pretrain 0.79 2.19 0.84 3.08 0.95 2.84 0.35 1.60 0.80 1.19
DUSt3R-Self-Calib 0.37 0.61 0.25 2.14 0.49 2.54 0.35 1.08 0.09 0.69

DUSt3R-GT-FT 0.20 0.17 0.17 1.54 0.29 1.73 0.39 0.55 0.13 0.49
COLMAP Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail
Flowmap 0.31 3.97 66.62 1.80 36.44 13.74 21.16 0.44 65.17 0.66

PoseDiffusion 19.43 25.07 16.76 49.18 20.19 2.26 13.61 23.74 18.19 31.04
RayDiffusion 17.34 85.65 16.91 80.69 18.59 85.09 12.77 81.44 19.12 85.00

RelPose++ 14.80 - 16.20 - 13.69 - 12.92 - 13.55 -
MASt3R 2.85 11.87 1.35 24.92 0.65 20.53 1.26 24.75 1.61 6.59

Table 4: Quantitative evaluation of novel view renders on the Waymo open dataset

Methods Segment-10084 Segment-10649 Segment-10802
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

InstantSplat 21.45 0.67 0.33 22.45 0.72 0.30 25.94 0.79 0.24
InstantSplat-Self-Calib 22.42 0.76 0.29 22.81 0.77 0.27 26.36 0.81 0.22

InstantSplat-GT-FT 22.64 0.75 0.27 23.07 0.78 0.27 26.43 0.81 0.22
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(a) Before self-calibration (b) After self-calibration (c) Before self-calibration (d) After self-calibration

Figure 7: Novel view renders by InstantSplat (Fan et al., 2024) before and after DUSt3R self-
calibration on Waymo Open Dataset.

(a) Scene: Replica office0 (b) Scene: Waymo test segment-1008

(c) Scene: Replica office0 (d) Scene: Waymo test segment-1014

Figure 8: Ablation study: (a, b) Pseudo-labeling with un-calibrated confidence hurt the model per-
formance. (c) Our method maintains consistent performance across varying random seeds used for
calibration image sampling. (d) Our method’s performance improves with more calibration images
and saturates after around 10.

5.2 MAST3R SELF-CALIBRATION

Our pipeline is not limited to the specialization of DUSt3R. We show in App. A.5 that the same idea
applies to MASt3R.

5.3 ABLATION STUDY

Un-calibrated confidence for pseudo labeling Directly using the prediction confidence for pseudo-
labeling could harm the model performance. As Fig. 8 (a, b) shows, thresholding refined point pre-
dictions with un-calibrated confidence leads to consistent under-performance of the self-calibrated
model, regardless of the confidence cutoff value.

Varying random seed Our method works with casually captured RGB images and does not rely
on carefully selected calibration images to succeed. As shown in Fig. 8 (c), our method maintains
consistent performance across varying random seeds used for calibration image sampling.

The number of calibration images As shown in Fig. 8 (d), using few calibration images (e.g., fewer
than 10) limits our method’s performance due to an insufficient number of view pairs to enforce
multi-view consistency in global optimization and a limited training data size. We also observe that
the performance typically saturates after around 10 calibration images.

The size of calibration split & Multi-scene concurrent self-calibration See A.6 & A.7 for details.

6 CONCLUSION

Our self-calibration pipeline specializes 3D geometric foundation models to target scenes in a highly
time- and memory-efficient manner. It boosts pre-trained model performance by up to 88% across
diverse datasets and 3D vision tasks. However, in certain cases, the self-calibrated model still falls
short of competing methods due to the inherent difficulty of 3D geometric inference.

10
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7 ETHIC STATEMENT

Our work utilizes publicly available datasets that adhere to strict ethical guidelines. These datasets
ensure that personally identifiable information, such as human faces and vehicle license plates, is
either blurred or anonymized to safeguard privacy. Our work does not engage with human subjects
or introduce concerns regarding fairness or potential misuse. We are fully committed to maintaining
ethical integrity throughout the development and application of our methods.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have taken the following steps: (1) A detailed expla-
nation of our method in Sec. 4, along with implementation details provided in Appendix A.3. (2) All
datasets used in our experiments are publicly accessible. (3) Comprehensive experimental results
for 161 test cases are included in Sec. 5 and further detailed in Appendix A.4, A.10, and A.11.
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A APPENDIX

A.1 DUST3R TRAINING LOSS

DUSt3R adopts a 3D-regression-based training objective, which computes the pixel-wise Euclidean
distance between the predicted and ground truth point maps X̄i,i, X̄j,i over pixels Pi,i,Pj,i ⊆
{1 . . . H} × {1 . . .W} where ground truth is available. For example, the regression loss for a valid
pixel p ∈ Pv on image v from image pair (i, j) is computed as :

ℓregr(v, p) = ∥1
z
Xv,i

p − 1

z̄
X̄v,i

p ∥, where v ∈ {i, j} (10)

Here, z and z̄ are normalization factors used to resolve the scale ambiguity between predicted and
ground truth point maps. They are defined as the average distance of all valid points in image pair
(Ii, Ij) to the origin:

z(Xi,i, Xj,i) =
1

|Pi|+ |Pj |
∑
p∈Pi

∥Xi,i
p ∥+

∑
p∈Pj

∥Xj,i
p ∥ (11)

The final training loss for DUSt3R is the confidence-aware loss from Wan et al. (2018), defined as:

Lconf =
∑

(i,j)∈E

∑
v∈{i,j}

∑
p∈Pv

Cv,i
p ℓregr(v, p)− α logCv,i

p (12)

This loss enables the model to learn confidence predictions that are correlated with the regression
accuracy. The second term acts as a regularization component, where α is a hyperparameter that
controls the strength of the regularization.

A.2 DERIVATION OF WEIGHT UPDATE RULE

Starting from the joint optimization Eq. 7, we first minimize over the weight terms wv,i
p to eliminate

them from the joint optimization:

(T, σ, f,D)∗ = argmin
T,σ,f,D,

∑
(i,j)

∑
v

∑
p

min
wv,i

p

[
wv,i

p ∥ev,ip ∥+ µ(

√
wv,i

p −
√
Cv,i

p )2
]

(13)

In order to find the global minimizers wv,i ∗
p , we take the gradient gw of the above objective function

with respect to wv,i
p :

gw = ∥ev,ip ∥+ µ

[
1−

√
Cv,i

p /wv,i
p

]
(14)
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We observe that the gradient gw is continuous and monotonic for wv,i
p > 0. Also, if wv,i

p → 0, then
gw → −∞, and if wv,i

p → +∞ then gw = ∥ev,ip ∥+ 1 > 0. Therefore, there exists an unique global
minimizer wv,i ∗

p at which the gradient gw evaluates to zero. Setting gw = 0, we can solve for wv,i ∗
p

as :

wv,i ∗
p = Cv,i

p /(1 + ∥ev,ip ∥/µ)2 (15)

This gives us the same weight update rule in Eq. 8. During global optimization, we alternate be-
tween the gradient descent step to optimize geometric parameters: T, σ, f,D and the weight update
step to set the weight terms to their global minimizers. This helps us down-weight the confidence
for overconfident point predictions, and make the optimization more robust on challenging circum-
stances.

A.3 IMPLEMENTATION DETAILS

Our pipeline is implemented with PyTorch and all our experiments are conducted on a NVIDIA
3090 GPU.

For robust global point map alignment, we set the regularization coefficient µ to 0.01. We minimize
the optimization loss by running 300 steps of gradient descent using the Adam optimizer with a
learning rate of 0.01, applying the closed-form weight update Eq. 8 every 10th gradient descent
step. Additionally, we exclude points with prediction confidence below 0.5 by setting their weights
to zero, preventing them from participating in the optimization process.

For confidence-based pseudo labeling, we use a cofidence threshold of 1.5 for all test scenes.

For LoRA fine-tuning, we resize all calibration images to the pre-training resolution of (512, 384).
During fine-tuning, we optimize the LoRA weights over 10 epochs (without warmup) using the
AdamW optimizer with a batch size of 2. A cosine decay learning rate scheduler is employed, with
a base learning rate of 0.001 and a minimum learning rate of 0.00001 for most test cases.

A.4 EVALUATION RESULTS ON TUM RGBD DATASET

We evaluated our method for multi-view camera parameter estimation on TUM test scenes:
“fr1 desk”, “fr2 xyz” and “fr3 office” in the TUM dataset. In each scene, the first 500 RGB im-
ages are reserved as the calibration split, and the remaining 92/2897/2015 images form the test split.
At test time, we sample 10 images from the calibration split for self-calibration and 10 images from
the test split to assess pose estimates.

The results of multi-view camera parameter estimation on TUM are reported in Tab. 5 and Fig. 6 (c,
d). Our self-calibrated DUSt3R achieves up to 68% more accurate camera pose estimates and up
to 48% more accurate focal length estimates compared to the pre-trained baseline. The slight drop
in focal length estimation accuracy for the “fr1 desk” sequence is likely due to overfitting on the
calibration images.

Using depth measurements as the supervision signal for DUSt3R fine-tuning appears to be unre-
liable. DUSt3R-Depth-Calib under-performs our method in “fr1 desk” and even falls short of the
pre-trained model in “fr3 office.” This is the result of the noise and outliers present in the depth
images.

Similar to Replica, COLMAP and MASt3R tends to perform well on the inward-facing cameras in
TUM. RelPose++, PoseDiffusion, RayDiffusion and FlowMap fail to provide reasonable estimates
of camera parameters.

A.5 MAST3R SELF-CALIBRATION

We show that our method generalizes to MASt3R (Leroy et al., 2024) self-calibration.

MASt3R builds upon DUSt3R and re-purposes it for more precise image matching. In addition
to pairwise point and confidence predictions, MASt3R also generates dense local feature maps to
establish 2D feature correspondences across images. Similar to DUSt3R, MASt3R employs a global
optimization procedure to align and optimize the local per-pair point predictions within a global
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Table 5: Quantitative evaluation of camera parameter estimates on the TUM RGBD dataset.

Methods fr1 desk fr2 xyz fr3 office
ATE (cm) AFE (%) ATE (cm) AFE (%) ATE (cm) AFE (%)

DUSt3R-Pretrain 0.91 8.02 3.89 14.84 3.28 1.95
DUSt3R-Self-Calib 0.62 8.32 1.24 7.67 3.10 1.81
DUSt3R-Depth-Calib 0.68 7.63 1.23 4.71 4.12 1.78

COLMAP 0.51 3.87 0.97 4.92 1.98 4.71
RelPose ++ 10.05 - 34.59 - 96.91 -

PoseDiffusion 11.90 27.18 34.32 37.30 92.61 1.28
RayDiffusion 10.95 72.30 35.63 12.12 100.56 3.52

FlowMap 8.03 39.58 14.30 84.21 32.67 24.95
MASt3R 0.56 3.32 1.74 10.88 0.92 1.24

coordinate frame. Leveraging both 3D-3D and 2D-3D correspondences, MASt3R first minimizes
a 3D projection loss as in Eq. 6 to optimize the image pair scales and camera poses, followed by
minimizing a 2D re-projection loss to optimize the camera focal lengths and depth maps.

For MASt3R self-calibration, we also utilize the global optimization results to generate pseudo
labels. For simplicity, we directly apply all point predictions across all calibration views for pseudo
labeling, without employing confidence-based filtering. We maintain the use of rank-16 LoRA and
the same pre-training loss for fine-tuning MASt3R.

We evaluated our pipeline on three test scenes: Replica ”office0,” TUM ”fr2 xyz,” and Waymo test
segment-10084. The self-calibrated MASt3R was assessed on multi-view reconstruction and multi-
view camera parameter estimation using the same evaluation metrics against the pre-trained baseline
and the ground-truth fine-tuned model. The results are reported in Tab. 6 and Fig 9.

We observe improved performance of MASt3R across various tasks and datasets compared to the
pre-trained model, though the gains are mostly marginal, likely due to the presence of unfiltered
noise and outliers in the pseudo-labeled data. In future work, we plan to calibrate MASt3R by
incorporating calibrated-confidence-based pseudo labeling.

Table 6: Quantitative evaluation for MASt3R self-calibration on the Replica “office0”, TUM
“fr2 xyz” and Waymo test segment-10084.

Scene Replica office0 TUM fr2 xyz Waymo segment-10084
Metric Acc. (cm) ↓ Comp.(cm) ↓ ATE (cm) AFE (%) ATE (cm) AFE (%)

MASt3R-Pretrain 4.69 6.05 1.74 10.88 2.85 11.87
MASt3R-Self-Calib 4.61 6.02 1.60 10.48 1.21 16.71

MASt3R-GT-FT 4.25 5.83 - - 1.05 9.87

(a) Before self-calibration
(b) After self-calibration

Figure 9: Qualitative results of MASt3R self-calibration on the Waymo test segment-10084. After
self-calibration, MASt3R produces more accurate camera pose estimates. By visual inspection, the
road’s center lines become better aligned along a straight path.
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A.6 ABLATION STUDY ON THE SIZE OF CALIBRATION SPLIT

In addition to the number of calibration images, the size of the calibration split plays an important
role in self-calibration because it affects the diversity of viewpoints among the calibration images.
As shown in Fig. 10, when we limit the calibration split to only the first 10 to 50 images in a test
scene, we observe a decrease in the performance of the self-calibrated model.

This decline occurs primarily because the sampled calibration images from the smaller splits share
very similar viewpoints. As a result, DUSt3R predictions across view pairs are of similar quality, and
global optimization therefore offers limited improvements in point estimation accuracy. Reduced
training set diversity and limited scene observation further contribute to the performance decrease.

Therefore, we recommend capturing calibration images from different viewpoints to ensure effective
self-calibration.

(a) Scene: Replica office0 (b) Scene: Waymo test segment-10149

Figure 10: Ablation Study: Reducing the calibration split size (e.g., using only the first 0.5% of
images) may adversely impact self-calibration performance.

A.7 CONCURRENT MULTI-SCENE SELF-CALIBRATION

We tested our pipeline with multi-scene concurrent self-calibration. Specifically, we fine-tuned the
pre-trained DUSt3R using pseudo-labeled data from all Replica test scenes and evaluated the self-
calibrated DUSt3R on the office0 test set. We also experimented with excluding scene office0’s
pseudo-labeled data from the training data during fine-tuning.

The performance of DUSt3R, self-calibrated on different pseudo labeled data, are presented in
Tab. 7. We observe comparable performance between concurrent and scene-specific training. How-
ever, excluding the target scene data led to a decline in performance. This highlights the importance
of including target scene images for model self-calibration.

Table 7: Quantitative evaluation of multi-scene concurrent self-calibration

Training Data office0 (Ours) All Replica All except office0
Avg. Point Pred. Err. [cm] 8.83 9.64 11.64

Accuracy [cm] 4.43 4.24 6.11
Completeness [cm] 6.08 7.13 8.74

A.8 USE DUST3R TO INITIALIZE COLMAP?

As discussed in Sec. 3.3, the vanilla DUSt3R (i.e., the DUSt3R-Pretrain baseline) uses a novel 3D-
3D-projection-based global optimization to align the DUSt3R-predicted point maps across views.
This natually leads to the question: Can we use the commonly adopted 2D-3D-projection-based
optimization to align these point maps? Specifically, is it feasible to use DUSt3R predictions to
initialize COLMAP’s bundle adjustment (Schonberger & Frahm, 2016) to create a stronger baseline?

The short answer is no.
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Theoretically, DUSt3R is trained to predict 3D point maps but not explicit 2D-2D or 2D-3D corre-
spondences. While we could attempt to extract reciprocal pixel-level 2D-2D matches by performing
nearest-neighbor matching in the 3D point map space (as discussed in Sec. 3.3 of Wang et al. (2024)),
these matches are limited because (1) they are only at the pixel level and (2) they can be incomplete
due to potential violations of mutual consistency. Directly using these matches for COLMAP bundle
adjustment can lead to inferior reconstruction quality.

Experimentally, we attempted to use the 2D-2D correspondences extracted from DUSt3R predic-
tions to initialize COLMAP. We retrieved the matched pixels’ globally aligned point map predictions
and computed their median 3D positions to initialize the 2D-3D correspondences for COLMAP’s
bundle adjustment. As reported in Tab. 8 and Fig. 11, this approach, termed DUSt3R-COLMAP,
significantly underperforms our baselines such as DUSt3R-Pretrain and MASt3R.

This observation is consistent with findings in the literature. For example, Leroy et al. (2024) re-
ports (in Tab. 1) that using matches extracted from DUSt3R predictions for map-free localization
significantly underperforms MASt3R, which is directly trained for image matching.

Table 8: Using DUSt3R to initialize COLMAP (i.e. DUSt3R-COLMAP) significantly underper-
forms other baselines.

Methods office0 segment-10084
Acc.[cm] ↓ Comp.[cm] ↓ ATE[m] ↓ AFE[%] ↓

DUSt3R-Pretrain 5.22 6.78 0.79 2.79
DUSt3R-COLMAP 44.36 56.66 5.59 89.51
COLMAP (dense) 2.61 89.87 Fail Fail

MASt3R 4.69 6.05 2.85 11.87

(a) DUSt3R-Pretrain (b) DUSt3R-COLMAP

Figure 11: Using DUSt3R to initialize COLMAP (i.e. DUSt3R-COLMAP) significantly under-
performs the DUSt3R-initialized 3D-projection-based global alignment method (i.e. the DUSt3R-
Pretrain baseline).

A.9 QUALITATIVE COMPARISON AGAINST GROUND TRUTH MESH

We directly compare DUSt3R’s multi-view reconstructions with the ground truth to identify and
visualize the source of errors.

The qualitative results in Fig. 6 (a, b) demonstrate that our self-calibration method effectively re-
duces outlier points in DUSt3R reconstructions. However, the outlier points are not the only source
of error for the pre-trained DUSt3R model, despite the otherwise visually impressive reconstruction.

In Fig. 12, we directly compare the reconstructions against the ground truth mesh model for the same
Replica office0 scene. Beyond the visually obvious improvements highlighted in the green boxes,
the self-calibrated model also more accurately captures the geometry of the scene. As a result, after
multi-view alignment, the calibrated DUSt3R’s reconstruction aligns more closely with the ground
truth in various regions, as indicated in the red boxes, while the pre-trained DUSt3R’s reconstruction
exhibits misalignments in these areas.
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(a) Before self-calibration (b) After self-calibration

Figure 12: Qualitative comparison of DUSt3R multi-view reconstructions before and after self-
calibration against the ground truth mesh model in the Replica office0 scene (top view for the
same reconstructions in Fig. 6 (a,b)). The ground truth mesh, with parts invisible to test cam-
era views culled, is displayed with real vertex colors, while the reconstructions are visualized us-
ing heatmap-like colors. Besides the visually obvious improvements in the green boxes, the self-
calibrated model also better captures the overall geometry of the scene, demonstrating better align-
ments with the ground truth at various regions, as indicated in the red boxes.

A.10 REMAINING EXPERIMENTAL RESULTS ON THE REPLICA DATASET

Table 9: Table 2 (continued): Quantitative evaluation of multi-view dense reconstructions on the
Replica dataset

Methods room0 room1 room2
Acc. Comp. Acc. Comp. Acc. Comp.

DUSt3R-Pretrain 6.97 9.97 10.54 13.13 7.79 10.92
DUSt3R-Self-Calib 6.83 9.86 8.88 11.54 5.80 9.10

DUSt3R-GT-FT 4.59 8.15 8.64 11.35 3.35 7.34
COLMAP (dense) 6.30 95.02 5.54 292.35 4.88 120.52

FlowMap 66.71 226.22 96.53 140.33 37.29 274.98
MASt3R 4.07 8.71 12.63 11.52 3.40 8.43

A.11 FULL EXPERIMENTAL RESULTS ON WAYMO OPEN DATASET
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Table 10: Full quantitative evaluation results of multi-view pose estimation on Waymo Open
Dataset (Part 1)

Methods segment-10084 segment-10149 segment-10161 segment-10410 segment-10488
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.79 2.19 0.84 3.08 0.38 0.54 0.02 0.15 0.00 0.55
DUSt3R-Self-Calib 0.37 0.61 0.25 2.14 0.38 0.52 0.02 0.15 0.00 0.85

DUSt3R-GT-FT 0.20 0.17 0.17 1.54 0.35 0.46 0.02 0.15 0.00 0.41
Flowmap 0.31 3.97 66.62 1.80 4.74 7.02 2.84 0.00 15.05 0.00

PoseDiffusion 19.43 25.07 16.76 49.18 7.65 13.85 0.03 10.84 0.00 1.78
RayDiffusion 17.34 85.65 16.91 80.69 6.40 83.73 0.09 84.44 0.00 84.49

RelPose++ 14.80 - 16.20 - 4.06 - 0.08 - 0.00 -
MASt3R 2.85 11.87 1.35 24.92 0.36 12.96 0.00 7.65 0.00 22.87

Methods segment-10504 segment-10534 segment-10649 segment-10802 segment-10940
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.29 2.19 0.74 0.84 0.95 2.84 0.35 1.60 0.01 0.74
DUSt3R-Self-Calib 0.38 1.79 0.67 0.76 0.49 2.54 0.35 1.08 0.02 0.94

DUSt3R-GT-FT 0.40 1.04 0.67 0.75 0.29 1.73 0.39 0.55 0.02 0.64
Flowmap 66.65 1.48 14.83 6.24 36.44 13.74 21.16 0.44 1.88 0.06

PoseDiffusion 16.38 2.54 13.31 1.42 20.19 2.26 13.61 23.74 1.43 32.79
RayDiffusion 17.03 85.26 10.73 84.73 18.59 85.09 12.77 81.44 2.38 84.38

RelPose++ 16.88 - 13.24 - 13.69 - 12.92 - 2.31 -
MASt3R 1.16 25.16 9.91 19.41 0.65 20.53 1.26 24.75 0.15 9.00

Methods segment-10980 segment-10998 segment-11096 segment-11436 segment-11672
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.80 1.19 0.51 0.66 0.69 1.43 0.50 1.28 0.40 2.09
DUSt3R-Self-Calib 0.09 0.69 0.50 0.64 0.69 1.42 0.34 0.74 0.17 1.29

DUSt3R-GT-FT 0.13 0.49 0.80 0.63 0.71 1.46 0.37 0.83 0.10 0.60
Flowmap 65.17 0.66 34.91 8.07 12.88 6.72 12.43 0.59 66.10 2.23

PoseDiffusion 18.19 31.04 11.51 5.42 12.09 8.91 13.74 15.61 11.11 8.02
RayDiffusion 19.12 85.00 13.80 83.88 15.08 84.71 15.23 84.22 8.92 85.25

RelPose++ 13.55 - 14.07 - 13.30 - 16.90 - 11.89 -
MASt3R 1.61 6.59 0.57 2.48 1.11 8.72 0.51 25.26 0.46 39.65

Methods segment-11867 segment-11933 segment-11987 segment-12056 segment-12153
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.20 1.41 0.00 0.76 0.39 1.30 0.52 1.58 0.35 0.97
DUSt3R-Self-Calib 0.18 1.77 0.00 0.85 0.33 1.28 0.32 2.32 0.35 1.00

DUSt3R-GT-FT 4.27 2.28 0.00 0.51 0.33 1.28 0.30 0.70 0.31 0.59
Flowmap 10.73 2.62 59.68 0.00 39.77 3.15 48.50 3.39 14.49 2.40

PoseDiffusion 2.44 5.20 0.00 15.37 11.22 11.04 9.41 34.37 7.24 15.39
RayDiffusion 6.08 85.63 0.00 83.92 11.74 84.31 17.18 85.94 6.46 85.70

RelPose++ 2.39 - 0.00 - 11.01 - 16.00 - 2.92 -
MASt3R 1.67 10.26 0.00 14.03 3.91 5.05 2.01 19.19 0.56 11.21

Methods segment-12537 segment-12555 segment-12892 segment-13034 segment-13347
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.63 1.38 0.02 0.45 0.20 0.68 3.84 4.12 0.01 0.79
DUSt3R-Self-Calib 0.54 1.42 0.02 0.75 0.08 0.56 1.63 4.19 0.01 0.43

DUSt3R-GT-FT 0.10 1.17 0.02 0.04 0.05 1.14 1.97 2.28 0.01 0.25
Flowmap 32.50 0.62 46.88 0.01 17.30 0.40 43.23 12.63 16.67 0.05

PoseDiffusion 15.92 10.06 0.12 6.56 4.81 37.32 41.47 3.80 0.70 10.08
RayDiffusion 13.73 86.47 0.11 83.48 6.39 83.62 33.72 83.64 1.95 84.32

RelPose++ 6.56 - 0.07 - 9.31 - 36.88 - 1.68 -
MASt3R 0.42 2.11 0.00 4.99 0.24 15.56 1.59 24.94 0.13 7.47

Methods segment-13585 segment-13732 segment-13748 segment-13763 segment-13781
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.77 1.93 8.13 4.10 0.00 1.59 0.10 0.23 1.86 2.10
DUSt3R-Self-Calib 0.47 0.39 6.82 3.90 0.00 3.20 0.09 0.32 1.73 1.73

DUSt3R-GT-FT 0.36 0.42 3.51 1.59 0.00 1.27 0.12 0.45 1.69 1.68
Flowmap 21.94 0.91 10.93 9.08 65.35 0.00 5.87 0.70 65.69 1.20

PoseDiffusion 11.12 12.22 41.83 19.75 0.00 4.26 7.52 11.11 13.90 21.86
RayDiffusion 10.40 84.53 55.53 81.32 0.00 86.28 11.27 82.18 18.50 84.38

RelPose++ 13.53 - 46.03 - 0.00 - 10.67 - 16.10 -
MASt3R 0.37 14.36 2.02 45.88 0.00 13.12 0.56 16.25 0.58 18.27

Methods segment-13787 segment-13790 segment-13849 segment-13887 segment-13944
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 1.91 1.88 4.48 4.15 0.27 0.99 1.24 2.56 0.03 0.23
DUSt3R-Self-Calib 0.42 0.35 3.34 5.12 0.22 0.43 0.79 2.14 0.04 0.65

DUSt3R-GT-FT 0.24 0.46 1.87 1.24 0.29 0.69 0.23 1.71 0.03 0.27
Flowmap 65.92 1.95 67.17 19.31 14.12 1.41 22.24 0.89 7.22 0.03

PoseDiffusion 10.28 14.95 44.05 10.49 16.78 16.87 17.17 9.37 1.40 13.21
RayDiffusion 5.54 82.41 41.05 85.28 17.90 83.32 18.03 83.37 3.20 83.80

RelPose++ 9.65 - 49.12 - 11.05 - 16.24 - 2.51 -
MASt3R 2.27 8.68 41.31 28.24 0.91 15.96 0.60 20.04 0.22 25.37
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Table 11: Full quantitative evaluation results of multi-view pose estimation on Waymo Open
Dataset (Part 2)

Methods segment-14178 segment-14188 segment-14386 segment-14470 segment-14586
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.22 1.71 0.82 0.96 0.03 0.52 0.35 1.04 0.32 1.14
DUSt3R-Self-Calib 0.09 0.26 0.83 0.99 0.03 0.55 0.20 1.13 0.26 0.70

DUSt3R-GT-FT 0.05 0.48 0.88 0.65 0.02 0.37 0.11 1.02 0.12 0.38
FlowMap 10.78 0.21 34.62 8.03 67.15 0.47 67.30 0.55 20.05 1.06

PoseDiffusion 9.39 3.32 10.25 7.19 1.41 5.46 3.95 26.92 10.92 11.94
RayDiffusion 11.52 86.31 9.25 84.93 1.32 86.42 5.58 85.69 10.38 87.09

RelPose++ 8.78 - 13.53 - 1.43 - 4.56 - 7.85 -
MASt3R 0.14 33.95 0.13 8.70 0.01 6.21 0.19 0.92 0.20 17.51

Methods segment-14631 segment-14643 segment-14737 segment-14918 segment-15272
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.02 0.38 0.02 0.05 0.05 0.50 0.64 2.07 0.13 1.54
DUSt3R-Self-Calib 0.02 0.12 0.03 0.26 0.04 0.19 0.51 1.31 0.14 1.67

DUSt3R-GT-FT 0.01 0.43 0.01 0.36 0.03 0.78 0.17 1.05 0.12 0.64
FlowMap 54.43 0.02 34.54 0.01 62.51 0.02 12.51 0.13 65.77 0.67

PoseDiffusion 0.40 10.31 0.20 4.60 0.48 58.43 8.80 14.48 6.27 1.69
RayDiffusion 0.51 80.16 0.70 84.18 1.01 85.80 9.30 86.42 10.48 83.64

RelPose++ 0.37 - 0.40 - 0.99 - 9.97 - 7.54 -
MASt3R 0.01 4.37 0.02 24.20 0.01 7.18 0.15 17.16 0.35 33.00

Methods segment-15370 segment-15410 segment-15739 segment-15865 segment-16050
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.38 1.43 0.00 0.16 0.03 0.29 0.43 1.51 0.01 0.48
DUSt3R-Self-Calib 0.35 1.67 0.00 0.20 0.03 0.16 0.18 0.95 0.01 0.75

DUSt3R-GT-FT 0.22 1.21 0.00 0.25 0.03 0.51 0.12 0.44 0.01 0.61
FlowMap 19.65 1.07 35.24 0.00 50.23 0.02 7.26 2.27 16.66 0.04

PoseDiffusion 11.95 12.85 0.00 12.67 1.65 7.88 15.60 29.29 0.22 39.76
RayDiffusion 14.86 84.60 0.00 84.32 1.50 84.64 18.44 85.29 0.22 83.85

RelPose++ 14.61 - 0.00 - 1.55 - 16.29 - 0.29 -
MASt3R 0.14 5.21 0.00 7.27 0.02 1.18 0.54 23.49 0.01 12.81

Methods segment-16062 segment-16367 segment-16418 segment-16645 segment-16721
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 14.93 3.35 0.52 1.55 0.12 0.41 0.89 3.36 3.91 2.13
DUSt3R-Self-Calib 3.23 3.09 0.31 0.99 0.05 0.36 0.47 1.71 7.73 4.40

DUSt3R-GT-FT 1.09 1.26 0.05 0.54 0.05 0.57 0.50 0.91 10.14 2.56
FlowMap 64.20 5.49 3.85 1.23 6.02 0.36 63.50 4.06 64.96 11.18

PoseDiffusion 43.39 35.25 12.32 4.96 8.39 7.83 28.05 59.33 43.68 4.94
RayDiffusion 46.45 85.46 13.82 84.41 7.24 84.36 23.68 84.94 37.64 83.14

RelPose++ 23.36 - 9.12 - 9.41 - 29.81 - 47.79 -
MASt3R 4.16 36.81 0.65 10.62 0.28 21.33 2.38 29.15 12.67 46.19

Methods segment-16743 segment-16942 segment-16951 segment-17030 segment-17052
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.42 0.92 0.00 0.70 0.09 0.48 0.55 1.96 0.24 0.47
DUSt3R-Self-Calib 0.40 0.82 0.00 0.54 0.09 0.53 0.52 1.58 0.28 0.62

DUSt3R-GT-FT 0.12 0.90 0.00 0.92 0.22 1.05 0.62 1.38 0.18 0.38
FlowMap 3.49 0.39 23.53 0.00 20.71 0.41 66.69 1.29 24.01 0.79

PoseDiffusion 8.81 29.72 0.00 37.82 1.49 3.47 8.27 18.55 6.52 2.84
RayDiffusion 6.38 82.81 0.00 83.65 3.96 84.95 12.34 86.11 8.17 85.18

RelPose++ 8.58 - 0.00 - 3.13 - 11.00 - 5.82 -
MASt3R 0.35 17.33 0.00 27.89 0.14 23.55 0.47 37.95 0.24 16.97

Methods segment-17136 segment-17174 segment-17212 segment-17262 segment-17351
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.00 0.70 0.04 1.57 1.08 2.78 0.69 2.66 3.72 4.52
DUSt3R-Self-Calib 0.00 0.67 0.04 0.54 0.75 1.36 0.46 0.68 1.95 3.08

DUSt3R-GT-FT 0.00 0.69 0.03 0.79 0.58 1.03 0.14 0.20 0.63 1.20
FlowMap 15.73 0.00 26.55 0.01 16.44 3.00 14.32 2.08 64.86 5.68

PoseDiffusion 0.00 15.44 0.77 22.26 18.75 10.02 18.89 28.26 40.69 0.61
RayDiffusion 0.00 83.01 0.87 86.80 15.09 84.30 16.71 86.99 41.94 87.07

RelPose++ 0.00 - 0.73 - 15.50 - 18.62 - 38.25 -
MASt3R 0.00 21.45 0.02 4.85 2.83 21.88 2.09 23.93 3.24 16.06

Methods segment-17387 segment-17595 segment-17652 segment-17756 segment-17792
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.08 0.31 2.03 3.07 0.00 0.39 0.17 0.43 1.18 4.16
DUSt3R-Self-Calib 0.08 0.40 0.74 2.26 0.00 0.39 0.16 0.41 0.63 2.18

DUSt3R-GT-FT 0.08 0.25 0.27 1.37 0.00 0.86 0.69 0.78 0.41 2.76
FlowMap 67.21 0.16 64.83 5.51 18.89 0.00 65.36 5.34 65.86 0.96

PoseDiffusion 2.41 40.89 21.37 4.92 0.00 32.09 11.53 9.27 20.60 11.24
RayDiffusion 1.68 84.45 17.35 86.20 0.00 84.55 10.82 83.95 19.01 84.28

RelPose++ 1.68 - 13.92 - 0.00 - 12.56 - 19.40 -
MASt3R 0.25 2.91 1.57 5.10 0.00 28.83 1.61 13.92 1.51 32.49
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Table 12: Full quantitative evaluation results of multi-view pose estimation on Waymo Open
Dataset (Part 3)

Methods segment-17835 segment-18149 segment-19363 segment-22189 segment-22573
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.44 1.10 0.02 0.72 0.61 1.07 0.94 2.63 0.22 0.61
DUSt3R-Self-Calib 0.40 0.86 0.02 0.86 0.48 0.80 0.52 2.91 0.14 0.50

DUSt3R-GT-FT 0.15 1.75 0.02 0.51 0.47 0.69 3.42 2.06 0.18 0.61
FlowMap 11.01 0.71 11.66 0.47 15.73 1.32 31.67 26.62 6.07 0.49

PoseDiffusion 2.14 17.48 2.04 2.62 11.46 23.42 29.46 17.82 5.45 6.25
RayDiffusion 10.42 83.72 1.75 86.20 12.22 85.41 22.59 85.63 12.11 84.58

RelPose++ 6.71 - 2.26 - 11.66 - 18.93 - 13.62 -
MASt3R 0.19 29.94 0.10 4.77 0.34 31.45 1.25 32.51 0.18 13.95

Methods segment-23632 segment-23741 segment-23839 segment-26012 segment-27095
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.00 0.10 0.25 0.42 0.01 1.42 3.91 3.57 0.18 1.06
DUSt3R-Self-Calib 0.00 0.06 0.21 0.35 0.01 1.36 2.11 2.97 0.08 0.79

DUSt3R-GT-FT 0.00 0.59 0.11 0.49 0.01 1.67 2.24 1.65 0.08 0.37
FlowMap 18.27 0.00 66.80 0.24 64.95 0.00 32.14 1.85 24.32 7.17

PoseDiffusion 0.00 19.19 10.14 15.66 0.02 48.88 23.48 23.16 15.16 8.79
RayDiffusion 0.00 84.12 9.91 84.55 0.02 88.55 24.43 82.83 17.32 86.31

RelPose++ 0.00 - 7.39 - 0.02 - 22.62 - 9.57 -
MASt3R 0.00 10.46 0.22 23.21 0.00 3.11 1.58 24.82 0.34 13.54

Methods segment-27143 segment-27951 segment-28306 segment-29065 segment-29426
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.71 1.25 0.47 0.86 0.55 0.86 0.89 1.04 0.97 0.93
DUSt3R-Self-Calib 0.37 0.44 0.38 0.98 0.56 0.81 0.90 1.04 0.90 0.83

DUSt3R-GT-FT 0.28 0.46 0.89 0.88 0.57 0.82 0.85 1.00 0.12 1.16
FlowMap 22.32 1.01 0.89 1.98 28.60 1.14 1.67 0.89 28.52 2.71

PoseDiffusion 14.82 16.66 22.07 50.30 11.30 2.71 10.64 5.15 16.49 28.52
RayDiffusion 16.48 86.66 28.07 81.87 10.34 83.21 13.85 84.43 15.03 83.45

RelPose++ 13.57 - 28.01 - 7.06 - 10.43 - 12.15 -
MASt3R 0.90 25.19 0.91 21.71 0.21 10.55 0.68 16.65 0.45 20.77

Methods segment-31225 segment-32758 segment-33285 segment-33418 segment-34004
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.35 0.63 0.27 0.49 0.02 0.60 11.16 4.69 5.13 3.97
DUSt3R-Self-Calib 0.34 0.75 0.27 0.50 0.02 0.42 2.24 7.65 3.92 1.94

DUSt3R-GT-FT 0.11 0.33 0.23 0.25 0.02 0.75 2.44 4.25 2.16 4.62
FlowMap 21.33 1.57 35.86 0.75 1.21 0.02 3.56 4.89 34.54 7.30

PoseDiffusion 7.91 11.04 10.16 28.77 0.09 5.18 49.91 7.05 49.33 51.08
RayDiffusion 9.82 81.75 10.50 85.19 0.14 86.37 48.18 85.77 45.54 84.92

RelPose++ 6.94 - 4.63 - 0.13 - 31.38 - 35.44 -
MASt3R 1.12 11.81 0.76 5.75 0.01 17.75 1.13 26.28 4.56 23.23

Methods segment-34590 segment-34851 segment-35106 segment-35228 segment-36452
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 5.48 2.32 0.16 0.80 2.38 3.22 0.06 0.35 0.13 0.69
DUSt3R-Self-Calib 3.54 2.04 0.10 0.77 2.18 3.30 0.05 0.36 0.31 0.29

DUSt3R-GT-FT 1.42 1.51 0.12 0.63 2.63 2.77 0.04 0.27 0.24 0.56
FlowMap 16.36 2.13 18.08 0.07 67.26 10.43 17.20 0.11 38.77 5.01

PoseDiffusion 40.33 1.40 8.82 24.36 28.10 1.47 4.25 0.55 9.53 8.47
RayDiffusion 35.30 85.89 6.96 83.16 26.80 85.35 3.76 85.23 9.93 85.83

RelPose++ 24.70 - 4.37 - 25.92 - 2.94 - 8.43 -
MASt3R 1.82 29.80 0.19 11.07 4.25 14.31 0.07 8.89 0.65 11.08

Methods segment-36541 segment-39847 segment-40081 segment-40379 segment-40456
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 1.25 3.06 19.23 5.13 1.03 2.54 5.89 3.82 20.43 1.63
DUSt3R-Self-Calib 0.35 1.52 2.24 3.72 0.98 1.82 0.94 2.58 8.01 2.78

DUSt3R-GT-FT 0.40 0.80 1.78 1.75 0.84 1.79 3.55 3.67 23.53 3.77
FlowMap 26.32 1.05 34.83 4.88 67.37 2.43 17.48 4.15 2.10 2.93

PoseDiffusion 22.26 24.81 44.65 13.89 18.08 16.18 30.71 1.73 21.00 53.26
RayDiffusion 24.32 84.01 41.13 85.27 14.01 86.18 33.90 86.04 25.66 85.09

RelPose++ 22.72 - 38.22 - 15.42 - 40.81 - 27.25 -
MASt3R 0.74 16.21 23.44 23.22 0.25 36.46 36.94 33.64 0.99 25.27

Methods segment-40540 segment-41409 segment-45934 segment-46325 segment-49166
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.48 1.78 0.20 1.99 0.80 2.09 0.02 0.76 0.01 0.73
DUSt3R-Self-Calib 0.31 1.74 0.09 1.07 0.49 0.83 0.02 0.61 0.01 1.38

DUSt3R-GT-FT 0.12 1.00 0.05 1.21 0.33 0.69 0.01 0.55 0.01 0.73
FlowMap 11.73 0.58 66.69 3.09 34.70 0.43 2.78 0.01 17.43 0.00

PoseDiffusion 3.53 5.69 7.54 17.58 10.57 32.32 0.70 28.94 0.00 23.81
RayDiffusion 8.84 85.22 10.13 84.64 12.16 84.32 1.17 85.11 0.01 87.31

RelPose++ 9.62 - 8.69 - 10.43 - 1.33 - 0.01 -
MASt3R 0.60 22.08 0.47 31.08 0.64 13.56 0.01 10.42 0.00 3.76

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 13: Full quantitative evaluation results of multi-view pose estimation on Waymo Open
Dataset (Part 4)

Methods segment-50269 segment-50466 segment-51547 segment-54445 segment-55855
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.02 1.40 0.72 0.92 0.46 0.78 0.00 0.79 1.08 3.25
DUSt3R-Self-Calib 0.02 1.38 0.63 0.74 0.49 0.98 0.00 1.25 0.48 0.51

DUSt3R-GT-FT 0.03 0.72 0.23 0.49 0.20 0.94 0.00 0.48 0.14 0.95
FlowMap 0.11 0.06 0.43 0.36 7.09 3.33 0.75 0.00 64.80 2.95

PoseDiffusion 0.20 36.80 12.33 9.39 15.11 5.49 0.00 21.16 18.87 36.92
RayDiffusion 1.07 82.00 12.55 83.03 17.47 84.13 0.00 85.85 19.73 84.64

RelPose++ 0.91 - 4.96 - 17.53 - 0.00 - 17.98 -
MASt3R 0.06 6.43 0.16 16.06 2.23 21.26 0.00 6.52 0.14 16.11

Methods segment-56382 segment-56480 segment-56833 segment-57643 segment-58104
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.12 0.82 30.44 4.34 1.35 1.09 0.03 0.07 0.53 1.87
DUSt3R-Self-Calib 0.17 1.08 12.56 8.02 1.35 0.86 0.02 0.15 0.09 0.26

DUSt3R-GT-FT 0.13 0.78 2.82 1.38 1.49 0.92 0.02 0.11 0.11 0.53
FlowMap 6.23 1.00 63.96 8.24 65.94 5.93 44.05 0.01 1.65 0.41

PoseDiffusion 2.67 2.83 40.82 20.78 7.03 16.44 1.90 44.77 18.16 14.25
RayDiffusion 3.86 86.03 40.23 86.00 8.04 87.57 1.45 82.73 17.15 83.94

RelPose++ 4.89 - 40.78 - 7.44 - 1.65 - 10.05 -
MASt3R 0.19 4.77 1.56 25.34 0.43 16.68 0.04 16.29 1.34 14.41

Methods segment-59279 segment-59934 segment-60792 segment-61445 segment-61743
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 1.31 2.01 0.37 1.20 0.12 0.96 0.28 1.35 0.59 0.79
DUSt3R-Self-Calib 0.61 1.62 0.27 1.11 0.18 0.51 0.27 1.29 0.48 0.59

DUSt3R-GT-FT 0.45 1.23 0.31 0.64 0.17 0.55 0.27 1.24 0.32 0.97
FlowMap 63.48 2.74 26.45 1.25 22.54 0.41 0.71 2.39 16.09 0.87

PoseDiffusion 15.22 13.01 13.24 6.33 7.29 18.23 11.56 18.07 13.57 12.09
RayDiffusion 13.96 85.50 13.53 84.17 9.01 86.26 12.11 85.22 12.58 84.62

RelPose++ 11.39 - 7.70 - 9.16 - 13.13 - 14.89 -
MASt3R 0.44 12.35 0.80 15.63 0.38 12.02 0.35 15.46 0.28 20.69

Methods segment-62287 segment-62595 segment-62783 segment-65030 segment-68423
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.07 0.28 0.81 2.52 0.87 1.64 0.50 0.68 0.76 1.21
DUSt3R-Self-Calib 0.08 0.51 0.57 1.33 0.54 0.38 0.49 0.59 0.48 0.74

DUSt3R-GT-FT 0.08 0.51 0.13 0.68 0.19 0.56 0.43 0.31 0.45 0.80
FlowMap 12.08 0.03 34.90 1.51 62.22 0.70 16.36 1.63 65.16 12.63

PoseDiffusion 1.62 2.05 14.08 11.95 15.71 15.11 12.13 18.27 14.71 0.39
RayDiffusion 2.58 83.36 19.96 84.87 14.12 82.92 11.29 81.05 13.52 85.09

RelPose++ 2.40 - 13.77 - 16.00 - 13.27 - 13.07 -
MASt3R 0.03 11.91 0.28 18.00 1.21 4.88 1.59 7.40 1.55 11.60

Methods segment-68627 segment-69228 segment-72400 segment-72478 segment-74355
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.02 0.82 0.44 0.70 1.36 1.75 0.12 0.54 0.78 1.15
DUSt3R-Self-Calib 0.02 0.59 0.44 0.25 0.72 0.87 0.11 0.31 0.79 1.44

DUSt3R-GT-FT 0.02 0.56 0.42 0.27 0.70 0.52 0.10 0.34 0.76 1.39
FlowMap 48.95 0.01 50.22 0.31 5.72 2.21 13.51 0.37 32.77 0.98

PoseDiffusion 0.46 6.46 10.73 5.88 26.81 12.04 8.41 4.67 13.54 16.78
RayDiffusion 0.88 84.37 10.80 84.93 26.08 85.30 6.97 84.42 13.61 80.67

RelPose++ 0.87 - 10.72 - 25.91 - 4.53 - 6.81 -
MASt3R 0.02 20.55 1.86 7.86 1.90 15.61 0.47 23.87 0.16 16.75

Methods segment-75119 segment-78443 segment-78551 segment-78860 segment-79252
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 1.09 0.96 4.83 4.48 0.79 1.24 0.24 1.32 0.42 0.59
DUSt3R-Self-Calib 0.61 0.75 4.58 7.77 0.46 1.01 0.24 1.85 0.38 0.47

DUSt3R-GT-FT 0.44 0.29 2.89 3.13 0.25 0.43 0.18 1.11 0.24 0.50
FlowMap 65.77 5.41 11.82 27.20 13.79 6.82 1.87 1.59 38.47 4.77

PoseDiffusion 14.40 61.44 42.60 22.56 21.04 64.68 6.77 9.84 9.60 2.92
RayDiffusion 21.01 82.06 43.07 84.64 22.52 83.45 6.23 84.33 10.61 84.56

RelPose++ 20.70 - 42.96 - 21.81 - 3.17 - 8.36 -
MASt3R 1.07 28.91 25.31 21.59 2.34 26.05 2.20 13.76 0.94 9.35

Methods segment-80858 segment-81973 segment-82293 segment-82491 segment-85664
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.92 1.39 0.01 1.08 0.05 1.08 3.79 3.24 0.43 2.07
DUSt3R-Self-Calib 0.64 0.69 0.01 1.11 0.04 1.14 0.98 2.19 0.33 0.44

DUSt3R-GT-FT 0.68 1.15 0.01 0.64 0.03 0.62 0.26 1.06 0.12 0.48
FlowMap 51.33 2.02 26.73 0.01 12.76 0.64 22.68 9.36 60.06 0.56

PoseDiffusion 21.14 57.40 0.02 51.83 1.50 28.69 27.50 12.26 9.59 13.24
RayDiffusion 21.98 82.51 0.02 85.90 1.37 86.79 25.74 84.38 10.92 85.28

RelPose++ 22.75 - 0.02 - 1.28 - 16.99 - 13.20 -
MASt3R 1.49 23.72 0.01 10.38 0.10 9.91 0.69 25.66 0.46 14.95
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Table 14: Full quantitative evaluation results of multi-view pose estimation on Waymo Open
Dataset (Part 5)

Methods segment-86232 segment-86840 segment-86885 segment-89208 segment-89936
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.47 0.64 0.06 0.93 0.03 0.79 0.02 0.17 2.47 3.29
DUSt3R-Self-Calib 0.31 0.32 0.06 0.88 0.03 0.62 0.02 0.15 2.88 3.06

DUSt3R-GT-FT 0.24 0.75 0.05 0.59 0.05 0.63 0.03 0.21 2.46 3.61
FlowMap 65.21 4.62 11.42 0.23 17.86 0.08 18.83 0.19 34.40 13.61

PoseDiffusion 5.34 6.57 3.50 3.54 1.34 12.19 3.08 5.69 20.01 8.13
RayDiffusion 6.76 83.67 3.94 86.41 0.90 85.31 3.02 83.67 24.47 84.09

RelPose++ 7.36 - 2.54 - 1.44 - 3.87 - 16.97 -
MASt3R 0.63 6.81 0.09 10.78 0.08 28.73 0.42 4.88 2.29 24.34

Methods segment-91450 segment-93509 segment-93554 segment-95847 segment-98068
ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%) ATE(m) AFE(%)

DUSt3R-Pretrain 0.07 0.94 0.61 1.90 0.08 0.83 0.08 0.43 0.07 0.47
DUSt3R-Self-Calib 0.07 1.26 0.30 0.41 0.05 0.90 0.06 0.32 0.06 0.53

DUSt3R-GT-FT 0.14 0.62 0.18 0.76 0.12 0.80 0.06 0.94 0.05 0.30
FlowMap 61.65 0.48 0.63 0.54 34.08 1.77 24.59 0.11 19.04 0.40

PoseDiffusion 2.88 62.13 16.87 13.16 2.36 49.54 5.72 5.45 5.33 23.84
RayDiffusion 5.62 84.40 16.92 85.87 2.90 87.45 6.17 84.05 6.66 84.43

RelPose++ 4.82 - 17.12 - 1.99 - 5.27 - 7.02 -
MASt3R 0.04 11.13 0.97 23.28 0.04 0.87 0.29 30.49 0.42 35.19
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