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Abstract

Dealing with non-stationarity in environments (e.g., in the transition dynamics) and
objectives (e.g., in the reward functions) is a challenging problem that is crucial
in real-world applications of reinforcement learning (RL). While most current
approaches model the changes as a single shared embedding vector, we leverage
insights from the recent causality literature to model non-stationarity in terms of
individual latent change factors, and causal graphs across different environments.
In particular, we propose Factored Adaptation for Non-Stationary RL (FANS-RL),
a factored adaption approach that learns jointly both the causal structure in terms of
a factored MDP, and a factored representation of the individual time-varying change
factors. We prove that under standard assumptions, we can completely recover the
causal graph representing the factored transition and reward function, as well as a
partial structure between the individual change factors and the state components.
Through our general framework, we can consider general non-stationary scenarios
with different function types and changing frequency, including changes across
episodes and within episodes. Experimental results demonstrate that FANS-RL
outperforms existing approaches in terms of return, compactness of the latent state
representation, and robustness to varying degrees of non-stationarity.

1 Introduction

Learning a stable policy under non-stationary environments is a long-standing challenge in Reinforce-
ment learning (RL) [1, 2, 3]. While most RL approaches assume stationarity, in many real-world
applications of RL there can be changes in the dynamics or the reward function, both across dif-
ferent episodes and within each episode. Recently, several works adapted Meta-RL methods to
learn sequences of non-stationary tasks [4, 5]. However, the continuous MAML [6] adaptation for
non-stationary RL [4] does not explicitly model temporal changing components, while TRIO [5]
needs to meta-train the model on a set of non-stationary tasks. LILAC [7] and ZeUS [8] leverage
latent variable models to directly model the change factors in the environment in a shared embedding
space. In particular, they consider families of MDPs indexed by a single latent parameter. In this
paper, we argue that disentangling the changes as separate latent parameters and modeling the process
with a factored representation improves the efficiency of adapting to non-stationarity.

In particular, we leverage insights from the causality literature [9, 10] that model non-stationarity in
terms of individual latent change factors and causal graphs across different environments. We propose
Factored Adaptation for Non-Stationary RL (FANS-RL), a factored adaptation framework that jointly
learns the causal structure of the MDP and a factored representation of the individual change factors,
allowing for changes at discrete timepoints and continuously varying environments. While we provide
a specific architecture (FN-VAE), the theoretical framework of FANS-RL can be implemented with
different architectures and combined with various RL algorithms. We formalize our setting as a
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Factored Non-stationary MDP (FN-MDP), which combines a Factored-MDP [11, 12, 13] with latent
change factors that evolve in time following a Markov process.

We build upon the AdaRL framework [14], a recently proposed fast adaptation approach. AdaRL
learns a factored representation that explicitly models changes (i.e., domain-specific components)
in observation, dynamics and reward functions across a set of source domains. An optimal policy
learnt on the source domains can then be adapted to a new target domain simply by identifying a
low-dimensional change factor, without any additional finetuning. FANS-RL extends AdaRL from
the stationary case with constant change factors to a general non-stationary framework. Specifically,
FANS-RL learns the low-dimensional and time-evolving representations 6; and 6; that fully capture
the non-stationarity of dynamics and rewards, allowing for continuous and discrete changing functions,
both within-episode and across-episode. Our main contributions can be summarized as:

* We formalize FN-MDPs, a unified factored framework that can handle many non-stationary
settings, including discrete and continuous changes, both within and across episodes. We
prove that, under standard assumptions, the causal graph of the transition and reward function
is identifiable, while we can recover a partial structure for the change factors.

* We introduce Factored Adaptation for Non-Stationary RL (FANS-RL), a general non-
stationary RL approach that interleaves model estimation of an FN-MDP and policy opti-
mization. We also describe FN-VAE, an example architecture for learning FN-MDPs.

* We evaluate FANS-RL on simulated benchmarks for continuous control and robotic manip-
ulation tasks and show it outperforms the state of the art on the return, compactness of the
latent space representation and robustness to varying degrees of non-stationarity.

2 Factored Non-stationary MDPs

To model different types of non-stationarity in a unified and factored way, we propose Factored
Non-stationary Markov Decision Processes (FN-MDPs). FN-MDPs are an augmented form of a
factored MDPs [11, 12, 13] with latent change factors that evolve over time following a Markov
process. Since the change factors are latent, FN-MDPs are partially observed. We define them as:

Definition 1. A Factored Non-stationary Markov Decision Process (FN-MDP) is a tuple
(§,A4,0%,07 ~,G, P, R, ,Pyr,Pys), where S is the state space, A the action space, ©° the space of
the change factors for the dynamics, ©" the space of the reward change factors and -y the discount fac-

tor. We assume G is a Dynamic Bayesian Network over {81,¢, ..., S t, Q1,ty -+ Gm,ts Tt 07 45505 4,
Litseees OZ,t}, where d, m, p, and q are the dimensions of states, action, change factors on dynamics

and reward, respectively. We define the factored state transition distribution P as:

d
Py(stlsi-1,a1-1,0;) = [ [ Ps(silpalsiy))
i=1

where pa(s; 1) denotes the causal parents of si+ in G, which are a subset of the dimensions of s;_1,
a;_1 and 0;. Note that the action a;_ is a vector of m dimensions in our setting. We assume a
given initial state distribution Ps(sg). Similarly, we define the reward function R as a function of
the parents of ry in G, i.e., R(st, a:, 07) = R(pa(r:)), where pa(r:) are a subset of dimensions of
St, a¢, and 07 . We define the factored latent change factors transition distributions Pgs and Pyr as:

p q
Py (67167_1) = [ ] Po- (6541pa(65,)), Por(67167_1) = || Por (65 1Ipa(6y; ,))

j=1 k=1
where pa(0; ;) are a subset of the dimensions of 07_,, while pa(0y, ;) are a subset of dimensions of
07_,. We assume the initial distributions Py (0§) and Py- (0]) are given.

We show an example DBN representing the graph G of an FN-MDP in Fig. 1(a). Since we are
interested in learning the graphical structure of the FN-MDP, as well as identifying the values of the
latent change factors from data, we describe a generative process of an FN-MDP environment. In
particular, we assume that the graph G is time-invariant throughout the non-stationarity, and there are
no unobserved confounders and instantaneous causal effects in the system. We will learn a set of
binary masks ¢”* and C"" that are the indicators for edges in G.

Generative environment model. We adapt the generative model in AdaRL [14] across & different
domains to a time-varying setting on a single domain. We assume the generative process of the
environment at timestep ¢ in terms of the transition function for each dimension ¢ = 1, ..., d of s; is:



(b) S—1—> “s—s (a—s (O°os
Dy & SCTCT R g,

Pay ————— >S4
¢ 2
Py ———— 1,

Ppy ——— "

C5=5 Ca=s 05 4
pa, —_— SH»]

; : Poy ——— S
i1 . H

St Al T — 4y g
31 ST A= p

—_— r’+l

—_—

CF inference network CF dynamics network Transition decoder Reward decoder

Figure 1: (a). A graphical representation of an FN-MDP. For readability, we only illustrate a
subsection of dimensions of states, actions, and latent change factors. The shaded variables are
unobserved; (b). The architecture of FN-VAE, which learns the generative model, explained in Sec. 3.
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where © is the element-wise product, f; are non-linear functions and €7 ; is an i.i.d. random noise.
The binary mask ¢$*¢ € {0, 1} represents which state components s j.t—1 are used in the transition
function of s; ;. Similarly, ¢ € {0,1}™ indicates whether the action directly affects s;¢. The

change factor 87 € RP encodes any change in the dynamics. The binary mask cf“s € {0,1}»
represents which of the components of ; influence s; ;. We model the reward function as:

re = h(c®" © 84, ¢ © ay, 07, €)) 2)

where ¢®” € {0,1}4, ¢*® € {0,1}™, and €/ is an i.i.d. random noise. The change factor 87 € RY
encodes any change in the reward function. The binary masks ¢ can be seen as indicators of edges
in the DBN G. In AdaRL, all change factors are assumed to be constant in each domain. Since in this
paper we allow the change parameters to evolve in time, we introduce two additional equations:

6;71‘/ =g ( _Z ‘)Z © 0t 17€t ) (3)
ot =g"(cg " ©0;_ 1a€t)
fori=1,...,d, j =1,...p,k=1,...,q,and ¢°, and ¢g" are non- linear functions We assume the

blnary masks c’ are statlonary across timesteps and so are the €; o e, ! and €/, the i.i.d. random
noises. Although ¢ and e are stationary, we model the changes in the functions and some changes
in the graph structure through 6. For example a certain value of ] can switch off the contribution of
some of the state or action dimensions in the reward function, or in other words nullify the effect
of some edges in G. Similarly the contribution of the noise distribution to each function can be
modulated via the change factors. On the other hand, this setup does not allow adding edges that are

not captured by the binary masks ¢". We group the binary masks in the matrices C**® := [¢$*%]%_,
C9s = [cV7%]d |, and C** := [c®*]%_,. Similarly, we also group the blnary vectors in the
dynamics of the latent change factors in matrlces Co0" = [cI7O°E_ and €970 = [0

Since latent change factors 8° and 8" follow a Markov process based on g° and ¢g", we can consider
different types of changes by varying the form of ¢g® and g", generalizing the approaches in literature.
We can also model concurrent changes in dynamics and reward, including different types of changes,
e.g. a continuous ¢g° and a piecewise-constant g".

Compact representations. Huang et al. [14] show that the only dimensions of the state and change
factors useful for policy learning are those that eventually affect the reward. These dimensions are
called compact representations and are defined as the dimensions of the state and change factors with



a path (i.e. a sequence of edges —) to the present or future reward 7;, for 7 > 0 in the DBN G:

Sit € PULLIPEEN Sit —> ... > 1y forT >0,and §; € 0" = 0, — ... > 14y, forT >0

Continuous changes. If g° and ¢g" are continuous, then they can model smooth changes in the
environment, including across episodes. While the functions in Eq. 1-3 allow us to model within-
episode changes, i.e. changes that can happen only before t = H where H is the horizon, we also
want to model across-episode changes. We use a separate time index 7 that models the agent’s lifetime.
Initially £ = ¢ for ¢t < H, but while we reset ¢ = 0 afterwards, ¢ continues to grow indefinitely.

Discrete changes. We assume discrete changes happen at specific timesteps and can be represented
with a piecewise constant function. In particular we denote change timesteps as £ = (f1,...,%a;)
where #; describes a specific timepoint in the agent’s lifetime time index #. This allows us to
model within-episode changes. In this case, we assume that the change happens always at the same
steps (t1, ..., £, ) in each episode, i.e., we assume that £ = (t1, ..., ¢, H +t1, ..., H + t,, 2H +
t1,...,2H 4+t ...), where H is the horizon. We can also model across-episode changes, when we
assume the change points only occur at the end of each episode, i.e., t = (H,2H,3H, ...).

We extend the result on identifiability of factored MDPs in AdaRL [14] to non-stationary environments.
We first assume that we observe the change factors and show we can identify the true causal graph G:

Proposition 1 (Full identifiability with observed change factors). Suppose the generative process
follows Eq. 1-3 and all change factors 07 and 67 are observed, i.e., Eq. 1-3 is an MDP. Under
the Markov and faithfulness assumptions, i.e. conditional independences correspond exactly to
d-separations, all binary masks C~ are identifiable, i.e., we can fully recover the causal graph G.

We provide all proofs and a detailed explanation in Appendix B. If we do not observe the change
factors 07 and 0], we cannot identify their dimensions, and we cannot fully recover the causal graph
G. On the other hand, we can still identify the partial causal graph over the state variables s;, reward
variable r;, and action variable a;. We can also identify which dimensions in s; ; have changes, i.e.,
we can identify C'®"**. We formalize this idea in the following (proof in Appendix B):

Proposition 2 (Partial Identifiability with latent change factors). Suppose the generative process
follows Eq. 1-3 and the change factors 0] and 0] are unobserved. Under the Markov and faithfulness
assumptions, the binary masks C*%,C%%,c*" and c®" are identifiable. Moreover, we can identify
which state dimensions are affected by 07 and whether the reward function changes.

This means that even in the most general case, we can learn most of the true causal graph G in an
FN-MDP, with the exception of the transition structure of the latent change factors. In the following,
we show a variational autoencoder setup to learn the generative process in FN-MDPs.

3 Learning the Generative Process in FN-MDPs

There are many possible architectures to learn FN-MDPs through Eq. 1-3. We propose FN-VAE, a
variational autoencoder architecture described in Fig. 1(b). In FN-VAE, we jointly learn the structural
relationships, state transition function, reward function, and transition function of the latent change
factors, as described in detail in Appendix Alg. Al. An FN-VAE has four types of components:
change factor (CF) inference networks that reconstruct the latent change factors, change factor
(CF) dynamics networks that model their dynamics with an LSTM [15], transition decoders that
reconstruct the state dynamics at the time ¢ and predict one step further at ¢ + 1, and reward decoders
that reconstruct the reward at ¢ and predict the future reward at ¢ + 1. We now describe them in detail.

CF inference networks (blue boxes in Fig. 1(b)). The two inference models for latent change
factors ggs (07 | s¢, ar) and gy (07 | 54, a¢,7:) are parameterised by ¢° and ¢", respectively. To
model the time-dependence of 87 and 8], we use LSTMs [15] as inference networks. At timestep ¢,
the dynamics change factor LSTM infers g4s (Bf | s¢,as,7m4, hf_l) , where h{_; € RZ is the hidden
state in the LSTM. Thus we can obtain p4s (7o.¢) and Jis (T0:t) using ggs, and sample the latent
changing factor 07 ~ N (pes (70:¢), ais (10:¢)), where To.: = (S0, @0,70, 81,Q1,72, .-, St, Qt, T't).
Similarly, the reward change factor LSTM infers gy (0% | 8¢, as, 74, hi_,), where h}_; € RE is the
hidden state, such that we can sample 8] ~ N (pgr (70:¢), 03 (T0:1))-

CF dynamics network (orange boxes in Fig. 1(b)). We model the dynamics of latent change factors
with p« (87,, | 65,C%9") and p,~ (67, | 07,C?%"). To ensure the Markovianity of 6 and



07, we define a loss L. that helps minimize the KL-divergence between ¢4 and p.,.

T

LxL = ZKL(%S (0{: | Stﬂt;%"zfA))Hva (67167_1; CGSQGS)) (4)
t=2

+KL (4 (8] | se, ac, e, hi_y)) (671671 C "))

If we assume that the change between 67 and 67, ,, and similarly 67, is smooth, we can add a
smoothness loss Lgnoom. We provide a smooth loss for discrete changes in Appendix D.2.

T
Lsmooth = Z (Hef - 0?—1”1 + ||0Z - 0:—1”1) (5)
t=2

Transition decoders (purple boxes in Fig. 1(b)). We learn an approximation of the transition
dynamics in Eq. | by learning a reconstruction, parameterized by «;, and a prediction encoder,
parametrized by a. To simplify the formulas, we define C* := (C'**%, C**, C?"**). At timestep
t, the reconstruction encoder p,, (S; | st—1,a:—1,0;; C~*®) reconstructs the state from current
state s; with sampled 7. The one-step prediction encoder p,, (S¢+1 | St, @+, 07) instead tries to
approximate the next state s;;.;. We do not use the prediction loss, when the one-step prediction
is not smooth. In particular, we do not use it for the last time-step in episode ¢ if there is a change
happening at the first step in episode (i 4+ 1), since the states in new episodes will be randomly
initiated. We also do not use it in the case of discrete changes at the timesteps (£; — 1,...,ty — 1).
The loss functions are:

T—2
Lrcc-dyn = 3 Eosng, l0g pa, (8¢]8¢-1,a:-1,05;C %)
t=1
(6)

T—2
Epred—dyn = 231 ]E9t5~q¢ log Pay (St+1 |St, Qg, 0?)
t=

Reward decoders (green boxes in Fig. 1(b)). Similarly, we use a reconstruction en-
coder pg, (¢ | 8¢,a4,07,¢>",¢*"), parameterized by (1, and a one-step prediction encoder
Pgy (Te+1 | St+1, @41, 07), parametrized by (s, to approximate the reward function. Similarly
to transition decoders, we do not use the one-step prediction loss, if it is not smooth. The losses are:

T—2
£rec—rw = Z E02‘~q¢ IOg Psy (Tt|sta ag, 0;» C
t=1

ST a-> 7')

,C

T2 @)

Epred-rw = Z Ea{N% 10gpﬁ2 (Tt+1|3t+1’ iy, 9{)
t=1

Sparsity loss. We encourage sparsity in the binary masks C>" to improve identifiability, by using
following loss with adjustable hyperparameters (w, ..., wy), which we learn through grid search.

Lopase = w1 C=° |1 + wal|C¥*||1 + w3 [|[C®7* |1 + wal|e* 1 + ws e ||

g o ®)
+we[|CO70 |1 + wr||[COO |

The total loss is Lyae = k1 (Crec—dyn + ['rec—rw) +ko (»Cpred»dyn + »Cpred—rw) —ksLxL— k4£’spa.rse — k5 Lsmooths

where (k1, ..., k5): hyper-parameters, which we learn with an automatic weighting method [16].

Learning from raw pixels. Our framework can be easily extended to image inputs by adding an
encoder ¢° to learn the latent state variables from pixels, similar to other works [17, 18, 14]. In this
case, our identifiability results do not hold anymore, since we cannot guarantee that we identify the
true causal variables. We describe this component in Appendix D.3.

4 FANS-RL: Online Model Estimation and Policy Optimization

We propose Factored Adaptation for Non-Stationary RL (FANS-RL), a general algorithm that
interleaves model estimation and policy optimization, as shown in Alg. 1 and Appendix Fig. A9.



Algorithm 1: Factored Adaptation for non-stationary RL
1: Init: Env; VAE parameters: ¢ = (¢°,¢"), a = (a1, a2), 8 = (S1, B2), 7v; Binary masks: C*";
Policy parameters: v; replay buffer: D; Number of episodes: N; Episode horizon: H; Initial 6:
0:,, and 67,,; Length of collected trajectory: k.

2: Qutput: VAE parameters: ¢, «, [3, 7v; Policy parameters: 1
3: Collect multiple trajectories of length k : 7 = {7, 72}, - . .} with policy 7y, from Env;
4: Learn FN-VAE from 7, including masks C" that represent the graph G (Appendix Alg. A1)
5: Identify the compact representations s™" and change factors 8" based on C""
6: forn=0,....,N —1do
7. fort=0,....H—1do
8: Observe s; from Env;
9: if £ = 0 then
10: 0° < 0,and 0" < 0],
11: else
12: 0° «—0;_,and 0" + 6]_,
13: end if
14: forj=s,r do
15: Infer mean 1.5 (67) and variance ofyj (67) of the change parameter 6 via p.;
16: Sample 0] ~ N (,U.Yj (67), aij (Oj))
17: end for
18: ift = H — 1 then
19: 054 < 07 and 0], < 07;
20: end if
21: Generate a; ~ y(a; | s, 67"") and receive reward 7, ; from Env;
22: Add (s¢, a,rt, 07, 07) to replay buffer D;
23: Extract a trajectory with length k from replay buffer D;
24: Learn FN-VAE (Appendix Alg. A1) with updateG=False (i.e. with fixed masks C"");
25: Sample a batch of data from replay buffer D and update policy network parameters v;
26:  end for
27: end for

After we estimate the initial FN-MDP with the FN-VAE, we can identify compact representations
8™ and @™ following AdaRL [14]. In particular, the only dimensions of the state and change
factors that are useful for policy learning are those that have a directed path to the reward in the
graph G. The online policy 7y (a¢ | $7"™, q,(67""™ | 70.¢)) can be learned end-to-end, including
learning the FN-VAE, as shown in Alg. 1. We use SAC [19] as our policy learning model, so the
policy parameters are ¢ = (7, Q).

Continuous changes. In Alg. 1 we describe our framework in case of continuous changes that can
span across episodes. We start by collecting a few trajectories 7 and then learn our initial FN-VAE
(Lines 3-4). We can use the graphical structure of the initial FN-VAE to identify the compact
representations (Line 5). During the online model estimation and policy learning stage, we estimate
the latent change factors 87 and 6; using the CF dynamics networks ® and " (Lines 8-20). Since
in this case, we assume the dynamics of the change factors are smooth across episodes, at time ¢ = 0
we will use the last timestep (H — 1) of the previous episode as a prior on the change factors (Line
10). Otherwise, we will estimate the change factors using their values in the previous timestep ¢ — 1.
We use the estimated latent factors 6; and observed state s; to generate a; using my, and receive a
reward r; (Line 21). We add (s;, at, r+, 07, 07) to the replay buffer (Line 22). We now update our
estimation of the FN-VAE, but we keep the graph G fixed (Lines 23-24). Finally, we sample a batch
of trajectories in the replay buffer and update the policy network 1) (Line 25).

Discrete changes. Since we assume discrete changes happen at specific timestep £ = (t1,. .- ),
we can easily modify Alg. 1 for discrete changes, both within-episode and across-episode, by changing
Lines 9-20 to only update the change parameters at the timesteps in t, as shown in Appendix Alg. A2.
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Figure 2: Summary of experimental results. (a)-(c). Average return (smoothed) across 10 runs. We
only indicate the average of the highest result of all times for oracle and SAC. The shaded region
is (u — o, i + o), where p is the mean and o is the standard deviation. (a) Half-Cheetah-V3 with
continuous (sine) changes on f,; (b) Sawyer-Reaching with discrete across-episode changes on
s9; and (c) Minitaur with discrete across-episode changes on m and s; ,, concurrently. (d) Ablation
studies on Half-Cheetah with across & within episode changes on dynamics and across episode
changes on both dynamics and rewards. (e)-(f): Pairwise distance on learned 6 between different
time steps in Half-Cheetah experiment with across-episode changes on rewards. (g)-(j): Average
and normalized final return on 10 runs on Half-Cheetah (g) with within-in episode changes on wind
forces using a different number of dimensions in latent representation space; (h) with different
non-stationary degrees on across-episode and multi-factor changes; (i) with different functional forms
(across episode changes on dynamics); and (j) with different combinations of across-episode changes.

5 Evaluation

We evaluate our approach on four well-established benchmarks, including Half-Cheetah-V3 from
MuJoCo [20, 21], Sawyer-Reaching and Sawyer-Peg from Sawyer [22, 18], and Minitaur [23]. We
modified these tasks to test several non-stationary RL scenarios with continuous and discrete changes.
The results suggest that FANS-RL can (1) obtain high rewards, (2) learn meaningful mappings to
the change factors with compact latent vectors, and (3) be robust to different non-stationary levels,
different functional forms (e.g. piecewise linear, sine, damped sine) and multiple concurrent changes.
For space limits, we only highlight a subset of results, and report the full results in Appendix C.4.
The implementation will be open-sourced at https://bit.1ly/3erKoWm.

Half-Cheetah-v3 in MuJoCo. In this task, the agent is moving forward using the joint legs and the
objective is to achieve the target velocity v9. We consider both the changes in the dynamics (change
of the wind forces f, change of gravity) and reward functions (change of target velocity v9). We
also consider changes on the agent’s mechanism, where one random joint is disabled. The reward
function is r, = — [[vY — v{||, — 0.05]a;||2, where v° and a, are the agent’s velocity and action,
respectively, at timestep ¢. The number of time steps in each episode is 50. For dynamics, we change
the wind forces f* in the environment. Moreover, in terms of the reward functions, we change the
target velocity v9 to be a time-dependent variable. The change function in the dynamics % can
be either continuous or discrete, and discrete changes can happen both within and across episodes.


https://bit.ly/3erKoWm

Methods | ZeUS | Meld | CaDM | Hyper-Dynamics | Ours
Best Avg. Retrn | 1245 | 6.38 | 4.04 | 3.91 [ 18.01

Table 1: Average highest return on Sawyer-Peg. The number of random trails is 10.

Similarly to LILAC [7], we choose different functions (piecewise linear, sine and damped sine),
besides allowing the change at specified intervals, we also allow it to change smoothly. The change in
the reward function v9 is not generally stable in the continuous case, so we only consider the discrete
and across episode change functions v9 for the reward. We also design a scenario where dynamic and
reward functions change concurrently. We report all equations for g° and ¢” in Appendix C.1.

Sawyer. We consider two robotic manipulation tasks, Sawyer-Reaching and Sawyer-Peg. We describe
the non-stationary settings in Appendix C.2.

In Sawyer-Reaching, the sawyer arm is trained to reach a target position s9. The reward r; is the
difference between the current position s; and the target position 7y = — ||s; — s9]|,. In this task, we
cannot directly modify the dynamics in the simulator, so consider a reward-varying scenario, where
the target location changes across each episode following a periodic function.

In Sawyer-Peg, the robot arm is trained to insert a peg into a designed target location s9. In this task,
following [8], we consider a reward-varying scenario, where the target location changes across each
episode following a periodic function. In order to compare with similar approaches, e.g., ZeUS [8],
CADM [24], Hyperdynamics [25] and Meld [18], we evaluate our method on raw pixels. Following
[8], we consider discrete across-episode changes, where the target location can change in each
episode, and is randomly sampled from a small interval.

Minitaur. A minitaur robot is a simulated quadruped robot with eight direct-drive actuators. The
minitaur is trained to move at the target speed s; ,,. The reward is r, = 0.3 — |0.3 — s;,,| — 0.01 -
lla; — 2a;—1 + a;—2||;. We modify (1) the mass m (dynamics) and (2) target speed s; ,, (reward) of
the minitaur. We consider continuous, discrete across-episode and discrete within-episode changes for
the dynamics, and across-episode changes for the reward. We describe the settings in Appendix C.3.

Baselines. We compare our approach with a meta-RL approach for stationary RL, VariBAD [26],
a meta-RL approach for non-stationary RL, TRIO [5], as well as with two representative task
embedding approaches, LILAC [7] and ZeUS [8]. The details on the meta-learning setups are given
in Appendix D.4. We also compare with stationary RL method, SAC [19], which will be our lower-
bound, and compare with an oracle agent that has access to the full information of non-stationarity
(e.g., the wind forces) and can use it to learn a policy, which will be our upper-bound. For all
baselines, we use SAC for policy learning. We compare with the baselines on average return and the
compactness of the latent space in varying degrees and functional forms of non-stationarity.

Experimental results. Fig. 2(a)-(c) shows the smoothed curves of average return across timesteps
in a subsection of Half-Cheetah, Sawyer-Reaching, and Minitaur experiments. Smoothed curves
of other experiments are given in Appendix Fig. A2 and A3. For continuous changes, we only
compare with LILAC [7] since other approaches are not applicable. We smooth the learning curves
by uniformly selecting a few data points for readability. Table 1 shows the results on Sawyer-Peg
experiments using raw pixels as input, based on the reported results in [8]. The learning curve is
given in Appendix Fig. A11. For a fair comparison, we indicate the best and final average return
for each baseline in Fig. A11. Full results of all experiments are given in Appendix C.4, including
significance tests for Wilcoxon signed-rank test at &« = 0.05 showing that FANS-RL is significantly
better than baselines. We also visualize the learned graph in Sawyer in Appendix Sec C.7, showing
that FN-VAE recovers reasonable causal relations in this domain, where the true graph is unknown.

Ablation studies. We conduct ablation studies on each component of FANS-RL and report some
key results in Fig. 2(d). The ablation studies verify the effectiveness of all components, including
binary masks/structure, smoothness loss, sparsity loss, reward prediction or state prediction. The
results show that the largest gain is provided by the factored representation, validating our original
hypothesis, followed by state prediction. As expected, reward prediction is also important when
there is a nonstationary reward, while smoothness is important for within-episode changes. The
disentangled design of CF inference networks is valuable when there are changes on both dynamics



and reward functions. Full results are in Appendix C.5, showing that learning which state components
are affected by change, i.e. estimating the binary masks C'®"* and C®"", provides the largest gains.

Visualization on the learned 6. To verify that the learned 0 can capture the true change factors,
we compute the pairwise distance between learned 8" at different time steps. We randomly sample
10 time steps from the Half-Cheetah experiment with across-episode changes on reward functions.
Fig. 2(e) gives the pairwise distance of 8" among 5 time steps (from episode 148,279, 155, 159, 230)
with different target speed values (0.04, 0.48,0.89, 2.06, 2.85), respectively. We can find that there is
a positive correlation between the distance of learned 8" and values of change factors. Meanwhile,
we also sample 5 time steps from episodes 31, 188, 234, 408 with target values around 1.67. Fig. 2(f)
shows that the distance of 8" among these 5 time steps is very small, indicating that the learned 6"
are almost the same for the similar values of change factors at different time steps. The visualization
suggests that the learned @ can capture meaningful mappings from the time-varying factors.

Varying latent dimensions, non-stationary levels and functional forms. Fig. 2(g) shows the
normalized averaged return versus the number of two latent features on Half-Cheetah. Our framework
can learn a better policy with relatively smaller feature dimensions in the latent space than other
approaches. As we show in Appendix C.4, Saywer and Minitaur have the similar trend, where we
learn a better policy than the baselines with fewer latent features. We also vary the non-stationary
levels in Half-Cheetah with discrete across-episode changes on both dynamics and rewards. A
higher non-stationary degree indicates a faster change rate. Fig. 2(h) shows that FANS-RL achieves
the highest return across all tested non-stationary degrees and that the gap increases with the non-
stationarity. We also test FANS-RL together with all baselines on different non-stationary functions,
including piecewise linear, damping-like and sinusoid waves. Fig. 2(i) displays the results, which
indicate that FANS-RL can generally outperform the baselines on diverse non-stationary function
forms. Detailed function equations and experimental setups can be referred to Appendix C.

Multiple change factors We consider different numbers and types of changes to verify the benefits
from the factored structure in FANS-RL. We conduct experiments with 1) only change wind forces
(1D); 2) change wind forces and gravity concurrently (2D); 3) change wind force and target speed
(1D+1R); and 4) change wind force, gravity, and target speed together (2D+1R) in an across-episode
way in Half-Cheetah. From Fig. 2(j), we find that, thanks to the factored representation, FANS-RL
performs better in those more complicated scenarios with multiple numbers and types of changes.

6 Related Work

Non-stationary and transfer RL. Early works in non-stationary and transfer RL [27, 28] only detect
changes that have already happened instead of anticipating them. If the evolution of non-stationary
environments is a (Semi)-Markov chain, one can deal with non-stationarity with HM-MDPs [29] or
HS3MDPs [30]. Several methods learn to anticipate changes in non-stationary deep RL. Chandak et al.
[31] propose to maximize future rewards without explicitly modeling non-stationary environments.
MBCD [32] uses change-point detection to decide if the agent should learn a novel policy or reuse
previously trained policies. Al-Shedivat et al. [4] extend MAML [6] for the non-stationary setting,
but do not explicitly model the temporal changes. TRIO [5] tracks the non-stationarity by inferring
the evolution of latent parameters, which captures the temporal change factors during the meta-testing
phase. ReBAL and GrBAL [33] meta-train the dynamic prior, which adapts to the local contexts
efficiently. However, these methods have to meta-train the model on a set of non-stationary tasks,
which may not be accessible in real-world applications. Another line of research directly learns
the latent representation to capture the non-stationary components. In particular, LILAC [7] and
ZeUS [8] leverage latent variable models to directly model the change factors in environments,
and Guo et al. [34] estimate latent vectors that describe the non-stationary or variable part of the
dynamics. Perez et al. [35, 36] estimate low-dimensional latent vectors that capture the changes in
dynamics and rewards and leverage these inferred change factors to facilitate transfer RL across tasks.
Similarly, Francois-Lavet et al. [37] use a compact state abstraction for recovering the sufficient
low-dimensional representation of the environment, and only retrain or update some of its abstracted
states for transferring to a novel but related task. Our approach fits in this line of work; however, as
opposed to these methods, which model changes using a shared embedding space or a mixture model,
and cannot distinguish which state components are affected, we use a factored representation.

Factored MDPs. Among works on factored representations in stationary settings, Hallak et al. [38]
learn factored MDPs [11, 12, 13] to improve sample efficiency in model-based off-policy RL. Balaji



et al. [39] employ known factored MDP to improve both model-free and model-based RL algorithms.
Working memory graphs [40] learn the factored observation space using Transformers. NeverNet [41]
factorizes the state-action space through graph neural networks. Zholus et al. [42] factorize the visual
states into actor-related, object of manipulation, and the latent influence factor between these two
states to achieve sparse interaction in robotic control tasks. Differently from methods modeling the
factored dynamics and rewards only, Zhou et al. [43] and Tang et al. [44] explore factored entities
and actions, respectively. Zhou et al. [43] extend the factored MDP to the multi-entity environments,
learning the compositional structure in tasks with multiple entities involved. Tang et al. [44] leverage
the factored action space to improve the sample efficiency in healthcare applications. However, the
factored structures in these two works are derived from inductive bias or domain experts.

Factored MDPs, causality and multiple environments. Several works leverage factored MDPs
to improve the sample efficiency and generalization of RL. Most of these works focus on learning
an invariant (e.g. causal) representation that fits all environments and do not support learning latent
change factors. For example, AFaR [45] learns factored value functions via attention modules to
improve sample efficiency and generalization across tasks. Mutti et al. [46] learn a causal structure
that can generalize across a family of MDPs under different environments, assuming that there are no
latent causal factors. Similarly, Wang et al. [47] propose to learn the factored and causal dynamics in
model-based RL, in which the learned causal structure is assumed to generalize to unseen states. By
deriving the state abstraction based on the causal graph, it can improve both the sample efficiency and
generalizability of policy learning of MBRL. While most of the previous works focus on learning a
causal structure that is time-invariant, Pitis et al. [48] learn a locally causal dynamics that can vary at
each timestep and use it to generate counterfactual dynamics transitions in RL. While the previously
described methods focus on a domain or time-invariant representations, in our work we also focus
on modelling domain or time-specific factors in the form of latent change factors. A related work,
AdaRL [14] learns the factored representation and the model change factors under heterogeneous
domains with varying dynamics or reward functions. However, AdaRL is designed only for the
domain adaptation setting and constant change factors without considering non-stationarity.

Independent causal mechanisms. Another related line of work is based on independent causal
mechanisms [49, 50]. Recurrent independent mechanisms (RIMs) [51] learn the independent transi-
tion dynamics in RL with sparse communication among the latent states. Meta-RIMs [52] leverage
meta-learning and soft attention to learn a set of RIMs with competition and communication. As
opposed to these works, we do not assume that the mechanisms are independent and we learn the
factored structure among all components in MDPs with a DBN.

7 Conclusions, Limitations and Future Work

We describe Factored Adaptation for Non-Stationary RL (FANS-RL), a framework that learns a
factored representation for non-stationarity that can be combined with any RL algorithm. We
formalize our problem as a Factored Non-stationary MDP (FN-MDP), augmenting a factored MDP
with latent change factors evolving as a Markov process. FN-MDPs do not model a family of MDPs,
but instead include the dynamics of change factors analogously to the dynamics of the states. This
allows us to capture different non-stationarities, e.g., continuous and discrete changes, both within
and across different episodes. To learn FN-MDPs we propose FN-VAEs, which we integrated in
FANS-RL, an online model estimation and policy evaluation approach. We evaluate FANS-RL on
benchmarks for continuous control and robotic manipulation, also with pixel inputs, and show it
outperforms the state of the art on rewards and robustness to varying degrees of non-stationarity.
Learning the graph in model estimation is computationally expensive, which limits the scalability of
our approach. In future work, we plan to meta-learn the graphs among different tasks to improve the
scalability of our approach and its applicability to complex RL problems, e.g., multi-agent RL.
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