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ABSTRACT

Existing parameter-efficient fine-tuning (PEFT) methods primarily adapt weight
matrices while keeping activation functions fixed. We introduce NoRA, the first
PEFT framework that directly adapts nonlinear activation functions in pretrained
transformer-based models. NoRA replaces fixed activations with learnable ratio-
nal functions and applies structured low-rank updates to numerator and denom-
inator coefficients, with a group-wise design that localizes adaptation and im-
proves stability at minimal cost. On vision transformers trained on CIFAR-10
and CIFAR-100, NoRA matches or exceeds full fine-tuning while updating only
0.4% of parameters (0.02M), achieving accuracy gains of +0.17% and +0.27%.
When combined with LoRA (NoRA++), it outperforms LoRA and DoRA under
matched training budgets by adding fewer trainable parameters. On LLaMA3-
8B instruction tuning, NoRA++ consistently improves generation quality, yield-
ing average MMLU gains of +0.3%–0.8%, including +1.6% on STEM (Alpaca)
and +1.3% on OpenOrca. We further show that NoRA constrains adaptation to
a low-dimensional functional subspace, implicitly regularizing update magnitude
and direction. These results establish activation-space tuning as a complemen-
tary and highly parameter-efficient alternative to weight-based PEFT, positioning
activation functions as first-class objects for model adaptation.

1 INTRODUCTION

Recent advances in deep learning have demonstrated the remarkable power of large-scale pretrained
models across domains such as vision, language, and multimodal learning Abnar et al. (2021). How-
ever, deploying these models in downstream tasks often requires task-specific adaptation, posing sig-
nificant challenges in terms of computational efficiency and parameter overhead Jiang et al. (2024);
Lyu & Yin (2024). Full fine-tuning of all model parameters is not only costly but also prone to over-
fitting and catastrophic forgetting, especially when labeled data is limited or hardware resources are
constrained Krizhevsky et al. (2009).

To address these issues, parameter-efficient fine-tuning (PEFT) Houlsby et al. (2019) techniques
have emerged as a promising solution. Among them, Low-Rank Adaptation (LoRA) Hu et al. (2021)
has gained significant attention by introducing trainable low-rank perturbations to frozen weight
matrices, achieving strong performance with only a small fraction of trainable parameters. However,
while these methods are effective for updating weight matrices, they largely overlook the potential of
adapting non-linear components, such as activation functions. Existing PEFT approaches typically
treat activation functions as fixed, immutable components, despite their crucial role in capturing
task-specific inductive biases (e.g., smoothness, stability) Shi et al. (2024). This neglect of the
adaptability of activation functions marks a critical gap in current PEFT strategies. Activations
play a vital role in transforming input data at each layer of a neural network Sharma et al. (2017),
and their adaptation is key to fine-tuning the model’s performance for specific tasks. This shift from
focusing solely on weights to also considering the adaptation of activations represents a fundamental
rethinking of the PEFT paradigm, particularly in models like KANs Liu et al. (2025), where the
activation functions themselves are learnable and dynamic.

In this work, we investigate fine-tuning strategies that target activation functions, using learnable
rational functions as a flexible and expressive alternative to fixed nonlinearities. Unlike traditional
architectures that rely on fixed nonlinearities, which remain static during training, our approach
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leverages the fact that many widely-used activation functions such as ReLU Glorot et al. (2011),
GELU Hendrycks & Gimpel (2016), and Swish Ramachandran et al. (2017), can be closely ap-
proximated or even exactly represented using rational functions. Models equipped with learnable
rational activations replace these fixed nonlinearities with parameterized rational functions, allowing
the nonlinear transformations to be expressed as:

ϕ(x) =
P (x)

Q(x)
=

∑m
i=0 aix

i∑n
j=0 bjx

j
, (1)

where {ai} and {bj} are learnable coefficients. This insight implies that our method is theoretically
applicable to any network by replacing fixed activations with their rational counterparts. However,
adapting rational activations presents unique challenges: small perturbations in the denominator
Q(x) can lead to large functional changes or instability.

To overcome this challenge, we propose the Nonlinear Rational Adapter (NoRA), the first
parameter-efficient fine-tuning framework explicitly designed for the activation function compo-
nents in model. NoRA first replaces the fixed activation functions with learnable rational functions,
then introduces low-rank perturbations to both the numerator P (x) and denominator Q(x) coeffi-
cients, allowing task-specific adaptation while preserving the algebraic structure of rational transfor-
mations. By constraining updates to a structured low-dimensional subspace Nie et al. (2020), NoRA
ensures smoothness, stability, and bounded functional deviation during fine-tuning—properties crit-
ical for the safe adaptation of rational activations.

Our contributions are summarized as follows:

• A new paradigm for activation-centric PEFT: We introduce NoRA, the first fine-tuning
framework that directly targets the adaptation of activation functions. This shifts the focus
of PEFT from weight matrices to the nonlinear components of neural networks.

• Structured low-rank adaptation of rational functions: NoRA perturbs both numerator
and denominator coefficients in a theoretically grounded manner, preserving functional
stability while enabling flexible task-specific adaptation.

• Practical compatibility with rational activations: NoRA complements existing rational
function activations by providing a parameter-efficient adaptation mechanism. It operates
without architectural changes, making it readily applicable across models that use rational
approximations of standard nonlinearities.

By shifting the focus of PEFT from weight adaptation to activation-level adaptation, our work opens
new directions for enhancing expressiveness and adaptability in modern neural architectures.

2 RELATED WORK

2.1 LOW RANK ADAPTATION (LORA)

Low-Rank Adaptation (LoRA) Hu et al. (2021) is a technique designed to efficiently fine-tune large
pre-trained language models by reducing the number of trainable parameters. Instead of updating
the entire weight matrix W0 during training, LoRA introduces two low-rank matrices, A and B,
such that:

W = W0 +∆W = W0 +BA (2)

Here, W0 represents the original weight matrix, ∆W denotes the weight update, B ∈ Rd×r, and
A ∈ Rr×k, where r ≪ min(d, k) is the rank of the decomposition. This approach leverages the
observation that the updates to the weights during model adaptation often have a low intrinsic rank,
allowing for a significant reduction in the number of trainable parameters without compromising
model performance.

During the forward pass, the output is computed as:

y = Wx = (W0 +BA)x = W0x+BAx (3)
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In this formulation, W0 remains fixed, and only the matrices A and B are updated during training.
This strategy not only reduces computational and memory requirements but also mitigates issues
such as catastrophic forgetting by preserving the original model parameters.

2.2 LEARNABLE ACTIVATION FUNCTIONS

Activation functions are critical to the expressivity and inductive biases of neural networks.
While standard architectures rely on fixed nonlinearities such as ReLU Glorot et al. (2011),
GELU Hendrycks & Gimpel (2016), and Swish Ramachandran et al. (2017), recent work has
explored learnable activation functions that adapt their shape during training. Early parametric
forms include PReLU He et al. (2015a), which learns a slope parameter for negative activations,
and APL Agostinelli et al. (2015), which models activations as a piecewise-linear combination of
hinge functions. Later developments use spline-based and kernel-based approximations for higher
flexibility.

A particularly powerful family of learnable activations is based on rational functions. Due to their
universal approximation property Baker Jr & Gammel (1961), rational functions can represent a
wide range of continuous functions more compactly than polynomials. A rational activation is
typically expressed as:

ϕ(x) =
P (x)

Q(x)
=

∑m
i=0 aix

i∑n
j=0 bjx

j
, (4)

where {ai} and {bj} are learnable coefficients of the numerator and denominator, respectively. This
formulation allows activation functions to dynamically adjust their nonlinearity during training.

3 NONLINEAR RATIONAL ADAPTER (NORA)

In this work, we propose the Nonlinear Rational Adapter (NoRA), a novel parameter-efficient
fine-tuning method that adapts pretrained models by modifying their nonlinear activation functions
with learnable rational functions.

Traditional activation functions, such as ReLU Glorot et al. (2011) and GELU Hendrycks & Gimpel
(2016), can all be approximately expressed as rational functions Telgarsky (2017) of the form:

ϕ(x) =
P (x)

Q(x)
(5)

where P (x) and Q(x) are polynomials of the form P (x) =
∑m

i=0 aix
i and Q(x) =

∑n
j=0 bjx

j ,
with learnable coefficients {ai} and {bj}. Then this formulation also can be standardized to avoid
division by zero as:

ϕ(x) =
a0 + a1x+ a2x

2 + · · ·+ amxm

1 + |b0 + b1x+ b2x2 + · · ·+ bnxn|
(6)

This formulation allows any fixed activation function to be represented as a rational function with
learnable coefficients, providing more flexibility and expressiveness in modeling complex data trans-
formations. While using a single shared rational activation function for all neurons limits the model’s
expressiveness, assigning a unique activation to each neuron is prohibitively expensive. Following
Group-KAN Yang & Wang (2025), we partition the hidden (channel) dimension of each layer into g
disjoint groups, fixed across tokens and batches. All neurons in the same group share one learnable
rational activation function. This static grouping preserves flexibility while keeping the overhead
linear in g (i.e., g activations per layer) rather than per neuron.

Building on this idea, NoRA first replaces the fixed activation function with a group learnable ra-
tional function, and then injects structured low-rank perturbations Benaych-Georges & Nadakuditi
(2011) into the coefficient matrices of these rational functions. Specifically, the perturbations are
applied to both the numerator P and the denominator Q in a grouped fashion, where the coefficients
are divided into g groups. Let ϕ(X) denote the original rational function, and ϕ′(X) its perturbed
counterpart. The resulting updated rational function is given by:

ϕ′(X) =
(Pg + Lg(∆P ))(X)

(Qg + Lg(∆Q))(X)
(7)
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Here, Pg and Qg represent the original polynomial numerator and denominator of the rational acti-
vation function, respectively. The perturbation terms ∆P and ∆Q are approximated using a group-
wise low-rank adaptation function Lg(·), which applies independent low-rank perturbations within
each group g = 1, . . . , G.

More concretely, the entire set of neurons is partitioned into G disjoint groups, each containing n/G
neurons. For each group g, the adapted rational activation function is defined as

ϕ′
g(X) =

(Pg +AP
g B

P
g )(X)

(Qg +AQ
g B

Q
g )(X)

(8)

where the perturbations ∆Pg = AP
g B

P
g and ∆Qg = AQ

g B
Q
g are expressed as low-rank matrix

products with
A(·)

g ∈ Rd×r, B(·)
g ∈ Rr×1,

where (·) ∈ {P,Q}, d is the degree of the polynomial, and r is the rank of the approximation.

All neurons within the same group g share the adapted activation function ϕ′
g , enabling parameter-

efficient and localized functional adaptation. Increasing the number of groups G enhances the gran-
ularity of adaptation, allowing more flexible modeling of complex activation patterns while keeping
the parameter increase minimal due to the low-rank structure.

Furthermore, to ensure stable training and smooth fine-tuning from a pretrained baseline, all low-
rank matrices are initialized similarly to LoRA Hu et al. (2021): Ag is initialized with a small Gaus-
sian noise (e.g., N (0, 0.02)) and Bg is initialized as zeros. This initialization guarantees that the
adapted rational activation functions ϕ′

g(X) are equivalent to the original functions Pg(X)/Qg(X)
at the start of training. The reason why tuning activation matters and why we choose rational func-
tion are shown in Appendix A, B

An overview of the NoRA framework is illustrated in Figure 1.

Group Rational Functionσ
Initialization

Numerator
A

BUpdate
Denominator

B

A

Update

Tunable Frozen

Figure 1: Overview of the NoRA framework. NoRA replaces fixed activation functions with group
rational functions and introduces structured low-rank perturbations to both the numerator and de-
nominator coefficients.

4 EXPERIMENT

In this section, we evaluate the performance of NoRA across both image classification and language
model tasks. Specifically, we apply NoRA to the ViT-Tiny model for CIFAR-10 and CIFAR-100
classification, and to the LLaMA3-8B model for instruction tuning.

4.1 COMPARISON WITH PARAMETER-EFFICIENT FINE-TUNING METHODS IN IMAGE
CLASSIFICATION

4.1.1 EXPERIMENT SETUP.

We conduct experiments using the ViT-Tiny model pretrained on ImageNet-1K Deng et al. (2009)
For adaptation, we explore two PEFT configurations: (1) NoRA, where we only replace the GELU in
FFN with the rational activation function and use group-wise low-rank perturbations while keeping
all other weights frozen; and (2) NoRA++, a hybrid variant that combines NoRA with standard
LoRA applied to the MLP layers in attention layers. In NoRA++, both the activation functions
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Table 1: Comparison with parameter-efficient fine-tuning methods on CIFAR-10 and CIFAR-100.

Method Trainable Params (M) CIFAR-10 Acc. (%) CIFAR-100 Acc. (%)

Full tuning 5.54 (100%) 90.71 77.19
VPT 0.39 (7.0%) 89.62 (−1.09) 75.43 (−1.76)
Adapter 0.48 (8.7%) 89.93 (−0.78) 75.88 (−1.31)
LoRA 0.33 (6.0%) 91.05 (+0.34) 77.68 (+0.49)
QLoRA 0.33 (6.0%) 90.45 (−0.26) 77.01 (−0.18)
DoRA 0.34 (6.1%) 91.13 (+0.42) 77.71 (+0.52)
NoRA (ours) 0.02 (0.4%) 90.88 (+0.17) 77.46(+0.27)
NoRA++ (ours) 0.35 (6.2%) 91.24 (+0.53) 77.76 (+0.57)

and select linear weights are jointly adapted, offering a more expressive yet still parameter-efficient
fine-tuning scheme. For both NoRA and NoRA++, the low-rank perturbation rank is set to r = 2.
In both settings, the classification head is also trained. Evaluation is performed on CIFAR-10 and
CIFAR-100 Krizhevsky et al. (2009), two widely used image classification benchmarks. CIFAR-
10 includes 10 object classes, while CIFAR-100 contains 100 fine-grained classes grouped into 20
superclasses. Each dataset provides 6000 or 600 samples per class, with image resolution 32 × 32.
We resize images to 224× 224 and use a patch size of 16 Dosovitskiy et al. (2020) during training.
The specific hyperparameter settings can be referred to in Appendix C.

4.1.2 BASELINE METHODS.

To provide a comprehensive evaluation, we compare NoRA with several representative parameter-
efficient fine-tuning (PEFT) methods. These include Full Fine-Tuning, which updates all model
parameters and serves as an upper-bound reference; VPT Jia et al. (2022), which prepends learnable
visual prompt tokens to the input sequence while keeping the backbone frozen; Adapter Chen et al.
(2022), which inserts lightweight bottleneck modules between transformer blocks and updates only
these modules during training; LoRA Hu et al. (2021), which introduces trainable low-rank matrices
into attention layers while freezing the original weights; QLoRA Dettmers et al. (2023), which ex-
tends LoRA to 4-bit quantized models for memory-efficient adaptation; and DoRA Liu et al. (2024),
which decomposes pre-trained weights into magnitude and direction components to better approxi-
mate the behavior of full fine-tuning. All methods are implemented on the same ViT-Tiny backbone
for fair comparison, with the classification head remaining trainable. Detailed hyperparameter set-
tings are provided in Appendix C.1.

4.1.3 RESULT ANALYSIS

As shown in Table 1, NoRA, while tuning only 0.02M parameters (0.4%), achieves 90.88% accuracy
on CIFAR-10 and 77.46% on CIFAR-100, outperforming full fine-tuning by +0.17% and +0.27%,
respectively. This highlights the surprising effectiveness of adaptively tuning activation functions
alone, without modifying any backbone weights. In contrast, other PEFT baselines such as LoRA
and DoRA also slightly surpass full fine-tuning but require over 6% of the model parameters to be
updated—more than 15× as many as NoRA. Meanwhile, Adapter, QLoRA, and VPT lag behind in
both accuracy and efficiency, underscoring the importance of adaptation position and mechanism.
To explore composability, we further introduce a hybrid variant, NoRA++, which applies NoRA to
the activation functions and LoRA to the attention and MLP layers. This integration yields the best
accuracy on both datasets—91.24% on CIFAR-10 and 77.76% on CIFAR-100—while still using
fewer trainable parameters than full fine-tuning. These results confirm that NoRA offers an excellent
trade-off between accuracy and efficiency, and its compatibility with weight-based methods like
LoRA enables scalable and flexible adaptation strategies.

4.2 SCALABILITY WITH GROUP EXPANSION.

4.2.1 EXPERIMENT SETUP.

To further investigate the capacity and scalability of NoRA, we systematically increase the number
of groups g by powers of two, setting g = 8, 16, 32, 64, while keeping the rank fixed at r = 3 and all
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Figure 2: The relationship curve between the number of groups and the number of parame-
ters(without classification head) and the classification accuracy of CIFAR-10/100 during fine-tuning.

other training settings unchanged. This allows us to study how finer group partitioning influences
the expressiveness and adaptability of the rational activation functions. To initialize the parameters
for these finer group divisions efficiently, we adopt a simple replication strategy, wherein the original
group-wise rational coefficients are duplicated along the channel dimension to match the increased
number of groups. This approach enables higher-resolution activation adaptation without modifying
the model architecture, thus providing a practical and scalable way to enhance NoRA’s functional
flexibility.

4.2.2 RESULT ANALYSIS.

This straightforward strategy yields consistent performance improvements, as illustrated in Figure 2.
As the number of groups g increases from 8 to 64, NoRA achieves progressively higher accuracy
on both CIFAR-10 (from approximately 92.2% to 93.1%) and CIFAR-100 (from approximately
77.6% to 79.6%). Meanwhile, the number of trainable parameters increases only moderately (from
approximately 13K to 28K), reflecting the controlled growth enabled by the low-rank group-wise
design. These results empirically confirm that increasing group resolution facilitates more localized
and specialized nonlinear modeling, allowing NoRA to better capture task-specific activation dy-
namics. The dual-axis plots in Figure 2 clearly illustrate this trade-off: performance scales almost
linearly with group count, while parameter cost grows sub-linearly, underscoring NoRA’s efficiency.
Notably, these gains are achieved without tuning additional hyperparameters or introducing signifi-
cant training overhead, further highlighting the practicality and scalability of the proposed method.
This behavior supports the intuition that composing structured local approximations can effectively
approximate global nonlinear functions within the activation space.

4.3 INSTRUCT-TUNING IN LARGE LANGUAGE MODEL

4.3.1 EXPERIMENT SETUP.

To assess the compatibility and enhanced effectiveness of our method in joint instruction-tuning set-
tings, we introduce NoRA++, a hybrid adaptation framework that combines the proposed activation-
centric fine-tuning with conventional weight-space tuning. Specifically, we integrate NoRA with
LoRA on the LLaMA3-8B model by replacing the fixed activation functions in the MLP blocks of
each Transformer layer with group-wise rational functions, and then applying structured low-rank
adaptation via NoRA. This modification enables activation-space tuning while maintaining the pa-
rameter efficiency of LoRA’s weight-space updates, resulting in a complementary and synergistic
tuning mechanism. We evaluate NoRA++ on a suite of five diverse instruction datasets—Alpaca,
MathInstruct, OpenOrca, ShareGPT-Hyper, and UltraChat—encompassing tasks from open-ended
dialogue and reasoning to summarization. Under identical training budgets, NoRA++ consistently
surpasses standard LoRA across all datasets, achieving significant improvements in output qual-
ity and generalization. To quantitatively assess its reasoning ability, we report results on the
MMLU Hendrycks et al. (2020) benchmark under a 5-shot evaluation setup. NoRA++ yields consis-
tent gains of +0.3% to +0.8% in average accuracy over LoRA, demonstrating that activation-centric
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adaptation provides meaningful benefits even when layered atop established PEFT methods. Full
implementation and hyperparameter details are provided in Appendix C .

4.3.2 RESULT ANALYSIS.

As shown in Table 2, the combination of NoRA and LoRA yields consistent and measurable perfor-
mance gains across most instruction-tuning datasets and MMLU categories. For example, on Alpaca
and MathInstruct, NoRA++ improves the average accuracy by +0.8% and +0.5%, respectively, with
notable gains such as +1.6% in STEM (Alpaca) and +2.3% in STEM (MathInstruct). Even on
OpenOrca, which already benefits from strong LoRA tuning, the addition of NoRA leads to further
improvements in key areas like STEM (+1.3%) and Social Sciences (+1.2%), resulting in a net aver-
age increase. While a few categories exhibit minor regressions—for instance, –0.7% in Humanities
on OpenOrca and –0.4% in the “Other” category of ShareGPT-Hyper—the overall trend remains
positive. These results suggest that NoRA effectively introduces complementary local nonlinearity
at the activation level, enhancing model expressiveness without disrupting the core low-rank struc-
ture imposed by LoRA. This synergy between activation-level and weight-level tuning highlights
NoRA’s general applicability and its potential as a plug-and-play enhancement module for a wide
range of parameter-efficient fine-tuning (PEFT) methods in large-scale language models.

Table 2: MMLU-test accuracy (%) after instruction tuning LLaMA3-8B on five datasets. Each cell
shows LoRA result followed by NoRA+LoRA result and delta. Green indicates improvement and
red indicating decline.

Tuning Dataset STEM Humanities Social Sciences Other Average
Alpaca 60.2 → 61.8 (+1.6) 65.5 → 65.0 (–0.5) 63.3 → 64.5 (+1.2) 62.0 → 63.0 (+1.0) 62.8 → 63.6 (+0.8)
MathInstruct 53.7 → 56.0 (+2.3) 75.5 → 74.9 (–0.6) 58.3 → 59.2 (+0.9) 70.7 → 70.4 (–0.3) 63.9 → 64.4 (+0.5)
OpenOrca 54.2 → 55.5 (+1.3) 74.6 → 73.9 (–0.7) 58.1 → 59.3 (+1.2) 71.0 → 70.4 (–0.6) 63.9 → 64.2 (+0.3)
ShareGPT-Hyper 58.9 → 59.2 (+0.3) 66.3 → 67.0 (+0.7) 60.7 → 61.0 (+0.3) 59.4 → 59.0 (–0.4) 61.3 → 61.6 (+0.3)
UltraChat 57.2 → 57.9 (+0.7) 64.8 → 65.3 (+0.5) 60.2 → 59.8 (–0.4) 59.7 → 60.6 (+0.9) 60.5 → 60.9 (+0.4)

4.4 ABLATION STUDY AND ANALYSIS

In this section we present four experiments to assess rational activations, low-rank perturbations,
selective coefficient tuning, and overall efficiency.

4.4.1 COMPARISON WITH OTHER LEARNABLE ACTIVATIONS.

Table 3: Ablation on learnable activa-
tion functions.

Name Accuracy (%)

PReLU 53.21
AReLU 54.17
ELU 52.84
NoRA (Ours) 77.46

To validate the necessity of employing rational func-
tions as activation mechanisms, we perform an abla-
tion study comparing NoRA with several common learn-
able activation functions. Specifically, we replace the
GELU Hendrycks & Gimpel (2016) activations in the
MLP layers of the pretrained ViT-Tiny model with alter-
native nonlinearities, including PReLU He et al. (2015b),
AReLU Chen et al. (2020), and ELU Clevert et al. (2016).
We then fine-tune only the activation function parameters
and the classification head on CIFAR-100, while keeping
all other model weights frozen. As reported in Table 3, these general-purpose activation functions
yield only marginal improvements, with top-1 accuracy consistently lagging behind our proposed ra-
tional activation-based approach. This suggests that simple substitution of activation functions fails
to provide sufficient task-specific adaptability or structural compatibility within the frozen trans-
former architecture. In contrast, our method enables structured, localized, and task-adaptive mod-
ulation of the activation landscape through low-rank perturbations of rational functions, yielding
superior representational refinement under stringent parameter constraints.

4.4.2 DIFFERENT TUNING METHODS FOR LEARNABLE RATIONAL ACTIVATIONS.

To evaluate the effectiveness of NoRA, we compare it with several fine-tuning strategies that all
keep the backbone frozen and only update the classification head along with the learnable rational
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functions on CIFAR-100. Rational fine-tuning directly updates the coefficients of the rational acti-
vation functions. Zero-initialized fine-tuning introduces a learnable matrix initialized to zero and
added to the rational coefficients. GELU-initialized fine-tuning initializes the rational functions to
approximate GELU before training. Const-tuning (a0,b0 only) restricts adaptation to the constant
terms of the numerator and denominator, i.e., updating only a0 and b0, which controls global off-
set/scale but leaves the nonlinear shape fixed. As shown in Table 4, all three baselines underperform,
suggesting that coefficient-only tuning lacks sufficient expressiveness. In contrast, NoRA achieves
the highest accuracy by introducing a learnable low-rank shift in the activation space, offering more
flexible and effective adaptation.

4.4.3 IMPACT OF SELECTIVE PERTURBATION ON RATIONAL COEFFICIENTS.

Table 4: Ablation on different fine-tuning
strategies.

Method Accuracy (%)

Rational tuning 76.56
Zero-init tuning 76.44
GELU-init tuning 76.07
Const-tuning (a0,b0 only) 74.91
NoRA (ours) 77.46

To further investigate the importance of jointly
adapting both components of the rational activation,
we conduct an ablation study in which low-rank per-
turbations are selectively applied to either the nu-
merator or the denominator coefficients, while keep-
ing the other component fixed. As presented in Ta-
ble 5, perturbing only one side leads to a notice-
able performance degradation on both CIFAR-10
and CIFAR-100, compared to the setting where both
components are jointly adapted. This result suggests
that the effectiveness of NoRA stems not from mod-
ulating a single part of the activation function, but
from the synergistic interaction between the numer-
ator and denominator. Specifically, the numerator controls the functional shape of the activation,
while the denominator governs numerical stability and saturation behavior. Their co-adaptation
introduces a richer and more flexible activation landscape, which is critical for the improved gener-
alization performance observed. These findings underscore the necessity of NoRA’s co-perturbation
design and highlight a fundamental architectural distinction from existing parameter-efficient fine-
tuning methods.

Numerator Denominator CIFAR-10 Acc. (%) CIFAR-100 Acc. (%)
✗ ✓ 87.40 74.16
✓ ✗ 86.92 73.58
✓ ✓ 90.88 77.46

Table 5: Effect of selectively injecting low-rank perturbations into numerator and denominator co-
efficients. ✓ indicates perturbed (trainable), ✗ indicates unperturbed (frozen).

4.4.4 RESOURCE EFFICIENCY ANALYSIS.

We assess the resource efficiency of NoRA and LoRA from three key perspectives: inference-time
computational cost (FLOPs), latency, and the number of trainable parameters, all evaluated on the
ViT-Tiny backbone. As shown in Table 6, NoRA achieves over 17× reduction in trainable parameter
count compared to LoRA (2.10K vs. 37.24K), highlighting its extreme parameter efficiency. Despite
this, the inference latency remains comparable—5.69 ms/sample for NoRA vs. 5.30 ms/sample for
LoRA—indicating that the additional expressiveness introduced by activation modulation does not
impose substantial runtime overhead. The slight increase in FLOPs (1.07G vs. 0.91G) is expected,
as NoRA introduces group-wise rational activation functions, which involve evaluating both poly-
nomial numerators and denominators across multiple activation groups. This minor computational
overhead is a direct result of NoRA’s more flexible nonlinear modeling capability, and reflects the
trade-off between functional expressiveness and cost. Importantly, the trainable parameter counts re-
ported here exclude the classification head to ensure fair comparison. Overall, these results reinforce
NoRA’s strength as a lightweight and deployment-friendly PEFT method, with minimal runtime cost
and strong potential for integration with other techniques like LoRA or adapters.
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Method Params (K) FLOPs (G) Inference Time (ms/sample)

LoRA 37.24 0.91 5.30
NoRA (ours) 2.10 1.07 5.69

Table 6: Comparison of resource efficiency between LoRA and NoRA on ViT-Tiny.

5 CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

In this work, we proposed the Nonlinear Rational Adapter (NoRA), a novel and general frame-
work for parameter-efficient fine-tuning that shifts the focus of adaptation from the traditional
weight-centric view to a new activation-centric perspective. By replacing fixed nonlinearities with
task-adaptive rational functions, NoRA enables flexible and expressive modulation of pretrained
models through compact, structured perturbations applied directly in the activation space. This is
achieved via learnable low-rank parameterizations of both the numerator and denominator of ratio-
nal functions, allowing for stable, efficient, and interpretable task adaptation while preserving the
overall model architecture. The proposed group-wise formulation further enhances scalability by
localizing adaptation across independently modulated activation units, thereby reducing parameter
redundancy and improving representational flexibility. Extensive experiments on image classifica-
tion (CIFAR-10/100) and instruction tuning of large language models (LLaMA3-8B) demonstrate
that NoRA significantly outperforms full fine-tuning, despite updating only 0.4% of the total model
parameters. Moreover, our extended variant, NoRA++, which integrates NoRA with LoRA for
joint adaptation of activations and weights, achieves even stronger performance, consistently sur-
passing both DoRA and LoRA across vision and language tasks while maintaining superior pa-
rameter efficiency. Collectively, these results validate activation-centric adaptation as a powerful
and underexplored dimension in the fine-tuning landscape, offering a complementary perspective to
weight-based PEFT approaches and paving the way for more modular, robust, and efficient model
customization strategies within large-scale pretraining paradigms.

5.2 FUTURE WORK

We plan to extend NoRA beyond classification and instruction tuning to more complex architec-
tures, including generative diffusion models, graph neural networks, and vision and language mod-
els, where structured nonlinearity may be particularly beneficial. We will study functional classes
beyond rationals (for example spline based, Fourier inspired, or attention conditioned activations)
to clarify expressiveness and efficiency tradeoffs. We will develop adaptive group wise strategies
that automatically select the number of groups g and the subspace rank r during training, which
enables dynamic control of capacity and cost. We will also integrate NoRA with complementary
PEFT methods such as prompt tuning, adapters, and LoRA variants across different network lev-
els to achieve compositional and task aware adaptation. Finally, we aim to scale NoRA to trillion
parameter language models and to evaluate it on long context, multi hop reasoning, and multi task
benchmarks. Because NoRA operates in activation space and is modular with respect to weight
centric updates, it can be inserted into existing pipelines and is suitable for deployment under re-
source or privacy constraints, including edge inference, online learning, and user personalization,
where adapting lightweight nonlinear components enables efficient and stable continual learning on
dynamic or streaming data.

9
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A WHY TUNING ACTIVATION MATTERS?

Setup and notation. Consider a depth-L network with frozen weight matrices W1, . . . ,WL and
elementwise, possibly group-shared, activations ϕℓ(·; θℓ):

h0(x) = x, zℓ = Wℓhℓ−1(x), hℓ(x) = ϕℓ(zℓ; θℓ), F (x) = hL(x). (9)

Here θℓ ∈ Rpℓ are activation parameters. We analyze why adapting {θℓ} (while freezing {Wℓ}) is
impactful for expressivity, stability, optimization, and generalization.

A.1 FUNCTIONAL DIRECTIONS UNLOCKED BY ACTIVATION PARAMETERS

Let ∆θ = {∆θℓ}Lℓ=1 be a small update. By the chain rule,

F (x; θ +∆θ)− F (x; θ) =

L∑
ℓ=1

∂F

∂hℓ
(x)︸ ︷︷ ︸

ΠL
j=ℓ+1Jj(x)

· ∂hℓ

∂θℓ
(x)︸ ︷︷ ︸

Dℓ(x)∆θℓ

+O(∥∆θ∥2). (10)

We denote
Jj(x) := Diag

(
ϕ′
j(zj ; θj)

)
Wj , (11)

and

Dℓ(x) ∈ Rdℓ×pℓ , [Dℓ(x)]i,: =
[∂ϕℓ(zℓ,i; θℓ)

∂θℓ

]⊤
. (12)

Thus the first-order functional change lies in the span

∆F (·) ∈ span
{ (

ΠL
j=ℓ+1Jj(·)

)
Dℓ(·) ek : 1 ≤ ℓ ≤ L, 1 ≤ k ≤ pℓ

}
. (13)

Its intrinsic dimension is at most
∑

ℓ pℓ (or
∑

ℓ Gℓpℓ if parameters are shared across Gℓ groups).
Therefore, activation tuning provides a low-dimensional yet function-space set of directions unavail-
able if activations are fixed.

A.2 STABILITY AND LIPSCHITZ CONTROL

Denote the Lipschitz seminorm of ϕℓ(·; θℓ) as

Lip(ϕℓ; θℓ) := sup
z

∣∣ϕ′
ℓ(z; θℓ)

∣∣. (14)

For each block hℓ = ϕℓ ◦Wℓ,

Lip(hℓ; θℓ) ≤ Lip(ϕℓ; θℓ) ∥Wℓ∥2. (15)

Hence the network Lipschitz constant satisfies

Lip(F ; θ) ≤
L∏

ℓ=1

Lip(ϕℓ; θℓ) ∥Wℓ∥2. (16)

Theorem A.1 (Network-level deviation under activation updates). Let F ′ denote the network after
changing θ 7→ θ +∆θ. Then for any x,

∥F ′(x)− F (x)∥2 ≤
L∑

ℓ=1

(∏
j>ℓ

Lip(hj ; θj)
)
∥∆ϕℓ(zℓ)∥2, (17)

where
∆ϕℓ(z) := ϕℓ(z; θℓ +∆θℓ)− ϕℓ(z; θℓ). (18)

Moreover,
∥∆ϕℓ(zℓ)∥2 ≤ sup

z
∥Dℓ(z)∥2→2 ∥∆θℓ∥2

√
dℓ + O

(
∥∆θℓ∥22

)
. (19)

Consequences. (i) By directly controlling Lip(ϕℓ; θℓ) one can regularize the global Lipschitz con-
stant, which enters standard generalization and robustness bounds. (ii) The deviation bound depends
linearly (first order) on activation parameters through Dℓ, enabling fine-grained, stable modulation
even with frozen weights.
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A.3 GRADIENT FLOW, JACOBIANS, AND EFFECTIVE RANK

For a single block h = ϕ(Wx; θ), the input Jacobian is

Jx =
∂h

∂x
= Diag

(
ϕ′(Wx; θ)

)
W. (20)

Activation parameters change Jx via ϕ′, thus altering (i) sensitivity to inputs, (ii) conditioning of
the layer, and (iii) gradient flow to preceding layers. If ϕ is gated (e.g., with a slope/threshold
parameter), let A(θ) := {i : ϕ′(zi; θ) > 0} be the active set. Then

Rank(Jx) ≤ |A(θ)| ≤ d. (21)

Hence, tuning θ modulates the effective rank and spectrum of the linearized map ΠℓJℓ, improving
gradient propagation in deep stacks.

A.4 OPTIMIZATION GEOMETRY AND THE NTK PERSPECTIVE

Let ϑ := ({Wℓ}, {θℓ}) and write the neural tangent kernel (NTK) Kϑ(x, x
′) =

⟨∇ϑF (x),∇ϑF (x′)⟩. Decompose

Kϑ(x, x
′) = KWW (x, x′) + Kθθ(x, x

′) + 2KWθ(x, x
′). (22)

Using the first-order expansion,

∇θℓF (x) =
(
Πj>ℓJj(x)

)
Dℓ(x), (23)

so Kθθ spans activation-feature directions {Dℓ} propagated to the output.

Proposition A.1 (Complementarity at initialization). Suppose pre-activations zℓ are centered and
whitened within groups, and the initial Wℓ are independent of θℓ (with zero-mean entries). Then

EKWθ(x, x
′) = 0, EKϑ(x, x

′) = EKWW (x, x′) + EKθθ(x, x
′). (24)

A.5 CURVATURE CONTROL VIA ϕ′ AND ϕ′′

Let L be a twice-differentiable loss and denote Jx = ∂h/∂x. For block h = ϕ(Wx; θ),

∂2h

∂x2
= Diag

(
ϕ′′(Wx; θ)

)
[Wx] [Wx]⊤ ⊙ I. (25)

Hence the input Hessian of the loss obeys

∇2
xL = J⊤

x ∇2
hL Jx +

∑
i

∂L
∂hi

∂2hi

∂x2
. (26)

Tuning θ therefore changes both the Gauss–Newton part (through ϕ′ in Jx) and the residual curvature
term (through ϕ′′), reshaping the local optimization landscape without touching W .

A.6 DATA-ALIGNED GRADIENTS AND SATURATION AVOIDANCE

Let the gradient w.r.t. a preceding weight matrix Wℓ be

∇Wℓ
L =

(
δℓ ⊙ ϕ′

ℓ(zℓ; θℓ)
)
hℓ−1(x)

⊤, (27)

where δℓ is the backpropagated error. Then

E ∥∇Wℓ
L∥2F = E

[
∥δℓ∥22 ∥hℓ−1∥22

]
· Eϕ′

ℓ(zℓ; θℓ)
2, (28)

where the overline denotes the average across units. Choosing θℓ to maximize derivative mass under
the moments of zℓ keeps most units responsive (not saturated), improving gradient signal-to-noise
without changing Wℓ.
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A.7 GENERALIZATION VIA CAPACITY CONTROL

Define the hypothesis class F with frozen {Wℓ} and activation parameters bounded by ∥θℓ∥ ≤ ρℓ
and local Lipschitz budgets Lip(ϕℓ; θℓ) ≤ λℓ. Using standard Lipschitz-based complexity bounds,
for inputs ∥x∥ ≤ R and N samples,

RN (F) ≲
R√
N

·

(
L∑

ℓ=1

(∏
j>ℓ

λj∥Wj∥2
)
· cℓ(ρℓ) ∥Wℓ∥2

)
, (29)

where cℓ(ρℓ) is a polynomial-in-ρℓ constant induced by the chosen parametrization of ϕℓ.

Takeaways.

• Functional expressivity at low cost. Activation parameters open a low-dimensional
function-space of directions (Eq. 13).

• Stable, controllable modulation. Activation Lipschitz and curvature (ϕ′, ϕ′′) yield explicit
network-level deviation and robustness control (Eqs. 16, 17, 26).

• Better conditioning and gradient flow. By changing gates/slopes, activation tuning con-
trols Jacobian rank/spectrum and mitigates saturation (Eqs. 20, 21, 28).

• Complementary optimization geometry. Activation-parameter gradients contribute an
NTK component largely orthogonal (in expectation) to weight-only directions (Eqs. 22,
23, 24).

These results justify activation tuning as a principled and effective axis for adapting pretrained
models, independently of the particular parameterization chosen for ϕℓ.

B WHY RATIONAL FUNCTION?

Rational functions offer a compact and flexible parametrization that can uniformly approximate the
activation functions used in modern networks—both smooth (e.g., tanh, sigmoid, GELU/erf-based,
SiLU/Swish) and non-smooth (e.g., ReLU, Leaky/ReLU)—on any bounded pre-activation domain.
We record the key facts concisely.

Definition. A degree-(m,n) rational function is

rm,n(x) =
Pm(x)

Qn(x)
=

∑m
i=0 aix

i∑n
j=0 bjx

j
, (30)

and we assume the domain K ⊂ R is compact with a pole-free margin

inf
x∈K

|Qn(x)| ≥ γ > 0, (31)

which is standard for stable approximation on K.

Density on compact sets. Because polynomials are dense in C(K) (Stone–Weierstrass) and poly-
nomials are a special case of rationals (take Qn ≡ 1), rationals are also dense:

∀f ∈ C(K), ∀ε > 0, ∃m,n, ∃ rm,n s.t. sup
x∈K

|f(x)− rm,n(x)| < ε. (32)

Thus any continuous activation used in practice admits uniform rational approximations on bounded
pre-activation ranges.

Fast rates for smooth activations. When f is real-analytic on a neighborhood of K (typical for
sigmoid/tanh/erf-like activations), best rational approximants achieve geometric convergence:

∃ C > 0, ρ > 1 : inf
deg(r)≤N

sup
x∈K

|f(x)− r(x)| ≤ C ρ−N , (33)

where N = m + n is total degree. This is substantially faster than the algebraic rates of many
polynomial schemes.
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Near-root-exponential rates for kinks. For non-smooth activations with a finite number of kinks
(e.g., ReLU, |x|), rational approximation still excels:

∃ C, c > 0 : inf
deg(r)≤N

sup
x∈K

|f(x)− r(x)| ≤ C exp
(
− c

√
N
)
, (34)

whereas the best polynomial error decays only algebraically in N . Hence even piecewise-linear
activations can be approximated to high accuracy with modest rational degree.

Practical consequences.

• Coverage. Eqs. equation 32–equation 34 ensure a single rational family can approximate
most activations used in deep learning on bounded pre-activation sets.

• Efficiency. The fast rates in equation 33–equation 34 imply that low degrees suffice in
practice, keeping parameters and compute small.

• Stability. The pole-free margin equation 31 ensures bounded slopes/curvatures on K, mak-
ing training numerically stable while retaining expressive shape control via the coefficients.

C EXPERIMENT DETAILS

The tables 7 and table 8 below show the hyperparameter during tuning the models.

Table 7: Hyperparameter settings for training ViT-Tiny on CIFAR-100.

Hyperparameter Value

Input resolution 2242

Epochs 50
Batch size 256
Learning rate 1× 10−3

Learning rate decay Cosine
Optimizer AdamW
Weight decay 0.05
AMP True

Table 8: Hyperparameter settings for instruct tuning.

Hyperparameter Value
Cutoff length 1024
Flash attention auto
Max new tokens 512
Max samples 1000
Per-device eval batch size 2
Preprocessing workers 16
Quantization method bnb
Stage SFT
Temperature 0.95
Template default
Top-p 0.7
Trust remote code True

C.1 IMPLEMENTATION DETAILS OF BASELINE METHODS

To ensure fair comparison across all parameter-efficient fine-tuning (PEFT) methods, we adopt a
unified experimental setup based on the ViT-Tiny backbone pretrained on ImageNet-1K. All meth-
ods fine-tune the classification head, and images are resized to 224 × 224 using a patch size of 16.
Below we detail the specific hyperparameter configurations for each baseline:
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• VPT Jia et al. (2022): We prepend 10 learnable prompt tokens of dimension 192 to the
input sequence. Only the prompts and classification head are updated. The learning rate
for the prompts is 5× 10−3, and the training schedule matches that of full fine-tuning.

• Adapter Houlsby et al. (2019): Adapter modules with a bottleneck dimension of 48 are
inserted between each transformer block. Only adapter parameters and the classification
head are updated. Learning rate is set to 1× 10−3.

• LoRA Zhang et al. (2023): LoRA modules with rank r = 8 are inserted into the query and
value projections of each attention layer. Alpha is set to 16, and dropout is disabled. Only
LoRA parameters and the classification head are updated.

• QLoRA Dettmers et al. (2023): The backbone is quantized to 4-bit precision using NF4
format. LoRA is applied with the same configuration as above. We use gradient check-
pointing and double quantization as described in the original paper.

• DoRA Liu et al. (2024): All linear weights are decomposed into magnitude and direction,
with both components trainable. Initialization follows the frozen pre-trained weights. The
learning rate is 5× 10−4, consistent with the original DoRA setup.

D OTHER EXPERIMENT RESULTS

D.1 OTHER ABLATION STUDIES

Rank Setting. We evaluate the performance of NoRA under varying amounts of tunable parameters
by adjusting the rank r in the low-rank updates of the rational function coefficients. Specifically, we
use the ViT-Tiny model pretrained on ImageNet-1K and fix the rational function structure like GR-
KAN as (m = 5, n = 4). To investigate the trade-off between expressivity and parameter efficiency,
we experiment with r ∈ {1, 2, 3, 4} while keeping other training configurations unchanged. As
shown in Figure 3, increasing the rank leads to improved performance up to r = 3, beyond which
gains saturate. The setting r = 3 achieves the best accuracy on CIFAR-100, suggesting that it strikes
a good balance between capacity and efficiency. Notably, when calculating the number of parameter
in this task we ignore the classification head.
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Figure 3: Accuracy-Parameter Trade-off in NoRA on CIFAR-100 with Varied Low-Rank Updates
on ImageNet-1K Pretrained ViT-Tiny.
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D.2 ADAPTABILITY OF ACTIVATION FUNCTIONS WITH DIFFERENT PEFT METHODS

Before and after fine-tuning the model, if the activation distribution of the same batch of samples
significantly changes across layers, it indicates that the method provides the activation function with
greater plasticity. Conversely, if the activation distribution remains relatively stable, the adaptability
is weaker. We typically use distribution distance as the core metric, normalizing it to the interval
[0, 1], and define the Adaptability Score in this context. As shown in Figure 4, mainstream methods
have not yet effectively explored the adaptability of activation functions.

Figure 4: Comparative analysis of Different PEFT Methods in terms of the adaptability of activation
functions

D.3 ANALYSIS OF CONVERGENCE RATE

As illustrated in Figure 5, we plot the training curves of NoRA and full fine-tuning across training
epochs. NoRA converges significantly faster, stabilizing around epoch 20, whereas full fine-tuning
requires nearly 45 epochs to reach convergence. This demonstrates NoRA’s capacity to leverage pre-
trained knowledge more efficiently, leading to faster and more stable adaptation. Likewise, although
our method does not outperform full fine-tuning on the training set, it achieves better generalization
on the test set. This indicates that our approach imposes a beneficial inductive bias, likely mitigating
overfitting and preserving useful priors from the pretrained model.

D.4 RESULT VISUALIZATION

t-SNE Visualization. To further understand the representational effect of NoRA, we perform a
t-SNE visualization on the learned feature embeddings for a selected subset of 10 diverse CIFAR-
100 classes. As shown in Figure 6, the embeddings obtained through full fine-tuning exhibit well-
separated clusters, indicating task-specific adaptation with high discriminative power. Interestingly,
NoRA achieves a similarly clear cluster structure despite tuning only 0.02% of parameters, suggest-
ing that it successfully reshapes the learned representation space within a low-dimensional subspace.

Grad-CAM Visualization. To intuitively demonstrate how adjusting nonlinear activations influ-
ences transferability, we visualize the final block of the ViT-Tiny model before and after fine-tuning
using Grad-CAM on selected samples from CIFAR-100. As shown in Figure 7, the fine-tuned
model exhibits stronger focus on the main objects within the images, indicating enhanced feature
localization. This suggests that fine-tuning the activation functions effectively improves the model’s
performance on downstream tasks by enabling better transfer and reuse of relevant features.
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(a) Loss on Training Set during Fine-Tuning on
CIFAR-100.
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(b) Loss on Validation Set during Fine-Tuning on
CIFAR-100.
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(c) Accuracy on Training Set during Fine-Tuning on
CIFAR-100.
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(d) Accuracy on Validation Set during Fine-Tuning
on CIFAR-100.

Figure 5: Comparison of Convergence Efficiency and Accuracy between NoRA and Full Fine-
Tuning across four experimental settings.
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(a) Full Fine-Tuning
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(b) NoRA (Ours)

Figure 6: t-SNE visualization of feature embeddings on a 10-class subset of CIFAR-100. (a) Full
fine-tuning produces well-separated clusters. (b) NoRA achieves comparably structured representa-
tions with 0.02% parameter updates, illustrating its capacity to retain discriminative geometry while
preserving pretrained inductive priors.
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Figure 7: Grad-CAM comparison chart before and after NoRA fine-tuning

E CODE AVALIABLE

Our code is available in https://anonymous.4open.science/r/NoRA_1.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

Parts of this manuscript were linguistically polished with the assistance of a large language model
(LLM), specifically ChatGPT (GPT-5). The model was only used for improving grammar, phrasing,
and clarity. All research ideas, experimental designs, data collection, analyses, and conclusions are
solely the work of the authors.
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