
Published as a conference paper at ICLR 2026

OPTIMAL BRAIN RESTORATION FOR JOINT QUANTIZA-
TION AND SPARSIFICATION OF LLMS

Hang Guo, Luca Benini, Yawei Li
ETH Zürich

https://huggingface.co/HangGuo/OBR

https://github.com/csguoh/OBR

ABSTRACT

Recent advances in Large Language Model (LLM) compression, such as quanti-
zation and pruning, have achieved notable success. However, as these techniques
gradually approach their limits, relying on a single method for further compression
has become increasingly challenging. In this work, we explore an alternative solu-
tion by combining quantization and sparsity. This joint approach, though promising,
introduces new difficulties due to the inherently conflicting requirements on weight
distributions: quantization favors compact ranges, while pruning benefits from
high variance. To attack this problem, we propose Optimal Brain Restoration
(OBR), a general and training-free framework that aligns pruning and quantization
by error compensation between both. OBR minimizes performance degradation
on downstream tasks by building on a second-order Hessian objective, which is
then reformulated into a tractable problem through surrogate approximation and
ultimately reaches a closed-form solution via group error compensation. Exper-
iments show that OBR incurs only a 1.4 perplexity degradation on Llama2-7B
to enable aggressive W4A4KV4 quantization with 50% sparsity, delivering up to
4.72× speedup and 6.4× memory reduction compared to the FP16-dense baseline.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Achiam et al., 2023; Dubey et al., 2024) have
demonstrated remarkable capabilities across a wide range of tasks. However, as LLMs continue
to grow in size with increasing parameter counts, efficiently serving them, especially in resource-
constrained edge devices, remains a significant challenge (Dettmers et al., 2022).

To meet the demand for efficient LLM deployment, a variety of methods have been proposed. One
prominent line of work focuses on LLM quantization (Nagel et al., 2021), whose main objective is to
remove outliers inherent in the LLM weights. To this end, existing works introduce either smooth-
ing (Lin et al., 2024a; Xiao et al., 2023) or Hadamard rotation as a preprocessing step (Ashkboos
et al., 2024; Liu et al., 2024) to redistribute outliers before quantization. Thanks to the resulting
flat distributions, recent state-of-the-arts (Liu et al., 2024; Sun et al., 2024; Hu et al., 2025) can
achieve even 4-bit weight-activation-KV cache (W4A4KV4) inference while preserving performance
comparable to the FP16 counterparts. Besides quantization, LLM pruning (Ma et al., 2023; Frantar
& Alistarh, 2023) is often considered as another popular solution for compressing LLMs. Recent
LLM pruning works (Sun et al., 2023; Zhang et al., 2024) have shown promising results on 50%
unstructured and 2:4 semi-structured sparsity by additionally considering the statistics of activations
during pruning.

Despite the promising results at moderate compression, relying on a single technique for further reduc-
tion is becoming increasingly difficult. As shown in Fig. 1(a), the quantization method QuaRot (Ashk-
boos et al., 2024) achieves competitive perplexity at moderate bit-width, but suffers from severe
degradation under 4-bits. Similarly, pruning alone also faces analogous limitations, where aggressive
sparsity inevitably leads to substantial degradation. In this work, we explore an alternative path to go
beyond current LLM compressions by jointly leveraging quantization and sparsification. The intu-
ition arises from the observation that low-bit and sparse representations can coexist. We empirically
find an average of 14.28% unstructured sparsity in the W4A4KV4 quantization-only Llama2-7B

1

https://huggingface.co/collections/HangGuo/optimal-brain-resotration-689863c8687d3aeed27f9a96
https://github.com/csguoh/OBR
https://github.com/csguoh/OBR

Published as a conference paper at ICLR 2026

18

16

14

12

10

8

6

16-bit 8bit 6bit 4-bit

Sparsity+Quant(Ours)

Quantization-only(QuaRot)

Pruning-only(WANDA)

Sparsity+Quant(Ours)

Quantization-only(QuaRot)

Pruning-only(WANDA)

3-bit

Equivalent Weight Bit-widths

W
ik

iT
ex

t2
 P

er
p
le

x
it

y

(a) Performance scaling with #bits

robust under 4bit

approaching

compression limits

9.54

2.73

2.02

230.56

804.62

1090.78

32.00

8.00

5.00

T
im

e(
m

s)
T

O
P

S
M

em
o

ry
(M

B
)

INT4-SparseINT4-DenseFP16-Dense

4.72x speedup

(b) Efficiency comparison between different GEMMs

Figure 1: (a) Single compression techniques (Sun et al., 2023; Ashkboos et al., 2024) rapidly reaches
limits under sub-4 bits while the joint counterpart can enable further compression. To enable a unified
comparison in a single figure, pruning is represented using equivalent bit-widths. (b) INT4 + 2:4
sparse GEMM can achieve faster inference speed, higher throughput, and lower memory usage.

model, suggesting potential combination of quantization and pruning. Furthermore, recent hardware
advances, such as NVIDIA’s Ampere and Hopper architectures, have introduced native support for
INT4-sparse GEMM kernels (Mishra et al., 2021; NVIDIA, 2022; 2021), making the combination of
quantization and sparsity increasingly practical for efficient LLM inference.

However, achieving effective joint quantization and sparsification is non-trivial, primarily due to
the inherent conflict between their objectives. Specifically, quantization favors a narrow numerical
range in the weights to minimize quantization error, whereas pruning benefits from large variations in
weight magnitudes to reveal naturally sparse patterns. For instance, Hadamard rotation is a common
practice in existing methods to smooth outliers for W4A4KV4 quantization. However, as evidenced
by Sec. 5.1, using existing pruning methods to force zeros on the Hadamard-rotated weights leads to
unacceptable performance degradation.

Our approach. In this work, we propose Optimal Brain Restoration (OBR), a general framework
to enable joint quantization and sparsification. The core idea of our OBR is to intervene between
pruning and quantization by computing an optimal compensation that minimizes the impact of
compression on downstream tasks, thereby reconciling their conflicting requirements on weight
distributions. To achieve this, we begin by formulating the second-order Hessian objective to minimize
the impact of weight perturbations on downstream task performance. To make the optimization
problem tractable, this objective is then approximated through row-wise decoupling, which eliminates
inter-row correlations. Building on this surrogate, we further introduce group error compensation,
which redistributes distortions from pruning and quantization to minimize overall error, yielding an
explainable closed-form solution. By reconciling the conflicting requirements between quantization
and sparsity, OBR provides an efficient and practical solution for LLM compression.

To the best of our knowledge, OBR is the first to enable W4A4KV4+50% sparsity LLMs, without
requiring any additional retraining. We apply the proposed framework on Llama2 (Touvron et al.,
2023), Llama3 (Dubey et al., 2024), and Qwen2.5 (QwenTeam, 2024) families, and demonstrate
promising performance with OBR. In particular, our highly compressed model narrows the perplexity
gap to merely 1.37 wrt its full-precision Llama2-70B counterpart. Furthermore, we evaluate the
inference efficiency using INT4 sparse GEMM kernels. As shown in Fig. 1, OBR achieves up to
4.72× speedup and 6.4× memory reduction compared to FP16-dense baselines. We hope our work
can serve as a solid baseline and stimulate further research towards sparse low-bit LLMs.

2 RELATED WORK

Network Quantization for LLMs. Network quantization aims to accelerate inference by converting
the full-precision representations into low-bit representations (Nagel et al., 2021). With the thriving of
LLMs, many efforts (Tseng et al., 2024; Lin et al., 2024b) have focused on adapting quantization tech-
niques for LLMs. For example, GPTQ (Frantar et al., 2022) improves upon the classic OBQ (Frantar
& Alistarh, 2022) by enabling efficient post-training quantization on large-scale parameters and can
outperform the common RTN baseline. Moreover, LLMs also contain outliers, where a small number

2

Published as a conference paper at ICLR 2026

of elements exhibit disproportionately large magnitudes and heavily influence downstream perfor-
mance. To address this, LLM.int8() (Dettmers et al., 2022) introduces a mixed-precision scheme that
preserves outliers in higher precision. Later, AWQ (Lin et al., 2024a) proposes to employ smoothing
factors to transfer outliers from weights to activations, thus allowing for 8-bit weight quantization.
SmoothQuant (Xiao et al., 2023) further trades off smoothing between weights and activations to
achieve W8A8 quantization. To push toward even lower bit-widths, recent works (Chee et al., 2023;
Hu et al., 2025; Sun et al., 2024) have predominantly leveraged the Hadamard transformation to
flatten the weight distributions before quantization. For instance, QuaRot (Ashkboos et al., 2024)
applies random rotation as a preprocessing step, enabling quantization even to W4A4KV4 while
maintaining performance. SpinQuant (Liu et al., 2024) and FlatQuant (Sun et al., 2024) further extend
this idea by introducing learnable rotation matrices to further enhance quantization performance.

Network Pruning for LLMs. Network pruning reduces computational and memory costs by
eliminating weights that contribute little to the final prediction (LeCun et al., 1989; Han et al., 2015;
Frankle & Carbin, 2018; Zhang et al., 2024). Early pruning methods primarily relied on magnitude-
based criteria, which proved effective for small-scale networks. However, these simple approaches
often struggle to maintain accuracy when applied to LLMs. To address this, a variety of methods have
been developed to either refine the pruning process or introduce more advanced selection criteria.
For instance, LLM-Pruner (Ma et al., 2023) proposes to remove coupled components followed
by LoRA (Hu et al., 2022) finetuning to restore accuracy. SparseGPT (Frantar & Alistarh, 2023)
introduces a one-shot pruning method based on OBD (LeCun et al., 1989), enabling efficient pruning
without additional retraining. WANDA (Sun et al., 2023) demonstrates that information contained
in activations is crucial for LLMs pruning, and introduces a simple yet effective scoring metric for
activation-aware sparsity.

Joint Quantization and Sparsification. Before the rise of LLMs, several early works explored
joint quantization and pruning on small networks. For instance, DJPQ (Wang et al., 2020) solves an
optimization problem via gradient descent to balance sparsity and quantization error. OBQ (Frantar
& Alistarh, 2022) proposes a unified framework that simultaneously considers both pruning and
quantization. In the context of LLMs, JSQ (Guo et al., 2024) adopts simulated annealing to identify
optimal activation editing policies, and can achieve W8A8 quantization with 50% sparsity. Moreover,
one recent work (Harma et al., 2024) also provides a theoretical analysis suggesting that pruning
followed by quantization is the optimal compression order. Despite these advancements, existing
techniques still fall short in achieving aggressive compression levels such as W4A4KV4 with 50%
sparsity, leaving room for further improvement in this domain.

3 MOTIVATION

As shown in Fig. 1(a), relying on a single method such as quantization or pruning is rapidly approach-
ing its compression limits. For instance, solely decreasing the quantization bit-width or increasing
the pruning ratio leads to drastic performance degradation. In contrast, since different compression
techniques are largely orthogonal in nature (Guo et al., 2024), combining them effectively presents a
potential direction to “squeeze out” additional efficiency. For instance, as shown in Appendix B, the
W4A4KV4 quantized Llama2-7B model in QuaRot (Ashkboos et al., 2024) naturally exhibits 14.28%
average layer sparsity. Moreover, recent hardware advances have already supported INT4 sparse
GEMM, which can achieve faster execution than dense INT4 kernels in practice. These observations
motivate us to explore how to jointly leverage quantization and sparsity for more aggressive and
practical LLM compression.

However, realizing an effective joint quantization and sparsification scheme is notoriously challeng-
ing due to their inherently conflicting nature. Specifically, quantization typically favors a compact
numerical range of weights to minimize quantization error. For example, recent 4-bit quantization
methods (Ashkboos et al., 2024; Liu et al., 2024; Sun et al., 2024) commonly adopt Hadamard
transformation to rotate weights into smoother distributions for suppressing outliers before quantiza-
tion. While such rotation is beneficial for quantization, it is detrimental to sparsity, which instead
prefers weight distributions that exhibit large numerical disparities to better encourage sparsity. As
demonstrated in Sec. 5.1, naively applying sparsification on top of rotated weights leads to severe
performance degradation.

3

Published as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Given original LLM weights W, we first apply a rotation to smooth out outliers, followed
by pruning to introduce sparsity. The proposed OBR is employed to compute optimal compensation,
which is added to the unpruned elements to mitigate the conflict between pruning and quantization.
Finally, quantization is applied to obtain the sparse and quantized LLM weights.

4 OPTIMAL BRAIN RESTORATION

In this work, we propose the Optimal Brain Restoration (OBR) framework, which adjusts weight
distributions to reconcile the conflicting demands of pruning and quantization. Following previous
practices (Harma et al., 2024; Guo et al., 2024), we adopt an order of pruning-then-quantization. As
shown in Fig. 2, the overall process to generate low-bit and sparse weights using the proposed OBR
can be formalized as:

Ŵ = quant(prune(rotate(W)) + ∆WOBR), (1)

where W is the original LLM weights, ∆WOBR is the compensation derived from OBR. In the
following, we start in Sec. 4.1 by defining the necessary notations and objective function. Then we
detail the generic formulation of the proposed OBR in Sec. 4.2, followed by the specific instantiations
for quantization and pruning in Sec. 4.3.

4.1 OBJECTIVE APPROXIMATION

Given the weight matrix W ∈ RCout×Cin in one standard linear layer and X ∈ RCin×L being the
input activation representing the dataset’s statistics, our work employs the following classic optimiza-
tion objective (LeCun et al., 1989; Frantar & Alistarh, 2022) which minimizes the perturbation of
downstream task loss:

min E[∆L] = E[L(X,W +∆W)− L(X,W)], (2)

where ∆W is the perturbation on W, L is the downstream task loss.

To solve the optimization problem in Eq. (2), we first simplify the objective function. In detail,
applying Taylor series on L(X,W +∆W) at W drives:

∆L = ⟨∇WL(X,W),∆W⟩+ 1

2
vec(∆W)Hfullvec(∆W)⊤ +O(∥∆W∥3), (3)

where∇WL(X,W) is the gradient, vec(·) : RCout×Cin → R1×CoutCin is the vectorisation operator,
and Hfull ≜ ∂2L

∂vec(W)∂vec(W)⊤
∈ RCoutCin×CoutCin is the layer-wise Hessian.

Assume that the model has been fully trained and reaches a local minima, so the ∇WL(X,W) ≈ 0.
Further ignoring the last high order terms, Eq. (3) can be approximated into:

∆L ≈ 1

2
vec(∆W)Hfullvec(∆W)⊤. (4)

Despite the above preliminary approximation, computing Hfull exactly is still infeasible in LLMs
due to the O((CoutCin)

2) complexity, we thus following previous works (Frantar & Alistarh, 2022)
and estimate Hfull as:

Hfull ≈ G⊗H, (5)

where G ∈ RCout×Cout is the output-side curvature matrix which depicts the second-order sensitivity
among output channels, H ≜ 2XX⊤ ∈ RCin×Cin is the empirical Fisher matrix, and ⊗ denotes the
Kronecker product.

4

Published as a conference paper at ICLR 2026

Based on Eq. (5), we propose to decouple the row-wise correlation of output channels in Hfull by
approximating G as an Identity matrix I to make Hfull ≈ I⊗H completely tractable. Finally, the
original objective can be simplified into the following Cout independent optimization sub-problems:

min E[
1

2
vec(∆W)(I⊗H)vec(∆W)⊤] =

1

2

Cout∑
i=1

E[∆wiH∆w⊤
i], (6)

where ∆wi ∈ R1×Cin is the i-th row of ∆W. Intuitively, Eq. (6) quantifies the impact of weight
changes on the final downstream performance. For example, when H is large, even a small change in
weights can result in large differences for downstream tasks.

4.2 SOLUTION AND FRAMEWORK

To solve the simplified objective in Eq. (6), our proposed OBR employs the Group Error Compensation
to optimally adjust weight distributions by shifting information from error-sensitive groups to the
other robust ones. Since the rotation matrix acts on both W and X, and thus cancels out during
multiplication, in the following sections, we will omit the rotation operation and directly denote W
as the rotated matrix for notational clarity.

Let Ji = 1
2∆wiH∆w⊤

i denote the i-th sub-problem, we begin by partitioning the elements of the
i-th row ∆wi into two disjoint groups using two index sets, i.e., the retain set Ri and the eviction set
Ei, where Ri ∪Ei = {1, . . . , Cin} and Ri ∩Ei = ∅. The retain set Ri collects weights that are less
affected by compression, e.g., unpruned or less quantization-distorted, whereas the eviction set Ei

corresponds to the indices of elements that are susceptible to compression effects. For clarity, we will
omit the row index i in the following.

With this grouping, our key idea is to compensate for compression-induced errors eE in eviction set
E by transferring its lost information to a more robust retain set R. To enable this, we reorder the
perturbation vector ∆w into [∆wR,∆wE]. Then the sub-problem becomes:

argmin
∆wR

J =
1

2
∆wH∆w⊤ =

1

2
[∆wR eE]

[
HRR HRE

HER HEE

] [
∆w⊤

R

e⊤E

]
. (7)

Since Eq. (7) is an unconstrained optimization problem, we can directly obtain the closed-form
solution by taking the partial derivatives w.r.t. ∆wR, i.e., ∇∆wR

J = HRR∆wR +HREeE ≜ 0.
Then the optimal solution for ∆wR which minimizes the row-wise error can be derived as:

∆w⋆
R = −H−1

RRHREeE . (8)
In Fig. 3(a), we give an example on how to extract sub-Hessian HRR and HRE from H. According
to the above formulation, the error in set E is theoretically zero guaranteed by the closed-form
solution. Since the retain set R is assumed to be robust against compression-related errors, the total
error can be decreased through transferring information from E to R. Notably, Eq. (8) also offers
a strong explanation that the Hessian actually serves as a “bridge” for error propagation between
different groups. Specifically, in Eq. (8), the eE is first projected from E’s space to the shared space
via HRE , followed by the mapping to the R’s space through H−1

RR, and the negative sign denoting
the correction direction.

4.3 SPECIFIC IMPLEMENTATION

In this section, we apply the generic closed-form solution in Eq. (8) to the specific implementation
for sparsification and quantization.

OBR for Sparsification. As shown in Fig. 3(b), given the 0-1 mask from existing pruning algorithms,
we define retain set R1 as the unpruned slots, and eviction set E1 as the pruned ones. In this way, the
information loss due to pruning on set E1 can be compensated by transferring to set R1. Formally,
since the pruning error on set E1 is epruneE1

= wE1
, using Eq. (8), the optimal OBR compensation for

pruning can be derived as:
∆wprune

R1
= −H−1

R1R1
HR1E1

wE1
. (9)

We then add ∆wprune
R1

to the unpruned elements wR1
to obtain the OBR-compensated sparse weight

w̄ = [wR1 +∆wprune
R1

,0]. After that, we perform another round of OBR on w̄ to further consider
the incoming quantization error. Details are given below.

5

Published as a conference paper at ICLR 2026

R={1, 3, 4} E={2, 5}

1 0

wc1 wc2 wc3 wc4 wc5

retain set eviction set

wc2 wc5wc2 wc5wc2 wc5 wc1 wc3 wc4

pruning mask

wc1 0 wc3 0 wc41 1 0

wc1 0 wc3 0 wc4

wc1 wc3 wc5

h11 h15h14h13h12

h51

h41

h31

h21 h25h24h23h22

h35

h45

h55

h34h33h32

h43 h44h42

h53 h54h52

h11 h15h14h13h12

h51

h41

h31

h21 h25h24h23h22

h35

h45

h55

h34h33h32

h43 h44h42

h53 h54h52

h11 h14h13

h41

h31 h34h33

h43 h44

h11 h14h13

h41

h31 h34h33

h43 h44

h15h12

h35

h45

h32

h42

h15h12

h35

h45

h32

h42

rotated weights

pruned weights

(b) OBR for pruning (c) OBR for quantization(a) Sub-Hessian Extraction

Figure 3: (a) Given a Hessian approximation H, we extract the submatrices HRR and HRE based
on the index sets R and E. (b) The rotated dense weights are partitioned into R1 and E1 according
to the binary pruning mask, followed by OBR to transfer information from wE1

to wR1
. (c) The

unpruned index set R1 is further divided into two groups: the first α fraction assigned to set E2, the
remaining 1− α to set R2. OBR is used to compensate for quantization error in E2.

OBR for Quantization. Different from pruning where the retain set and eviction set can be naturally
obtained from the pruning mask, in quantization, we need to manually assign the grouping to obtain
R2 and E2 for compensation with OBR. Thanks to the flat distribution introduced by Hadamard
rotation, we find the discrepancy among unpruned elements is actually small (see Fig. 6). Inspired
by this observation, we propose to take the first α proportion of elements in set R1 as the set E2,
and the remaining 1− α proportion of elements as the set R2. In other words, |R2|+ |E2| = |R1|,
where | · | is the number of elements. In Fig. 3(c), given quantization error on set E2 as equantE2

=
w̄E2

− quant(w̄E2
), we can obtain the OBR compensation for quantization as follows:

∆wquant
R2

= −H−1
R2R2

HR2E2
(w̄E2

− quant(w̄E2
)). (10)

Considering both quantization and pruning, the overall OBR-processed weights can be formalized as:

ŵ = quant([wR2
+∆wprune

R2
+∆wquant

R2
, wE2

+∆wprune
E2

, 0]), (11)

where ∆wprune
R2

and ∆wprune
E2

denote indexing from ∆wprune
R1

using R2 and E2, and ŵ is the final
joint low-bit and sparse weights. Algo. 1 provides more details of our proposed OBR.

CUDA Kernel Implementation. After transforming LLMs to both sparse and low-bit using the
proposed OBR, we implement corresponding GEMM with the CUTLASS library1. To align with
hardware supported quantization and sparsity, we perform 2:4 semi-structured sparsity and INT4
quantization on the weights W, and use INT4 quantization for activations X and KV caches.

5 EXPERIMENTS

Datasets and Models. We evaluate the proposed OBR framework on various open-source LLM fam-
ilies, including Llama2 (7B/13B/70B) (Touvron et al., 2023), Llama3 (8B/70B) (Dubey et al., 2024),
and Qwen2.5-Instruct(7B/32B) (QwenTeam, 2024). To comprehensively assess the effectiveness of
our method, we conduct experiments on both zero-shot classification and language modeling tasks.
For zero-shot evaluation, we report accuracy on commonly used benchmarks including PIQA (Bisk
et al., 2020), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), ARC-easy (Clark et al.,
2018), ARC-challenge (Clark et al., 2018), and WinoGrande (Sakaguchi et al., 2021). In addition,
we also follow prior LLM compression works (Sun et al., 2023) and evaluate the perplexity on the
WikiText2 test set (Merity et al., 2016).

Baselines. We compare our method against a range of competitive baselines under sub-4-bit com-
pression settings. Specifically, the full-precision model is included as an upper bound for reference.
We also evaluate against quantization-only baselines (Ashkboos et al., 2024; Liu et al., 2024) under
equivalent bit-widths, e.g., a W4A4 model with 50% sparsity is compared to a W3A4 quantized
model. In addition, we include a simple baseline that directly combines existing quantization and
pruning techniques without any specially designed compensation. Furthermore, following the exten-
sion described in (Frantar & Alistarh, 2023), we adopt SparseGPT combined with GPTQ as a strong
joint sparsity-quantization baseline for comparison.

1https://github.com/NVIDIA/cutlass

6

https://github.com/NVIDIA/cutlass

Published as a conference paper at ICLR 2026

Table 1: Comparison of perplexity score on WikiText2 and accuracy on zero-shot common sense
reasoning tasks with Llama2(7B/13B/70B) and Llama3(8B/70B) model families. †Since the Llama3-
70B is sensitive to quantization as demonstrated in (Ashkboos et al., 2024), we keep the KV cache
being 16-bit for acceptable performance. The best and the second best results are in red and blue.

Model Method #Bits
W-A-KV

Sparsity
ratio

PIQA
(↑)

BoolQ
(↑)

HellaS.
(↑)

Arc-e
(↑)

Arc-c
(↑)

WinoG.
(↑)

Avg.
(↑)

Wiki2
(↓)

2-7B

Floating-point 16-16-16 0% 79.11 77.71 76.02 74.49 46.33 69.14 70.47 5.47
QuaRot(quant-only) 3-4-4 0% 51.96 39.72 29.25 31.36 23.46 52.33 38.01 132.97
QuaRot+WANDA 4-4-4 50% 50.27 37.83 25.81 25.00 27.73 49.25 35.98 5868.24
SparseGPT+GPTQ 4-4-4 50% 63.38 63.27 47.71 50.93 29.44 54.70 51.57 12.94
OBR RTN 4-4-4 50% 68.77 66.39 55.46 55.98 32.17 60.22 56.49 9.23
OBR GPTQ 4-4-4 50% 68.93 67.31 58.22 55.93 34.22 61.48 53.45 8.40

2-13B

Floating-point 16-16-16 0% 80.52 80.55 79.37 77.48 49.15 72.14 73.20 4.88
QuaRot(quant-only) 3-4-4 0% 55.01 62.26 30.00 31.10 22.44 51.07 41.98 72.53
QuaRot+WANDA 4-4-4 50% 51.36 38.29 26.40 26.18 27.56 49.49 36.54 2289.41
SparseGPT+GPTQ 4-4-4 50% 71.27 70.83 60.99 61.87 36.60 62.90 60.74 7.89
OBR RTN 4-4-4 50% 72.74 69.17 63.85 65.95 38.31 64.17 62.37 7.29
OBR GPTQ 4-4-4 50% 72.91 71.25 64.74 65.57 37.88 63.22 62.60 7.06

2-70B

Floating-point 16-16-16 0% 82.70 83.76 83.81 81.06 57.25 77.98 77.76 3.32
QuaRot(quant-only) 3-4-4 0% 67.74 66.27 56.55 50.67 30.63 62.43 55.72 8.19
QuaRot+WANDA 4-4-4 50% 51.52 38.56 27.67 27.06 23.21 50.04 36.34 169.67
SparseGPT+GPTQ 4-4-4 50% 79.11 76.79 77.20 77.61 51.19 73.95 72.64 4.78
OBR RTN 4-4-4 50% 78.67 75.93 76.09 77.57 51.96 74.51 72.45 4.84
OBR GPTQ 4-4-4 50% 79.22 76.91 77.23 77.53 50.68 74.11 72.61 4.69

3-8B

Floating-point 16-16-16 0% 80.85 80.98 79.17 77.74 53.24 73.40 74.23 6.13
QuaRot(quant-only) 3-4-4 0% 55.28 39.72 30.78 30.72 21.76 50.36 38.10 196.23
QuaRot+WANDA 4-4-4 50% 49.62 37.95 26.42 27.02 23.98 47.83 35.47 1927.29
SparseGPT+GPTQ 4-4-4 50% 66.21 65.41 53.58 50.67 29.52 57.22 53.77 16.40
OBR RTN 4-4-4 50% 67.95 64.98 54.06 52.57 30.89 55.96 54.40 14.47
OBR GPTQ 4-4-4 50% 66.87 65.23 55.41 54.63 30.03 58.80 55.16 13.92

3-70B†

Floating-point 16-16-16 0% 84.49 85.38 84.96 86.11 64.16 80.51 80.93 2.85
QuaRot(quant-only) 3-4-16 0% 52.77 51.99 30.65 31.23 23.12 50.51 40.05 80.25
QuaRot+WANDA 4-4-16 50% 50.82 37.83 26.25 25.38 26.96 45.70 35.49 23245.17
SparseGPT+GPTQ 4-4-16 50% 60.12 52.81 35.02 38.30 23.29 53.51 43.84 41.39
OBR RTN 4-4-16 50% 61.92 56.54 37.81 43.77 25.17 52.01 46.20 33.38
OBR GPTQ 4-4-16 50% 67.36 64.40 55.26 55.64 33.11 50.59 55.96 16.69

Implementation Details. Since our OBR framework, as well as most other pruning and quantization
methods (Frantar et al., 2022; Frantar & Alistarh, 2023; Sun et al., 2023), require calibration data
to estimate input statistics, we follow standard practice and use 128 samples from WikiText2 with
a sequence length of 2048 as the calibration set. For the Hadamard transformation, we test our
OBR on rotation matrices from various existing works, including QuaRot (Ashkboos et al., 2024),
SpinQuant (Liu et al., 2024), and FlatQuant (Sun et al., 2024). In addition, as our OBR treats pruning
mask and quantizer as givens, it is potentially compatible with different pruning and quantization
methods. Therefore, for pruning, we adopt the 0-1 mask generated by WANDA (Sun et al., 2023)
as the default setting due to its strong performance and training-free nature. We will further discuss
OBR’s generality across other pruning algorithms in Sec. 5.2. For the grouping ratio α in OBR
quantization, we simply use α = 50% as the default setting for all setups. For quantization, we
include both the simple Round-To-Nearest (RTN) quantizer to obtain OBR RTN, and the more
advanced GPTQ (Achiam et al., 2023) quantizer for OBR GPTQ as an extension.

5.1 EXPERIMENT RESULTS

Main Results. As shown in Tab. 1, the QuaRot (quant-only), which relies solely on quantization
for compression, suffers from severe performance degradation under 4-bit, e.g., 132.97 perplexity
for W3A4KV4 quantized Llama2-7B model. Furthermore, effectively combining quantization
and sparsity is non-trivial. For example, directly combining the existing quantization method
Quarot (Ashkboos et al., 2024) with the pruning method WANDA (Sun et al., 2023) leads to
unacceptable performance. For joint quantization and sparsification comparison, our OBR with a
simple RTN quantizer can achieve even better performance than SparseGPT+GPTQ in most cases.
For example, our OBR RTN achieves even 3.71 better perplexity compared to SparseGPT+GPTQ on
the Llama2-7B model. When using the more advanced quantizer GPTQ, our OBR GPTQ can achieve
a further 0.83 perplexity improvement. These experimental results demonstrate the effectiveness of
the proposed OBR framework across different LLMs and tasks.

7

Published as a conference paper at ICLR 2026

R
u

n
ti

m
e

(m
s)

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0
0.0

500 1000 1500 2000 2500 3000 3500 4000

Sequence Length

F
L

O
P

s

4000

3000

2000

1000

0
0 500 1000 1500 2000 2500 3000 3500 4000

Sequence Length

F
L

O
P

s

4000

3000

2000

1000

0
0 500 1000 1500 2000 2500 3000 3500 4000

Sequence Length

FP16-Dense

INT4-Dense

INT4-Sparse

FP16-Dense

INT4-Dense

INT4-Sparse

T
O

P
S

0 500 1000 1500 2000 2500 3000 3500 4000

Sequence Length

1400

1200

1000

800

600

400

200

0

FP16-Dense

INT4-Dense

INT4-Sparse

FP16-Dense

INT4-Dense

INT4-Sparse

T
O

P
S

0 500 1000 1500 2000 2500 3000 3500 4000

Sequence Length

1400

1200

1000

800

600

400

200

0

FP16-Dense

INT4-Dense

INT4-Sparse

FP16/INT4-Dense

INT4-Sparse

FP16/INT4-Dense

INT4-Sparse

Figure 4: Comparison on runtime, FLOPs, and TOPS across different sequence lengths. We evaluate
the performance of FP16-Dense, INT4-Dense, and INT4 2:4 Sparse GEMM on a single NVIDIA
A100-SXM4-80GB GPU. The GEMM computation follows a typical LLM inference setting, where
the weight matrix is W ∈ R4096×4096 and the input activation is X ∈ R32×seq len×4096.

Table 2: Comparison under other quantization bit-widths on WikiText2 perplexity (wiki2) and average
zero-shot accuracy (0-shot) using the Llama2-7B model.

Method sparisty W4A8KV8 W4A16KV16
wiki2↓ 0-shot↑ wiki2↓ 0-shot↑

Quarot(quant-only) 0% 80.525 39.98 80.25 40.04
Quarot+WANDA 50% 5278.13 35.95 5272.07 35.92
SparseGPT+GPTQ 50% 8.53 59.41 8.53 59.47
OBR RTN 50% 7.24 62.16 7.24 62.27
OBR GPTQ 50% 6.87 63.39 6.86 63.33

Practical Speedups. Given that recent GPU architectures such as Ampere and Hopper have naively
supported INT4-sparse GEMM kernels, we compare the efficiency on batched matrix multiplication
with other two baselines, i.e., INT4-dense and FP16-dense GEMM, in terms of latency, FLOPs,
and TOPS. In Fig. 4, as input token length increases, the latency advantage of INT4+2:4 sparse
GEMM becomes more pronounced. For example, at a sequence length of 4096, the INT4+2:4 sparse
GEMM achieves a 5.9× speedup over FP16-dense and a 1.4× speedup over INT4-dense GEMM.
Furthermore, thanks to the 50% sparsity, INT4+2:4 sparse GEMM reduces theoretical FLOPs by 2×
compared to its dense counterpart. Finally, when the GPU compute resources are fully saturated,
i.e., with sequence length> 2048, the INT4+2:4 GEMM also achieves higher throughput in terms
of TOPS. These results highlight the efficiency potential of low-bit sparse GEMM in real-world
deployment compared to classic dense low-bit matrix multiplication.

Comparison on other Bits. We further evaluate the OBR framework under more bit-width con-
figurations. Given that LLMs are known to be memory-bound, we keep the weights quantized to
low precision, i.e., 4-bit, while varying the activation and KV cache bit-width. Tab. 2 presents the
results for W4A8KV8 and W4A16KV16 (weight-only quantization) settings. One can see that our
OBR consistently outperforms all competitive baselines. Notably, OBR RTN with W4A8KV8+50%
sparsity even surpasses weight-only quantization of SparseGPT+GPTQ by 1.29 perplexity. These
results demonstrate the generality and effectiveness of OBR across different quantization bit-widths.

Results with SpinQuant. To further validate the generality of other rotation schemes, we apply
OBR to SpinQuant (Liu et al., 2024), which introduces learnable rotation matrices for improved
performance. Similar to the setup of QuaRot, we treat the rotation matrix as given and do not learn a
dedicated rotation matrix for the joint quantization-sparsification setting. As shown in Tab. 3, our
method achieves notable improvements over other competitive baselines e.g., OBR RTN achieves
7.69% average accuracy improvement against SparseGPT+GPTQ on zero-shot evaluation with
Llama2-7B. Since the quantization-only W3A4KV4 baseline employs the rotation matrices specifi-
cally trained for quantization, our method is slightly inferior due to the task gap. We believe learning
rotation matrices specifically for low-bit and sparse setups holds potential for further improvement.

Other Sparsity Patterns. Semi-structured pruning, such as 2:4 sparsity, is now well-supported by
modern hardware to achieve practical acceleration. To this end, we further include comparisons under
semi-structured pruning settings in Tab. 4. One can see that the advantages of our OBR become more
apparent as the compression becomes more challenging. In detail, both OBR RTN and OBR GPTQ
consistently outperform other baselines under given setups. For example, under the challenging
W4A4KV4+2:4 sparse setup, our OBR RTN reduces perplexity by 18.8 and improves the average
accuracy on zero-shot evaluation by 5.86% over the SparseGPT+GPTQ. These promising results
demonstrate the effectiveness of OBR in joint low-bit quantization and semi-structured sparsity.

8

Published as a conference paper at ICLR 2026

Table 3: Comparison of perplexity on WikiText2 and average accuracy on 0-shot commonsense
reasoning tasks under SpinQuant (Liu et al., 2024) rotated weights.

Method bits sparsity Llama2-7B Llama2-13B Llama2-70B Llama3-8B Llama3-70B
wiki2↓ 0-shot↑ wiki2↓ 0-shot↑ wiki2↓ 0-shot↑ wiki2↓ 0-shot↑ wiki2↓ 0-shot↑

SpinQuant(quant-only) 3-4-4 0% 8.24 58.95 6.39 66.78 4.21 74.09 10.50 60.29 9.64 63.64
SpinQuant+WANDA 4-4-4 50% 1589.54 36.17 648.59 35.94 26.99 43.77 703.05 39.05 18565.64 36.27
SparseGPT+GPTQ 4-4-4 50% 22.57 45.42 8.47 57.39 4.75 72.75 16.37 53.67 21.74 51.14
OBR RTN 4-4-4 50% 10.40 53.11 7.57 60.72 4.71 72.85 13.10 55.22 18.18 49.30
OBR GPTQ 4-4-4 50% 10.70 53.45 7.17 61.50 4.60 72.88 13.34 55.28 11.60 60.64

Table 4: Comparison on 4:8 and 2:4 sparsity
with Llama2-7B models. The included base-
lines have all been quantized using QuaRot
W4A4KV4 configuration.

Method sparsity wiki2↓ 0-shot↑
Floating-point - 5.47 70.46

SparseGPT+GPTQ 4:8 20.29 44.99
OBR RTN 4:8 11.45 51.60
OBR GPTQ 4:8 10.61 52.02

SparseGPT+GPTQ 2:4 34.76 40.52
OBR RTN 2:4 15.96 46.38
OBR GPTQ 2:4 13.32 48.67

Figure 5: Applying the proposed OBR to
WANDA (Sun et al., 2023) pruning algo-
rithm in single compression tasks.

WANDA

WANDA+Ours

50% 55% 60% 65% 70%

10

20

30

W
ik

it
ex

t2
 P

er
p

le
x

it
y

40

50

60

70

Table 5: Ablation on different pruning masks
under W4A4KV4+50% sparsity using Llama2-
7B and QuaRot rotation.

pruning metirc wiki2↓ 0-shot↑
Magnitude: |W| 8.92 56.51
SparseGPT: [|W|2/diag(H−1)] 9.28 55.45
WANDA: |W| · |X| 8.40 53.45

Table 6: Ablation on partition ratio α.

α 1− α
Llama2-7B Llama2-13B

wiki2↓ 0-shot↑ wiki2↓ 0-shot↑
75% 25% 9.96 53.56 7.70 60.22
50% 50% 9.23 56.49 7.29 62.37
25% 75% 9.07 57.06 7.09 63.20
20% 80% 8.89 56.79 7.43 61.53

5.2 ABLATION STUDIES

Different Pruning Masks. In the proposed OBR framework, the pruning mask is treated as a
given, making our method compatible with various existing pruning algorithms. In the above main
experiments, we primarily adopt masks generated from WANDA (Sun et al., 2023) pruning. To further
evaluate the effectiveness of other pruning metrics, we report in Tab. 5 the results using magnitude-
based, SparseGPT-based (Frantar & Alistarh, 2023), and even Random pruning masks. Thanks to the
error compensation from OBR, even the naive magnitude metric can achieve satisfactory performance.
These results demonstrate the robustness of the proposed method across different pruning metrics.

Partition Ratios for OBR Quantization. For quantization error compensation in OBR, we adopt a
simple strategy that splits weights into two groups with the first α proportion as the eviction set E2

and the remaining as the retain set R2, followed by the OBR error transfer. To further understand
how the partitioning ratio affects error compensation, we conduct an ablation study with different
α. As shown in Tab. 6, transferring the error from 20% elements to the remaining 80% leads to a
performance drop due to an insufficient compensating number. Conversely, migrating 75% of the
error to only 25% of the elements also yields suboptimal results due to low-quality compensation. As
a trade-off, we adopt a 50% partitioning ratio for constructing E2 and R2 as our final design.

5.3 DISCUSSION

OBR for Pruning Only. As shown in Sec. 4.3, the proposed OBR can be potentially applied to a
single compression task to compensate for errors produced by a given compression algorithm. To
this end, we first extend our OBR framework to the pruning-only task. Specifically, we apply the
proposed OBR to WANDA (Sun et al., 2023) by compensating for post-pruning weight distortions.
The perplexity results on WikiText2 under different sparsity ratios are reported in Fig. 5. Equipped
with our OBR, WANDA consistently achieves lower perplexity under given sparsity levels. For
instance, at 60% sparsity, WANDA+OBR improves perplexity by 0.53 compared to the original
WANDA, and this performance gain becomes more pronounced when sparsity increases. These

9

Published as a conference paper at ICLR 2026

10245120 1536 2048 2560 3072 3584 4095
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0000

0.0005

0.0001

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

10245120 1536 2048 2560 3072 3584 4095

10245120 1536 2048 2560 3072 3584 4095

10245120 1536 2048 2560 3072 3584 4095

10245120 1536 2048 2560 3072 3584 4095

10245120 1536 2048 2560 3072 3584 4095

Rotated weight: Pruned Weight: OBR for pruning:

Low-bit and sparse weight:Total OBR compensation:OBR for quantization:

Figure 6: Distribution visualization of different stages in the OBR framework. The weight matrix
is taken from the layer.0.q proj layer from the Llama2-7B model. Due to the row-wise
decoupling design in OBR, we visualize the distribution of the first row here and give full matrix
visualization in Appendix D. The x-axis represents the Cin channel index, and the y-axis denotes the
absolute value of weight elements.

results suggest that OBR can potentially serve as a generic post-processing enhancement for existing
pruning algorithms to improve performance without retraining.

Table 7: Results of OBR for RTN quan-
tizer in quantization-only tasks.
Methods W-A-KV wiki2↓ 0-shot↑
Floating-point 16-16-16 5.47 70.47
GPTQ 4-4-4 6.33 66.09
RTN 4-4-4 9.04 60.10
OBR+RTN 4-4-4 6.87 63.98

OBR for Quantization Only. We further apply the pro-
posed OBR to a pure quantization-based compression
scenario. Specifically, similar to the process described
in Sec. 4.3, we first redistribute the rotated weights using
OBR compensation to prepare weights more suitable for
subsequent quantization. Then, we use the RTN quantizer
to obtain low-bit weights. We compare this variant with
the baseline that directly applies RTN quantization to the
rotated weights without OBR. The results are shown in Tab. 7. As can be seen, the compensation
from OBR significantly improves RTN quantization, e.g., 2.17 reduction in perplexity and a 3.88%
gain in zero-shot accuracy. Although OBR is not specifically designed for quantization, OBR+RTN
still achieves comparable results to GPTQ with a 0.54 perplexity gap. These results demonstrate the
potential of our proposed method in quantization-only tasks.

Illustrative Visualization of OBR. In Fig. 6, we visualize the weight distribution at different stages
of the proposed OBR pipeline. The ∆wprune can effectively recover the information loss caused
by pruning while preserving the original sparsity. Moreover, the compensation ∆wOBR does not
introduce additional outliers, and this flat distribution facilitates the subsequent quantization process.
At last, the magnitude of the compensation introduced by OBR is comparable to that of the original
weights, indicating that our OBR compensation is not noise but structured information capable of
restoring the knowledge lost during compression.

6 CONCLUSION

In this work, we propose Optimal Brain Restoration (OBR), a unified framework that jointly performs
pruning and quantization by computing an optimal compensation to reconcile the conflicting require-
ments of different compression methods. We begin by formulating a second-order Hessian-based
objective that minimizes downstream task degradation. To make the optimization tractable, we
introduce a row-wise decoupling approximation. Furthermore, we develop group error compensation,
which redistributes compression-induced errors through a closed-form solution. By aligning the
weight distribution with the distinct demands of each compression technique, OBR is among the first
methods to support INT4 quantization combined with 50% sparsity for LLMs. Experimental results
demonstrate that our approach significantly outperforms existing methods and achieves up to 4.72×
practical speedup over the FP16-dense baseline.

10

Published as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated LLMs. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In AAAI Conference on Artificial Intelligence, volume 34, pp.
7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. QUIP: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36:
4396–4429, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Jinyang Guo, Jianyu Wu, Zining Wang, Jiaheng Liu, Ge Yang, Yifu Ding, Ruihao Gong, Haotong Qin,
and Xianglong Liu. Compressing large language models by joint sparsification and quantization.
In International Conference on Machine Learning, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 28, 2015.

Simla Burcu Harma, Ayan Chakraborty, Elizaveta Kostenok, Danila Mishin, Dongho Ha, Babak
Falsafi, Martin Jaggi, Ming Liu, Yunho Oh, Suvinay Subramanian, et al. Effective interplay
between sparsity and quantization: From theory to practice. arXiv preprint arXiv:2405.20935,
2024.

11

Published as a conference paper at ICLR 2026

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models.
International Conference on Learning Representations, 1(2):3, 2022.

Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe Jiang,
and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal and scaling
transformations for better distribution fitting. arXiv preprint arXiv:2501.13987, 2025.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage.
Advances in Neural Information Processing Systems, 2, 1989.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems, 6:
87–100, 2024a.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and
Song Han. Qserve: W4A8KV4 quantization and system co-design for efficient LLM serving.
arXiv preprint arXiv:2405.04532, 2024b.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LLM quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

Shuming Ma, Hongyu Wang, Shaohan Huang, Xingxing Zhang, Ying Hu, Ting Song, Yan Xia, and
Furu Wei. Bitnet b1. 58 2b4t technical report. arXiv preprint arXiv:2504.12285, 2025.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large
language models. Advances in Neural Information Processing Systems, 36:21702–21720, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh
Venkatesh, Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks.
arXiv preprint arXiv:2104.08378, 2021.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen, and Tij-
men Blankevoort. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295,
2021.

NVIDIA. NVIDIA Hopper Architecture In-Depth, 2021. URL https://developer.nvidia.
com/blog/nvidia-hopper-architecture-in-depth/.

NVIDIA. Structured sparsity in the NVIDIA Ampere architecture, 2022. URL
https://developer.nvidia.com/blog/structured-sparsity-in-the-
nvidia-ampere-architecture-and-applications-in-search-engines/.

QwenTeam. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xi-
anzhi Yu, Lu Hou, Chun Yuan, et al. Flatquant: Flatness matters for LLM quantization.
arXiv preprint arXiv:2410.09426, 2024.

12

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/
https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Published as a conference paper at ICLR 2026

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa.
QUIP#: Even better llm quantization with hadamard incoherence and lattice codebooks.
arXiv preprint arXiv:2402.04396, 2024.

Ying Wang, Yadong Lu, and Tijmen Blankevoort. Differentiable joint pruning and quantization for
hardware efficiency. In European Conference on Computer Vision, pp. 259–277. Springer, 2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models. In
International Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannis-
traci. Plug-and-play: An efficient post-training pruning method for large language models.
International Conference on Learning Representations, 2024.

13

Published as a conference paper at ICLR 2026

APPENDIX

A SUMMARY OF OBR ALGORITHM

In Algo. 1, we provide a detailed pseudocode to illustrate the process of obtaining joint low-bit and
sparse LLM weights in the proposed OBR framework.

Algorithm 1 Optimal Brain Restoration (OBR)

Input: Hadamard rotated weight matrix W ∈ RCout×Cin , Hessian approximation H ∈ RCin×Cin ,
partitioning ratio α.
Output: Low-bit and sparse weight Ŵ ∈ ZCout×Cin .

// Step1 Pruning
M ∈ {0, 1} = prune(W)
Wprune ←W ⊙M

// Step2 OBR compensation
Initialize ∆WOBR as zero matrices in RCout×Cin

for c = 1 . . . Cout do
// OBR for pruning
R1 ← {i |Mc,i = 1}, E1 ← {j |Mc,j = 0}
b1 ← HR1E1

·W⊤
c,E1

∆wprune
R1

← −H−1
R1R1

b1

w̄←Wprune
c,R1

+∆wprune
R1

// OBR for quantization
equant ← w̄ − quantize(w̄)
t← ⌊α · |R1|⌋
E2 ← {r1, . . . , rt}, R2 ← {rt+1, . . . , r|R|}
b2 ← HR2E2

· equantE2

∆wquant
R2

← −H−1
R2R2

b2

// Compensation Gathering
∆WOBR

c,R1
+ = ∆wprune

R1

∆WOBR
c,R2

+ = ∆wquant
R2

end for
Wquant ←Wprune +∆WOBR

// Step3 Quantization
Ŵ← quantize(Wquant)

B COEXISTENCE OF QUANTIZATION AND PRUNING.

A key motivation behind the proposed OBR is the compatibility of low-bit quantization and sparsity in
the Hadamard-rotated LLMs. In this section, we provide empirical evidence to justify this motivation.
Specifically, we visualize the sparsity distribution of Llama2-7B and Qwen2.5-7B models quantized
by different rotation frameworks, i.e., QuaRot (Ashkboos et al., 2024), SpinQuant (Liu et al., 2024),
and FlatQuant (Sun et al., 2024). Fig. 7 offers the results. Interestingly, even without any explicit
pruning operations, the quantized LLMs inherently exhibit non-trivial sparsity. For instance, Llama2-
7B with QuaRot reaches an average sparsity of 14.28%. Based on the observation of this coexistence,
we design our OBR to achieve more aggressive LLM compression.

C MORE EXPERIMENTS

Comparison with BitNet. BitNet-2B-4T (Ma et al., 2025) is a recently proposed 1.58-bit LLM
that is trained from scratch to achieve aggressive compression with strong performance. In this
section, we give a brief comparison between the BitNet-2B-4T model and Qwen2.5 compressed

14

Published as a conference paper at ICLR 2026

C
o
u
n
ts

Layer-wise Sparsity Ratio (%)

C
o
u

n
ts

C
o
u
n
ts

(b) Llama2-7B with SpinQuant (c) Qwen2.5-7B with FlatQuant(a) Llama2-7B with Quarot

40

30

20

10

13.00 13.25 15.0013.50 13.75 14.00 14.25 14.50 14.75 13.00 13.25 15.0013.50 13.75 14.00 14.25 14.50 14.75

40

30

20

10

10

20

30

40

50

60

70

80

5.00 10.00 15.00 20.00 25.00 30.00
Layer-wise Sparsity Ratio (%) Layer-wise Sparsity Ratio (%)

Figure 7: Distribution of layer-wise sparsity across LLMs under different rotation methods. All
models are quantized with W4A4KV4 RTN quantizer.

Table 8: Comparison between BitNet-2B-4T and our OBR compressed Qwen2.5-Instruct models.

methods quantization sparisty PIQA BoolQ HellaSwag ARC-E ARC-C WinoGrande Avg. Wiki2

BitNet-2B-4T W1.58A8KV16 0% 76.55 80.43 68.39 74.66 49.40 72.22 70.27 13.67
Qwen2.5-1.5B + OBR W4A8KV16 50% 68.99 66.88 52.68 62.50 35.24 60.77 57.84 15.06
Qwen2.5-1.5B + OBR W4A4KV4 50% 67.25 68.01 51.18 56.99 32.94 55.96 55.38 14.92
Qwen2.5-3B + OBR W4A8KV16 50% 74.05 77.19 62.86 60.06 41.30 62.90 63.06 11.07
Qwen2.5-3B + OBR W4A4KV4 50% 72.14 76.67 60.43 60.69 41.13 65.59 62.77 11.79

Table 9: Ablation experiments on other calibration dataset. We change the calibration set to the
C4 (Raffel et al., 2020) dataset for the generation of activation statistics and keep other setups the
same.

dataset method Llama2-7B Llama2-13B Llama3-8B
perplexity↓ 0-shot↑ perplexity↓ 0-shot↑ perplexity↓ 0-shot↑

wikitext2
SparseGPT+GPTQ 12.94 51.57 7.89 60.74 16.40 53.77
Ours RTN 9.23 56.49 7.29 62.37 14.47 54.40
Ours GPTQ 8.40 53.45 7.06 62.60 13.92 55.16

c4
SparseGPT+GPTQ 18.36 51.18 9.69 60.48 23.02 53.87
Ours RTN 10.74 58.00 8.74 62.88 18.23 56.02
Ours GPTQ 10.40 57.95 8.22 63.16 17.90 57.12

using our OBR. As shown in Tab. 8, our post-training method achieves comparable performance. To
be specific, Qwen2.5-3B+OBR (W4A4KV4+50%Sparsity) achieves better perplexity on WikiText2
and comparative performance on zero-shot accuracy. It should be noted that the performance of OBR
can be further boosted when future, more advanced base LLMs are proposed. Moreover, the resulting
W4A4KV4+50% sparse LLMs can be seamlessly deployed, such as in NVIDIA Ampere and Hopper,
whereas BitNet requires specially designed kernels and customized implementations. At last, our
method provides stronger generalization and flexibility. BitNet currently offers only one model size
and typically requires training from scratch, which is computationally expensive and impractical
for users with domain-specific or confidential data. In contrast, our OBR framework is a general
post-training compression approach that can be directly applied to existing models of different sizes,
enabling users to efficiently adapt their own LLMs without re-training.

Ablation on other Calibration Set. In the proposed OBR, we use the WikiText-2 (Merity et al.,
2016) dataset to obtain activation statistics. To further verify the robustness across different calibration
sets, we additionally experiment with the C4 (Raffel et al., 2020) dataset for calibration. The results
are shown in Tab. 9. As can be seen, when switching to the C4 dataset, all compared methods suffer a
slight performance degradation on WikiText perplexity due to the train-test shift. However, models
calibrated with C4 achieve better results on zero-shot tasks, and this advantage is more pronounced
with our OBR. For example, in the Llama3-8B experiment with C4, SparseGPT+GPTQ achieves only
a 0.1% accuracy improvement, whereas the proposed OBR GPTQ delivers a 1.96% gain. Moreover,
both OBR RTN and OBR GPTQ consistently outperform the SparseGPT+GPTQ baseline across all
calibration sets and base models under the same compression settings. The above results demonstrate
the generalization of our method under other calibration sets.

15

Published as a conference paper at ICLR 2026

Table 10: Comparison of perplexity score on WikiText2 and accuracy on zero-shot common sense
reasoning tasks using the rotation matrix from FlatQuant (Sun et al., 2024).

Model Method #Bits
(W-A-KV)

Sparsity
ratio

PIQA
(↑)

BoolQ
(↑)

HellaS.
(↑)

Arc-e
(↑)

Arc-c
(↑)

WinoG.
(↑)

Avg.
(↑)

Wiki2
(↓)

Llama2-7B

Floating-point 16-16-16 0% 79.11 77.71 76.02 74.49 46.33 69.14 70.47 5.47
FlatQuant(quant-only) 4-4-4 0% 77.48 74.62 73.64 72.56 43.00 68.27 68.26 5.79
FlatQuant(quant-only) 3-4-4 0% 75.68 73.94 69.44 67.85 40.96 64.17 65.34 6.74
SparseGPT+GPTQ 4-4-4 50% 73.56 50.40 65.36 61.11 34.73 62.75 57.99 7.75
Ours RTN 4-4-4 50% 74.32 72.91 65.88 64.94 37.88 65.82 63.62 6.88
Ours GPTQ 4-4-4 50% 74.37 71.41 65.92 64.06 38.82 66.38 63.49 6.87

Llama2-13B

Floating-point 16-16-16 0% 80.52 80.55 79.37 77.48 49.15 72.14 73.20 4.88
FlatQuant(quant-only) 4-4-4 0% 79.00 79.39 77.44 76.47 48.72 70.17 71.86 5.11
FlatQuant(quant-only) 3-4-4 0% 78.56 78.04 75.35 70.66 44.97 70.09 69.61 5.70
SparseGPT+GPTQ 4-4-4 50% 75.90 74.53 69.81 68.86 40.19 67.09 66.06 6.13
Ours RTN 4-4-4 50% 76.66 73.94 71.44 71.30 42.06 68.27 67.27 5.84
Ours GPTQ 4-4-4 50% 76.61 73.27 71.39 72.10 42.49 68.43 67.38 5.84

Llama3-8B

Floating-point 16-16-16 0% 80.85 80.98 79.17 77.74 53.24 73.40 74.23 6.13
FlatQuant(quant-only) 4-4-4 0% 79.33 79.36 76.64 75.21 48.46 72.06 71.84 6.97
FlatQuant(quant-only) 3-4-4 0% 75.68 69.42 71.21 67.47 39.85 67.40 65.17 9.14
SparseGPT+GPTQ 4-4-4 50% 69.97 74.95 63.59 57.03 34.64 65.19 60.89 13.32
Ours RTN 4-4-4 50% 74.16 77.61 66.86 68.81 40.78 0.6661 65.80 9.12
Ours GPTQ 4-4-4 50% 73.99 77.16 66.74 69.11 41.30 68.19 66.08 9.10

Qwen2.5-7B

Floating-point 16-16-16 0% 80.14 85.96 79.57 76.47 51.19 69.46 73.78 8.35
FlatQuant(quant-only) 4-4-4 0% 78.13 85.87 78.48 77.23 51.02 68.82 73.25 8.40
FlatQuant(quant-only) 3-4-4 0% 73.23 82.20 74.51 69.78 48.29 63.06 68.51 10.08
SparseGPT+GPTQ 4-4-4 50% 73.56 83.70 68.50 68.10 42.49 64.01 66.72 14.53
Ours RTN 4-4-4 50% 74.70 85.41 71.22 74.49 49.83 66.30 70.32 9.55
Ours GPTQ 4-4-4 50% 76.66 85.08 70.68 74.12 50.85 67.56 70.82 9.51

Qwen2.5-32B

Floating-point 16-16-16 0% 81.39 90.54 85.25 77.02 58.62 73.16 77.66 5.32
FlatQuant(quant-only) 4-4-4 0% 80.96 89.39 83.86 79.17 57.94 73.95 77.54 5.82
FlatQuant(quant-only) 3-4-4 0% 78.94 87.83 81.45 74.87 54.69 67.64 74.23 6.79
SparseGPT+GPTQ 4-4-4 50% 80.20 89.94 0.7986 73.78 52.65 72.14 74.76 8.06
Ours RTN 4-4-4 50% 77.86 90.00 80.00 78.45 57.17 72.77 76.04 6.81
Ours GPTQ 4-4-4 50% 79.11 89.45 80.00 77.31 59.22 72.61 76.28 6.79

Performance on FlatQuant. In the main paper, we present the application of our OBR on the LLMs
rotated by QuaRot (Ashkboos et al., 2024) or SpinQuant (Liu et al., 2024). To further evaluate the
generalization ability of our method on other Hadamard rotation frameworks, we additionally include
the comparison results with the FlatQuant (Sun et al., 2024) method. The experimental results are
shown in Tab. 10. As can be observed, OBR continues to deliver strong performance compared to the
SparseGPT+GPTQ baseline across various base models. Interestingly, comparing with QuaRot and
SpinQuant, when using a stronger rotation matrix from FlatQuant, the W4A4KV4 + 50% sparsity
LLMs using our OBR can achieve performance on par with their FP16 counterparts. For example,
the perplexity gap on Llama2-7B is merely 1.4, compared with the gap of 2.93 in QuaRot. This
result further indicates the potential that our OBR can scale in parallel with a more advanced rotation
framework.

Results on Qwen Families. In this section, we take Qwen2.5-Instruct (7B/32B) as a representative
to demonstrate the generalization capability of the proposed OBR on other LLMs. The experimental
results are presented in Tab. 10. Given Qwen as the base models, OBR consistently outperforms other
strong baselines across different scales. For instance, OBR RTN surpasses SparseGPT+GPTQ by
4.98 perplexity on the Qwen2.5-7B model. In addition, OBR RTN also outperforms the quantization-
only W3A4KV4 baseline by 0.53 perplexity. These results demonstrate the strong generalization
ability of the proposed OBR across different LLM families.

Calibration Time Cost of OBR. Tab. 11 reports the time cost for compressing models of different
scales using OBR. As one can see, for smaller models such as the 7B model, OBR can produce a
W4A4KV4 + 50% LLMs in about 2 hours. For even larger models, such as the 70B, the proposed
OBR completes in roughly 36 hours. Since our OBR adopts a row-wise decoupling strategy, it requires
solving a linear equation for each row, making it slower than SparseGPT+GPTQ. Nevertheless, we
emphasize that post-training compression needs to be performed only once per model. As a result,
this cost has only minimal impact on large-scale deployment. Moreover, the promising performance
of OBR against other baselines under aggressive compression further justifies its advantages.

16

Published as a conference paper at ICLR 2026

Table 11: Calibration time results for Llama model family. The reported times correspond to
QuaRot (Ashkboos et al., 2024) rotation on a single A100 GPU.

Llama family 2-7B 2-13B 2-70B 3-8B 3-70B

SparseGPT+GPTQ 45min 54min 1h53min 48min 2h9min
OBR RTN 2h10min 4h12min 35h30min 2h30min 35h28min
OBR GPTQ 2h18min 4h30min 35h45min 2h40min 35h47min

Rotated weight: Pruned Weight: OBR for pruning:

OBR for quantization: Total OBR compensation: Low-bit and sparse weight:

Figure 8: Visualization of the full weight matrix at different stages in the proposed OBR pipeline.
The x-axis corresponds to the Cin dimension, and the y-axis is the Cout dimension. The weight
matrix is taken from the layer.0.q proj layer from the Llama2-7B model, and absolute values
are used to enhance visual clarity.

D MORE VISUALIZATION

In Fig. 8, we present visualizations of the full weight matrices at different stages of OBR processing.
It can be observed that the rotated weight matrix inherently exhibits strong row-wise independence,
as indicated by the similarity patterns across rows in rotate(W). Moreover, the compensation
terms ∆Wprune and ∆Wquant produced by OBR clearly contain useful information, since they
share a similar magnitude with the prune(rotate(W)). Therefore, if the OBR compensation were
merely noise, perturbations of this magnitude would lead to significant errors. In addition, the overall
compensation ∆WOBR also demonstrates row-wise independence, where some rows have large
magnitudes while others have small ones, yet column dimensions instead exhibit similar patterns.
This observation further justifies our proposed row-wise decoupling strategy.

E LIMITATION AND FUTURE WORK

While the proposed OBR can effectively redistribute weights to reconcile the differing distributional
requirements of quantization and pruning, there are several avenues for further improvement. First,
OBR relies on a row-wise decoupling strategy to estimate the full Hessian. This approximation
renders the original objective tractable, but it requires solving a linear system for each row of
the weight matrix. Although this overhead is acceptable in model compression tasks, where the
compression algorithm needs to run only once, further accelerating the compression process for
large-scale LLMs remains meaningful. Second, the current implementation of OBR treats the pruning

17

Published as a conference paper at ICLR 2026

mask and quantization rotation matrix as fixed given inputs. However, recent quantization studies (Liu
et al., 2024; Sun et al., 2024) suggest that introducing gradient-based optimization can further boost
performance. Thus, designing learnable pruning masks and rotation matrices compatible with our
OBR framework could lead to additional gains. Third, although OBR significantly outperforms
individual compression methods under equivalent sub-4-bit settings, its advantage narrows at higher
bit-widths, where standalone methods have not yet reached their performance limits. Developing
more advanced algorithms to maintain superior performance across various bit-widths is also a
promising direction, and we leave it for future work.

18

	Introduction
	Related Work
	Motivation
	Optimal Brain Restoration
	Objective Approximation
	Solution and Framework
	Specific Implementation

	Experiments
	Experiment Results
	Ablation Studies
	Discussion

	Conclusion
	Summary of OBR Algorithm
	Coexistence of Quantization and Pruning.
	More Experiments
	More Visualization
	Limitation and Future Work

