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ABSTRACT

Edge devices face significant challenges due to limited computational resources
and distribution shifts, making efficient and adaptable machine learning essen-
tial. Existing test-time adaptation (TTA) methods often rely on gradient-based
optimization or batch processing, which are inherently unsuitable for resource-
constrained edge scenarios due to their reliance on backpropagation and high
computational demands. Gradient-free alternatives address these issues but of-
ten suffer from limited learning capacity, lack flexibility, or impose architectural
constraints. To overcome these limitations, we propose a novel single-instance
TTA method tailored for edge devices (TED), which employs forward-only coor-
dinate optimization in the principal subspace of latent using the covariance matrix
adaptation evolution strategy (CMA-ES). By updating a compact low-dimensional
vector, TED not only enhances output confidence but also aligns the latent repre-
sentation closer to the source latent distribution within the latent principal sub-
space. This is achieved without backpropagation, keeping the model parameters
frozen, and enabling efficient, forgetting-free adaptation with minimal memory
and computational overhead. Experiments on image classification and keyword
spotting tasks across the ImageNet and Google Speech Commands series datasets
demonstrate that TED achieves state-of-the-art performance while reducing com-
putational complexity by up to 63 times, offering a practical and scalable solution
for real-world edge applications. Furthermore, we successfully deployed TED
on the ZYNQ-7020 platform, demonstrating its feasibility and effectiveness for
resource-constrained edge devices in real-world deployments.

1 INTRODUCTION

The heterogeneity of data in real-world applications poses a significant challenge for modern ma-
chine learning systems. During deployment, the data encountered (a.k.a. target domain) often devi-
ates from the training data (a.k.a. source domain), resulting in out-of-distribution (OOD) data (Recht
et al., 2019; Hendrycks & Dietterich, 2019; Hendrycks et al., 2021). This distribution shift un-
dermines the assumption of identical training and test distributions, causing models to struggle in
generalizing effectively. OOD scenarios are particularly common in dynamic environments, where
deployment conditions, sensor noise, and user behaviors vary significantly. Test-time adaptation
(TTA) (Sun et al., 2020; Darestani et al., 2022; Liang et al., 2025) has emerged as a promising so-
lution, allowing models to adapt dynamically to OOD data during inference, which is critical for
ensuring robust and reliable AI systems in real-world settings.

The significance of TTA is heightened in edge computing, where AI models operate on resource-
constrained devices such as FPGAs (Eldafrawy et al., 2020), ASICs (Yang et al., 2025), embedded
platforms (Jeong et al., 2022), mobile devices (Li et al., 2024), and robots (Sodhani et al., 2021).
While edge devices provide reduced latency, enhanced privacy, and real-time processing, their lim-
ited memory, computational power, and energy impose additional challenges for maintaining con-
sistent OOD performance. Thus, developing TTA methods optimized for edge devices is essential,
balancing adaptation efficacy with resource efficiency to enable robust and adaptive AI systems in
diverse and dynamic deployment scenarios.

Many TTA approaches rely on gradient-based optimization to adjust model parameters during in-
ference. For instance, pseudo-labeling (Liang et al., 2020) iteratively updates parameters based
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on confident predictions, but its dependence on initial prediction quality can lead to performance
degradation under severe distribution shifts. Other methods, such as TENT (Wang et al., 2021) and
EATA (Niu et al., 2022), minimize self-supervised losses or impose constraints to stabilize adapta-
tion, while MEMO (Zhang et al., 2022) enforces consistency across augmented samples. To further
improve efficiency, recent works (Hong et al., 2023; Song et al., 2023; Lee et al., 2024; Ma et al.,
2025) have proposed strategies to reduce computational overhead. Although effective in certain
settings, these gradient-based approaches are unsuitable for resource-constrained edge devices due
to their reliance on backpropagation, intermediate activation storage, and high computational over-
head. Additionally, methods like MEMO, which adapt the entire model, are prone to catastrophic
forgetting (Chen et al., 2025).

Gradient-free TTA methods have emerged as a promising alternative, leveraging lightweight up-
dates to circumvent the limitations of gradient-based approaches. Many of these methods focus on
adjusting batch normalization (BN) parameters (Schneider et al., 2020; Lim et al., 2023) or mod-
ifying output probabilities using batch-derived statistics (Boudiaf et al., 2022), but their learning
capacity is limited. Moreover, in real-world edge device applications, such as image classification
or keyword spotting, models typically encounter independent single test sample rather than mini-
batches of data, rendering these batch-dependent methods impractical. Methods like T3A (Iwasawa
& Matsuo, 2021) avoid batch dependency by adjusting the classifier directly; however, they perform
poorly when adapting to individual test samples. While a recent prompt-based method FOA (Niu
et al., 2024) eliminates backpropagation in a forward-only manner, we argue that FOA may be 1)
suboptimal for independent single-instance adaptation due to potential reliance on batch statistics
and 2) incompatible with wider prompt-free architectures (e.g., RNNs). These limitations highlight
the need for robust gradient-free TTA methods that can handle single-instance scenarios and diverse
architectures, underscoring the importance of further innovation in this area.
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Figure 1: Accuracy, computation,
and memory comparison of vari-
ous TTA methods under a single-
instance setting on ImageNet-C
with ViT-Base.

To this end, we introduce TED, a single-instance TTA method
for edge devices that performs forward-only optimization in
the latent principal subspace. Instead of tuning hundreds
of parameters or entire models, TED updates only a low-
dimensional vector. Unlike FOA’s prompt updates, TED oper-
ates in an architecture-agnostic latent space, offering broader
applicability and plug-and-play deployment. This yields high
efficiency, strong adaptation, reduced forgetting, and reliable
scaling on resource-limited hardware. Specifically, we pre-
load the latent PC basis, through the SVD of the source la-
tent representations. When an OOD test sample is fed into the
model’s encoder, it produces its corresponding latent. We then
employ the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) (Hansen, 2016) to update one compact vector, ob-
taining the adapted latent. During this process, entropy mini-
mization is utilized to enhance the confidence of the final pre-
diction, and the latent is modified closer to the source latent
distribution within the latent principal subspace. Finally, the
decoder generates the prediction based on the adapted latent.

Our main contributions are as follows: 1) A Minimalist Latent Adaptation Paradigm: We propose
a novel TTA framework that shifts the adaptation focus from high-dimensional model weights to a
low-dimensional latent space. We demonstrate that adapting only a handful of latent scalars is
sufficient to correct distribution shifts. This paradigm decouples the adaptation complexity from
the backbone size, effectively mitigating catastrophic forgetting while maintaining high robustness
(see Figure 1). 2) Forward-Only TTA Formulation: By reducing the adaptation search space to
a tiny latent vector, we are able to formulate TTA as a gradient-free optimization problem. This
enables a forward-only update mechanism (implemented via CMA-ES) that eliminates the need
for backpropagation and large activation buffers, making deep test-time adaptation feasible on strict
edge devices for the first time. 3) Efficiency and Universality: We validate TED across five datasets
involving significant real-world noise and distribution shifts. Unlike methods restricted to specific
layers (e.g., Batch Norm), our approach is architecture-agnostic. Extensive experiments show that
TED reduces computational complexity by up to 63× and memory usage by 11× compared to
standard baselines, achieving state-of-the-art performance in single-instance TTA settings.
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2 RELATED WORK

Single-Instance TTA. Single-instance TTA methods aim to adapt models to distribution shifts when
only a single test sample is available, a scenario where the absence of batch data poses significant
challenges for computing reliable statistics, especially for BN layers. To address this limitation, ap-
proaches like SITA (Khurana et al., 2021), DUA Mirza et al. (2022) MEMO (Zhang et al., 2022), and
SPACE (Luo et al., 2025) generate a pseudo-batch by applying diverse augmentations to the single
test sample. SITA adapts the parameters of BN layers based on the augmented batch, while MEMO
fine-tunes the entire model to enforce consistency among the augmented samples. SPACE refines
the model’s encoder by aligning latent representations across the batch. However, from a hard-
ware perspective, performing multiple augmentations introduces substantial challenges in terms of
computational resources, overhead, and latency. Additionally, MEMO and SPACE rely on gradient-
based optimization, making it unsuitable for deployment on resource-constrained edge devices.

Gradient-Free TTA. Gradient-free TTA methods address the computational and memory limita-
tions of backpropagation, making them suitable for resource-constrained environments. Early stud-
ies in this area primarily focused on adapting BN statistics by recalculating the mean and variance
from test data (Schneider et al., 2020). While effective in certain scenarios, these methods rely on
the presence of multiple test samples, which limits their applicability in single-instance settings. To
overcome this limitation, subsequent works have introduced techniques tailored for single-sample
adaptation, such as SITA (Khurana et al., 2021), mix-up training (Hu et al., 2021), and instance-
specific BN adjustments (Gong et al., 2022). In addition to BN adaptation, alternative strategies
have been proposed, including prototype-based classifier adjustments (Iwasawa & Matsuo, 2021)
and logit-level corrections (Boudiaf et al., 2022). Despite their computational efficiency, gradient-
free TTA methods often suffer from limited learning capacity as they do not update the core model
parameters, resulting in suboptimal performance under severe distribution shifts. These challenges
underscore the need for more advanced gradient-free TTA approaches that can achieve a better bal-
ance between computational efficiency and adaptation effectiveness.

Latent Representation Modification for TTA. The modification of latent representations has been
widely explored in image compression (Djelouah & Schroers, 2019; Shen et al., 2023) and genera-
tive modeling (Shen et al., 2020; Vahdat et al., 2021), where latent space manipulation has proven
effective for improving task performance and flexibility. Existing TTA methods, however, rarely
focus on directly modifying latent representations. A notable exception is (Chen et al., 2025),
which introduces latent refinement for TTA in medical image segmentation using a latent condi-
tional random field (CRF) loss. While effective, this approach relies on backpropagation, making
it computationally expensive and unsuitable for edge computing. Moreover, its task-specific de-
sign for medical image segmentation and significant resource overhead limit its generalizability and
practicality. These limitations highlight the need for efficient, lightweight, and generalizable TTA
methods that modify latent representations without excessive computational costs.

3 METHODOLOGY

3.1 CHALLENGES AND MOTIVATION

Challenges. TTA aims to enable models to adapt dynamically to distribution shifts between source
and target domain data during inference. Existing TTA methods face critical limitations on resource-
constrained edge devices. Gradient-based methods (Wang et al., 2021) require backpropagation and
substantial memory for storing the intermediate activations. Batch-dependent methods (Zhao et al.,
2023) needs multiple samples, but edge applications often process single instances. Parameter-heavy
approaches (Zhang et al., 2022) risk catastrophic forgetting and exceed memory constrains.

Motivation. We observe that distribution shifts primarily manifest as coordinate distortions when
the test sample is projected into the source domain’s semantic space. Instead of adapting model
parameters, we propose to correct the latent representation of test sample by adjusting its coordinate
within the source domain’s principal subspace, which is spanned by the top-k principal components
(PC) of source latent feature.

Our approach offers three key advantages: 1) Efficiency: Only k parameters need optimization
(k ≪ D, D is the dimension of latent features). 2) Preservation: Source domain knowledge re-
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Figure 2: An overview of our proposed TTA method for edge devices (TED). Source samples
are used to compute the latent PC basis Vk during the preparation phase. For a single OOD sample,
its latent is updated within the source latent principal subspace by encouraging higher prediction
confidence and aligning it closer to the source latent distribution. This is achieved using a forward-
only CMA-ES optimizer, enabling efficient and hardware-friendly TTA.

mains intact, avoiding catastrophic forgetting. 3) Hardware-friendly: Design for single-instance
scenarios and no backpropagation required, enabling deployment on edge devices. Figure 2 illus-
trates the overall process of the proposed TED.

3.2 TED: EFFICIENT SINGLE-INSTANCE FORWARD-ONLY TEST-TIME ADAPTATION

Definition 1. (Model and Latent Feature Representation) Consider a model f = Dec ◦ Enc, where
the encoder Enc : X → Z may be instantiated by various architectures (e.g., Transformer, CNN,
or LSTM), and the decoder Dec : Z → Y is a fully connected layer (or a variant thereof). For
any input x ∈ X , the latent feature representation is defined as z := Enc(x), i.e., the input to the
decoder; the model output is ŷ := Dec(z).

Source Principal Subspace Construction. Our framework is built upon representing latent within
a subspace defined by the source domain’s statistics. Given N source latent features Zs = {zs,i}Ni=1,
where zs,i ∈ RD. First, we compute the source feature mean µs and the centered latent Zs, centered.

We then perform truncated SVD to extract the k-dimensional principal subspace of source latent:

Zs,centered ≈ UkΣkV
⊤
k . (1)

Here, Vk ∈ RD×k is a matrix whose k columns v1,v2, . . . ,vk form an orthonormal basis for the k-
dimensional principal subspace, which contains the k principal directions capturing dominant source
variation. The matrices Uk ∈ RN×k and Σk ∈ Rk×k contain the corresponding left singular vectors
and singular values respectively. The source-trained decoder is inherently optimized to perform well
for source latent which is well-represented in the principal subspace. This low-rank basis Vk thus
constitutes the “language” of semantic variation that the model understands.

Coordinate Correction Framework and Theoretical Analysis. Given the latent PC basis Vk, any
target latent zt ∈ RD can be approximated as a deviation from the source mean, reconstructed from
its projection onto the low-rank subspace:

zt ≈ µs + ptV
⊤
k , (2)

where pt = (zt − µs)Vk represents the k-dimensional vector of projection coefficients, or “coordi-
nates”, within the source latent principal subspace. Our proposed core latent adaptation strategy is
formulated through the following update rule:

zadapted = zt + pV⊤
k , (3)

where p ∈ Rk is optimized during test time. By leveraging this framework, the complex problem
of test-time domain adaptation is reformulated into a well-posed coordinate correction task within
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Algorithm 1 TED via Forward-Only Optimization in Latent Principal Subspace

1: Input: Test sample x, encoder Enc, decoder Dec, latent PC basis Vk, No. of iteration n.
2: Output: Prediction ŷ∗.
3: Step 1: Generate latent representation.
4: Obtain latent zt by passing the test sample x through the encoder: zt = Enc(x).
5: Step 2: Optimize latent adaptation.
6: Initialize CMA-ES optimizer.
7: for t = 1 to n do
8: Sampling: Generate λ candidate solutions.
9: Evaluation: For each candidate p

(t)
i , compute the adapted latent by Equation 3,

10: Obtain the output: ŷ = Dec(zadapted) and compute the fitness using Equation 8.
11: Update: Adapt CMA-ES internal parameters based on the top-performing candidates.
12: end for
13: Step 3: Select final prediction.
14: Choose the p∗ with the smallest fitness value and corresponding output ŷ∗.
15: Return: Final prediction ŷ∗.

a canonical subspace defined by the source domain. This approach is computationally efficient and
particularly suited for addressing distribution shifts.

Our core argument is that the adaptation rule in Equation 3 is mathematically equivalent to correcting
the coordinates of the target latent within the unified source space. A source-trained model primarily
interprets latent by its deviation from the source mean µs. Therefore, we analyze the deviation vector
of the adapted latent:

zadapted − µs = (zt − µs) + pV⊤
k . (4)

This equation reveals that our method corrects the deviation vector of the target latent (zt − µs) by
adding a correction term pV⊤

k that lies within the source latent PC space. To observe the effect in
the coordinate space, we project Equation 4 onto the PC basis Vk by right-multiplying by Vk:

(zadapted − µs)Vk = (zt − µs)Vk + (pV⊤
k )Vk. (5)

Here, we define the coordinates as follows:

padapted = (zadapted − µs)Vk, pt→s = (zt − µs)Vk, (6)

where padapted represents the coordinates of the adapted latent, and pt→s denotes the coordinates of
the original target latent as observed in the source space. Since V⊤

k Vk = I , the equation simplifies
to the following coordinate correction formula:

padapted = pt→s + p. (7)

This result demonstrates that our update rule reduces to a simple linear correction of the target
latent’s coordinates within the latent principal subspace. The following optimization of p drives this
correction, effectively addressing the distribution shift through a unified mechanism.

Forward-Only Optimization. In the absence of ground-truth labels for the test sample, we adopt
Shannon entropy (Shannon, 1948) minimization as the objective for TTA, a commonly used ap-
proach to encourage more confident model predictions (Grandvalet & Bengio, 2004; Wang et al.,
2021; Zhang et al., 2022; Chen et al., 2025). The Shannon entropy is defined as:

H(y) = −
C∑

c=1

ŷc log ŷc, (8)

where ŷc is the predicted probability for class c, and C is the total number of classes. The optimiza-
tion aims to minimize H(y) with respect to p, which drives the OOD latent feature closer to the
source domain in Vk (see Appendix A).

To optimize p in a gradient-free manner, we employ CMA-ES, a powerful optimization algorithm
designed for non-differentiable, multi-dimensional problems (see Appendix B). To ensure consis-
tency in the optimization process for each test sample while accounting for computation cost, we
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introduce a hyperparameter n to explicitly control the number of optimization iterations. CMA-
ES iteratively samples candidate solutions for p, evaluates their fitness using the defined objective
H(y), and updates the search distribution. At the end, the prediction output corresponding to the p∗

with the smallest fitness value is selected. The overall method is presented in Algorithm 1.

Overall, our method bridges the gap between algorithmic performance and hardware deployment,
providing a robust and efficient framework for TTA on edge devices. More discussion is presented
in Appendix A. The code will be available upon the acceptance.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Tasks, Datasets, and Models. We evaluate our methods on two types of tasks: image classification
(IC) and keyword spotting (KWS). For the IC task, we conduct experiments on four OOD gen-
eralization benchmarks: ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-V2 (Recht et al.,
2019), ImageNet-R (Hendrycks et al., 2021), and ImageNet-Sketch (Wang et al., 2019). We use ViT-
Base (Dosovitskiy et al., 2021), trained on ImageNet-1k (Russakovsky et al., 2015), as pretrained
source model across all four datasets. For the KWS task, we simulate real-world scenarios by mix-
ing the Google Speech Commands dataset (Warden, 2018) with five types of real-world background
noise from the ESC50 dataset (Piczak, 2015) at varying signal-to-noise ratios (SNR), referred as
GSC-C. The source model used is a pretrained LSTM (Yang et al., 2025), trained on the clean GSC
dataset. The evaluation metric is the classification accuracy (%, ↑) on OOD test-time samples.

Baselines. We evaluate our method against two types of baselines: gradient-free and gradient-based
methods, as well as a simple baseline, No Adapt, which performs no TTA. Gradient-free methods
include T3A (Iwasawa & Matsuo, 2021), which adapts a prototype-based classifier to handle OOD
samples, and FOA (Niu et al., 2024), which optimizes additional prompts without gradient updates
for efficient adaptation. Gradient-based methods include CoTTA (Wang et al., 2022), which em-
ploys continual adaptation to enhance consistency across augmented samples, MEMO (Zhang et al.,
2022), which leverages entropy minimization for confident predictions, SAR (Niu et al., 2023),
which stabilizes TTA through active sample selection and a sharpness-aware optimizer, PASLE (Hu
et al., 2025), which adapts progressively by assigning one-hot labels to confident samples and can-
didate sets to uncertain ones, BECoTTA (Lee et al., 2024), which utilizes input-dependent mixture-
of-experts for parameter-efficient TTA, and SURGEON (Ma et al., 2025), which reduces memory
cost via dynamic activation sparsity during backpropagation. These baselines encompass diverse
strategies, ensuring a comprehensive comparison. All baselines in our experiments are reproduced
using the official implementations and the hyper-parameters recommended in their original papers
or public code repositories, except the batch size which is set to 1.

Implementation Details. For the IC and KWS tasks, we set k to 16 and 2, respectively, and compute
the source PC basis Vk, which remains fixed throughout the optimization process. The population
size λ for CMA-ES initialization is set to (4 + 3 × log k), following the default configuration of
Hansen (2016). The number of optimization iterations n is set to 8 for IC and 2 for KWS. To ensure
a fair comparison in our single-instance setting, the batch size for all baselines is fixed at 1, and the
model is reset after processing each test sample to maintain independence.

Additional details on the experimental setup and extended experiments can be found in Appendix C.

4.2 MAIN RESULTS AND ANALYSES

In this section, we evaluate our proposed TED method on two tasks: IC and KWS, comparing it
against state-of-the-art TTA methods. The primary focus is to assess the effectiveness of our method
in handling distribution shifts, while maintaining efficiency and stability during TTA. The results
highlight the superior performance of our approach across diverse datasets and tasks.

Performance Comparison on Image Classification Task. Table 1 summarizes the performance
of various methods on ImageNet-C with the ViT-Base model under diverse distribution shifts. We
discuss the results in four key aspects: 1) Superior Performance: Our method, TED, achieves the
highest average accuracy of 57.82%, surpassing all baselines, which highlights its robustness and
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Table 1: Performance comparison on ImageNet-C with ViT-Base model regarding Accuracy (%).
GF stands for gradient-free. The bold number indicates the best result.

Method GF Noise Blur Weather Digital Average
Gauss. Shot Impl. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Acc.

No Adapt ✓ 55.34 56.23 56.01 46.48 34.78 52.87 44.20 62.39 62.66 65.56 77.70 32.04 45.73 66.72 66.67 55.03
FOA (ICML’24) ✓ 53.87 54.16 54.00 46.17 33.45 52.56 43.69 61.82 62.30 66.17 77.73 30.60 46.14 66.18 66.77 54.37
T3A (NeurIPS’21) ✓ 54.69 55.95 55.61 47.41 36.77 53.91 46.44 63.85 60.42 68.12 78.11 37.79 49.54 67.24 68.04 56.26
CoTTA (CVPR’22) ✗ 54.61 55.66 55.37 45.28 34.35 52.69 44.11 62.38 62.62 58.33 77.71 29.58 45.65 66.68 66.66 54.11
SAR (ICLR’23) ✗ 55.25 56.08 55.89 46.22 34.41 52.28 43.82 62.09 62.69 65.56 77.53 32.03 45.47 66.37 66.55 54.82
PASLE (ICLR’25) ✗ 56.72 56.24 56.21 47.53 35.32 53.02 44.03 62.43 62.81 65.84 78.62 31.23 46.65 66.76 67.24 55.38
BECoTTA (ICML’ 2024) ✗ 55.67 56.45 56.29 46.21 33.68 52.66 43.67 62.20 63.37 68.25 77.58 33.74 45.09 66.70 66.78 55.22
SURGEON (CVPR’ 2025) ✗ 58.70 59.22 59.23 48.82 35.29 55.06 45.87 64.83 65.94 61.76 79.56 34.46 46.90 69.02 69.36 56.93
MEMO (NeurIPS’22) ✗ 55.90 54.20 56.30 45.79 39.34 53.02 45.13 42.56 47.82 65.31 80.01 69.63 49.21 69.51 71.33 56.34

TED (ours) ✓ 58.77 59.66 59.50 49.30 36.08 55.35 46.34 65.21 66.40 67.66 80.21 35.96 47.61 69.55 69.68 57.82

adaptability. TED consistently outperforms in and most individual domains, further demonstrating
its ability to adapt effectively without requiring gradient updates. 2) Setting Challenge: Many meth-
ods, including FOA, CoTTA and SAR, fail to achieve meaningful improvements in single-instance
adaptation scenarios, reducing their applicability in real-world settings where efficient and stable
TTA is needed. FOA’s activation-shifting module requires batch data to function reliably. Moreover,
the “single-sample” variant in FOA actually relies on a continuous test-time stream, which contra-
dicts our assumption that test instances arrive independently and must be handled in isolation, which
better matches real deployments. CoTTA’s EMA teacher is updated from single, noisy pseudo-labels
and thus cannot supply reliably denoised targets, and augmentation-averaged labels are often dis-
abled or too sparse to stabilize the update. SAR suffers from the combination of batch size = 1 and
online label imbalance yields too few reliable samples for updates. 3) Vs. T3A: T3A relies on a
history-dependent support set that is incrementally updated using previous test samples. As a result,
its predictions are sequence-dependent and cannot be made independent across test instances. If per-
instance independence is enforced (e.g., by resetting the support set for each input), each adjustment
benefits only from the initialization and offers limited effective adaptation. 4). Vs. PASLE: PASLE
helps by using selective labels—one-hot for confident cases and small candidate sets for uncertain
ones—mitigating outright mislabeling. However, its strengths that rely on progressive thresholding,
buffer-based reuse, and stable margin statistics are underutilized with batch size = 1, leading to
limited but consistent gains, which is line with its report on batch size sensitivity in the paper. 5) Vs.
MEMO: MEMO face challenges due to instability and catastrophic forgetting. Although MEMO
achieves a competitive average accuracy, it exhibits significant inconsistencies across domains, such
as Snow (42.56%) and Fog (47.82%). Overall, TED demonstrates state-of-the-art performance, su-
perior robustness, and strong adaptability, making it highly effective for tackling diverse distribution
shifts in real-world applications.

Table 2: Performance comparison
on ImageNet-V2/R/Sketch with ViT-
Base regarding Accuracy (%). GF
stands for gradient-free. The bold
number indicates the best result.

Method GF Accuracy (%)
V2 R Sketch Avg.

No Adapt ✓ 75.49 59.49 44.89 59.96
FOA (ICML’24) ✓ 75.25 59.96 44.95 60.05
T3A (NeurIPS’21) ✓ 75.61 57.98 48.44 60.68
CoTTA (CVPR’22) ✗ 75.50 59.20 44.77 59.82
SAR (ICLR’23) ✗ 75.33 59.39 44.82 59.85
PASLE (ICLR’25) ✗ 75.66 61.73 45.72 61.04
MEMO (NeurIPS’22) ✗ 76.08 62.85 46.08 61.67

TED(ours) ✓ 78.15 65.29 47.73 63.72

Beyond ImageNet-C, our method achieves superior perfor-
mance on the ImageNet-V2, -R, and -Sketch datasets, as
shown in Table 2, achieving the highest average accuracy of
63.72% and consistently outperforming all baselines. These
results underscore TED’s exceptional ability to adapt to dis-
tribution shifts across diverse data, further validating its ro-
bustness and strong generalizability.

Performance Comparison on Keyword Spotting Task.
CoTTA and MEMO require standard image augmentation
to perform TTA. However, their methods lack well-defined
transformations tailored for speech data, making them un-
suitable for a fair comparison in this task. Similarly, FOA,
as a prompt-based method, is incompatible with LSTM ar-
chitectures, which are commonly used in KWS. Therefore, we compare our proposed method, TED,
with T3A and SAR on the GSC-C dataset under SNR of -10/-15/-20 dB, as shown in Table 3. The
results demonstrate that TED significantly outperforms other baselines, with performance improve-
ments becoming more pronounced as the SNR decreases. We attribute this to the fact that under
higher noise levels, the same principal subspace (Vk) provides relatively more informative guid-
ance from the source domain, enabling TED to perform more effective adaptation. Furthermore, we
find that T3A’s performance on KWS is comparable to No Adapt. We attribute this to the small label
space (12 classes) and the single-instance setting, which yield too few confident per-class supports
to update the prototypes; consequently, the pseudo-prototypes remain close to the initial classifier
weights, the adjusted logits mirror the original linear head, and accuracy is unchanged. Because
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Table 3: Performance comparison on GSC-C with LSTM model regarding Accuracy (%). GF
stands for gradient-free. The bold number indicates the best result.

SNR Method GF Animals Natural Human Domestic Urban Average
dog cat pouringwater thunderstorm cryingbaby laughing washingmachine vacuumcleaner carhorn fireworks Acc.

-10 dB

No Adapt ✓ 62.67 61.17 54.55 66.23 58.74 58.59 52.88 50.43 56.62 61.54 58.34
T3A (NeurIPS’21) ✓ 62.67 61.17 54.55 66.23 58.74 58.59 52.88 50.43 56.62 61.54 58.34

SAR (ICLR’23) ✗ 61.33 59.85 52.79 63.92 55.80 56.95 49.53 47.31 55.06 60.21 56.28
PASLE (ICLR’25) ✗ 62.87 62.06 54.78 66.75 59.42 59.63 57.69 53.38 58.35 62.73 59.77

TED (ours) ✓ 64.25 63.58 59.73 66.47 61.99 61.94 59.46 56.98 59.32 64.90 61.86

-15 dB

No Adapt ✓ 57.08 53.63 49.35 61.45 53.08 53.03 46.81 47.49 51.76 55.19 52.89
T3A (NeurIPS’21) ✓ 57.08 53.63 49.35 61.45 53.08 53.03 46.81 47.49 51.76 55.19 52.89

SAR (ICLR’23) ✗ 55.33 52.36 47.49 59.35 51.01 50.85 44.13 44.37 50.82 54.13 50.98
PASLE (ICLR’25) ✗ 58.12 53.77 52.49 61.93 55.64 56.72 48.34 49.23 52.67 59.32 54.82

TED (ours) ✓ 60.84 57.99 57.71 62.28 58.04 58.98 57.83 55.38 56.00 60.41 58.55

-20 dB

No Adapt ✓ 52.75 48.50 46.21 58.08 51.12 48.53 45.55 46.05 48.81 50.94 49.65
T3A (NeurIPS’21) ✓ 52.75 48.50 46.21 58.08 51.12 48.53 45.55 46.05 48.81 50.94 49.65

SAR (ICLR’23) ✗ 51.28 46.95 44.28 55.51 47.82 46.68 41.45 43.41 48.23 50.10 47.57
PASLE (ICLR’25) ✗ 53.76 51.77 48.84 59.03 53.31 50.38 46.21 50.21 52.17 53.56 51.92

TED (ours) ✓ 59.07 54.71 57.20 59.35 56.94 57.94 58.22 55.54 54.50 58.07 57.15

the LSTM backbone lacks normalization layers, SAR—which adapts only the affine parameters of
group/layer norms—cannot implement the two-step “Reliable Sample Filtering + Sharpness-Aware
Minimization” procedure. As a result, adaptation collapses to plain entropy minimization and is
often ineffective or unstable. In line with our findings in the IC task, PASLE provides small but
consistent gains, which further exposing the limitations of existing methods in real-world settings
and underscoring the practical significance of our approach.

4.3 ABLATION STUDIES

Table 4: GFLOPs, memory usage and
running time per sample comparison on
ImageNet-C with ViT-Base. GF stands
for gradient-free. The bold number in-
dicates the best result.

Method GF GFLOPs Mem (MB) Time (s)

FOA (ICML’24) ✓ 479.31 702 0.273
T3A (NeurIPS’21) ✓ 16.86 718 0.124
CoTTA (CVPR’22) ✗ 50.59 1130 0.703
SAR (ICLR’23) ✗ 33.73 2996 0.037
PALSE (ICLR’25) ✗ 607.13 2588 0.051
MEMO (NeurIPS’22) ✗ 1096.14 8632 1.009
PALSE (ICLR’25) ✗ 607.13 2588 0.051
BECoTTA (ICML’ 2024) ✗ 62.74 778 0.082
SURGEON (CVPR’ 2025) ✗ 26.24 716 0.071
MEMO (NeurIPS’22) ✗ 1096.14 8632 1.009

TED(ours) ✓ 16.95 696 0.042

Analyses of Computational Efficiency. As shown in
Figure 1 and Table 4, TED demonstrates significant ad-
vantages in computational complexity compared to other
methods. Specifically, TED achieves a GFLOPs value
of 16.95, which is among the lowest across all meth-
ods, highlighting its high computational efficiency. T3A
suffers from longer runtime despite having the lowest
GFLOPs, due to its computation being concentrated in the
final linear layer and support set updates, which are dif-
ficult to parallelize and fully utilize hardware resources.
Additionally, its entropy filtering step, which involves
calculating and filtering prediction entropy for each sam-
ple, introduces additional overhead when the support set
is large. In terms of memory usage, TED requires only
696 MB, making it the most memory-efficient approach in the comparison. Moreover, TED achieves
a short runtime per sample, at just 0.042 seconds, significantly outperforming other methods such as
MEMO (1.009 s) and CoTTA (0.703 s). Gradient-based SAR achieve slightly shorter running time
by only updating the affine parameters in normalization layers, thereby reducing the computational
cost of parameter updates. However, as shown in Table 1, this strategy struggles in single-sample
scenarios, where updating affine parameters alone may not be sufficient to achieve effective TTA.0 10 20 30 40 50
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Figure 3: Visualization of latent feature
alignment, regarding Cosine Similarity.

Effectiveness of TED strategy. We analyze 1000
ImageNet-C (Gaussian Noise) samples, and measure the
Cosine Similarity between the latent features of OOD
samples and their corresponding clean source features Fig-
ure 3. TED-adapted features show higher similarity to the
source compared to the corrupted features, indicating ef-
fective recovery of the original feature semantics.

Effect on Diverse Networks. To evaluate the gen-
eralizability of TED, we validate its effectiveness on
diverse architectures, including ResNet-50 (He et al.,
2016), EfficientNet-B0 (Tan & Le, 2019), and MobileNet-
V4 (Qin et al., 2024). Since these backbones rely
on Batch Normalization, we incorporate additional BN-
specific baselines IABN (Gong et al., 2022) and TTN (Lim et al., 2023) for comparison in Table 5.

8

xinyuluo8
Highlight

xinyuluo8
Highlight

xinyuluo8
Highlight



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison on ImageNet-C with ResNet-50, EfficientNet-B0 and MobileNet-
V4 regarding Accuracy (%). The bold number indicates the best result.

Networks Method Noise Blur Weather Digital Average
Gauss. Shot Impl. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Acc.

ResNet-50

No Adapt 4.47 4.74 4.06 8.11 5.96 9.59 14.74 6.92 14.47 12.32 45.80 0.72 11.08 18.19 32.54 12.91
IABN 7.22 5.10 5.54 5.46 7.38 11.92 15.98 5.74 12.32 14.14 47.10 0.90 7.10 18.26 18.04 12.15
TTN 1.73 5.13 4.90 4.17 6.69 10.16 14.14 6.13 14.52 14.42 49.20 0.22 12.26 22.03 33.07 13.25
SAR 2.34 4.46 4.24 6.56 6.66 14.04 16.34 4.02 14.68 13.26 48.51 0.35 12.43 20.44 36.46 13.65
TED 4.99 5.18 4.41 11.36 7.32 14.26 18.29 7.00 15.32 15.01 55.32 0.25 13.07 23.29 40.97 15.74

EfficientNet-B0

No Adapt 15.07 18.47 14.66 21.48 8.66 21.73 24.24 30.95 27.77 28.80 67.25 21.96 17.62 46.73 50.51 27.73
IABN 14.71 19.32 14.75 21.34 9.24 21.59 25.65 33.35 29.45 29.56 69.24 22.51 17.88 49.46 53.32 28.76
TTN 15.32 12.34 15.32 23.44 6.32 23.23 26.36 32.02 28.66 32.74 69.35 24.78 18.50 52.64 54.44 29.03
SAR 15.34 20.58 16.22 22.53 4.24 20.34 22.35 32.45 20.76 28.63 68.64 22.46 16.34 46.86 49.58 27.15
TED 16.61 21.53 16.71 25.02 7.57 25.91 27.69 35.05 30.38 32.78 75.67 25.96 18.50 55.14 59.24 31.58

MobileNet-V4

No Adapt 5.97 7.58 6.02 9.69 3.03 12.30 11.19 12.57 20.20 11.41 58.11 3.84 11.05 10.29 32.79 14.40
IABN 5.32 7.50 6.23 9.46 3.02 12.34 11.68 12.34 20.68 13.46 66.48 2.02 11.36 9.68 36.46 15.20
TTN 6.98 7.54 6.38 9.84 3.34 13.56 12.56 12.64 20.46 12.42 64.66 2.46 10.48 10.46 40.58 15.62
SAR 4.98 7.32 4.54 10.20 3.02 14.54 11.08 12.78 22.34 11.60 60.34 2.66 10.46 11.42 39.64 15.13
TED 5.47 7.55 5.43 10.89 2.99 14.57 12.28 13.17 23.08 12.70 68.52 2.78 11.77 11.77 41.43 16.29

Table 6: Performance comparison on ImageNet-C with ViT-Base model using different k and n
regarding Accuracy (%). The bold number indicates the best result.

k{k}n{n} k8n2 k8n4 k8n8 k8n10 k16n2 k16n4 k16n8 k16n10 k32n2 k32n4 k32n8 k32n10

Accuracy 55.07 55.39 51.40 50.01 55.12 56.88 57.82 52.44 55.16 55.56 57.22 53.24

On ResNet-50, TED achieves consistent performance improvements across most domains, with a
notable +2.83% increase in average accuracy. Furthermore, considering edge deployment, we ex-
amine the lightweight EfficientNet-B0 (5.29M parameters) and MobileNet-V4 (3.77M parameters).
Despite the inherently lower robustness of these smaller networks, TED still improves the aver-
age accuracy. However, we observe minimal gains on specific extreme corruptions, such as Glass
Blur on MobileNet-V4 and Contrast on ResNet-50. In these cases, the baseline accuracy drops to
near-random levels (e.g., 3.03% and 0.72%, respectively), indicating catastrophic feature degrada-
tion. Since TTA relies on exploiting residual semantic structures in the latent space, the total loss
of meaningful signal in these regimes renders the adaptation ineffective. This suggests that under
such severe information loss, improving the intrinsic robustness of the backbone is a prerequisite for
successful adaptation.

Effect of Hyperparameters k and n. As shown in Table 6, the choice of k and n presents a
trade-off between subspace expressiveness and optimization stability, with k = 16, n = 8 achieving
the optimal balance. Specifically, k controls the subspace capacity: a small k limits useful variation,
while an excessively large k introduces noisy directions and complicates the search space. Regarding
n, it governs the optimization strength. While sufficient steps are needed for adaptation, an overly
large n causes the solver to overfit the unsupervised proxy rather than improving generalization,
leading to performance degradation.

Table 7: Evaluation on edge device for KWS task (GSC-C under SNR of -10 dB) with LSTM model
regarding Accuracy (%). The bold number indicates the best result.

Method Devices Animals Natural Human Domestic Urban Average
dog cat pouringwater thunderstorm cryingbaby laughing washingmachine vacuumcleaner carhorn fireworks Acc.

No Adapt RTX 3090 62.67 61.17 54.55 66.23 58.74 58.59 52.88 50.43 56.62 61.54 58.34
TED 64.25 63.58 59.73 66.47 61.99 61.94 59.46 56.98 59.32 64.90 61.86 (+3.52)

No Adapt ZYNQ 7020 57.03 56.29 50.03 60.74 51.52 52.42 50.75 52.88 54.74 59.19 54.56
TED 58.06 57.70 53.04 61.04 53.63 54.31 52.39 54.93 58.18 59.62 56.29 (+1.73)

Demonstration on Edge Device ZYNQ 7020. To validate the feasibility of our TTA framework
on real-world edge devices, we deployed it on the ZYNQ 7020 platform, a widely utilized SoC
that combines an ARM Cortex-A9 processor with FPGA-based programmable logic. We frame this
experiment as a proof-of-concept for edge deployability rather than a conventional benchmark, given
that the strict hardware constraints preclude the use of standard gradient-based TTA methods. While
most existing approaches rely on computationally expensive backpropagation and large activation
buffers, rendering them incompatible with such platforms, TED overcomes this barrier by updating
only a low-dimensional latent vector via forward passes.

We evaluated our algorithm on the KWS task under an SNR of -10 dB. The reduced computational
precision on ZYNQ 7020 (fixed-point 16-bit) contributes to the performance gap observed between
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the edge device and the GPU (float-point 32-bit), as shown in Table 7. Nevertheless, our TTA method
achieves notable performance improvements, with an average accuracy of 54.56% compared to
56.29% for the baseline. These results underscore the robustness and adaptability of our framework,
even under the constraints of edge hardware, positioning it as a promising solution for real-world
deployment in resource-constrained environments.

5 CONCLUSION

In this paper, we proposed a TTA framework that updates the latent representation of a single test
sample within the principal subspace, achieving robust classification performance with high compu-
tational efficiency. By employing the forward-only CMA-ES optimizer, our method is particularly
well-suited for edge devices. We validated our approach across five datasets with significant dis-
tribution shifts, demonstrating reductions in computational complexity and resource usage, while
achieving state-of-the-art performance in single-instance TTA. Additionally, we incorporated quan-
tization techniques to further enhance the hardware efficiency of our method. To validate its real-
world applicability, we successfully deployed our method on the ZYNQ 7020 platform, showcasing
its feasibility and effectiveness in practical edge computing scenarios.
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A DISCUSSION

Decomposition of Distribution Shift. We interpret our method within a “Unified Centered Space”,
where the origin is the source mean µs and the axes are defined by the latent PC basis Vk. The
distribution shift between the source and target domains can be decomposed into two distinct com-
ponents: Mean Shift, representing the difference in data centroids, ∆µ = µt −µs, and Covariance
Shift, capturing changes in the data distribution’s shape, orientation, and scale. The latter is reflected
in the mismatch of PC and the differing distributions of projection coordinates. A target latent zt
poses a challenge for the source model as it is simultaneously influenced by both types of shifts.

Mechanism of Coordinate Correction. Because the update vector p is searched only inside the
source principal subspace Vk, every candidate latent is expressed in a coordinate system that the
source-trained decoder inherently supports. The Shannon entropy objective H then acts as a di-
rectional guide. Our rationale relies on standard modeling assumptions regarding deep classifiers:
specifically, that softmax outputs are calibrated (Guo et al., 2017) and that class-conditional features
follow a shared-covariance prototype geometry (Lee et al., 2018; Papyan et al., 2020). Under these
conditions, minimizing entropy encourages zadapted to move toward the high-density neighborhood
of a source class prototype. In the Unified Centered Space, this movement re-centers the sample
toward a source class mean and reduces the Mahalanobis residual, effectively mitigating covariance
shift. This theoretical analysis is corroborated by our empirical results in Figure 3, which verify
that the adapted latent statistics align closely with the clean source distribution. Consequently, the
combination of “subspace restriction + entropy minimization” allows us to pull OOD features back
to the source distribution without any explicit distance regularizer, achieving effective test-time
adaptation with minimal overhead.

Quantization of TED. While the computation in our primary ZYNQ deployment is automatically
truncated by the hardware’s arithmetic units, we further explore the limits of TED’s efficiency
to demonstrate its potential for future dedicated hardware co-design. Specifically, we investigate
whether the optimization process remains effective under extreme numerical constraints. We pro-
pose two exploratory variants

1. Definition 2. (QTED-V1) We quantize the optimization target p after each iteration into a
1-bit representation, where each element of p can assume only one of two possible values.
From a hardware perspective, this approach reduces the optimization process to modify-
ing the states of k binary switches, which significantly lowers computational complexity
and memory requirements. This streamlined representation of p minimizes the overhead
associated with updates during TTA.

2. Definition 3 (QTED-V2) Based on QTED-V1, to address the absence of high-precision
floating-point support in certain hardware environments, we further simulate the CMA-
ES process using fixed-point arithmetic. This quantization approach ensures compatibility
with constrained hardware while preserving the effectiveness of the optimization process.

QTED-V1 and QTED-V2 demonstrate the adaptability of our algorithm to diverse hardware archi-
tectures, making it well-suited for resource-limited edge applications.

Future Work. Our current contribution focuses on an algorithmic design that is mindful of hardware
constraints, yielding an efficient and deployable TTA solution. Moving forward, we will pursue al-
gorithm–hardware co-design, exploring hardware-level optimizations alongside TTA-dedicated ac-
celerator modules. These efforts aim to further reduce latency and memory footprint, enhance energy
efficiency, and strengthen practical performance on deployed systems.

B COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY

Considering the applicability of our TTA method on resource-constrained edge devices and the fact
that our approach only requires updating a very small number of parameters, we adopt the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2016) as our optimizer. CMA-ES
is a gradient-free, population-based optimization algorithm that is particularly well-suited for non-
differentiable, black-box problems and multi-dimensional search spaces.
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Table 8: Five backbone models and their hidden size D (first dimension of the latent PC basis Vk).

Model ViT-Base ResNet-50 EfficientNet-B0 MobileNet-V4 LSTM

D 768 2048 1280 1280 32

The optimization process of CMA-ES in each iteration begins by initializing a multivariate Gaussian
search distribution N (m(t), σ(t)Σ(t)), where m(t) is the current mean, σ(t) is the step size, and Σ(t)

is the covariance matrix at iteration t. During each iteration, a population of candidate solutions
{p(t)

i }λi=1 is sampled from this distribution according to the rule:

p
(t)
i ∼ m(t) + σ(t)N (0,Σ(t)). (9)

Each candidate solution p
(t)
i is then evaluated using the predefined fitness function, which in our

case is the Shannon entropy H(y) of the model’s output. Based on the fitness values, the mean
m(t) is updated to reflect the top-performing candidates, and the covariance matrix Σ(t) is adapted
to better capture the structure of the search space.

CMA-ES is particularly suitable for our scenario as it avoids gradient computation entirely, reducing
the computational overhead on devices that are unable to support backpropagation. Furthermore, its
iterative sampling and distribution adaptation effectively explore the low-dimensional parameter
space of p, making it efficient even under strict resource constraints.

C MORE EXPERIMENTAL DETAILS

C.1 MORE DETAILS ON DATASET

ImageNet-C (Hendrycks & Dietterich, 2019). ImageNet-C is a standardized benchmark for as-
sessing the robustness of image classifiers to common distribution shifts. It applies 15 algorithmi-
cally generated, label-preserving corruptions to the 50,000 images in the ImageNet-1k validation set,
each at five severity levels, yielding 75 corrupted test sets (3.75 million images). The corruptions
span four categories: noise (Gaussian, shot, impulse), blur (defocus, glass, motion, zoom), weather
(snow, frost, fog, brightness), and digital artifacts (contrast, elastic transform, pixelate, JPEG com-
pression). In our experiments, we specifically utilize severity level 5 for evaluation.

ImageNet-V2 (Recht et al., 2019). ImageNet-V2 is a set of re-created test sets for ImageNet-1k
designed to assess model generalization under natural distribution shift. It replicates the original
ImageNet data collection and annotation pipeline to curate new images for the same 1,000 classes,
and provides three variants—matched-frequency, threshold-0.7, and top-images—each comprising
10,000 images (10 per class). The variants differ by selection criteria based on “selection frequency”
(the fraction of annotators endorsing the target label): matched-frequency reproduces the selection-
frequency distribution of the original validation set; threshold-0.7 retains images with selection fre-
quency ≥ 0.7; top-images uses the highest-agreement images.

ImageNet-R (Hendrycks et al., 2021). ImageNet-R (Renditions) is a benchmark for evaluating
model robustness to non-photorealistic domain shifts. It comprises approximately 30,000 images
collected from diverse artistic and abstract media—such as sketches, cartoons, paintings, graffiti,
embroidery, sculptures and origami—mapped to a 200-class subset of ImageNet-1k. The renditions
are intended to be label-preserving while inducing substantial shifts in texture, color, and style.

ImageNet-Sketch (Wang et al., 2019). ImageNet-Sketch is a benchmark for evaluating robustness
and shape bias under domain shift. It comprises approximately 50,000 black-and-white line draw-
ings mapped to the 1,000 ImageNet-1k classes. The sketches are intended to be label-preserving
while largely removing texture cues, thereby emphasizing contour and global shape.

DomainNet-126 (Peng et al., 2019). DomainNet-126 is a large-scale multi-source domain adapta-
tion benchmark constructed from a 126-class subset of the original DomainNet dataset. It contains
images from four heterogeneous domains: clipart, painting, real, and sketch, covering both natural
photographs and various non-photorealistic styles. These domains exhibit substantial variations in
texture, color, abstraction level, and drawing style, making DomainNet-126 a challenging testbed
for studying domain generalization and adaptation under significant appearance shifts.
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Table 9: Performance comparison on ImageNet-C with ViT-Base model regarding Accuracy (%)
under continual single-instance setting. The bold number indicates the best result.

Method Memory (MB) Noise Blur Weather Digital Average
Gauss. Shot Impl. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Acc.

No Adapt - 55.34 56.23 56.01 46.48 34.78 52.87 44.20 62.39 62.66 65.56 77.70 32.04 45.73 66.72 66.67 55.03
ROID 1345 0.10 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Yang et al. (2024) 4033 3.86 6.68 1.82 0.13 9.16 8.10 3.77 0.82 0.34 0.14 79.24 0.10 0.21 73.60 70.95 17.26
FOA 702 6.94 1.74 1.42 1.72 0.40 0.48 0.68 0.86 0.72 0.98 2.04 0.88 0.86 0.22 0.96 1.39
ZOA 846 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
T3A 1128 55.18 56.72 56.00 38.88 32.96 50.96 42.82 60.14 60.18 64.22 76.48 40.24 43.12 66.60 68.48 54.20
SAR 1288 59.08 60.52 59.36 45.52 57.26 58.56 57.12 62.74 66.66 68.68 78.78 6.68 67.16 72.40 71.56 59.47
TED 696 61.78 62.40 62.98 51.82 39.50 57.74 47.44 68.92 68.52 68.72 80.80 31.74 56.20 70.30 67.94 59.79

Table 10: Performance comparison on ImageNet-C with ViT-Base model regarding Accuracy (%)
under continual batch setting. The bold number indicates the best result.

Method Memory (MB) Noise Blur Weather Digital Average
Gauss. Shot Impl. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Acc.

No Adapt - 55.34 56.23 56.01 46.48 34.78 52.87 44.20 62.39 62.66 65.56 77.70 32.04 45.73 66.72 66.67 55.03
ROID 10866 60.68 63.04 63.00 56.60 55.84 62.72 58.86 66.78 66.70 70.76 79.24 12.14 57.02 69.46 71.04 60.93
Yang et al. (2024) 19489 58.52 63.92 64.46 50.34 40.66 56.58 44.94 67.62 68.42 66.48 77.74 39.54 51.66 68.46 69.70 59.27
FOA 1300 57.14 61.62 61.96 51.98 42.78 57.48 54.08 65.98 68.44 65.60 79.48 62.78 52.20 70.32 72.20 61.60
ZOA 1734 58.00 58.56 59.38 47.98 39.10 56.38 49.38 65.68 63.48 62.68 79.34 49.02 50.76 66.84 70.34 58.46
T3A 6818 58.70 61.18 61.40 47.48 48.88 58.38 50.92 62.82 62.30 64.90 78.32 60.40 54.78 67.50 69.44 60.49
SAR 1458 55.18 56.72 56.02 38.76 33.04 50.98 42.72 60.12 60.12 64.22 76.48 40.22 43.10 66.62 68.44 54.18
BECoTTA 3340MB 61.82 62.52 62.27 51.64 38.10 58.16 48.65 67.79 68.82 36.77 82.20 30.69 49.38 71.99 72.11 57.53
SURGEON 2124MB 60.43 60.95 62.88 50.39 36.66 56.52 47.35 68.32 67.32 69.61 80.91 32.93 57.94 70.42 70.53 59.54
TED 1290 61.38 61.98 62.64 51.08 39.16 57.70 47.20 68.76 68.60 71.50 79.96 30.78 55.78 69.28 67.08 59.53

GSC-C. GSC-C is a controlled corruption benchmark for keyword spotting that simulates everyday
acoustic interference by mixing Google Speech Commands (GSC; Warden (2018)) with real-world
background noise from ESC-50 (Piczak, 2015). We consider five noise categories—Animals, Nat-
ural, Human, Domestic, and Urban—and, within each, two representative soundscapes: dog, cat,
pouring water, thunderstorm, crying baby, laughing, washing machine, vacuum cleaner, car horn,
and fireworks. For each GSC utterance, we randomly sample a segment from an ESC-50 clip (to
match the GSC duration) and additively mix it at diverse signal-to-noise ratios (SNRs), yielding mul-
tiple corrupted versions per utterance across SNR levels. Mixing is label-preserving and performed
without time alignment beyond random cropping.

C.2 MORE DETAILS ON BACKBONE

We use five backbone encoders: (1) ViT-Base (Dosovitskiy et al., 2021), (2) ResNet-50 (He
et al., 2016), (3) EfficientNet-B0 (Tan & Le, 2019), (4) MobileNet-V4 (Qin et al., 2024), and (5)
LSTM (Yang et al., 2025). Table 8 reports each model’s hidden size, i.e., the dimensionality D of
the latent PC basis Vk used throughout the paper.

C.3 MORE ABLATION STUDIES

Performance under Continual TTA Settings. To demonstrate the practicality of TED in streaming
scenarios, we extend our evaluation to continual adaptation, where the model adapts continuously to
the test stream without resetting. To ensure a comprehensive comparison, we additionally incorpo-
rate recent state-of-the-art methods tailored for continual settings, including ROID (Marsden et al.,
2024), ZOA (Deng et al., 2025), and the approach by Yang et al. (2024). We consider two settings:
1) Continual single-instance (Table 9): In this setting, standard gradient-based TTA methods often
suffer from catastrophic forgetting due to repeated parameter updates on a long test sequence. In
contrast, TED maintains a fixed backbone and exclusively optimizes an extremely low-dimensional
latent coordinate for each sample. This design effectively prevents error accumulation, allowing
TED to achieve state-of-the-art accuracy while requiring the lowest peak memory among all com-
pared methods. 2) Continual batch (Table 10): For batch-level streaming (batch size = 64), we
apply a shared shift vector p to all samples within a batch. While this global adjustment is inher-
ently less granular than per-sample optimization, TED remains highly competitive in accuracy and
retains its advantage of minimal memory footprint.

Effect of Source Sample Size N and Offline Nature. First, we clarify that TED computes the latent
basis Vk entirely offline. Similar to how BN statistics are frozen after training, Vk is pre-computed
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Table 11: Performance comparison on ImageNet-C with ViT-Base model using different N to obtain
Vk regarding average Accuracy (%) and Loss value. The bold number indicates the best result.

N 50k 40k 30k 20k 10k 5k 3k 1k 500 100 50 30 20

Acc. 57.82 57.69 57.28 56.89 56.53 55.94 53.41 51.52 54.75 58.66 59.08 59.14 59.13
Loss 2.33 2.45 2.52 2.59 2.43 2.62 2.77 2.75 2.38 2.20 2.23 2.25 2.19

Table 12: Performance comparison on ImageNet-C with ViT-Base model using different N to obtain
Vk regarding detailed Accuracy (%).

N
Noise Blur Weather Digital Average

Gauss. Shot Impl. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Acc.

20 60.69 60.50 61.24 50.07 37.76 56.36 47.39 65.71 67.23 72.79 81.07 35.76 48.54 70.50 71.36 59.13
30 60.69 60.41 61.24 50.27 37.80 56.39 47.40 65.61 67.05 72.61 81.01 36.37 48.44 70.53 71.29 59.14
50 60.83 60.53 61.39 50.33 37.73 56.50 47.39 65.89 67.07 71.65 80.81 35.66 48.60 70.47 71.31 59.08
100 60.65 60.59 61.28 50.06 37.57 56.32 47.39 65.30 66.96 68.88 81.00 33.64 48.50 70.40 71.30 58.66
500 60.30 59.67 60.66 49.87 37.16 56.06 47.14 65.27 66.03 16.79 80.56 33.17 47.87 70.03 70.71 54.75
1000 59.22 59.11 59.82 48.99 37.19 55.46 46.76 64.73 65.31 7.26 80.21 1.02 48.10 69.28 70.31 51.52
3000 59.03 59.11 59.68 49.24 37.19 55.44 46.85 64.66 65.04 29.36 79.79 8.32 47.94 69.22 70.23 53.41
50k 58.77 59.66 59.50 49.30 36.08 55.35 46.34 65.21 66.40 67.66 80.21 35.96 47.61 69.55 69.68 57.82

and stored (requiring negligible storage, ≈ 0.01% of the model size for ViT-Base), ensuring no
source data is needed during TTA.

Regarding the sensitivity to sample size, we extend our ablation to a wide range (N ∈ [20, 50000])
as shown in Table 11 and detailed Table 12. Contrary to the intuition that more data always yields
better bases, we observe a non-monotonic behavior. Remarkably, extremely small sample sizes (e.g.,
N = 20 ∼ 50) achieve an average accuracy of 59.14%, which is comparable to, or even superior
to, utilizing the full validation set (57.82% at N = 50k). However, performance dips significantly
in the medium regime (N ≈ 1k), hitting a local minimum of 51.5%. This phenomenon is most
pronounced in corruptions like Fog, where accuracy starts high at small N (72.8%), collapses at
N = 1k (7.3%), and eventually recovers at N = 50k (67.7%).

We attribute this behavior to the purity of the subspace directions. With very few samples, the
subspace captures only the most dominant, class-discriminative directions. As N increases to the
medium regime, the subspace begins to include less stable directions (noise) that vary across sam-
ples, which may mislead the unsupervised objective. When N further increases, these unstable
directions are statistically averaged out, restoring performance. This hypothesis is strongly cor-
roborated by the interaction between N and the subspace dimension k (Table 13). For small N ,
performance is robust and insensitive to k, indicating the absence of noisy directions. In contrast,
for medium N , accuracy drops sharply as k increases, confirming that a larger dimension introduces
more unstable components in this regime.

These findings underscore the practicality of TED: it remains highly effective even when only a
handful of source samples are available.

Effect of gradient free optimizer. To validate the choice of CMA-ES, we compared it against
several representative gradient-free baselines within the same latent subspace: Uniform Random
Search, (1+1)-Evolution Strategy ((1+1)-ES), and Zeroth-Order SGD (ZO-SGD). As shown in Ta-
ble 14, Uniform Random Search yields high instability and negligible gains due to the lack of di-
rectional guidance. While (1+1)-ES offers some improvement, it converges slowly, requiring sig-
nificantly more iterations (e.g., 14 vs. 8 evaluations per sample on ViT) to achieve weaker TTA
performance. We also observed that ZO-SGD suffers from high variance in gradient estimation
within the single-instance regime, making it difficult to stabilize without extensive hyperparameter
tuning. In contrast, CMA-ES consistently delivers reliable accuracy improvements with fewer evalu-
ations and lower variance. Beyond algorithmic performance, CMA-ES is chosen for its practicality:
it is fully gradient-free (relying solely on forward passes) and benefits from mature implementations
in both Python and C/C++, facilitating seamless integration into edge-device runtimes. Thus, we
adopt CMA-ES not as an algorithmic novelty, but as the most stable and hardware-friendly tool for
our specific TTA formulation.

Performance on in-distribution dataset. We further evaluate TED’s performance on in-
distribution data (i.e., the source test dataset). As shown in Table 15, our method achieves significant
performance improvements across various models. This result highlights two key points: 1) The no-
table performance gain demonstrates that our method effectively mitigates catastrophic forgetting,
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Table 13: Accuracy (%) on ImageNet-C with ViT-Base using diverse N and k.

N \ k 4 8 16 32

30 58.03 59.09 59.14 59.15
1k 54.63 56.25 51.52 48.74
5k 55.39 56.61 57.82 57.90

Table 14: Performance comparison on ImageNet-C with ViT-Base model using different gradient-
free optimizers regarding Accuracy (%).

Optimizer Noise Blur Weather Digital Average
Gauss. Shot Impl. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Acc.

Uniform Random Search 43.86 46.68 41.82 40.13 49.16 48.10 43.77 40.82 40.34 40.14 63.24 40.10 40.21 63.60 60.95 46.86
(1+1) ES 56.10 56.93 56.79 47.20 35.17 53.49 44.82 62.95 63.59 66.94 78.10 33.11 46.22 67.26 67.23 55.73
ZO-SGD 55.06 55.88 52.62 45.53 34.41 52.50 43.96 62.39 59.66 64.82 77.59 21.29 45.46 66.48 66.54 53.61
CMA-ES 58.77 59.66 59.50 49.30 36.08 55.35 46.34 65.21 66.40 67.66 80.21 35.96 47.61 69.55 69.68 57.82

as it even enhances the model’s performance on the original data distribution. 2) The improvement
can be attributed to the inherent distribution shift between the source test data and the training data.
Our TED framework adjusts the latent representations of test samples to be more compactly aligned
within the defined principal subspace, which reduces uncertainty and enables the model to produce
more confident predictions.

Performance on DomainNet-126. To further assess the robustness of TED under rigorous con-
ditions beyond synthetic corruptions (e.g., ImageNet-C), we extend our evaluation to DomainNet-
126 (Peng et al., 2019). Unlike corruption benchmarks that primarily introduce texture or noise
degradations while preserving object geometry, DomainNet features significant semantic and stylis-
tic variations across four distinct domains (Real, Sketch, Clipart, and Painting), presenting a sub-
stantial challenge for adaptation methods.

As presented in Table 16, TED demonstrates superior generalization capabilities across these severe
distribution shifts. In the online batch setting, TED remains highly competitive with state-of-the-art
methods. However, the advantage of TED becomes most pronounced in the single-instance setting.
Due to the extreme diversity and large domain gaps inherent in DomainNet, existing baselines are
prone to error accumulation and catastrophic forgetting when processing samples sequentially. In
contrast, TED effectively mitigates these issues, maintaining stable and robust performance. These
results confirm that TED is not only effective against local corruptions but also resilient to complex
structural domain shifts.

Quantization of TED. Table 17, Table 18 and Table 19 demonstrates the performance of TED
under various quantization configurations. For QTED-V1, quantizing p into a 1-bit representation
reduces the optimization process to controlling k binary switches, significantly lowering hardware
costs while achieving an average accuracy of 57.63% and 62.52% on ImageNet series, close to the
original TED. With k fixed at 2 for the KWS task, p is naturally quantized to 1-bit; consequently,
TED specializes to QTED-V1. Since For QTED-V2, fixed-point arithmetic is used to simulate
CMA-ES. Among these, QTED-V2 (8b4) achieves 56.32% and 61.88% accuracy in the IC task,
demonstrating that 8-bit fixed-point arithmetic is sufficient for effective optimization. In the KWS
task with simpler model architecture, 4-bit QTED-V2 is good enough for effective TTA. These
results confirm the feasibility of our methods for resource-limited edge devices, with QTED-V1
minimizing resource overhead and QTED-V2 ensuring compatibility with fixed-point hardware.

THE USE OF LARGE LANGUAGE MODELS

The manuscript benefited from language polishing suggestions provided by large language models.
All scientific content remains the authors’ responsibility.
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Table 15: Performance on in-distribution dataset with different models regarding Accuracy (%).

Model Vit-Base ResNet-50 EfficientNet-B0 MobileNet-V4

No Adapt 85.16 70.74 78.53 71.04
TED 87.05 76.71 85.31 79.91

Improvement +1.89 +5.97 +6.78 +8.87

Table 16: Performance Comparison on DomainNet-126 with ResNet-50 model regarding Accuracy
(%). BS stands for batch size.

(a) Painting as Source Domain

Method Real Sketch Clipart Avg.

No Adapt 74.84 49.70 53.26 59.27
SAR (BS=64) 73.58 53.96 53.50 60.35
ROID (BS=64) 75.04 57.30 57.24 63.19
SAR (BS=1) 6.42 4.24 3.22 4.63
ROID (BS=1) 0.48 0.16 0.16 0.27
MEMO (BS=1) 40.38 17.82 25.42 27.87
TED (BS=64) 78.24 53.74 55.50 62.49
TED (BS=1) 76.08 52.94 54.22 61.08

(b) Clipart as Source Domain

Method Real Sketch Clipart Avg.

No Adapt 46.16 60.50 43.84 50.17
SAR (BS=64) 48.80 64.36 47.34 53.50
ROID (BS=64) 51.24 64.64 49.14 55.01
SAR (BS=1) 4.98 5.80 4.38 5.05
ROID (BS=1) 0.16 0.48 0.30 0.31
MEMO (BS=1) 40.38 15.48 27.92 18.77
TED (BS=64) 47.24 63.24 46.08 52.19
TED (BS=1) 47.20 62.44 44.74 51.46

(c) Real as Source Domain

Method Real Sketch Clipart Avg.

No Adapt 48.48 54.88 59.32 54.23
SAR (BS=64) 57.56 58.98 67.92 61.49
ROID (BS=64) 58.76 61.44 68.58 62.93
SAR (BS=1) 4.78 4.50 5.26 4.85
ROID (BS=1) 0.30 0.16 0.48 0.31
MEMO (BS=1) 13.92 26.00 21.68 20.53
TED (BS=64) 56.52 61.32 64.46 60.77
TED (BS=1) 54.44 59.50 63.50 59.15

(d) Sketch as Source Domain

Method Real Sketch Clipart Avg.

No Adapt 55.62 61.88 47.84 55.11
SAR (BS=64) 54.36 62.90 48.40 55.22
ROID (BS=64) 57.48 65.18 52.66 58.44
SAR (BS=1) 3.74 4.66 3.58 3.99
ROID (BS=1) 0.16 0.30 0.16 0.21
MEMO (BS=1) 40.38 26.12 22.92 21.63
TED (BS=64) 56.40 63.28 49.82 56.50
TED (BS=1) 56.50 63.12 49.16 56.26

Table 17: Performance of QTED on ImageNet-C with ViT-Base model regarding Accuracy (%).
QTED-V2 (xby) indicates CMA-ES using x-bit fixed point with y-bit integer.

Method Noise Blur Weather Digital Average
Gauss. Shot Impl. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Acc.

TED 58.77 59.66 59.50 49.30 36.08 55.35 46.34 65.21 66.40 67.66 80.21 35.96 47.61 69.55 69.68 57.82

QTED-V1 59.41 60.15 60.09 49.86 36.48 55.94 46.70 65.60 66.74 60.90 80.46 34.55 47.72 69.83 70.01 57.63

QTED-V2 (8b5) 56.16 57.11 56.93 47.17 35.14 53.60 44.76 63.18 63.94 67.60 78.37 33.03 46.26 67.48 67.49 55.88
QTED-V2 (8b4) 56.75 57.75 57.35 47.63 35.32 53.99 45.12 63.60 64.39 68.34 78.66 33.71 46.51 67.83 67.88 56.32
QTED-V2 (8b3) 56.73 57.61 57.42 47.63 35.35 53.90 45.04 63.49 64.35 68.07 78.65 33.16 46.53 67.75 67.77 56.23
QTED-V2 (8b2) 56.64 57.59 57.37 47.55 35.37 53.99 45.08 63.52 64.28 67.76 78.56 33.41 46.49 67.72 67.81 56.21
QTED-V2 (4b4) 55.06 55.88 55.62 45.53 34.41 52.50 43.96 62.39 61.66 64.82 77.59 33.29 45.46 66.48 66.54 54.75
QTED-V2 (4b2) 55.41 56.35 56.15 46.56 34.78 52.93 44.24 62.44 62.85 65.84 77.82 32.10 45.78 66.76 66.72 55.12

Table 18: Performance of QTED on ImageNet-V2/R/Sketch with ViT-Base model regarding Accu-
racy (%). QTED-V2 (xby) indicates CMA-ES using x-bit fixed point with y-bit integer.

Method Accuracy (%)
V2 R Sketch Avg.

TED 78.15 65.29 47.73 63.72

QTED-V1 77.46 63.31 46.79 62.52

QTED-V2 (8b5) 76.94 62.02 46.33 61.76
QTED-V2 (8b4) 77.21 62.06 46.37 61.88
QTED-V2 (8b3) 76.86 61.45 45.99 61.43
QTED-V2 (8b2) 76.26 60.42 45.39 60.69
QTED-V2 (4b4) 75.17 57.70 44.65 59.17
QTED-V2 (4b2) 75.46 59.42 44.88 59.92
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Table 19: Performance of QTED on GSC-C with LSTM model regarding Accuracy (%). QTED-V2
(xby) indicates CMA-ES using x-bit fixed point with y-bit integer.

SNR Method Animals Natural Human Domestic Urban Average
dog cat pouringwater thunderstorm cryingbaby laughing washingmachine vacuumcleaner carhorn fireworks Acc.

-10 dB

TED (QTED-V1) 64.25 63.58 59.73 66.47 61.99 61.94 59.46 56.98 59.32 64.90 61.86
QTED-V2 (8b2) 63.70 62.65 57.71 66.63 60.56 60.74 57.09 55.03 58.37 63.42 60.59
QTED-V2 (8b1) 63.85 62.85 57.33 66.67 60.67 60.43 58.01 54.11 58.53 63.60 60.61
QTED-V2 (4b2) 63.65 63.17 57.26 66.65 60.64 60.51 58.05 53.87 58.68 63.66 60.61
QTED-V2 (4b1) 63.42 62.10 56.02 66.69 59.69 59.50 55.51 52.26 57.66 62.19 59.50

-15 dB

TED (QTED-V1) 60.84 57.99 57.71 62.28 58.04 58.98 57.83 55.38 56.00 60.41 58.55
QTED-V2 (8b2) 59.66 55.90 54.82 62.14 56.39 56.97 55.80 53.22 54.51 58.29 56.77
QTED-V2 (8b1) 59.22 56.88 53.69 62.00 56.55 55.76 55.48 51.63 54.37 57.37 56.30
QTED-V2 (4b2) 59.26 56.85 53.77 61.98 56.59 55.79 55.40 51.53 54.41 57.09 56.27
QTED-V2 (4b1) 58.27 55.09 51.57 61.97 54.90 54.31 51.24 49.47 53.18 56.08 54.61

-20 dB

TED (QTED-V1) 59.07 54.71 57.20 59.35 56.94 57.94 58.22 55.54 54.50 58.07 57.15
QTED-V2 (8b2) 56.98 51.06 53.86 59.36 55.39 54.59 56.62 53.18 52.25 55.90 54.92
QTED-V2 (8b1) 55.99 52.12 51.58 59.23 55.13 52.36 54.03 52.50 51.69 53.54 53.82
QTED-V2 (4b2) 56.07 51.97 51.78 59.05 55.23 52.51 53.90 52.42 51.79 53.60 53.83
QTED-V2 (4b1) 54.41 49.80 48.61 58.74 53.24 50.34 48.63 49.35 50.58 51.79 51.55
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