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Abstract

Abstractive Text Summarization (ATS) models
are commonly trained using large-scale data
that is randomly shuffled. However, the im-
pact of data selection and data ordering on
ATS models remains a relatively unexplored
research area, where a significant challenge
lies in accurately assessing the learning dif-
ficulty of each training instance. This study
introduces a Data Selection Curriculum (DSC)
scoring system that incorporates both the diffi-
culty of improving ATS model via an instance
and the expected performance on this instance.
By selectively excluding excessively simple
and overly complex instances, the training effi-
ciency can be optimized. Furthermore, curricu-
lum learning is integrated to accelerate conver-
gence and improve performance by gradually
increasing the learning difficulty, inspired by
human learners. Experimental results on the
CNN/DailyMail dataset demonstrate that our
approach surpasses potent baselines, utilizing a
mere 20% of the available instances.

1 Introduction

Abstractive Text Summarization (ATS) aims to gen-
erate concise summaries while preserving essential
content. Recent studies (Liu et al., 2023b; Zhang
et al., 2023; Liu et al., 2023a) have shown that
Large Language Models (LLMs), including GPT-
3.5 (Ouyang et al., 2022), can produce summaries
more favored by human annotators compared to ref-
erence summaries from well-established datasets,
such as CNN/DailyMail (Hermann et al., 2015).
Additionally, Liu et al. (2023a) experimentally as-
sert that contrastive learning based methods ap-
plied to smaller summarization models, like BART
(Lewis et al., 2020), can deliver performance on par
with LLMs. This finding renews the importance of
training smaller models via contrastive learning, as
it offers the advantage of reducing computational
costs. However, ATS models are commonly trained
using large-scale data that is randomly shuffled.

This study aims to explore the potential for opti-
mizing ATS models through the strategic utilization
of data selection and curriculum learning (Bengio
et al., 2009) in conjunction with contrastive learn-
ing techniques. It is important to note that not all
data is equally valuable, and the presence of re-
dundant or even detrimental examples can impede
the performance of ATS systems (Mohiuddin et al.,
2022). Furthermore, the ordering in which data is
presented during model training, as emphasized by
curriculum learning principles, can have a signifi-
cant impact on both the efficiency and effectiveness
of the learning process. Consequently, there is a
fundamental necessity to develop a scoring system
that can accurately assess the learning difficulty of
individual samples and furtherly can be used for
data selection and curriculum learning.

In this study, we introduce a novel scoring sys-
tem called the Data Selection Curriculum (DSC)
score, which serves as a measure of learning dif-
ficulty. The DSC score considers two essential
factors: the difficulty of enhancing the ATS model
through a specific instance and the expected per-
formance of the model on that particular instance.
Instances on which the current model already ex-
hibits promising performance and stands to benefit
significantly from slight adjustments are assigned
as a lower learning difficulty. This is because these
instances have the potential to contribute more to
the final performance. As for the first factor, we
propose a novel Margin-aware List-wise Ranking
(MLR) loss, which introduces a dynamic margin
instead of constant margin, which the state-of-the-
art BRIO (Liu et al., 2022) uses in the list-wise
ranking loss for contrastive learning. It can bet-
ter reflect the fine-grained misalignment between
sequential likelihood and performance. Through
the DSC score, we can effectively select and priori-
tize instances during the training process, focusing
on those that offer the greatest opportunities for
enhancing the ATS model’s overall performance.



We empirically validated our method on the
CNN/DailyMail dataset. The results suggest that
our method surpasses several robust baselines us-
ing fewer than 20% of instances. Additionally,
experimental findings highlight that our MLR loss
is superior to the BRIO loss.

2 Method

2.1 Preliminary

As evidenced in recent research, contrastive learn-
ing has the capacity to achieve superior perfor-
mance in text summarization (Liu et al., 2022;
Zhang et al., 2022; Zhao et al., 2023b; Liu et al.,
2023a; Zhao et al., 2023a). These methodologies
adopt a novel three-stage training protocol, com-
prising pre-training, fine-tuning, and calibrating
stages. The calibrating stage employs diverse beam
search (Vijayakumar et al., 2018) to generate a va-
riety of candidates, which are subsequently ranked
based on their metric scores. A ranking loss tunes
the parameters, aligning the sequence likelihood
with the established order. List-wise rank loss Lcal

from BRIO (Liu et al., 2022), along with cross-
entropy loss Lxent, has been shown to yield promis-
ing results (Liu et al., 2022; Zhang et al., 2022;
Zhao et al., 2023b; Liu et al., 2023a). The overall
loss L is delineated as follows:

L = Lxent + γLcal

Lxent = − 1
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where X,Y, Y
′

respectively denotes the input doc-
ument, the ground truth summary, and candidate
summaries from diverse beam search. The (candi-
date or ground truth) summary Y consists of |Y |
tokens, i.e., y0, y1, · · · , y|Y |, and |Y | is the length
of the summary Y . y0 is the pre-defined start token.
Lxent is the mean of the negative log-likelihood
of all ground truth summary tokens. Y

′
j and Y

′
i

are two different candidate summaries and i, j are
their rank index in the ranked list. It means that
the quality of Y

′
i is better than Y

′
j in terms of the

pre-defined metric score when i < j. λ is the mar-
gin between two adjacent candidates. The score
s(Y

′
) considers normalizing the candidate’s length

by a penalty hyperparameter α. pθ denotes the
fine-tuned language model with parameter θ, like
BART. γ is the weight of the calibration loss, which
prevents models from deviating significantly from
their fine-tuned cross-entropy objective.

2.2 MLR Loss
The calibration loss Lcal previously discussed uses
a constant margin, denoted as λ, for every pair of
adjacent candidates. The utilization of a constant
margin may be counter-intuitive since this method
may demonstrate limitations in certain scenarios,
such as cases where different pairs of adjacent can-
didates exhibit varying differences in metric scores.
To rectify this, we propose a novel Margin-aware
List-wise Ranking (MLR) loss that can serve as a
more flexible replacement for Lcal. The MLR loss
is defined as follows:

Lmlr =
∑
i

∑
i<j

max(0, rij + s(Y
′
j )− s(Y

′
i ))

rij = β × (m(Y
′
i )−m(Y

′
j ))

(2)

where m(∗) denotes the metric function, which
could be BERTScore (Zhang et al., 2020) or
ROUGE (Lin, 2004), and β is a hyperparameter
responsible for scaling the difference between two
candidates. Please note that the value of m(∗) is
within the range of 0 to 1, with a higher m(∗) score
indicating superior performance. Consequently,
this setup makes the calibration loss aware of the
margin in metric scores, enabling more precise cal-
ibration training. In essence, the Lmlr loss can
better define the difficulty faced by the model in
transitioning to a more enhanced version of pa-
rameters, unlike the Lcal, which fails to facilitate
fine-grained changes due to its constant margin.

2.3 Difficulty Metric
The difficulty metric, represented as D, incorpo-
rates both the MLR loss and expected model per-
formance. It is defined as follows:

wi =
exp(s(Y

′
i ))∑

j exp(s(Y
′
j ))

E =
∑
i

m(Y
′
i )wi

D = 1− E + Lmlr

(3)



where the expected model performance E is defined
as the expected metric scores of all candidates that
the model generates by diverse beam search.

2.4 Data Selection Curriculum

We rank training data based on the difficulty met-
ric discussed above. Inspired by the success
of Mohiuddin et al. (2022), we discard data in-
stances that are too easy or too hard to learn. As-
suming a Gaussian Distribution of the training
data, the data selection window can be defined as
[µ(D)−δσ(D), µ(D)+δσ(D)], where µ(D), σ(D)
represent the mean and standard deviation respec-
tively, and δ is a hyperparameter that is used to
adjust the window size of data selection.

3 Experiment

3.1 Implementation Details

We implement our method on top of the BRIO
open-source codebase 1 and adhere to most of
its experimental settings as defined by Liu et al.
(2022). Differences in settings and the reasons be-
hind these will be discussed in this section. As
our approach is model-agnostic, we initialize it us-
ing the BRIO checkpoint 2 to ensure quick conver-
gence. To better understand the data effect, we use
a constant learning rate of 1e-6 instead of a learning
rate schedule, thus reducing the optimizer’s impact.
Liu et al. (2022) found that the use of ROUGE
scores in the metric function m(∗) (referenced in
Equations (2) and (3)) resulted in better perfor-
mance than BERTScore. Therefore, we follow
this approach, using the mean value of ROUGE-
1, ROUGE-2, and ROUGE-L as m(∗) to ensure
a range from 0 to 1, the same as implemented in
BRIO. β is set to 0.1 for all experiments.

3.2 Data

We conduct experiments on the CNN/DailyMail
dataset3 (Hermann et al., 2015), a large-scale news
dataset with 287K/13K/11K instances for train-
ing/validation/testing respectively. As per previous
work (Nallapati et al., 2016; See et al., 2017; Liu
et al., 2022), we use the news articles (averaging
791.6 words) as the source documents and the asso-
ciated highlights (averaging 3.75 sentences or 55.6
words) as summaries.

1https://github.com/yixinl7/brio
2https://huggingface.co/Yale-LILY/

brio-cnndm-uncased
3https://cs.nyu.edu/~kcho/DMQA/

In this study, we conducted an analysis of the
training instances using the difficulty metric dis-
cussed earlier (in Section 2.3). The results of this
analysis are presented in Figure 1. We observed
that the distribution of the difficulty scores closely
approximates a Gaussian Distribution. The obser-
vation provides strong support for our hypothesis
in Section 2.4. This verification indicates that our
DSC method can be effective in identifying and
prioritizing training instances with the mean and
standard deviation.

Figure 1: Difficulty metric histogram.

3.3 Baseline
For comparison, we choose several impressive
models as baselines. BART (Lewis et al., 2020),
a large pre-trained Seq2Seq model, is fine-tuned
on CNN/DailyMail. BRIO (Liu et al., 2022) is
a promising model based on contrastive learning,
which is initialized by BART. BRIO-Loop is an
iterative version of BRIO, trained on the candi-
dates generated by BRIO. MLR substitutes for
the calibration loss of BRIO-Loop. Finally, DSC
represents our proposed method which uses data
selection curriculum along with the MLR loss.

4 Results

4.1 Overall Evaluation
Table 1 shows the evaluation results of various
methods on CNN/DailyMail. Notably, our pro-
posed DSC method outperforms the strong baseline
models in terms of ROUGE scores and BERTScore.
This improvement demonstrates the effectiveness
of the DSC method in enhancing the abstractive
text summarization task. Moreover, MLR achieves
higher ROUGE scores and BERTScore than BRIO-
Loop. This finding underscores the effectiveness of
dynamic margin calibration in sequential likelihood
calibration, as opposed to a constant margin.

https://github.com/yixinl7/brio
https://huggingface.co/Yale-LILY/brio-cnndm-uncased
https://huggingface.co/Yale-LILY/brio-cnndm-uncased
https://cs.nyu.edu/~kcho/DMQA/


Method R-1 R-2 R-L BS

BART∗ 44.29 21.17 41.09 27.38
BRIO∗ 47.78 23.55 44.57 32.11
BRIO-Loop∗ 48.01 23.80 44.67 –

MLR 48.17† 23.95† 44.92† 35.25†

DSC 48.62† 24.14† 45.31† 35.90†

Table 1: Overall evaluation results. †: significantly
better than the baseline model (p < 0.01). ∗: results
reported in the original papers. R-1/2/L are ROUGE-
1/2/L F1 scores. BS denotes BERTScore.

4.2 Coefficients of the Data Selection

The hyperparameter δ can control the size of the
data selection window. A larger δ results in a larger
window for selected data, including more easy and
hard instances for training. We explore the impact
of different hyperparameter δ values on model per-
formance. Our experiments, reported in Table 2,
reveal that including more data is not always ben-
eficial. Performance declines with larger δ values.
Conversely, too few instances also lead to poor
performance when δ is small.

δ R-1 R-2 R-L BS

0.50 48.26 23.92 45.00 35.42
0.75 48.44 24.09 45.15 35.73
1.00 48.46 24.11 45.22 35.75
1.25 48.62 24.14 45.31 35.90
1.50 48.59 24.14 45.24 35.71
1.75 48.51 24.13 45.24 35.64
2.00 48.41 24.12 45.22 35.59

Table 2: Model performance with different δ coeffi-
cients. R-1/2/L are ROUGE-1/2/L F1 scores. BS de-
notes BERTScore.

4.3 Selected Data Ratio

To investigate the impact of the number of selected
instances, we conducted experiments using varying
ratios of selected data from the dataset. The model
was trained on the selected data for one epoch, and
without early stopping, the latest checkpoint was
used for testing. Alternatively, with early stopping,
the checkpoint with the highest ROUGE scores was
selected. The results, depicted in Figure 2, indicate
that the quantity of data does not necessarily cor-
relate with improved performance. Surprisingly,
an excessive number of instances may even lead to

a degradation in performance. Moreover, we ob-
served that the training process tends to favor easier
instances, as optimal performance was achieved
with less than 20% of the available instances.

Figure 2: DSC performance with different data ratios.

We validate our methods on XSum (Narayan
et al., 2018) from the same start point of BRIO.
We initialize our model using “google/pegasus-
xsum”4 and use the selected 20% instances to train.
The BERTScore of our model (52.88) beats BRIO
(41.08) by a large margin, so the summary from our
model is more similar to the reference than BRIO.

4.4 Ablation Study

Method R-1 R-2 R-L BS

BRIO∗ 47.78 23.55 44.57 32.11
+ MLR 48.17† 23.95† 44.92† 35.25†

+ MLR DS 48.36† 24.06† 45.04† 35.54†

+ MLR DS CL 48.62† 24.14† 45.31† 35.90†

Table 3: Ablation Study. †: significantly better than the
baseline model (p < 0.01). ∗: results reported in the
original papers. R-1/2/L are ROUGE-1/2/L F1 scores.
BS denotes BERTScore.

We also conducted separate experiments to eval-
uate each sub-model. MLR represents our novel
contrastive ranking loss. DS is shorthand for data
selection, which refers to training the model using
selected data instead of all instances. CL denotes
curriculum learning, which trains the model in the
from-easy-to-hard ordering. Table 3 shows that all
methods we proposed contribute to the improve-
ment of summarization performance.

4https://huggingface.co/google/
pegasus-xsum

https://huggingface.co/google/pegasus-xsum
https://huggingface.co/google/pegasus-xsum


5 Conclusion

This paper investigates the impact of data on text
summarization. We propose a learning difficulty
metric for data selection and curriculum learning.
This score incorporates a Margin-aware List-wise
Ranking (MLR) loss, further enhancing contrastive
learning due to its dynamic margin. Experimental
results indicate that our data selection curriculum
can outperform strong baselines using fewer than
20% instances from the CNN/DailyMail dataset.

6 Limitations

We acknowledge that the conclusions presented
in the paper are derived from analyzing a single
dataset specifically focused on English news arti-
cles. While this dataset is widely accepted as a
benchmark for summarization tasks, it is important
to recognize that the results obtained may not be
applicable to other languages or domains. There-
fore, caution should be exercised when generaliz-
ing these findings beyond the scope of the dataset.
Despite the limitation, the findings of this study
are valuable in terms of providing insights into
the potential enhancements that can be achieved
in abstractive summarization by employing strate-
gic data selection and curriculum learning tech-
niques. These insights contribute to the ongoing
exploration of improving summarization methods.
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