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Abstract

Recent advances in deep learning have been driven by the availability of larger datasets
and more complex models; however, this progress comes at the expense of substantial
computational and annotation costs. To address these issues, we introduce a novel, training-
free dataset pruning method,PRIME, targeting polyp segmentation in medical imaging. To
this end, PRIME constructs a similarity network among the images in the target dataset
and then applies community detection to retain a much smaller, yet representative subset of
images from the original dataset. Unlike existing methods that require model training for
dataset pruning, our PRIME completely avoids model training, thus significantly reducing
computational demands. The reduction in the training dataset cuts 56.2% data annotation
costs and enables 2.3× faster training of polyp segmentation models, with only a 0.5% drop
in the DICE score. Consequently, our PRIME enables efficient training, fine-tuning, and
domain adaptation across medical centers, thus offering a cost-effective solution for deep
learning in polyp segmentation.
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1. Introduction

Polyp segmentation plays a pivotal role in the early detection and prevention of colorectal
cancer, one of the leading causes of cancer-related mortality worldwide. Indeed, accurate
segmentation enables clinicians to precisely localize and characterize polyps in colonoscopy
images, thus guiding therapeutic decisions and follow-up strategies. Recent advances in
deep learning (Ronneberger et al., 2015; Zhou et al., 2018; Fan et al., 2020; Dong et al.,
2021; Rahman and Marculescu, 2023a; Wang et al., 2022a; Rahman et al., 2024), have
brought remarkable improvements in segmentation performance, but these gains come at the
cost of increasingly larger datasets with pixel-level annotations. Such annotations demand
substantial time and expertise from medical professionals, thus making data curation both
expensive and labor-intensive. Moreover, the heterogeneous appearance of polyps—varying
size, shape, texture, and contrast—exacerbates the challenge of gathering representative
training images to ensure robust model generalization.

While efforts in image segmentation research have primarily focused on improving model
performance, less attention has been paid to reducing the annotation burden through effi-
cient data selection. Some earlier efforts address the selection of informative data samples
under various learning paradigms, particularly in active learning (Settles, 1995). In these
methods, scoring functions, such as Shannon’s entropy (Shannon, 1948), variation ratio
(Linton, 1965), and Monte Carlo (MC) dropout (Gal and Ghahramani, 2016), are used to
identify unlabelled images that maximize the informativeness of the annotated dataset under
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Figure 1: Communities identified with Structural Similarity Index (SSIM) threshold of 0.92
in the CVC-ClinicDB dataset (Bernal et al., 2015). Gephi’s algorithm (Blondel et al., 2008)
identifies 226 communities with a modularity of 0.843. The degree distribution shows the
number of nodes with varying connectivity (0 to 30, left-skewed), while the community
distribution highlights the number of nodes per community (0 to <50). By considering top
⌈10%⌉ nodes from each community, we select only 245 (44.5%) representative nodes and
prune the rest of the nodes (55.5%). More results are shown in Appendix B.

a constrained annotation budget. While these approaches have shown promise in classifica-
tion tasks (Gal et al., 2017), less efforts have targeted semantic segmentation (Gorriz et al.,
2017). One notable contribution addressing data selection for segmentation is KnowWhat-
ToLabel (Dawoud et al., 2023), which introduces a scoring function for constructing a set of
support samples for few-shot microscopy image cells segmentation. Although this method
outperforms traditional scoring functions like Shannon’s entropy and MC-dropout, it relies
on model training to compute scores, which leads to high computational costs. Addition-
ally, data selection remains underexplored in medical image segmentation tasks like polyp
segmentation. As polyp segmentation continues to grow in importance for clinical practice,
efficient strategies for curating high-quality datasets are increasingly necessary.

To address these limitations, to the best of our knowledge, we are the first to propose
a training-free dataset pruning method, namely Pruning by Representation, Image-based
Modeling, and Evaluation (PRIME ) for polyp segmentation. Rather than relying on model-
based metrics, PRIME constructs a similarity network to quantify the similarity among the
images in a target dataset. PRIME then exploits community detection (Blondel et al.,
2008) (see Fig. 1) to retain a diverse and representative subset of the original dataset, thus
effectively removing redundant data. Critically, our PRIME requires no model training,
hence reducing the computational costs associated with data reduction. PRIME ultimately
reduces the annotation effort, enables faster segmentation model training, and reduces do-
main adaptation costs across medical centers. Our main contributions are as follows:

• Training-Free Dataset Pruning: We introduce a new, training-free dataset prun-
ing method, PRIME, that first constructs a similarity network among images in the
target dataset; then detects communities to select a much smaller, yet diverse and
representative subset of the original data, thus eliminating redundant images.

• Robust Generalizability Across Datasets: By retaining a diverse and repre-
sentative subset while pruning redundant images, our PRIME consistently achieves
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high DICE scores across multiple datasets and similarity metrics. This robustness
underscores the broad applicability of PRIME to polyp segmentation.

• Reduction in Annotation and Computational Costs: Our pruning method
achieves up to 56.2% data reduction, thus significantly lowering the annotation ef-
fort while maintaining high segmentation performance with only a 0.5% drop in the
DICE score. The training-free design of our pruning algorithm decreases the overall
computational costs and enables 2.3× faster training of segmentation models.

The remaining of the paper is organized as follows: Section 2 discusses related work on
polyp segmentation and dataset pruning methods. Section 3 describes our method. Sec-
tion 4 presents the experimental evaluations. Section 5 summarizes our main contributions.

2. Related Work

2.1. Polyp Segmentation

Polyp segmentation has been extensively studied in medical imaging due to its paramount
importance in diagnosing and preventing colorectal cancer. Deep learning, particularly
U-shaped convolutional neural networks (CNNs) and vision transformers such as U-Net
(Ronneberger et al., 2015), Attention UNet (Oktay et al., 2018), UNet++ (Zhou et al.,
2018), UNet 3+ (Huang et al., 2020), DeepLabv3+ (Chen et al., 2018), PraNet (Fan et al.,
2020), PolypPVT (Dong et al., 2021), CASCADE (Rahman and Marculescu, 2023a), SS-
Former (Wang et al., 2022a), G-CASCADE (Rahman and Marculescu, 2024), and EMCAD
(Rahman et al., 2024), have demonstrated remarkable performance for polyp segmenta-
tion. However, these models typically require large-scale, pixel-level annotated datasets,
thus leading to substantial annotation costs. Additionally, the variability of polyp size,
shape, and appearance further exacerbates the need for diverse training data, which can be
prohibitively expensive in terms of both labeling and computational resources.

2.2. Dataset Pruning and Data Selection

Dataset pruning and data selection aim to retain the most representative samples from a
dataset while removing redundancies, an objective that is crucial for polyp segmentation due
to the high cost of pixel-level annotations. Existing methods primarily target classification
tasks, relying on training-based metrics or scalar scores like compactness (Castro et al.,
2018; Yang et al., 2022), diversity (Aljundi et al., 2019), or forgetfulness (Toneva et al.,
2018) to identify the most informative samples. Another line of work focuses on synthesizing
smaller yet informative datasets via distillation (Such et al., 2020; Wang et al., 2018) or
condensation (Zhao et al., 2021), however, they also involve complex training processes.

In the realm of semantic segmentation, especially medical image segmentation, dataset
pruning remains comparatively underexplored. Most existing pruning or data selection
methods have been developed and validated on classification benchmarks, with only a few
adaptations to segmentation tasks. For instance, KnowWhatToLabel (Dawoud et al., 2023)
introduces a consistency-based method for selecting training samples to reduce annotation
costs in few-shot microscopy image cell segmentation. Nevertheless, this method still de-
pends on model training and has not been extended to polyp segmentation. The unique
characteristics of polyp segmentation including heterogeneous polyp appearance and the
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necessity for meticulous pixel-level labeling further emphasize the need for specialized and
efficient data selection/pruning methods.

2.3. Existing Knowledge Gaps and the Need for a Training-Free Approach

Despite significant advancements, a key knowledge gap persists: Existing solutions either
require model training at some stage or focus on other domains without specifically address-
ing polyp segmentation. Given the high cost of annotations and the logistical constraints in
collecting and sharing medical data across institutions, computationally lightweight meth-
ods become crucial. Training-heavy pipelines exacerbate these challenges, particularly when
dealing with large-scale, high-resolution datasets under strict privacy regulations.

We plan to address these limitations by introducing a training-free dataset pruning
method designed explicitly for polyp segmentation. Rather than relying on gradient-based
or generative scoring, we construct a similarity network among images and then apply
community detection to isolate a diverse yet compact subset of the dataset. Our method
does not only substantially reduce the computational cost, but also alleviates the annotation
burden, thus paving the way for faster and more cost-effective polyp segmentation workflows.

3. Method

In this section, we formally define the problem of dataset pruning and describe the two key
components of our PRIME : similarity network construction and sample selection.

3.1. Dataset Pruning: Problem Definition

Let D = {x1, x2, . . . , xn} represent the original training dataset, where each xi is an image,
and n is the total number of images in the dataset. Our goal is to select a subset D′ ⊂ D,
such that |D′| = m and m ≪ n, while preserving the model generalizability. Specifically,
we want to minimize the difference in performance between a model trained on the original
dataset D and the pruned dataset D′, i.e.:

min
D′

Ex∈D [L(fD(x), fD′(x))] (1)

where fD and fD′ represent models trained on the original dataset and the pruned dataset,
respectively, and L denotes the loss function (e.g., cross-entropy or DICE). Our goal is to
select D′ such that it is significantly smaller than D, but retains its diversity and represen-
tativeness, thus minimizing the performance degradation compared to the dataset D.

3.2. Similarity Network Construction

For efficient pruning, we first construct a similarity network G = (V, E) from the training
images, where each node vi ∈ V represents an image xi ∈ D, and the edges E capture the
similarity between image pairs. The similarity between any image pair (xi,xj) is quantified
using a metric such as Structural Similarity Index (SSIM)1 or Pearson Correlation Coef-
ficient (PCC). More precisely, the SSIM ∈ [0, 1] of two images is calculated as Eq. 2:

SSIM(xi, xj) =
(2µiµj + C1)(2σij + C2)

(µ2
i + µ2

j + C1)(σ2
i + σ2

j + C2)
(2)

1. SSIM similarity achieves slightly better pruning results than PCC as shown in Figs. 4 and 5.
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Figure 2: Proposed workflow diagram (left - network construction of images, right - pruning
network to select a subset of images).

where µi and µj are mean intensities (average pixel values) of images xi and xj , σ
2
i and σ2

j

are their variances, and σij is their covariance. Small positive constants C1 and C2 prevent
instability in the division when variances or covariances are near zero.

The PCC ∈ [−1, 1] between a pair of images is computed as Eq. 3:

PCC(xi, xj) =

∑
(xi − x̄i)(xj − x̄j)√∑

(xi − x̄i)2
√∑

(xj − x̄j)2
(3)

where x̄i and x̄j are mean intensities (average pixel values) of images xi and xj .

For each image pair (xi, xj), an edge eij ∈ E is created between nodes vi and vj if their
SSIM or PCC similarity exceeds a threshold τ (set based on the range of similarities in the
target dataset). This results in an undirected graph G, where pairs of images with sufficient
SSIM or PCC similarities get connected. The adjacency matrix A of G is defined as Eq. 4:

Aij =

{
1 if similarity(xi, xj) ≥ τ,

0 otherwise.
(4)

Fig. 2 (left box) illustrates this process. For example, in Fig. 1, the similarity network
of the CVC-ClinicDB dataset is shown for an SSIM threshold of τ = 0.92; this network has
550 nodes and 1510 edges. More details on this network are provided in the Appendix B.

3.3. Sample Selection via Community Detection

Our pruning method exploits community detection (Blondel et al., 2008) within the similar-
ity network G. Communities in the network correspond to clusters of highly similar images
(Fig. 1) which can help us to select a much smaller, yet representative subset from each
community. The steps of our pruning method (Fig. 2, right box) are described next.

3.3.1. Community detection

We use a community detection algorithm, namely the Louvain method (Blondel et al., 2008),
to identify communities in the similarity network. Our goal is to maximize the modularity
Q of the network, defined as in Eq. 5:

Q =
1

2|E|
∑
i,j

[
Aij −

kikj
2|E|

]
δ(ci, cj) (5)

where |E| is the cardinality of edges E , Aij denotes adjacency as in Eq. 4 (1 if nodes i
and j are connected, 0 otherwise), ki and kj are the node degrees of nodes i and j, and
ci and cj indicate the communities of nodes i and j. The indicator δ(ci, cj)= 1 if ci = cj
(same community), and 0 otherwise. This process identifies the network communities2

C1, C2, . . . , Ck, where each community Ck consists of a set of highly similar images.
2. We note that, in networks with a weaker structure, these groupings may be less distinct; this issue can

be mitigated by using a smaller similarity threshold τ .
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3.3.2. Sample selection

For each detected community Ck, we retain only a representative subset of nodes (i.e.,
images) based on the size of the community: i) If |Ck| = 1, we retain the single node, as it
represents a unique image in the dataset; ii) If |Ck| > 1, we retain the top ⌈p%⌉ of nodes
based on their (higher) node degree within the community; the remaining nodes in the
community are pruned. Finally, the retained subset D′ can be represented as in Eq. 6:

D′ =

K⋃
k=1

C⌈p%⌉
k (6)

where C⌈p%⌉
k represents the top ⌈p%⌉ nodes selected from community Ck, and K is the total

number of detected communities.
Intuitively, the similarity threshold τ controls the network density, with lower values

forming fewer, but denser communities and thus enabling higher pruning. A smaller ⌈p%⌉
retains fewer nodes per community which ensures each community is represented by its
most representative images, thus reducing redundancy while preserving diversity.

4. Experiments

4.1. Segmentation Network Architectures

We utilize the PVT-v2-b2 (PVT) (Wang et al., 2022b) and ResNet50 (R50) (He et al.,
2016) encoders (which are hierarchical backbones) and extract features from four stages.
Then, we use the CASCADE decoder3 (Rahman and Marculescu, 2023b) (which is a local
attention-based cascaded decoder) to decode and get the segmentation outputs of different
stages. Finally, we use the output from the last stage to get the final segmentation map. We
adopt the multi-stage loss aggregation for training as in (Rahman and Marculescu, 2023b).

4.2. Implementation Details

We implement all our experiments in Pytorch 1.11.0 and train all models on a single NVIDIA
RTX A6000 GPU with 48GB of memory. We use different similarity thresholds (τ) to
construct the similarity network. We do not use any data augmentations in our experiments.

We use the AdamW optimizer (Loshchilov and Hutter, 2017) with a learning rate and
weight decay of 1e-4 in our experiments. We use the combined weighted IoU and weighted
Binary Cross Entropy (BCE) loss function for the polyp segmentation on CVC-ClincDB
and Kvasir datasets. We train the model for 200 epochs with a batch size of 16. We also
utilize the pre-trained weights on ImageNet for backbone networks. Finally, we report the
average DICE score (%) over five runs for evaluation.

4.3. Results

Impact of ⌈p%⌉ community representative: We conducted an ablation study on CVC-
ClinicDB dataset with PVT-CASCADE model to see the impact of selecting different per-
centages of representatives from each community (Fig. 3). We can conclude that the DICE
score increases only marginally when we select more than ⌈10%⌉ from each community.
Hence, we select the top ⌈10%⌉ samples from each community for model training purposes
and prune/remove rest of the nodes from the community in all of our experiments.

3. Other decoders such as EMCAD (Rahman et al., 2024) can be also used as shown in Appendix C.2.
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Figure 3: Pruning (%) and DICE scores (%) vs. images (%) selected from each community
in CVC-ClinicDB dataset (total of 550 images) with PVT-CASCADE model. We use SSIM
with a median threshold τ=0.5 for a denser network construction with fewer communities.

Table 1: Experimental results (DICE %) on CVC-ClinicDB dataset using PVT-CASCADE
and ResNet50 (R50)-CASCADE. τ is a similarity threshold that controls the density (i.e.,
pruning rate) of the similarity network. We select top ⌈10%⌉ images based on the degree of
each community in SSIM-based similarity networks.

Architectures Methods/(τ , pruning %)
(τ=0.92,
55.5%)

(τ=0.95,
31.3%)

(τ=0.97,
15.1%)

(τ=1,
0% pruning)

PVT-CASCADE Entropy (Shannon, 1948) 89.82±1.4 91.77±1.0 92.63±0.8

94.29±0.5
PVT-CASCADE MC-dropout (Gal and Ghahramani, 2016) 90.18±1.3 92.25±0.9 92.81±0.7
PVT-CASCADE KnowWhatToLabel (Dawoud et al., 2023) 90.34±1.4 92.62±0.9 92.87±0.8
PVT-CASCADE Random 89.94±3.3 91.99±2.1 92.24±1.3
PVT-CASCADE PRIME (Ours) 92.85±1.3 94.18±0.7 94.48±0.5

R50-CASCADE Entropy (Shannon, 1948) 89.37±1.5 91.43±0.9 92.21±0.7

93.97±0.4
R50-CASCADE MC-dropout (Gal and Ghahramani, 2016) 89.96±1.3 91.94±0.8 92.42±0.7
R50-CASCADE KnowWhatToLabel (Dawoud et al., 2023) 90.10±1.3 92.29±0.9 92.51±0.6
R50-CASCADE Random 89.53±3.1 91.61±1.9 91.86±1.4
R50-CASCADE PRIME (Ours) 92.45±1.1 93.82±0.8 94.08±0.4

Generalizability in multiple models: Table 1 shows the effectiveness of our PRIME
in improving generalizability across the PVT-CASCADE and R50-CASCADE models. At
a similarity threshold of τ=0.92 (i.e., 55.5% pruning), PVT-CASCADE achieves a DICE
score of 92.85% vs. 89.94% with random selection, and R50-CASCADE scores 92.45% com-
pared to 89.53%. As pruning decreases, our PRIME consistently outperforms the random
selection. PRIME also outperforms KnowWhatToLabel, Entropy, and MC-dropout prun-
ing methods. Even at τ=0.97 (15.1% pruning), our PRIME maintains high DICE scores in
both models, closely matching the results obtained with the full dataset. This demonstrates
our PRIME ’s ability to preserve data diversity and ensure robust segmentation performance
with significantly reduced data. More results on Kvasir dataset are shown in Appendix C.1.

Generalizability on multiple datasets (centers) and similarity metrics: Figs. 4 and
5 show the efficacy of our PRIME on the CVC-ClinicDB and Kvasir datasets, using both
PCC and SSIM similarity metrics. Our PRIME consistently yields higher DICE scores than
random pruning, even at higher pruning rates. For instance, at 31.3% pruning on the CVC-
ClinicDB (Fig. 4), our PCC-based pruning achieves 94.02% DICE score, and SSIM-based
pruning reaches 94.2%, compared to only 92.0% with random pruning. At 71.9% pruning on
the Kvasir dataset (Fig. 5), our PRIME maintains DICE scores of 91.1% (PCC) and 91.6%
(SSIM), while random pruning drops to 89.6%. Our PRIME also consistently outperforms
KnowWhatToLabel, Entropy, and MC-dropout pruning methods. Finally, the training time
per epoch decreases from about 100 secs at 0% pruning to 28 secs at 71.9% pruning, thus
validating the efficiency and robustness of our PRIME across datasets or imaging centers.
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Figure 4: Pruning (%) vs. DICE (left axis) and Time (right axis) on the CVC-ClinicDB
dataset (Bernal et al., 2015) (550 images) with the PVT-CASCADE model. SSIM thresh-
olds τ=[1, 0.97, 0.95, 0.92, 0.9, 0.88, 0.85] are used to construct similarity networks, while
PCC thresholds are adjusted to achieve similar pruning rates. Training time per epoch
is reported averaging over 200 epochs. Our PRIME prunes 55.5%(D) of data with only a
1.4%(A−D) drop in DICE and reduces 2.3× training time. Notably, we can prune 15%(B)

of images with a 0.2%(B−A) increase in DICE.

Figure 5: Pruning (%) vs. DICE score (left axis) and Time (right axis) on the Kvasir
dataset (Jha et al., 2020) (900 images) with the PVT-CASCADE model. Training time per
epoch is reported averaging over 200 epochs. SSIM thresholds τ=[1, 0.97, 0.90, 0.85, 0.8,
0.75, 0.7] are used to construct similarity networks, while PCC thresholds are adjusted to
achieve similar pruning rates. Our PRIME prunes 56.2%(D) of data with only a 0.5%(A−D)

drop in DICE and achieves 2.3× faster training.

5. Conclusion and Future Work

In this paper, we have introduced PRIME, a training-free dataset pruning method to mini-
mize image annotation (labeling) efforts and enable efficient training of segmentation mod-
els. Experiments on multiple medical image segmentation datasets show its potential to
maintain high DICE scores while reducing computational and data annotation costs.

Future work will focus on a deeper analysis of similarity networks and expanding ex-
periments to diverse datasets (including 3D segmentation). Our PRIME holds promise in
accelerating research in continual learning, active learning, contrastive learning, and few-
shot learning by enhancing data efficiency in resource-intensive applications.
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Appendix A. Datasets Details

CVC-ClinicDB (Bernal et al., 2015) contains 612 images, which are extracted from 31
colonoscopy videos. Kvasir includes 1,000 polyp images, which are collected from the polyp
class in the Kvasir-SEG dataset (Jha et al., 2020).

Following the settings in CASCADE (Rahman and Marculescu, 2023b), we adopt the
same 550 and 900 images from CVC-ClinicDB and Kvasir datasets as the training set, and
the remaining 50 and 100 images, respectively, are used as testsets.

Appendix B. Detailed Analysis of Similarity Network Properties and
Community Detection

The structural properties of the constructed similarity network (900 nodes, 8922 edges) in
Fig. 6 provide compelling evidence for the utility of community detection in training-free
dataset pruning. Below, we analyze key metrics and their implications:

Figure 6: Communities identified with Structural Similarity Index (SSIM) threshold of 0.80
in the Kvasir dataset (Jha et al., 2020). Gephi’s community detection (Blondel et al., 2008)
identifies 189 communities with a modularity of 0.512. The degree distribution shows the
number of nodes with varying connectivity (0 to >175, left-skewed), while the community
distribution highlights the number of nodes per community (0 to >175). By considering
top ⌈10%⌉ nodes from each community, we select only 253 (28.1%) representative nodes
and prune the rest of the nodes (71.9%).

B.1. Network Connectivity and Cohesion

• Average Degree (19.827): Each node is connected to 20 others, on average, indi-
cating robust pairwise similarity relationships. This density ensures that communities
are well-anchored by hubs (high-degree nodes) while retaining fine-grained connections
between niche samples.
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• Graph Density (0.022): The sparsity of the network (only 2.2% of possible edges
exist) reflects a carefully calibrated similarity threshold, filtering out weak or noisy re-
lationships. This sparsity enhances the discriminative power of detected communities,
as retained edges likely correspond to semantically meaningful similarities.

B.2. Small-World Characteristics

• Average Path Length (3.348): The short average distance between nodes (3.348
hops) suggests a small-world topology, where tightly knit communities are intercon-
nected by a few bridging nodes (Watts and Strogatz, 1998). This property enables
efficient traversal of the network during pruning, thus ensuring that representative
samples can be selected without exhaustive search.

• Network Diameter (10): The longest shortest path spans 10 edges, indicating that
even the most dissimilar images are relatively proximate in the feature space. This
compactness supports the hypothesis that the dataset contains latent hierarchical
structures resolvable via community detection.

B.3. Community Detection Efficacy

• Modularity (0.512): A modularity score >0.3 confirms statistically significant com-
munity structure. The modularity value of 0.512 indicates strong separation between
groups, where intra-community edges significantly outnumber inter-community edges.
This ensures that detected clusters are cohesive and distinct, aligning with visually or
pathologically meaningful subgroups.

• Connected Components (184 → 189 Communities): The network initially
contains 184 isolated components, but community detection resolves 189 clusters,
demonstrating that the Gephi’s algorithm (Blondel et al., 2008) successfully identifies
substructures within connected components. This granularity is critical for capturing
fine-grained variations (e.g., polyp subtypes or imaging artifacts).

B.4. Local Clustering and Redundancy Reduction

• Average Clustering Coefficient (0.597): The high clustering coefficient indicates
that nodes tend to form tightly connected triads, a hallmark of homophilic networks
where similar nodes cluster together (Watts and Strogatz, 1998). This property en-
sures communities are internally homogeneous, reducing redundancy and enabling the
selection of representative samples without oversampling.

• Hub-Driven Cohesion: Hubs (high-degree nodes) act as central coordinators, link-
ing disparate regions of the network. By prioritizing hubs during pruning, our method
retains images that anchor multiple communities, thus preserving the global dataset
structure while minimizing the information loss.
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B.5. Implications for Training-Free Dataset Pruning

The network’s small-world compactness (short average path of 3.348), scale-free topology
(evidenced by hubs with degree >100 and average degree 19.827), and strong modularity
(0.512) collectively validate community detection as a principled framework for dataset
pruning. By leveraging these properties, our PRIME achieves:

• Efficiency: Short paths and hierarchical communities reduce computational overhead.

• Representativeness: Cohesive clusters preserve clinical diversity.

• Interpretability: Communities align with domain-specific patterns (e.g., pathology,
imaging protocols).

Our method is particularly advantageous for polyp segmentation, where resource limitations
(e.g., expert humans available to do annotation or computing resources to run intense com-
putations) demand strategies that balance performance, efficiency, and clinical relevance.

Table 2: Experimental results (DICE %) on Kvasir dataset (Jha et al., 2020) using PVT-
CASCADE and ResNet50 (R50)-CASCADE. τ is a similarity threshold that controls the
density (i.e., pruning rate) of the similarity network. We select top ⌈10%⌉ images based on
the degree of each community in SSIM-based similarity networks.

Architectures Methods/(τ , pruning %)
(τ=0.83,
56.2%)

(τ=0.85,
41.8%)

(τ=0.88,
19.1%)

(τ=1,
0% pruning)

PVT-CASCADE Entropy (Shannon, 1948) 90.93±1.2 91.25±0.9 91.34±0.6

93.17±0.4
PVT-CASCADE MC-dropout (Gal and Ghahramani, 2016) 90.81±1.3 91.46±0.9 91.75±0.7
PVT-CASCADE KnowWhatToLabel (Dawoud et al., 2023) 91.57±1.3 91.75±0.7 91.98±0.7
PVT-CASCADE Random 90.69±2.8 91.21±1.9 91.52±1.2
PVT-CASCADE PRIME (Ours) 92.11±1.2 92.88±0.6 93.15±0.5

R50-CASCADE Entropy (Shannon, 1948) 90.58±1.4 91.06±1.0 91.22±0.7

93.02±0.5
R50-CASCADE MC-dropout (Gal and Ghahramani, 2016) 90.63±1.2 91.41±0.9 91.62±0.6
R50-CASCADE KnowWhatToLabel (Dawoud et al., 2023) 91.41±1.4 91.62±0.8 91.84±0.7
R50-CASCADE Random 90.53±2.9 91.12±1.7 91.45±1.5
R50-CASCADE PRIME (Ours) 92.01±1.3 92.73±0.9 92.96±0.6

Appendix C. Additional Experiments

C.1. Results on the Kvasir dataset

Table 2 shows the efficacy of PRIME in balancing dataset pruning and segmentation per-
formance. While existing methods (e.g., entropy-based selection, MC-dropout) exhibit per-
formance degradation under aggressive pruning (e.g., 56.2% reduction at τ = 0.83), PRIME
consistently outperforms baselines, achieving higher DICE scores with narrower standard
deviations (e.g., 92.11% vs. 90.93% for PVT-CASCADE at τ = 0.83).

Notably, at τ = 0.88 (19.1% pruning), PRIME nearly matches the full-dataset baseline
(93.15% vs. 93.17%), highlighting its ability to retain critical samples through community
detection in similarity networks. This contrasts with random pruning, which suffers from
high variance (e.g., ±2.8 at τ = 0.83), emphasizing the non-triviality of sample selection.

Our PRIME’s robustness across architectures (PVT vs. ResNet50) further validates its
generalizability, though PVT’s superior performance suggests architectural advantages in
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capturing polyp features. These findings position PRIME as a computationally efficient
alternative for resource-constrained medical imaging tasks.

C.2. Results of ClinicDB dataset with the EMCAD decoder:

Table 3 shows that PRIME effectively optimizes data efficiency for polyp segmentation
using recent EMCAD decoder (Rahman et al., 2024) as well, particularly in data-rich
regimes. Under aggressive pruning (τ = 0.92, 55.5%), PRIME achieves 92.87% DICE
for PVT-EMCAD, outperforming entropy-based selection by +3.14% and random prun-
ing by +3.02%, despite higher variability (±1.5 vs. ±3.6 for random). This underscores
its ability to retain diagnostically critical samples even with significant dataset reductions.
As pruning relaxes (τ = 0.97, 15.1%), PRIME ’s performance nears the full-dataset base-
line (94.61% vs. 94.65% for PVT-EMCAD), suggesting diminishing returns for retaining
additional data. Notably, PVT-EMCAD consistently surpasses ResNet50-EMCAD (e.g.,
94.61% vs. 94.15% at τ = 0.97), likely due to its hierarchical attention mechanisms bet-
ter capturing polyp boundaries. These insights position PRIME as a architecture-agnostic
dataset pruning method.

Table 3: Experimental results (DICE %) on CVC-ClinicDB dataset using PVT-EMCAD
and ResNet50 (R50)-EMCAD. τ controls the similarity threshold and pruning rate. SSIM
similarity achieves better DICE score than PCC in similar pruning rate.

Architectures Methods/(τ , pruning %)
(τ=0.92,
55.5%)

(τ=0.95,
31.3%)

(τ=0.97,
15.1%)

(τ=1,
0% pruning)

PVT-EMCAD Entropy (Shannon, 1948) 89.73±1.7 91.83±1.4 92.85±1.2

94.65±0.6
PVT-EMCAD MC-dropout (Gal and Ghahramani, 2016) 90.15±1.6 92.31±1.3 93.05±1.1
PVT-EMCAD KnowWhatToLabel (Dawoud et al., 2023) 90.36±1.7 92.81±1.1 93.14±1.0
PVT-EMCAD Random 89.85±3.6 91.87±2.4 92.43±1.7
PVT-EMCAD PRIME w/ PCC (Ours) 92.58±1.4 94.23±0.9 94.34±0.7
PVT-EMCAD PRIME w/ SSIM (Ours) 92.87±1.5 94.47±1.0 94.61±0.8

R50-EMCAD Entropy (Shannon, 1948) 89.31±1.9 91.51±1.5 92.25±1.3

94.26±0.5
R50-EMCAD MC-dropout (Gal and Ghahramani, 2016) 89.90±1.7 92.01±1.2 92.49±1.1
R50-EMCAD KnowWhatToLabel (Dawoud et al., 2023) 90.14±1.7 92.39±1.1 92.62±1.0
R50-EMCAD Random 89.46±3.5 91.72±2.3 91.97±1.8
R50-EMCAD PRIME w/ PCC (Ours) 92.25±1.5 93.72±0.9 94.02±0.6
R50-EMCAD PRIME w/ SSIM (Ours) 92.41±1.4 93.91±1.0 94.15±0.7

Appendix D. Current Limitations and Future Work

Our dataset pruning method balances data reduction with high segmentation accuracy
across models, datasets, and similarity metrics. Additionally, as a training-free method,
our pruning method minimizes the annotation costs and effort by effectively identifying
representative samples, which is particularly advantageous in medical imaging where data
annotation (labeling) is time-intensive and costly.

However, the DICE scores decline at extreme pruning levels, indicating a potential loss
of critical data diversity. Furthermore, the method requires similarity threshold tuning,
which varies by dataset. Future work will focus on extending our method to other medical
imaging tasks and incorporating adaptive similarity thresholding to enhance robustness and
generalizability across diverse medical imaging scenarios.
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