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ABSTRACT

Model-based offline reinforcement learning (RL) has achieved superior perfor-
mance than model-free RL in many decision-making problems due to its sample
efficiency and generalizability. However, prior model-based offline RL methods
in the literature either demonstrate their successes only through empirical studies,
or provide algorithms that have theoretical guarantees but are hard to implement in
practice. To date, a general computationally-tractable algorithm for model-based
offline RL with PAC guarantees is still lacking. To fill this gap, we develop a
pessimistic model-based actor-critic (PeMACO) algorithm with general function
approximations assuming partial coverage of the offline dataset. Specifically, the
critic provides a pessimistic Q function through incorporating uncertainties of the
learned transition model, and the actor updates policies by employing approxima-
tions of the pessimistic Q function. Under some mild assumptions, we establish
theoretical PAC guarantees of the proposed PeMACO algorithm by proving an
upper bound on the suboptimality of the returned policy by PeMACO.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as an effective approach for optimizing sequential de-
cision making by maximizing the expected cumulative rewards to learn the optimal policy. RL
algorithms have made significant advances in a wide range of areas such as autonomous driving
(Shalev-Shwartz et al., 2016), video games (Torrado et al., 2018), and robotics (Kober et al., 2013).
However, applying RL to some real-world problems may require optimizing sequential decisions
from pre-collected and static (i.e., offline) datasets because interacting with the environment can
be expensive or unethical, such as assigning patients to inferior or toxic treatments in healthcare
applications (Gottesman et al., 2019). Therefore, developing offline RL methods has grown rapidly
in recent decades to learn the optimal policy from offline datasets without further interactions with
the environment (Wu et al., 2019; Kumar et al., 2020; Kidambi et al., 2020; Yu et al., 2020; Levine
et al., 2020).

The performance of offline RL methods often rely on the coverage of offline data. Earlier theoretical
studies of offline RL usually assume that offline data has full coverage, i.e., every possible policy’s
state distribution can be covered by the distribution of the behavior policy that generates offline data
(Munos & Szepesvári, 2008; Ross & Bagnell, 2012; Uehara et al., 2020; Xie & Jiang, 2021). To
relax this restrictive assumption, a number of model-free offline RL methods have been developed
recently to consider partial coverage of offline data by incorporating pessimism (Liu et al., 2020; Xie
et al., 2021; Zanette et al., 2021). However, most existing model-free methods require the Bellman
completeness assumption, which is particularly strong in practice due to the lack of monotonic
properties for Bellman completeness.

In contrast, model-based methods for offline RL have attracted increasing attentions because of
fewer assumptions in theories and better sample efficiencies in practice. Yu et al. (2020) and Ki-
dambi et al. (2020) proposed model-based offline RL methods by modifying the Markov decision
process (MDP) model learned from offline data and introducing pessimism in terms of uncertain-
ties of the transition model. Despite their empirical successes, the uncertainties presented in their
work were not analytically quantified in an exact manner. For instance, the penalty term in Yu et al.
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(2020) is an upper bound of the point-wise estimation error for the transition model, which was
not theoretically studied with finite-sample analysis. Recently, Uehara & Sun (2021) developed a
pessimistic model-based offline algorithm with general function approximation and proved an upper
bound for the suboptimality gap under partial coverage with PAC (probably approximately correct)
guarantees. However, their algorithm cannot be easily implemented in practice. Inspired by Uehara
& Sun (2021), Rigter et al. (2022) designed a computationally-tractable algorithm by reformulating
a max-min constrained optimization problem as a two-player zero sum game against an adversarial
environment model. However, theoretical properties of their algorithm have not been studied. A
challenge remains open: can we design a model-based offline RL algorithm that not only can be
implemented in practice but also has PAC guarantees?

In this work, we fill this gap by proposing PeMACO, a pessimistic model-based actor-critic (AC)
algorithm for offline RL. Studying model-based offline RL in the AC framework provides us a con-
venient way to separately investigate the statistical complexity from the critic and computational
complexity from the actor by separating the policy optimization from the policy evaluation. Specifi-
cally, in the critic, we find a pessimistic Q function in each iteration t by minimizing the Q function
over a constraint set of the transition model P . The critic returns a model Pt such that Pt(· | s, a)
is close to P ∗(· | s, a) when the state-action pair (s, a) lies in the support of the offline distribution,
where P ∗ is the ground true transition model. Therefore the estimation error would not increase a
lot when (s, a) lies in the support of the occupancy measure induced by some policy π† covered by
offline data. Such a design is able to return an accurate estimation of the value function induced by
a comparator policy covered by offline data, but a pessimistic value function when the comparator
policy is not covered by offline data. In the actor part, we approximate the Q function by a linear
span of features in a finite-dimensional space and use the natural policy gradient (Agarwal et al.,
2021) to update policy parameters. We study the distribution shift arising from the policy gradient
step because of the changing occupancy measure (induced by the transition model Pt and the policy
πt) in each iteration. By introducing a finite concentrability coefficient, we show that the transfer
error coming from the linear approximation of Q in the actor can also be controlled.

To summarize, we design a computationally-tractable algorithm under general function approxima-
tion for model-based offline RL with theoretical guarantees. Our main contributions are threefold.
First, compared to the state-of-the-art theoretical work of Uehara & Sun (2021) for model-based
offline RL, the proposed PeMACO algorithm not only has PAC guarantees, but also can be imple-
mented in practice. Second, compared to model-free RL literature, we do not require the assumption
of Bellman completeness. Third, the theoretical analysis in this work provides a fundamental frame-
work and opens a door for future development of offline model-based algorithms based on AC.
Alternative ways of handling transition models from the statistical perspective and approximating
the Q function can be adapted in our theoretical framework.

2 RELATED WORK

Model-free Offline RL: Model-free offline RL algorithms usually learn a near-optimal policy from
offline datasets by either constraining the policy space to a neighborhood of the behavior policy
(Fujimoto et al., 2019; Wu et al., 2019; Liu et al., 2019; Nachum et al., 2019; Kostrikov et al.,
2021), or incorporating uncertainties as a notion of pessimism added to the value function during
the training process (Kumar et al., 2020; Xie et al., 2021; Kostrikov et al., 2021; Cheng et al., 2022).
Compared to constraining the policy space, the pessimistic methods allow the policy to explore
actions outside the constraint set. Theoretically, earlier model-free offline RL methods often require
realizability and global coverage (Chen & Jiang, 2019; Duan et al., 2021). However, the assumption
of global coverage is too strong in the offline RL setting and may not hold in practice. Motivated by
the pessimism idea, some recent work proposed model-free RL methods considering the assumption
of partial coverage in tabular or linear MDPs (Jin et al., 2021; Rashidinejad et al., 2021; Zhang et al.,
2022). In this work, we consider a pessimistic model-based approach in the offline setting under the
assumption of partial coverage, in which general MDPs can be studied with PAC guarantees.

Model-based Offline RL: Model-based methods have been explored relatively sparsely in offline
RL. Ross & Bagnell (2012) proposed to learn the dynamics from offline data followed by planning,
and demonstrated that it could lead to arbitrarily large sub-optimality. Several model-based online
RL methods have been explored in the offline setting by limiting model exploitation (Deisenroth &
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Rasmussen, 2011; Chua et al., 2018). In recent years, model-based offline RL methods proposed to
incorporate pessimism into the value function by quantifying uncertainties of the learned dynamic
model. Yu et al. (2020) and Kidambi et al. (2020) introduced pessimism by modifying the MDP
model learned from offline data, provided analytic bounds, and demonstrated empirical successes
compared to state-of-the-art model-free offline RL algorithms. Uehara & Sun (2021) developed a
model-based offline algorithm called constrained pessimistic policy optimization and established its
theoretical PAC guarantee under the assumption of partial coverage for general MDPs. However,
their algorithm is not computationally practicable. Rigter et al. (2022) designed a practical model-
based algorithm inspired by the max-min optimization framework from Uehara & Sun (2021), but its
theoretical guarantee has not been investigated. In our work, we design a computationally-tractable
algorithm with a theoretical guarantee for model-based offline RL building upon the natural actor-
critic algorithm.

Actor-critic algorithms: Actor-critic (AC) and its variant natural AC have gained great popularity
in both online and offline RL (Konda & Tsitsiklis, 1999; Peters & Schaal, 2008). The theoretical
guarantee for AC algorithms in the online setting has been investigated (Yang et al., 2018; Agarwal
et al., 2021). Several recent work consider the AC algorithm in offline RL and argue that it is simpler
to study its theoretical properties by separating the policy optimization from the policy evaluation
(Zanette et al., 2021; Chen et al., 2022). In particular, Zanette et al. (2021) proposed a model-free
AC algorithm for offline RL by considering linear action-value functions under the assumption of
Bellman linear completeness. However, all existing work only study the theoretical guarantee of
AC algorithms in the model-free setting. In contrast, we propose the first model-based offline AC
algorithm that not only assumes partial coverage but also allows for considering more general MDPs
beyond simple tabular and linear MDPs.

3 PRELIMINARIES

Markov Decision Processes and Offline RL: We consider an infinite-horizon Markov Decision
Process (MDP) M = (S,A, P, r, γ, µ0), with state space S, action space A, a transition dynamics
P (s′ | s, a) with s, s′ ∈ S and a ∈ A, a reward function r : S × A → [0, 1], a discount factor
γ ∈ [0, 1), and an initial state distribution µ0. The reward function r is assumed to be known
throughout this work. A policy π maps from state space to a distribution over actions, representing a
decision strategy to pick an action with probability π(·|s) given the current state s. Given a policy π
and a transition dynamics P , the value function V πP (s) := EP,π[

∑∞
t=0 γ

tr(st, at)|s0 = s] denotes
the expected cumulative discounted reward of π under the transition dynamics P with an initial state
s and a reward function r. We use V πP := Es∼µ0

V πP (s) to denote the expected value integrating over
S with an initial distribution µ0. The action-value function (i.e., Q function) is defined similarly:
QπP (s, a) = EP,π[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]. Let dπP (s, a) := (1 − γ)
∑∞
t=0 γ

tPr(st =
s, at = a|s0 ∼ µ0) be the occupancy measure of the policy π under the dynamics P . Then V πP can
also be expressed as E(s,a)∼dπP [r(s, a)]. Assuming that a static offline dataset is generated by some
behavior policy under the ground true transition dynamics P ∗, model-based offline RL methods aim
to learn an optimal policy that maximizes the value V πP∗ through the learning of dynamics from the
offline dataset without any further interactions with the environment.

Partial Coverage: One fundamental challenge in offline RL is distribution shift (Levine et al.,
2020): the visitation distribution of states (and actions) induced by the learned policy inevitably
deviates from the distribution of offline data. The concept of coverage has been introduced to mea-
sure the distribution shift using the density ratio (Chen & Jiang, 2019). Denote ρ(s, a) to be the
offline distribution that generates the state-action pairs (si, ai)

n
i=1 in the offline dataset. Full cov-

erage means sup(s,a) d
π
P∗(s, a)/ρ(s, a) < ∞ for all possible policies π, which may not hold in

practice. In contrast, partial coverage only assumes that the offline distribution covers the visitation
distribution induced by some comparator policy π† (Xie et al., 2021; Uehara & Sun, 2021), such
that sups,a d

π†

P∗(s, a)/ρ(s, a) < ∞. The goal of our work is to learn the optimal policy among all
polices covered by the offline dataset, i.e., ΠC := {π ∈ Π : sups,a d

π
P∗(s, a)/ρ(s, a) < C}, where

C is some large constant.
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4 PEMACO: PESSIMISTIC MODEL-BASED ACTOR-CRITIC FOR OFFLINE RL

We first give a brief introduction to constrained pessimistic policy optimization (CPPO) (Uehara &
Sun, 2021), which motivates our work. CPPO is a model-based offline RL algorithm that induces
pessimism via searching for the least favorable transition model in a constraint set under partial
coverage assumption. Suppose that the maximum likelihood estimate (MLE) of the transition model
can be computed from the offline dataD := {(si, ai, ri, s′i)ni=1} in a model classM. Let ED denote
the empirical distribution of the offline data {(si, ai)ni=1}, i.e., EDf(s, a) = 1

n

∑n
i=1 f(si, ai),

and TV(·, ·) denote the total variation distance. CPPO solves a constrained max-min optimization
problem:

max
π∈Π

min
P∈MD

V πP , whereMD =

{
P | ED

[
TV

(
P̂MLE(· | s, a), P (· | s, a)

)2]
≤ ξ
}
. (1)

Under the assumptions of some entropy control for model classM, realizability of the true transition
dynamics P ∗ (i.e., P ∗ ∈M), and partial coverage of any comparator policy π†, they show an upper
bound on the suboptimality of the policy returned by CPPO πCPPO:

V π
†

P∗ − V π
CPPO

P∗ ≤ c
√
Cπ†

n

for some constant c with high probability.

Although CPPO considers a general class of MDPs and does not require the assumption of Bellman
completeness, it is difficult to design a practical implementation of CPPO due to the computational
complexities in solving the max-min optimization problem in (1). This motivates the development of
PeMACO, which is a computationally-tractable algorithm for model-based offline RL under partial
coverage with theoretical guarantees.

4.1 OVERVIEW OF PEMACO

Our goal is to develop a model-based offline RL algorithm that not only has theoretical PCA guaran-
tees but also can be implemented in practice. To achieve this goal, we design PeMACO, a pessimistic
model-based natural actor-critic (AC) algorithm for offline RL. Under the general AC framework,
iteratively the actor performs policy improvement which typically does gradient-acent, and the critic
performs policy evaluation which estimates theQ function given the current policy, until the optimal
policy is achieved (Konda & Tsitsiklis, 1999). Natural AC is a variant of AC when a pre-conditioner
is considered in each update of the actor (Peters & Schaal, 2008). The reason why we consider a
natural AC framework is that by separating the policy evaluation from the policy optimization, we
can analyze statistical and computational properties of the algorithm separately. In particular, we
study the statistical guarantee by analyzing the distance between the true and estimated transition
models in the critic, and study the theoretical guarantee of computation in the actor.

In model-based AC algorithms, considering the right model class and policy class is of great im-
portance. Intuitively, the model class for transition models should not be too large so that P ∗ can
be learned efficiently. We consider any general MDPs with a controllable entropy in PeMACO.
Many commonly-used MDPs can be adapted to our setting, including tabular MDPs, linear mixture
MDPs, kernelized nonlinear regulators, low rank MDPs, and factored MDPs (Uehara et al., 2020).
For the policy class, since we study the function approximation setting where |S| can be infinite, we
consider the log-linear parametric class:

Πθ =

{
πθ(a | s) =

exp (θ · ϕs,a)∑
a′∈A exp (θ · ϕs,a′)

| θ ∈ Rd
}
, (2)

where ϕ : S × A → Rd is a feature map with ∥ϕ∥ ≤ B for some constant B. We note that more
general parametric policy classes can be adapted here with additional assumptions.

Algorithm 1 summarizes PeMACO, which incorporates the pessimism principle into the AC frame-
work. Specifially, we compute the MLE P̂MLE of the transition model from the offline data, and
construct a constraint set MD, in which the transition model P (· | s, a) is forced to be close to
P̂MLE(s, a) when (s, a) approximately follows the offline distribution ρ. Then in each iteration t,
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given the current policy πt, the critic finds Pt ∈ MD such that Pt minimizes V πtP . This procedure
introduces pessimism in the sense that V πtPt ≤ V πtP∗

with high probability, because P ∗ ∈ MD with
high probability. QπtPt can be obtained from Monte Carlo methods given πt and Pt. Then the actor
updates πt through natural policy gradient (Agarwal et al., 2021), which involves an ascent direction
of exponentiated Q function. Due to the fact that the Q function is general with continuous state
space in our setting, we employ a linear approximation for Q, allowing us to update the policy in
a finite-dimensional space. We will discuss more details about the critic and actor of PeMACO in
Section 4.2 and prove an upper bound of the suboptimality for the policy returned by PeMACO in
Section 5.

Algorithm 1: Pessimistic Model-Based Actor-Critic for Offline RL (PeMACO)
Initialize π0(·|s) = Unif(A).
for t = 0, ..., T − 1 do

Critic (policy evaluation): Qt(s, a) = QπtPt(s, a), where Pt = argminP∈MD
V πtP with

MD =

{
P | P ∈M,ED

[
TV

(
P̂MLE(· | s, a), P (· | s, a)

)2]
≤ ξ
}
.

Actor (policy improvement): θt+1 ← θt + ηwt, where
wt ∈ argmin∥w∥≤W Es∼dπtPt ,a∼Unif(A)

[
(Qt(s, a)− w · ϕs,a)2

]
.

end

4.2 MORE DETAILS ON PEMACO

4.2.1 THE CRITIC: CONSTRAINED PESSIMISTIC POLICY EVALUATION

The critic part of PeMACO is designed to provide a pessimistic estimate of the value function given
a policy from the actor. This idea was first explored by Zanette et al. (2021), who developed a
pessimistic AC algorithm with the critic lower bounding the Q function. Specifically, they assume
that the Q function is a linear combination of features under Bellman restricted closedness and find
the minimum Q in a constraint set of the linear coefficient. However, their linear assumption of
the Q function and assumption of Bellman restricted closedness are rather strong. In this work, we
consider more general MDPs with potentially nonlinear Q functions. Instead of lower bounding the
Q function directly, we borrow the idea from Uehara & Sun (2021) to minimize the value function
given an appropriate constraint set:

min
P∈MD

V πtP ,MD =

{
P | P ∈M,ED

[
TV

(
P̂MLE(· | s, a), P (· | s, a)

)2]
≤ ξ
}
. (3)

The purpose of introducing the radius of the constraint set MD is to compensate potentially high
statistical errors due to insufficient coverage of the offline data.

In tabular MDPs, (3) is a constrained convex optimization problem, which is easy to solve. With
more general settings for the transition model P , the value function V πtP could be nonlinear, which
makes computation challenging. To solve (3), we will employ the projected gradient descent (Chong
& Zak, 2004), more details of which will be discussed in Section 6. For neatness of the main
theorem, we assume that we have access to the oracle of the constrained minimization problem (3).
Assumption 1 (Constrained minimization oracle). Given any π ∈ Πθ, we can find a P (π) such that

V πP (π) = min
P∈MD

V πP . (4)

Assume Pt satisfies (4) given πt, i.e., Pt = P (πt), then the critic can output QπtPt given Pt and πt.
Here QπtPt can be computed via the Monte Carlo method, i.e., generating a number of trajectories
corresponding to Pt and πt and then estimating the Q function given the desired accuracy.

4.2.2 THE ACTOR: NATURAL POLICY GRADIENT (NPG)

For policy improvement in the actor, we use the natural policy gradient (NPG) algorithm (Agarwal
et al., 2021). Under the tabular setting where |S||A| is finite and P ∗ is known, the update rule of
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NPG is πt+1(a | s) ∝ πt(a | s)eQ
πt
P∗ (s,a). However, when |S| is infinite, we cannot update π(a|s)

for each s ∈ S . To tackle this issue, one can introduce a class of parameterized policies using a
finite-dimensional feature space and project the Q function to the same feature space, so that the
policy parameters can be updated in a finite-dimensional space. For example, when the underlying
transition model P ∗ is known, Agarwal et al. (2021) update policy parameters as follows:

NPG: θt+1 ← θt + ηwt, wt ∈ argminw Es∼dπt
P∗ ,a∼πt(·|s)

[
(QπtP∗(s, a)− w · ϕs,a)2

]
,

where πt := πθt .

Essentially, with the help of linear approximations of the Q function, one can avoid updating π(a|s)
for each (s, a) ∈ S ×A, which has an infinite cardinality. However, we do not have access to P ∗ in
the offline setting. This motivates us to update the parameter θ using the dynamic model Pt obtained
from the critic in the policy improvement step of PeMACO as follows:

θt+1 ← θt + ηwt, wt ∈ argminw Es∼dπtPt ,a∼Unif(A)

[(
QπtPt(s, a)− w · ϕs,a

)2]
.

5 THEORETICAL GUARANTEES FOR PEMACO

In this section, we theoretically analyze PeMACO by establishing the suboptimality of the learned
policy πt with any comparator policy π† covered by the offline data: V π

†

P∗ − V π
t

P∗ . We first introduce
several assumptions needed for our theoretical study.

The first assumption is related to offline data generation, which is common in theoretical literature
of offline RL.

Assumption 2 (Data generation). The datasetD = {(si, ai, ri, s′i) : i = 1, ..., n} satisfies (si, ai) ∼
ρ i.i.d. with s′i ∼ P ∗(· | si, ai), where ρ denotes the offline distribution induced by the behavior
policy under P ∗.

In order to quantify the partial coverage of any comparator policy π†, we define the concentrability
coefficient following Uehara & Sun (2021), who showed that a finite concentration coefficient is
needed to control the distribution shift between the offline distribution and the occupancy measure
induced by π†.

Definition 1 (Concentrability coefficient).

Cπ† := sup
P∈M

E
(s,a)∼dπ†

P∗
[TV(P (·|s, a), P ∗(·|s, a))2]

E(s,a)∼ρ[TV(P (·|s, a), P ∗(·|s, a))2]
.

Assumption 3 (Coverage of any comparator policy π†).

Cπ† <∞.

To ensure that the Q function can be linearly approximated, we make the below assumption of
approximation error so that the “distance” between the function class of Q and the linear function
class can be controlled given the model classM and the policy class Πθ.

Assumption 4 (Approximation error).

sup
P∈M,π∈Πθ

inf
w:∥w∥2≤W

∥QπP (s, a)− w · ϕs,a∥2,dπP ◦Unif ≤ εapprox,

where ∥f(s, a)∥2,dπP ◦Unif denotes (Es∼dπP ,a∼Unif(A)[f(s, a)
2])

1
2 , and ϕs,a comes from the definition

of Πθ in (2).

Finally, we define an estimation error that is related to the offline distribution as well as the usage of
offline data for estimating P .

Definition 2 (Estimation error).

εest := sup
P∈MD

(E(s,a)∼ρ[TV(P (· | s, a), P ∗(· | s, a))2]) 1
2 .
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To find a policy for which we can provide a non-asymptotic bound on its suboptimality V π
†

P∗ − V π
t

P∗ ,
we decompose the suboptimality into three parts and analyze their bounds separately:

V π
†

P∗ − V π
t

P∗ = (V π
†

P∗ − V π
†

Pt )︸ ︷︷ ︸
(a)

+(V π
†

Pt − V
πt
Pt

)︸ ︷︷ ︸
(b)

+(V πtPt − V
πt
P∗)︸ ︷︷ ︸

(c)

.

Previous work has shown that part (a) can be bounded by a term of O(

√
C
π†√
n

) with the concentra-
bility of a single policy π† (Uehara & Sun, 2021). We will bound part (b) after expressing it as a
difference in KL-divergence under Pt using the performance difference lemma (Kakade & Lang-
ford, 2002). For part (c), since P ∗ ∈ MD with high probability, we have V πtPt ≤ V πtP∗ with high
probability by the definition of Pt. Pessimism is encoded here because πt may not be covered by
the offline data, i.e., there is no control on Cπt .

Now we are ready to present our main result: the theoretical guarantee of PeMACO. Under assump-
tion 1 for oracle of solving (3), assumption 2 for offline data generation, assumption 3 for sufficient
coverage of any comparator policy π† covered by the offline dataset, assumption 4 for good approx-
imation of Q by a linear combination of features, the following theorem provides an upper bound
for the suboptimality of the best policy among the iterated policies from Algorithm 1. All proofs are
given in the Appendix.

Theorem 1. Let η =
√

2 log |A|
B2W 2(T+1) . Let ξ be some constant such that P ∗ ∈MD with probability at

least 1− δ. Assume the feature mapping is bounded, i.e., ∥ϕs,a∥2 ≤ B. Then under the assumptions
1-4, there exist some constant c1 such that

V π
†

P∗ − max
0≤t≤T

V πtP∗ ≤ c1
√
Cπ† εest︸ ︷︷ ︸

statistical error

+
BW

1− γ

√
2 log |A|
T + 1︸ ︷︷ ︸

optimization error

+
2|A|

(1− γ)2

√
sup
s

dπ
†
P∗(s)

µ0(s)
εapprox︸ ︷︷ ︸

transfer error

with probability at least 1− δ.

The upper bound includes three error terms: statistical error, optimization error, and transfer error.
The statistical error comes from two sources: estimating the transition model and the offline distri-
bution from offline data. With finite concentrability Cπ† , the error can be controlled when learning
the value of the comparator policy π†. We stress that the statistical error comes from both the critic
and the actor. In the critic, the estimation error εest is utilized to introduce the pessimism to the value
function induced by the policy that is not covered by the offline data. To explain the involvement of
statistical error in the actor, recall that each actor iteration of PeMACO employs a different transition
model Pt within the constraint set. We prove that when εest is small, the actor can approximately
improve the policy in each iteration of PeMACO.

The optimization error comes from the natural gradient descent in the actor and is bounded by a

term of O(
√

log |A|
T ), which quantifies the decreasing error rate in terms of the number of iterations

in the actor. The transfer error also comes from the analysis of the actor, and is an unavoidable
constant that cannot be reduced by increasing sample size n or the number of iterations T . When
εapprox is an upper bound for supP∈M,π∈Πθ

infw:∥w∥2≤W ∥QπP (s, a)−w ·ϕs,a∥2,dπP ◦Unif , it implies
that infw:∥w∥2≤W ∥Q

πt
Pt
(s, a) − w · ϕs,a∥2,dπtPt◦Unif

≤ εapprox for each t. In other words, if we can

find a perfect wt = infw:∥w∥2≤W ∥Q
πt
Pt
(s, a) − w · ϕs,a∥2,dπtPt◦Unif

in the actor, then εapprox upper

bounds the error of the function approximation in each iteration. If the Q function can be exactly
expressed as a linear combination of the given features, then εapprox = 0. One appealing result in

our analysis is that we quantify the distribution shift sups
dπ

†
P∗ (s)
µ0(s)

between the initial distribution and
the occupancy measure induced by a single π† under P ∗. That being said, the initial distribution µ0

should have sufficient coverage over the whole state space in order to have a smaller sups
dπ

†
P∗ (s)
µ0(s)

.
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Remark. There are two types of distribution shift here. If we view dπ
†

P∗ as a “target” distribu-
tion, then Cπ† captures the discrepancy between the offline distribution and the target distribution,

while sups
dπ

†
P∗ (s)
µ0(s)

captures the discrepancy between the initial distribution and the target distribu-
tion. Eventually, Cπ† controls the transfer of the estimation error from the offline data to the target

distribution, while sups
dπ

†
P∗ (s)
µ0(s)

controls the transfer of εapprox from the linear approximation of Q

under dπ
t

Pt
in each iteration t.

Theorem 1 provides a general framework for analyzing the suboptimality for offline model-based
actor-critic algorithms. Based on the proposed framework, one can study εest independently under
the traditional supervised learning setting. We take the kernelized nonlinear regulator (KNR) as
an example, building upon the analysis of εest in the section 5.2 of Uehara et al. (2020). A KNR
(Kakade et al., 2020) assumes that the underlying true transition model P ⋆ (s′ | s, a) is defined by
s′ = W ⋆φ(s, a) + ϵ with ϵ ∼ N

(
0, ζ2I

)
, where φ : S × A → Rd is a possibly nonlinear feature

mapping. Suppose that the underlying true MDP is a KNR, we have the following result.

Corollary 1. Assume ∥φ(s, a)∥2 ≤ 1, ∥ϕs,a∥2 ≤ B, ∀(s, a) ∈ S × A. Let η =
√

2 log |A|
B2W 2(T+1) ,

ξ =
√
2λ ∥W ⋆∥22 + 8ζ2

(
dS ln(5) + ln(1/δ) + In

)
, where In = ln (det (Σn) / det(λI)) . Then,

under assumptions 1-4, by letting ∥W ⋆∥22 = O(1), ζ2 = O(1), λ = O(1), with probability 1 − δ,
there exist some constants c1, c2 such that

V π
†

P∗ − max
0≤t≤T

V πtP∗ ≤c1(1− γ)−2 min
(
d1/2, R̄

)√
R̄

√
dSCπ† ln(1 + n)

n
+

BW

1− γ

√
2 log |A|
T + 1

+
2

(1− γ)2
|A|

√
sup
s

dπ
†
P∗(s)

µ0(s)
εapprox,

where Σρ = Eρ[φφT ], R̄ = rank [Σρ] {rank [Σρ] + ln (c2/δ)}, and dS denotes the dimension of S.

6 A PRACTICAL IMPLEMENTATION OF PEMACO

The proposed PeMACO algorithm can be applied to many general MDPs with PAC guarantees. In
this section, we describe a practical implementation of PeMACO. In the proposed AC framework,
solving the constrained optimization problem (3) in the critic is the most computationally challeng-
ing part. We propose to use projected gradient descent (PGD) (Jain et al., 2017), and show that
under mild assumptions on V πtPt , PGD can achieve a minimizer overMD. The key idea of PGD is
to iteratively improve the objective value through gradient descent and project the updated parame-
ter into a convex constraint set once the updated parameter falls out of the constraint set. In order to
implement PGD, we need to be able to construct a convex constraint set and compute the gradient
of the objective function.

To compute the gradient of the objective function, we can directly follow Proposition 2 from Rigter
et al. (2022), summarized in Lemma 1.

Lemma 1. (Proposition 2 of Rigter et al. (2022)) Let Pψ(·|s, a) be the transition model parameter-
ized by ψ ∈ Rd, and let V πψ denote V πPψ , then for any given policy π, we have

∇ψV πψ = Es∼dπψ,a∼π,s′∼Pψ
[(
r(s, a) + γV πψ (s′)

)
· ∇ψ logPψ (s′ | s, a)

]
.

Combining lemma 1 and the convexity ofMD, we can easily show that PGD can find Pt given some
conditions on the value function, following Jain et al. (2017).

Proposition 1. Suppose that V πψ : MD → R is convex and 1-Lipschitz. Assume MD is convex.
Let ψ1, ψ2,..., ψT be the iterative output according to ψt+1 = ProjMD

(ψt − η∇ψV πψt) . Define

η = 1√
T

. Let ψ̂ := 1
T

∑T
i=1 ψi, then

V π
ψ̂
− min
Pψ∈MD

V πψ ≤
1√
T
.

8
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The constraint set MD constructed from many commonly-used MDPs can be shown to be con-
vex, such as tabular MDPs and KNRs. Recall that a KNR has the transition model defined by
s′ ∼ N(Wφ(s, a), ζ2I) where φ(s, a) ∈ Rd is a feature map. Then the transition model is pa-
rameterized by W ∈ Rd. Following Devroye et al. (2018), TV (PW1

(· | s, a), PW2
(· | s, a))2 =

Θ

(∥∥∥(W1 −W2)
T
φ(s, a)

∥∥∥2
2

)
. This implies

MD = {W ∈ Rd|(W − ŴMLE)
TΣD,φ(ϕ− ŴMLE) ≤ ξ},

where ΣD,φ := 1
n

∑
(s,a)∈D φ(s, a)φ(s, a)

T . Note that (W − ŴMLE)
TΣD,φ(W − ŴMLE) can

also be written as ∥W − ŴMLE∥ΣD,φ , andMD, as a
√
ξ−∥ · ∥ΣD,φ ball, is convex with respect to

W .

Remark: The convexity of the constraint set in PGD is important in order to achieve the stationary
point of the objective function (Jain et al., 2017). When the constraint set is not convex, we can
consider generalized projected gradient descent (Jain et al., 2017) for solving (3) . Also, the convex-
ity assumption of V πPW sometimes can be strong in practice, preventing PGD to achieve the global
optimum within the constraint set. When the objective function is not convex, PGD can still find
the stationary points within the constraint set (Dunn, 1987). In practice, we recommend to run PGD
multiple times with different initialization values when the objective function is not convex.

With the above discussion, we propose a practical implementation of PeMACO in Algorithm 2.

Algorithm 2: A Practical Implementation of PeMACO
Initialize π0(·|s) = Unif(A).
for t = 0, ..., T − 1 do

Critic (policy evaluation):
for k = 0, ...,K − 1 do

ϕk+1 = ProjMD
(ϕk − η∇ϕV πtϕk ).

end
Let Pt := Pϕt where ϕt =

∑K
k=1 ϕk
K . Let Qt := QπtPt .

Actor (policy improvement): θt+1 ← θt + ηwt, where wt ∈
argmin∥w∥≤W Es∼dπtPt ,a∼Unif(A)

[
(Qt(s, a)− w · ϕs,a)2

]
.

end

7 DISCUSSION

We developed PeMACO, a pessimistic model-based AC algorithm for offline RL, with general func-
tion approximation under the assumption of partial coverage. PeMACO can be practically imple-
mented with PAC guarantees. By separating the policy optimization from the policy evaluation
under the AC framework, we theoretically analyzed PeMACO and proved an upper bound for the
suboptimality of the policy returned by PeMACO.

The proposed framework has several possible extensions. First, we employ a linear approximation
for the Q function. Alternative ways to approximate Q can be further explored for more flexibility.
Second, we construct the constraint setMD using the MLE P̂MLE of the transition model computed
from offline data. We will consider other estimators other than MLE, such as posterior mean from
applying a Bayesian method for estimating the transition model, and study its theoretical properties.
Lastly, we consider the log-linear policy class in our work. More general policy classes such as
those parameterized by neural networks can be explored and theoretical properties corresponding to
neural policy gradient methods will be investigated (Wang et al., 2019).
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A PROOF OF THEOREM 1

Proof of Theorem 1. Our goal is to provide an upper bound for the suboptimality of the best policy
among the iterated policies from algorithm 1. We first use the fact that maximum is lower bounded
by the mean, then split it into the sum of three parts. We will deal with the three parts separately.

V π
†

P † − max
0≤t≤T

V πtP∗ ≤
1

T + 1

T∑
t=0

(V π
†

P∗ − V πtP∗)

=
1

T + 1

T∑
t=0

(V π
†

P∗ − V π
†

Pt + V π
†

Pt − V
πt
Pt

+ V πtPt − V
πt
P∗)

=
1

T + 1

T∑
t=0

(V π
†

P∗ − V π
†

Pt )︸ ︷︷ ︸
(a)

+
1

T + 1

T∑
t=0

(V π
†

Pt − V
πt
Pt

)︸ ︷︷ ︸
(b)

+
1

T + 1

T∑
t=0

(V πtPt − V
πt
P∗)︸ ︷︷ ︸

(c)

.

Bound (a). In algorithm 1 , we have Pt ∈MD for all t. To bound (a), we need to provide a uniform
upper bound of V π

†

P∗ − V π
†

P for all P ∈MD, which is given by the following Lemma 2.
Lemma 2.

V π
†

P∗ − V π
†

P ≤ γ(1− γ)−2
√
Cπ† εest

holds for all P ∈MD.

Then it immediately follows that

(a) =
1

T + 1

T∑
t=0

(V π
†

P∗ − V π
†

Pt ) ≤ γ(1− γ)
−2
√
Cπ† εest. (5)

Bound (c). As we assume that P ∗ ∈ MD with high probability in theorem 1. Then by the critic
step in algorithm 1, V πtPt achieves the minimum among all models inMD. So V πtPt ≤ V πtP∗ for all t,
which directly implies

(c) =
1

T + 1

T∑
t=0

(V πtPt − V
πt
P∗) ≤ 0. (6)

Bound (b). The term (b) measures the difference between policies πt and π† under the same transi-
tion model Pt, which reminds us of the following useful lemma.
Lemma 3 (Performance difference lemma). Suppose M = (S,A, P, r, γ, µ0) is fixed. π and π′ are
two policies, then

V π − V π
′
=

1

1− γ
E(s,a)∼dπPA

π′
(s, a),
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where V π = Es∼µV π(s), V π
′
= Es∼µV π

′
(s).

Now we can proceed to deal with (b). Applying lemma 3 to the transition model Pt, policies π† and
πt, we get

V π
†

Pt − V
πt
Pt

=
1

1− γ
E
(s,a)∼dπ†

Pt

AπtPt(s, a).

Then we decompose (b) into three terms:

(b) =
1

T + 1

T∑
t=0

(V π
†

Pt − V
πt
Pt

) =
1

T + 1

T∑
t=0

1

1− γ
E
(s,a)∼dπ†

Pt

AπtPt(s, a)

=
1

(T + 1)(1− γ)

T∑
t=0

(at + bt + ct),

where

at := E
(s,a)∼dπ†

Pt

[wt · ∇θ log πt(a|s)]− E
(s,a)∼dπ†

P∗
[wt · ∇θ log πt(a|s)] . (7)

bt := E
(s,a)∼dπ†

P∗
[wt · ∇θ log πt(a|s)] . (8)

ct := E
(s,a)∼dπ†

Pt

[
AπtPt(s, a)− wt · ∇θ log πt(a|s)

]
. (9)

We will present a sequence of lemmas to control at, bt, ct. For each at, it can be upper bounded by
the following lemma 4.

Lemma 4. The following holds for any 0 ≤ t ≤ T ,

at ≤
4γBW

(1− γ)2
√
Cπ†εest.

Lemma 5. Under the assumption ∥ϕs,a∥2 ≤ B,

1

T + 1

T∑
t=0

bt ≤
ηB2W 2

2
+

log |A|
η(T + 1)

.

By lemma 5, and recall that η =
√

2 log |A|
B2W 2(T+1) , we get

1

T + 1

T∑
t=0

bt ≤
ηB2W 2

2
+

log |A|
η(T + 1)

= BW

√
2 log |A|
T + 1

.

The following lemma 6 provides an upper bound for each ct.

Lemma 6. Under assumption 4, the following holds for any 0 ≤ t ≤ T ,

ct ≤
2|A|
1− γ

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

εapprox +
4γ|A|

(1− γ)2

(
WB +

γ

(1− γ)

)√
Cπ† εest.

Then we obtain an upper bound of (b) by combining the analyses for at,bt,ct together:

13



Under review as a conference paper at ICLR 2023

(b) =
1

(T + 1)(1− γ)

T∑
t=0

(at + bt + ct)

≤ 4γBW

(1− γ)3
√
Cπ† εest +

BW

1− γ

√
2 log |A|
T + 1

+
2|A|

(1− γ)2

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

εapprox +
4γ|A|

(1− γ)3

(
WB +

γ

(1− γ)

)√
Cπ† εest.

(10)

Finally, we combine the analyses for (a),(b),(c), i.e., (5)+(6)+(10):

V π
†

P∗ − max
0≤t≤T

V πtP∗ ≤ (c) + (a) + (b)

≤ 0 + γ(1− γ)−2
√
Cπ† εest +

4γBW

(1− γ)3
√
Cπ† εest +

BW

1− γ

√
2 log |A|
T + 1

+
2|A|

(1− γ)2

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

εapprox +
4γ|A|

(1− γ)3

(
WB +

γ

(1− γ)

)√
Cπ† εest

= C
√
Cπ† εest +

BW

1− γ

√
2 log |A|
T + 1

+
2|A|

(1− γ)2

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

εapprox,

which concludes the proof.

B PROOF OF LEMMAS IN SECTION A

In this section, we prove lemmas we used in section A, i.e. lemma 2, 3, 4, 5, 6.

Proof of lemma 2. Note that 0 ≤ V πP ≤ (1− γ)−1, directly applying lemma 7 to P ∗, P , π† leads to

V π
†

P∗ − V π
†

P ≤
∣∣∣V π†

P∗ − V π
†

P

∣∣∣
≤ γ(1− γ)−2E

(s,a)∼dπ†
P∗

[TV(P (·|s, a), P ∗(·|s, a))]

≤ γ(1− γ)−2
√

E
(s,a)∼dπ†

P∗
[TV(P (·|s, a), P ∗(·|s, a))2].

By definition of concentration coefficient, we have

E
(s,a)∼dπ†

P∗

[
TV(P (·|s, a), P ∗(·|s, a))2

]
≤ Cπ†E(s,a)∼ρ

[
TV(P (·|s, a), P ∗(·|s, a))2

]
. (11)

By definition 2,

E(s,a)∼ρ
[
TV(P (·|s, a), P ∗(·|s, a))2

]
≤ ε2est.

So we can combine the three inequalities above together:

V π
†

P∗ − V π
†

P ≤ γ(1− γ)−2
√
Cπ† ε2est,

which concludes the proof.
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Proof of lemma 3. The lemma 3.2 in Agarwal et al. (2021) provides a similar result for the value
function evaluated at each state s0:

V π(s0)− V π
′
(s0) =

1

1− γ
E(s,a)∼dπP (·,·|s0)A

π′
(s, a).

Then it naturally extends to our version by taking expectation with respect to the initial distribution:

V π − V π
′
= Es0∼µ

[
V π(s0)− V π

′
(s0)

]
=

1

1− γ
Es0∼µE(s,a)∼dπP (·,·|s0)A

π′
(s, a)

=
1

1− γ
E(s,a)∼dπPA

π′
(s, a).

Recall that under our notations, dπP is the visitation measure conditioning on the initial distribution
µ.

Proof of lemma 4. Recall the definition of at: (see (7))

at = E
(s,a)∼dπ†

Pt

[wt · ∇θ log πt(a|s)]− E
(s,a)∼dπ†

P∗
[wt · ∇θ log πt(a|s)] .

We first rewrite the visitation measure above. For clarity, we introduce some notations for the
distribution of trajectories. Denote the state-action trajectory as τ , i.e. τ = (s1, a1, s2, a2, . . . ). Let
Pπ

†

∗ (·|s0 ∼ µ) denote the distribution of trajectory generated by transition model P ∗ and policy
π†, conditioning on an initial state s0 ∼ µ. Let Pπ

†

t (·|s0 ∼ µ) denote the one corresponding to
transition model Pt. Then for any function f(s, a), we have

E
(s,a)∼dπ†

Pt

[f(s, a)] = E
τ∼Pπ†

t (·|s0∼µ)

[ ∞∑
h=0

γhf(sh, ah)

]
.

E
(s,a)∼dπ†

P∗
[f(s, a)] = E

τ∼Pπ†
∗ (·|s0∼µ)

[ ∞∑
h=0

γhf(sh, ah)

]
.

Also note that in the special case f(s, a) = r(s, a), we have E
(s,a)∼dπ†

Pt

[r(s, a)] = V π
†

Pt
,

E
(s,a)∼dπ†

P∗
[r(s, a)] = V π

†

P∗ .

Now consider two MDPs: M̃t = (S,A, Pt, r̃, µ, γ) and M̃∗ = (S,A, P ∗, r̃, µ, γ), where r̃(s, a) =
wt · ∇θ log πt(a|s) which is a function defined on S × A. We focus on the policy π†, and evaluate
it under both MDPs.

With these notations, we can rewrite at as:

at = E
(s,a)∼dπ†

Pt

[wt · ∇θ log πt(a|s)]− E
(s,a)∼dπ†

P∗
[wt · ∇θ log πt(a|s)]

= E
τ∼Pπ†

t (·|s0∼µ)

[ ∞∑
h=0

γhr̃(sh, ah)

]
− E

τ∼Pπ†
∗ (·|s0∼µ)

[ ∞∑
h=0

γhr̃(sh, ah)

]
= V π

†

M̃t
− V π

†

M̃∗ .

Note that the two MDPs share all the settings except transition probabilities, and the value functions
are evaluated for the same policy π†. Then we can apply the second part of lemma 7 to them:

at = V π
†

M̃t
− V π

†

M̃∗ ≤
∣∣∣V π†

M̃t
− V π

†

M̃∗

∣∣∣ ≤ 2C
γ

1− γ
E
s,a∼dπ†

P∗
[TV(Pt(· | s, a), P∗(· | s, a))] , (12)
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where C should satisfy −C ≤ V π†

M̃t
(s) ≤ C, ∀s ∈ S.

By lemma 8, ∇θ log πt(a|s) = ϕs,a − Ea′∼πt(·|s)ϕs,a′ . By assumption in theorem 1, ∥ϕs,a∥2 ≤ B
for any (s, a). So ∥∇θ log πt(a|s)∥2 ≤ 2B. By algorithm 1, ∥wt∥2 ≤ W . Then Cauchy inequality
implies

|r̃(s, a)| = |wt · ∇θ log πt(a|s)| ≤ ∥wt∥2 ∥∇θ log πt(a|s)∥2 ≤ 2BW.

The bound of reward function immediately leads to a bound for value function: |V π†

M̃t
(s)| ≤

2BW
1−γ , ∀s ∈ S. So we can set C = 2BW

1−γ in (12):

at ≤
4γBW

(1− γ)2
E
s,a∼dπ†

P∗
[TV(Pt(· | s, a), P∗(· | s, a))]

≤ 4γBW

(1− γ)2
√
E
s,a∼dπ†

P∗
[TV(Pt(· | s, a), P∗(· | s, a))2].

(13)

By definition of concentration coefficient, we have

E
(s,a)∼dπ†

P∗

[
TV(Pt(·|s, a), P ∗(·|s, a))2

]
≤ Cπ†E(s,a)∼ρ

[
TV(Pt(·|s, a), P ∗(·|s, a))2

]
. (14)

By definition 2,
E(s,a)∼ρ

[
TV(Pt(·|s, a), P ∗(·|s, a))2

]
≤ ε2est. (15)

Combine (13),(14),(15) together:

at ≤
4γBW

(1− γ)2
√
Cπ† εest.

Proof of lemma 5. By lemma 9, log πθ(a|s) is β-smooth, and β can be set as B2.

By property of β-smooth function, we have

∣∣log πθt+1
(a|s)− log πθt(a|s)−∇θ log πθt(a|s) · (θt+1 − θt)

∣∣ ≤ B2

2
∥θt+1 − θt∥22.

Rearrange it to:

∇θ log πθt(a|s) · (θt+1 − θt) ≤ log πθt+1(a|s)− log πθt(a|s) +
B2

2
∥θt+1 − θt∥22.

Note that under our notations, πt is the shorthand of πθt . Recall that θt+1 − θt = ηwt, then by the
definition of bt: (see (8))

bt = E
(s,a)∼dπ†

P∗
[wt · ∇θ log πt(a|s)] =

1

η
E
(s,a)∼dπ†

P∗
[(θt+1 − θt) · ∇θ log πt(a|s)]

≤ 1

η
E
(s,a)∼dπ†

P∗

[
log πt+1(a|s)− log πt(a|s) +

B2

2
η2∥wt∥22

]
≤ ηB2W 2

2
+

1

η
E
(s,a)∼dπ†

P∗
[log πt+1(a|s)− log πt(a|s)]

=
ηB2W 2

2
+

1

η
E
s∼dπ†

P∗

[
Ea∼π†(·|s) log πt+1(a|s)− Ea∼π†(·|s) log πt(a|s)

]
=
ηB2W 2

2
+

1

η
E
s∼dπ†

P∗

[
KL
(
π†(·|s) || πt(·|s)

)
− KL

(
π†(·|s) || πt+1(·|s)

)]
.
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Take average for 0 ≤ t ≤ T :

1

T + 1

T∑
t=0

bt ≤
ηB2W 2

2

+
1

η(T + 1)

T∑
t=0

E
s∼dπ†

P∗

[
KL
(
π†(·|s) || πt(·|s)

)
− KL

(
π†(·|s) || πt+1(·|s)

)]
=
ηB2W 2

2

+
1

η(T + 1)
E
s∼dπ†

P∗

[
KL
(
π†(·|s) || π0(·|s)

)
− KL

(
π†(·|s) || πT+1(·|s)

)]
≤ ηB2W 2

2
+

1

η(T + 1)
E
s∼dπ†

P∗

[
KL
(
π†(·|s) || π0(·|s)

)]
,

where the last step is because KL divergence is non-negative.

In algorithm 1, we set π0(·|s) = Uniform(A). Then for any probability measure q on A,

KL (q(·) || π0(·|s)) = Ea∼q(A)

[
log

q(a)

π0(a|s)

]
= Ea∼q(A) [log(q(a)|A|)]

≤ Ea∼q(A) [log |A|] = log |A|.

So

1

T + 1

T∑
t=0

bt ≤
ηB2W 2

2
+

log |A|
η(T + 1)

.

Proof of lemma 6. Recall the definition of ct: (see (9))

ct = E
(s,a)∼dπ†

Pt

[
AπtPt(s, a)− wt · ∇θ log πt(a|s)

]
.

By lemma 8,
∇θ log πt(a|s) = ϕs,a − Ea′∼πt(·|s)ϕs,a′ .

We also have

AπtPt(s, a) = QπtPt(s, a)− V
πt
Pt

(s) = QπtPt(s, a)− Ea′∼πt(·|s)Q
πt
Pt
(s, a′).

So we can rewrite ct as

ct = E
(s,a)∼dπ†

Pt

[
QπtPt(s, a)− wt · ϕs,a

]
+ E

(s,a)∼dπ†
Pt

Ea′∼πt(·|s)
[
wt · ϕs,a′ −QπtPt(s, a

′)
]

= E
s∼dπ†

Pt
,a∼π†(·|s)

[
QπtPt(s, a)− wt · ϕs,a

]
+ E

s∼dπ†
Pt
,a′∼πt(·|s)

[
wt · ϕs,a′ −QπtPt(s, a

′)
]

≤ E
s∼dπ†

Pt
,a∼π†(·|s)

[
|QπtPt(s, a)− wt · ϕs,a|

]
+ E

s∼dπ†
Pt
,a′∼πt(·|s)

[
|wt · ϕs,a′ −QπtPt(s, a

′)|
]

≤ 2|A|E
s∼dπ†

Pt
,a∼Unif(A)

[
|QπtPt(s, a)− wt · ϕs,a|

]
= 2|A|E

s∼dπ†
P∗ ,a∼Unif(A)

[f(s, a)]

+ (2|A|E
s∼dπ†

Pt
,a∼Unif(A)

[f(s, a)]− 2|A|E
s∼dπ†

P∗ ,a∼Unif(A)
[f(s, a)]),

where f(s, a) := |QπtPt(s, a)− wt · ϕs,a|.
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Note that in the inequality above, we used the result that for any non-negative function f(a) and any
probability distribution q on A,

Ea∼qf(a) =
∑
a∈A

f(a)q(a) ≤
∑
a∈A

f(a) = |A|Ea∼unif(A)f(a).

For the term E
s∼dπ†

Pt
,a∼Unif(A)

[f(s, a)]−E
s∼dπ†

P∗ ,a∼Unif(A)
[f(s, a)], we first take expectation with

respect to a ∼ Unif(A), then we have E
s∼dπ†

Pt

[
1

|A|
∑
a f(s, a)

]
. Let f̃(s) := 1

|A|
∑
a f(s, a). By

viewing f̃(s) as a reward function r̃(s, a) which is the same for each a, i.e., r̃(s, a) = f̃(s) for all
a, then we have

E
s∼dπ†

Pt

[
f̃(s)

]
= E

s∼dπ†
Pt

[r̃(s, a)] = E
s∼dπ†

Pt
,a∼π† [r̃(s, a)] .

Then we can use the same technique we used in the proof of lemma 4, consider a new MDP with a
reward function r̃, then use simulation lemma.

By using the bound |f̃ | ≤ WB + 1
(1−γ) , we immediately have the value function Ṽ induced by

reward r̃ satisfies |Ṽ | ≤ 1
1−γ (WB + 1

(1−γ) ). Apply the simulation lemma (lemma 7) to the term

E
s∼dπ†

Pt

f̃(s)− E
s∼dπ†

P∗
f̃(s), we get

2γ

(1− γ)2

(
WB +

1

(1− γ)

)
E
(s,a)∼dπ†

P∗
[TV(Pt(·|s, a), P ∗(·|s, a))] ,

which is further bounded by 2γ
(1−γ)2 (WB + γ

(1−γ) )
√
Cπ† εest (see 11).

For the first term
E
s∼dπ†

P∗ ,a∼Unif(A)
[f(s, a)] ,

we have

E
s∼dπ†

P∗ ,a∼Unif(A)
[f(s, a)] ≤

√
E
s∼dπ†

P∗ ,a∼Unif(A)
[f(s, a)2]

≤

∥∥∥∥∥dπ
†

P∗(s) ◦UnifA(a)

dπtPt(s) ◦UnifA(a)

∥∥∥∥∥
1
2

∞

√
Es∼dπtPt ,a∼Unif(A) [f(s, a)

2]

≤

∥∥∥∥∥dπ
†

P∗(s)

dπtPt(s)

∥∥∥∥∥
1
2

∞

εapprox

≤ 1

1− γ

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

εapprox.

Thus we have

ct ≤
2|A|
1− γ

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

εapprox +
4γ|A|

(1− γ)2

(
WB +

γ

(1− γ)

)√
Cπ† εest.

C PROOF OF AUXILIARY LEMMAS

The following lemma is a helpful supporting lemma. Simulation lemma basically focuses on the
difference in value functions (or Q functions) of fixed policy under different transition models. It is
common in RL literature, and there are different version of variants. We will prove the following
version, which will be used in the proof of lemma 2 and lemma 4.
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Lemma 7 (A generalization of simulation lemma). Suppose S,A, r, γ, µ0 are all fixed. Here S and
A can be infinite sets, and r : S → R can be any real value function. For two arbitrary transition
models P and P̂ , and any policy π : S → ∆(A), we have

V πP − V πP̂ =
γ

1− γ
E(s,a)∼dπP

[
Es′∼P (·|s,a)

[
V π
P̂
(s′)
]
− Es′∼P̂ (·|s,a)

[
V π
P̂
(s′)
]]
.

If V π
P̂
(s) is bounded, i.e. −C ≤ V π

P̂
(s) ≤ C, ∀s ∈ S, then we further have∣∣∣V πP − V πP̂ ∣∣∣ ≤ 2C
γ

1− γ
E(s,a)∼dπP

[
TV(P (·|s, a), P̂ (·|s, a))

]
.

If V π
P̂
(s) is positive and bounded, i.e. 0 ≤ V π

P̂
(s) ≤ C, ∀s ∈ S, then∣∣∣V πP − V πP̂ ∣∣∣ ≤ C γ

1− γ
E(s,a)∼dπP

[
TV(P (·|s, a), P̂ (·|s, a))

]
.

Proof. We first prove the first part of the lemma.

Let dπP (·, ·|s0, a0) denote the visitation measure over (s, a) conditioning on (S0 = s0, A0 = a0)
under transition model P , i.e. dπP (·, ·|s0, a0) = (1− γ)

∑∞
t=0 γ

tPπ(St = · , At = · |s0, a0).
Then we have for any (s0, a0),

QπP (s0, a0) =
1

1− γ
E(s,a)∼dπP (·,·|s0,a0)[r(s, a)]. (16)

By Bellman equation, for any (s, a),

QπP (s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s′) [Q
π
P (s

′, a′)] . (17)

Qπ
P̂
(s, a) = r(s, a) + γEs′∼P̂ (·|s,a),a′∼π(·|s′)

[
Qπ
P̂
(s′, a′)

]
. (18)

Substitute the r(s, a) in (16) by the r(s, a) in (18):

QπP (s0, a0) =
1

1− γ
E(s,a)∼dπP (·,·|s0,a0)

[
Qπ
P̂
(s, a)− γEs′∼P̂ (·|s,a),a′∼π(·|s′)Q

π
P̂
(s′, a′)

]
. (19)

By (16) and (17), we first apply (17) to the QπP (s0, a0) in (16), then apply (16) iteratively:

1

1− γ
E(s,a)∼dπP (·,·|s0,a0)[r(s, a)]

= QπP (s0, a0)

= r(s0, a0) + γEs∼P (·|s0,a0),a∼π(·|s) [Q
π
P (s, a)]

= r(s0, a0) + γEs∼P (·|s0,a0),a∼π(·|s)

[
1

1− γ
E(s′,a′)∼dπP (·,·|s,a)[r(s

′, a′)]

]
.

Rearrange it as

−r(s0, a0) =
γ

1− γ
Es∼P (·|s0,a0),a∼π(·|s)

[
E(s′,a′)∼dπP (·,·|s,a)[r(s

′, a′)]
]

− 1

1− γ
E(s,a)∼dπP (·,·|s0,a0)[r(s, a)].

Note that the equation above holds for any real function r : S × A → R, so we can replace r(·, ·)
by Qπ

P̂
(·, ·)
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−r(s0, a0) =
γ

1− γ
Es∼P (·|s0,a0),a∼π(·|s)

[
E(s′,a′)∼dπP (·,·|s,a)[r(s

′, a′)]
]

− 1

1− γ
E(s,a)∼dπP (·,·|s0,a0)[r(s, a)].

(20)

(19)+(20):

QπP (s0, a0)−QπP̂ (s0, a0) =
γ

1− γ
Es∼P (·|s0,a0),a∼π(·|s)

[
E(s′,a′)∼dπP (·,·|s,a)Q

π
P̂
(s′, a′)

]
− γ

1− γ
E(s,a)∼dπP (·,·|s0,a0)

[
Es′∼P̂ (·|s,a),a′∼π(·|s′)Q

π
P̂
(s′, a′)

]
.

(21)

Consider the first term on right hand side:

Es∼P (·|s0,a0),a∼π(·|s)E(s′,a′)∼dπP (·,·|s,a)[·] = E(s′,a′)∼dπP (·,·|s0,a0)[·]
= E(s,a)∼dπP (·,·|s0,a0)Es′∼P (·|s,a),a′∼π(·|s′)[·].

So (21) can be rewritten as

QπP (s0, a0)−QπP̂ (s0, a0)

=
γ

1− γ
E(s,a)∼dπP (·,·|s0,a0)

[
Es′∼P (·|s,a),a′∼π(·|s′)Q

π
P̂
(s′, a′)− Es′∼P̂ (·|s,a),a′∼π(·|s′)Q

π
P̂
(s′, a′)

]
=

γ

1− γ
E(s,a)∼dπP (·,·|s0,a0)

[
Es′∼P (·|s,a)V

π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
]
.

Finally, consider V πP (s0), V πP̂ (s0) and the initial distribution µ. Recall that dπP is the visitation
measure conditioning on the initial distribution µ. So we have

V πP − V πP̂ = Es0∼µ
[
V πP (s0)− V πP̂ (s0)

]
= Es0∼µ,a0∼π(·|s0)

[
QπP (s0, a0)−QπP̂ (s0, a0)

]
=

γ

1− γ
Es0∼µ,a0∼π(·|s0)E(s,a)∼dπP (·,·|s0,a0)

[
Es′∼P (·|s,a)V

π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
]

=
γ

1− γ
E(s,a)∼dπP

[
Es′∼P (·|s,a)V

π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
]
,

which finishes the first part of the lemma.

Then we prove the second part: first note that

∣∣∣V πP − V πP̂ ∣∣∣ = γ

1− γ

∣∣∣E(s,a)∼dπP

[
Es′∼P (·|s,a)V

π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
]∣∣∣

≤ γ

1− γ
E(s,a)∼dπP

∣∣∣Es′∼P (·|s,a)V
π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
∣∣∣ . (22)

Suppose q1, q2 are two arbitrary probability distributions, and C is a constant satisfying −C ≤
f(x) ≤ C. By property of total variation distance, TV(q1, q2) =

1
2∥q1 − q2∥1.

By Hölder inequality
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|Ex∼q1f(x)− Ex∼q2f(x)| =
∣∣∣∣∫ f(x)(q1(x)− q2(x))dx

∣∣∣∣
= ∥f(q1 − q2)∥1 ≤ ∥f∥∞∥q1 − q2∥1 ≤ 2CTV(q1, q2).

(23)

Apply (23) to the right hand side of (22):

∣∣∣V πP − V πP̂ ∣∣∣ ≤ 2C
γ

1− γ
E(s,a)∼dπP

[
TV(P (·|s, a), P̂ (·|s, a))

]
,

which concludes the second part.

Third part: Consider the special case that 0 ≤ f(x) ≤ C, then we can improve the upper bound in
(23)

|Ex∼q1f(x)− Ex∼q2f(x)|

=

∣∣∣∣∫ f(x)(q1(x)− q2(x))dx
∣∣∣∣

=

∣∣∣∣∫ f(x)(q1(x)− q2(x))1{q1(x) > q2(x)}dx−
∫
f(x)(q2(x)− q1(x))1{q1(x) ≤ q2(x)}dx

∣∣∣∣ .
Note that on the right hand side, the two terms inside the absolute value sign are both non-negative,
so

|Ex∼q1f(x)− Ex∼q2f(x)|

≤ max

{∫
f(x)(q1(x)− q2(x))1{q1(x) > q2(x)}dx,

∫
f(x)(q2(x)− q1(x))1{q1(x) ≤ q2(x)}dx

}
≤ Cmax

{∫
(q1(x)− q2(x))1{q1(x) > q2(x)}dx,

∫
(q2(x)− q1(x))1{q1(x) ≤ q2(x)}dx

}
= CTV(q1, q2),

where the last step is an equivalent definition of total variation distance (for two probability distri-
butions).

So the factor 2 on the right hand side in (23) can be improved to 1 in this case.

The following two lemmas (lemma 8 and 9) are useful properties for the log-linear parametric class
(defined in (2)).

Lemma 8. For any policy πθ in the log-linear parametric class (see (2)), the following holds for
any (s, a):

∇θ log πθ(a|s) = ϕs,a − Ea′∼πθ(·|s)ϕs,a′ .

Proof. Recall that

πθ(a|s) =
exp(θ · ϕs,a)∑

a′∈A exp(θ · ϕs,a′)
,

log πθ(a|s) = θ · ϕs,a − log

(∑
a′∈A

exp(θ · ϕs,a′)

)
.
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So we have

∇θ log πθ(a|s) = ϕs,a −∇θ log

(∑
a′∈A

exp(θ · ϕs,a′)

)

= ϕs,a −
∑
a′′∈A exp(θ · ϕs,a′′)ϕs,a′′∑

a′∈A exp(θ · ϕs,a′)

= ϕs,a −
∑
a′′∈A

πθ(a
′′|s)ϕs,a′′ .

Lemma 9. For any policy πθ in the log-linear parametric class (see (2)), if ∥ϕs,a∥2 ≤ B for any
(s, a), then log πθ(a|s) is a B2-smooth function (as a function of θ) for any (s, a), i.e.

∥∇θ log πθ1(a|s)−∇θ log πθ2(a|s)∥2 ≤ B2∥θ1 − θ2∥2
for any s,a,θ1,θ2.

Proof. By lemma 8,
∇θ log πθ(a|s) = ϕs,a −

∑
a′∈A

πθ(a
′|s)ϕs,a′ .

For convenience, let
g(θ) :=

∑
a′∈A

πθ(a
′|s)ϕs,a′ .

Then we only need to prove ∥g(θ1)− g(θ2)∥2 ≤ B2∥θ1 − θ2∥2 for any θ1,θ2.

Rewrite g(θ) into an explicit form of θ:

g(θ) =
∑
a∈A

exp(θ · ϕs,a)∑
a′ exp(θ · ϕs,a′)

ϕs,a =

∑
a ϕs,a exp(θ · ϕs,a)∑
a′ exp(θ · ϕs,a′)

.

Note that g : Rd → Rd, so the Jacobian matrix of g(θ), i.e. J(θ), is d× d:

J(θ) =
1∑

a′ exp(θ · ϕs,a′)
∑
a

ϕs,aϕ
T
s,a exp(θ · ϕs,a)

−
∑
a ϕs,a exp(θ · ϕs,a)

(
∑
a′ exp(θ · ϕs,a′))2

∑
a′

ϕTs,a′ exp(θ · ϕs,a′)

=
∑
a

exp(θ · ϕs,a)∑
a′ exp(θ · ϕs,a′)

ϕs,aϕ
T
s,a

−

(∑
a

exp(θ · ϕs,a)∑
a′ exp(θ · ϕs,a′)

ϕs,a

)(∑
a

exp(θ · ϕs,a)∑
a′ exp(θ · ϕs,a′)

ϕs,a

)T
= A1 −A2,

(24)

where

A1 =
∑
a

exp(θ · ϕs,a)∑
a′ exp(θ · ϕs,a′)

ϕs,aϕ
T
s,a

A2 =

(∑
a

exp(θ · ϕs,a)∑
a′ exp(θ · ϕs,a′)

ϕs,a

)(∑
a

exp(θ · ϕs,a)∑
a′ exp(θ · ϕs,a′)

ϕs,a

)T
= ϕ(θ)s ϕ(θ)Ts

ϕ(θ)s =
∑
a

exp(θ · ϕs,a)∑
a′ exp(θ · ϕs,a′)

ϕs,a.
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Now consider the induced norm of matrix:

∥A∥2,2 = sup
∥x∥2=1

∥Ax∥2.

By the property of ∥ · ∥2,2, it is indeed a matrix norm, so it satisfies triangular inequality.

Suppose ψ ∈ Rd and ∥ψ∥2 ≤ B, then

∥ψψT ∥2,2 = sup
∥x∥2=1

∥ψψTx∥2 = sup
∥x∥2=1

√
xTψψTψψTx = ∥ψ∥2 sup

∥x∥2=1

|ψTx| ≤ ∥ψ∥22 ≤ B2,

where the first inequality is by Cauchy inequality: |ψTx| ≤ ∥ψ∥2∥x∥2.
By the assumption on ∥ϕs,a∥2, we have ∥ϕs,aϕTs,a∥2,2 ≤ B2 for any (s, a). A1 is a weighted average
(with non-negative weights) of such matrices, so triangular inequality implies ∥A1∥2,2 ≤ B2.

ϕ
(θ)
s is a weighted average (with non-negative weights) of some ϕs,a. So ∥ϕ(θ)s ∥2 ≤ B, ∥A2∥2,2 ≤
B2.

Suppose A is an arbitrary real symmetric matrix. Let σ(A) denote the spectrum of A. Let λmin(A)
and λmax(A) denote the smallest and largest eigenvalues of A. Then

∥A∥2,2 = max
λ∈σ(A)

|λ| = max{|λmin(A)|, |λmax(A)|}.

Note that both A1 and A2 are real symmetric, and positive semi-definite. So we have

λmin(J(θ)) = min
∥x∥2=1

xTJ(θ)x = min
∥x∥2=1

xT (A1 −A2)x

≥ min
∥x∥2=1

xT (−A2)x = − max
∥x∥2=1

xTA2x = −λmax(A2)

≥ −∥A2∥2,2 ≥ −B2.

Similarly,

λmax(J(θ)) = max
∥x∥2=1

xTJ(θ)x = min
∥x∥2=1

xT (A1 −A2)x

≤ min
∥x∥2=1

xTA1x = λmin(A1) ≤ ∥A1∥2,2 ≤ B2.

So ∥J(θ)∥2,2 = max{|λmin(J(θ))|, |λmax(J(θ))|} ≤ B2, for any θ.

By the “Rd → Rd version” Mean Value Theorem,

g(θ1)− g(θ2) =
(∫ 1

0

J(θ2 + t(θ1 − θ2))dt
)
(θ1 − θ2),

where the right hand side is a d × d matrix multiply a d × 1 column vector, and the integral is
entry-wise.

Take ∥ · ∥2:
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∥g(θ1)− g(θ2)∥2 =

∥∥∥∥(∫ 1

0

J(θ2 + t(θ1 − θ2))dt
)
(θ1 − θ2)

∥∥∥∥
2

≤ ∥θ1 − θ2∥2
∥∥∥∥∫ 1

0

J(θ2 + t(θ1 − θ2))dt
∥∥∥∥
2,2

≤ ∥θ1 − θ2∥2
∫ 1

0

∥J(θ2 + t(θ1 − θ2))∥2,2 dt

≤ ∥θ1 − θ2∥2
∫ 1

0

B2dt = B2∥θ1 − θ2∥2.

This finishes the proof.

D PROOF OF COROLLARY 1

Proof. The proof of corollary 1 is straightforward following Uehara et al. (2020), who

proved that εest ≤ ξ 1√
C
π†
E(s,a)∼dπ∗

P∗

[
∥ϕ(s, a)∥Σ−1

n

]
≤ c1

√
rank[Σρ]{rank[Σρ]+ln(c2/δ)}

n .

By setting an appropriate ξ, the estimation error εest can be upper bounded by c1(1 −
γ)−2 min

(
d1/2, R̄

)√
R̄
√

dS ln(1+n)
n , R̄ = rank [Σρ] {rank [Σρ] + ln (c2/δ)}.

Combining the upper bound of εest and appropriate design of ξ such that P ∗ ∈ MD with high
probability, and we can easily obtain the result based on Theorem 1.
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