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ABSTRACT

We propose Graph Tree Networks (GTreeNets), a self-interpretive deep graph
neural network architecture which originates from the tree representation of
graphs. In the tree representation, each node forms its own tree where the node
itself is the root node and all its neighbors up to k-hop are the subnodes. Un-
der the tree representation, messages propagate upward from the leaf nodes to the
root node naturally to update the root node’s hidden features. This message pass-
ing scheme, which has better interpretability, is essentially different from that in
the vanilla Graph Convolution Network (GCN), Graph Attention Network (GAT)
and many of their derivatives. Two scalable graph learning models are proposed
within this GTreeNet architecture - Graph Tree Convolution Network (GTCN)
and Graph Tree Attention Network (GTAN), with experimentally demonstrated
state-of-the-art performance on several benchmark datasets and the capability of
going deep.

1 INTRODUCTION

Graph Neural Networks (GNNs), a class of neural networks for learning on graph structured data,
have been successfully applied in many areas to solve real world problems, such as link predictions
in social networks (Fan et al., 2019), pattern recognition (Ju et al., 2020; Shi & Rajkumar, 2020),
product recommendation and personalized search in E-commerce (Zhu et al., 2019), fraud detection
(Wang et al., 2019a; Dou et al., 2020), protein interface predictions (Fout et al., 2017), power es-
timation and tier design in the semiconductor industry (Zhang et al., 2020; Lu et al., 2020), traffic
forecasting (Yu et al., 2017), and natural language processing (Yao et al., 2019; Vashishth et al.,
2020; Wu et al., 2021). Among many different graph learning approaches, the class of spatial graph
convolution based models, which adopts a message passing scheme to update node features, has
gained particular attention due to its simplicity yet good performance. The most representative work
among this class is the Graph Convolutional Network (GCN) (Kipf & Welling, 2017) which limits
the ChebNet (Defferrard et al., 2016) up to the 1st order polynomial, and together with some further
approximation leading to a direct neighbor aggregation. The success of the GCN model (Ying et al.,
2018; Hu et al., 2020b) has led to the rapid development in spatial convolution based models, such
as the Graph Attention Network (GAT) (Velickovic et al., 2018), GraphSage (Hamilton et al., 2017),
APPNP (Klicpera et al., 2018), DAGNN (Liu et al., 2020), and etc.

Today the vanilla GCN and GAT are the two most popular baseline models. One GCN or GAT
layer aggregates only the direct neighbor nodes. Although they work well in many test cases, their
performance degrades as stacking multiple propagation layers to achieve larger receptive fields. Xu
et al. (2018) and Li et al. (2018) attribute such degradation in performance to over-smoothing effect
that nodes from different classes become indistinguishable, while Liu et al. (2020) attributes that
to the intertwined propagation and transformation. A small neighborhood may not provide enough
information especially when nodes are sparsely labeled (Klicpera et al., 2018; Liu et al., 2020).
Many recent work has been devoted to extending the size of neighborhood utilized in graph learning.
APPNP (Klicpera et al., 2018) and DAGNN (Liu et al., 2020) are two most recent deep graph models
with state-of-the-art performance on several popular benchmark datasets. APPNP (Klicpera et al.,
2018) is developed based on personalized PageRank to preserve local information which requires
fine tuning of a teleport probability. DAGNN (Liu et al., 2020) aggregates neighbors from different
hops in parallel (in one layer) to utilize information from a larger receptive field as compared to
GCN. Although DAGNN has achieved state-of-the-art performance, it may only be applicable to
adopt simple aggregation function as the one used in GCN. It could be computationally challenging
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to combine such multi-hop aggregation scheme with attention-based GNN models (such as GAT, and
graph transformer (Dwivedi & Bresson, 2020; Hu et al., 2020c)); because this aggregation scheme
requires computation of the attention weight for each pair of a node and its k-hop neighbor, which
could be a too large number. In the aggregation of k-hop neighborhood, the number of attention
weights is the total number of non-zero entries in the kth power of the graph adjacency matrix A.
Although the adjacency matrix is usually sparse, its kth power could be non-sparse especially for
undirected graphs. For example, in the Cora dataset (Wang et al., 2019b) A5 has ∼2.2 million
non-zero entries while A has only ∼10k non-zero entries. Furthermore, aggregating multi-hop
neighborhood in one step neglects path information which is usually important for heterogeneous
graphs with rich metapath information (Fu et al., 2020; Wang et al., 2019c).

We propose Graph Tree Networks (GTreeNets), a self-interpretive deep graph neural network ar-
chitecture which originates from the tree representation of graphs. In the tree representation, each
node forms its own tree where the node itself is the root node and all its neighbors up to k-hop are
the subnodes. Under the tree representation, message propagates upward from the leaf nodes to the
root node naturally to update the root node’s hidden features. This message passing scheme, which
has better interpretability, is essentially different from that in the vanilla Graph Convolution Net-
work (GCN), Graph Attention Network (GAT) and many of their derivatives. Two scalable graph
learning models are proposed within this GTreeNet architecture - Graph Tree Convolution Network
(GTCN) and Graph Tree Attention Network (GTAN), with experimentally demonstrated state-of-
the-art performance on several benchmark datasets and the capability of going deep by stacking
multiple propagation layers. Our models do not require finely-tuned hyperparameter in the propa-
gation scheme.

This work is structured as follows. Section 2 illustrates the architecture of our Graph Tree Networks
(GTreeNets) and two derivative graph learning models - Graph Tree Convolution Network (GTCN)
and Graph Tree Attention Network (GTAN), along with the analysis of model complexity. Section
3 presents the experimental results including three parts: Section 3.1 shows the performance test of
our GTCN and GTAN models as compared to several popular and state-of-the-art GNN models on
five benchmark datasets. Section 3.2 shows the performance test for our GTCN and GTAN models
at different depths as compared to the vanilla GCN and GAT models. Section 3.3 discusses the effect
of adding transformation in propagation layers in our GTCN and GTAN models. We conclude our
work in Section 4 and discuss insights for future work.

2 OUR APPROACH: GRAPH TREE NETWORKS

We first introduce notations used throughout this paper. We follow the general convention to use
bold uppercase and lowercase to represent matrices and vectors, respectively. The topology of a
graph G = (V,E) with nodes V and edges E can be fully described by its adjacency matrix A and
degree matrix D. |V | = N and |E| = M are the number of nodes and edges, respectively. Nu

denotes the set of direct neighbors (1-hop neighbors) of node u. X ∈ RN×D represents the feature
map for all nodes, where each row xu ∈ RD represents the feature vector of node u with dimension
of D. Y ∈ RN×C represents the class matrix for all nodes, where each row yu represents the class
vector of node u with C classes.

2.1 TREE REPRESENTATION AND NETWORK STRUCTURE

Tree is a straightforward representation for the graph topology, where each node and its neighbor-
hood form one tree with the node itself being the root node and its neighbors being the subnodes.
Figure 1 illustrates the tree representation for node 1 with up to 3-hop neighbors in the sample graph.
We use a directed graph just for illustration, the tree representation also works for undirected graphs.

In Figure 1, hk
u ∈ RF is the vector of node u’s output hidden features at k-hop away from the root

node 1. The final output of the root node 1 is denoted as h0
1. Messages propagate upward from

subnodes to the root node hop by hop in the tree. Nodes may occur multiple times at the same
level in the tree (like node 5 occurring twice at 2-hop as shown in Figure 1), each of them is from a
different k-hop path that may pass different messages to the root node. We assume a node u at any
k-hop preserves its initial information prior to receiving information from its child nodes. With this
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2-hop neighbors: 4, 2, 5, 2, 3
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Figure 1: Sample of tree representation for node 1 (showing up to 3-hop neighborhood). The input
features of a node u is denoted as xu, and the hidden features of the node u at the kth hop of the root
node is denoted as hk

u.

assumption, a node’s features are updated by aggregating its child nodes and its own initial features
in the tree representation.

This tree representation of graphs leads to a new graph learning architecture - Graph Tree Networks
(GTreeNets) as shown in Appendix A.1, with the general message passing rule formulated as Equa-
tion 1:

hk
u = fk

(
aggregate

(
ϕ (xu) ,

{
hk+1
v ,∀v ∈ Nu

}))
(1)

where k = L−1, . . . , 0. L is the tree depth (number of propagation layers). xu is the vector of input
features of node u. zu = ϕ(xu) is the transformation of input features of node u, i.e. the initial
hidden features for the propagation layer. hk

u is the vector of hidden features of node u at k-hop, and
hL
u = zu. fk(·) is a hop-wise (layer-wise) transformation function such as MLP.

Combination of different aggregation function and transformation function in Equation 1 derives
various graph learning models under the GTreeNet architecture. We propose two graph tree mod-
els in Section 2.2 and 2.3: Graph Tree Convolution Network (GTCN) and Graph Tree Attention
Network (GTAN).

2.1.1 RELATION TO PROPAGATION SCHEME IN GCN-LIKE MODELS

The general message passing rule in GCN-like models such as GCN (Kipf & Welling, 2017), GAT
(Velickovic et al., 2018), and GraphSage (Hamilton et al., 2017) is

hn
u = fn−1

(
aggregate

(
hn−1
u ,

{
hn−1
v ,∀v ∈ Nu

}))
(2)

Comparing to Equation 1, it is notable that the message passing scheme in our proposed GTreeNet is
essentially different from the one adopted by the GCN-like models. In GTreeNet, we update a node’s
hidden features by aggregating its neighbor’s hidden features and its own initial features. While in
GCN-like models, a node’s hidden features are updated by aggregating its neighbor’s hidden features
and its own hidden features from the last propagation layer. Our propagation scheme preserves the
local information when stacking multiple propagation layers while the propagation scheme in GCN-
like models does not. Note that we use n to denote the propagation layer number in Equation 2 to
avoid ambiguities.

2.2 GRAPH TREE CONVOLUTION NETWORK

The propagation rule of our proposed Graph Tree Convolution Network is

hk
u =

∑
v∈Nu

Âuvh
k+1
v + Âuuzu (3)

where Â = D̃− 1
2 ÃD̃− 1

2 is the symmetric normalized adjacency matrix1. Ã = (A+ I) is the
adjacency matrix with added self-loops. D̃ is the degree matrix with self-loops where D̃uu =∑

v Ãuv . zu = MLP(xu).
1We find that using Â = D̃−1Ã yields similar performance.
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As compared to the general propagation rule in GTreeNet shown in Equation 1, our GTCN model
uses an MLP as the transformation function ϕ(·), an identity function as fk(·), and a weighted sum
function as the aggregation function with weights being the elements of the normalized adjacency
matrix.

The mathematical description of our GTCN model is then formulated as

Z = MLP (X)

HL = Z

Hk = A1H
k+1 +A2Z, k = L− 1, L− 2, . . . , 0

Yout = softmax
(
H0W

) (4)

where Z ∈ RN×F is the initial hidden feature map obtained by applying an MLP to the input feature
map X . Hk ∈ RN×F is the hidden feature map at the kth hop. A1 and A2 are the non-diagonal and
diagonal component of the normalized adjacency matrix, respectively. W ∈ RF×C is the trainable
weight matrix.

Note that our model separates the transformation from propagation with no trainable parameters
required in the propagation layers. By aggregating a node’s neighbor information with its own
initial information, we always preserve the local information of a node. These two characteristics
make our model capable of going deep without comprising performance as demonstrated in Section
3.2.

2.2.1 RELATION TO GCN AND APPNP

GCN. The propagation rule in GCN is

hn
u = ReLU

((∑
v∈Nu

Âuvh
n−1
v + Âuuh

n−1
u

)
W n−1

)
(5)

which uses weighted sum to aggregate the hidden features of node u and its neighbors from the last
propagation layer, and an MLP with ReLU activation function as fn−1(·) to transform the feature
representation.

Except for the different information used in aggregation as discussed in Section 2.1.1, another ma-
jor difference between our GTCN model and the GCN model is that a transformation function is
applied after each propagation layer in GCN which causes intertwined propagation and transforma-
tion, and introduces more trainable parameters. These differences make the GCN model subject to
compromised performance when stacking multiple propagation layers.

APPNP. The propagation rule in APPNP is

hn
u = (1− α)

(∑
v∈Nu

Âuvh
n−1
v + Âuuh

n−1
u

)
+ αzu (6)

which uses weighted sum to aggregate the hidden features of node u and its neighbors from the last
propagation layer, as well as its initial hidden feature. Note that the APPNP also adopts an identity
function as fn−1(·), i.e. no transformation is applied after propagation.

APPNP uses the hidden features of node u from the last propagation layer (hn−1
u ) in aggregation to

update its hidden feature while our GTCN model does not. In addition, APPNP introduces a teleport
probability α to adjust the influence from the neighborhood which requires fine tuning for different
graphs.

Note that the APPNP model can be derived from our GTreeNet by adding self-loops in the graph.
Therefore, node u is also a child node of itself when building the tree representation. In this case,
the general propagation rule in the resulting tree representation becomes:

hk
u = fk

(
aggregate

(
ϕ (xu) ,h

k+1
u ,

{
hk+1
v ,∀v ∈ Nu

}))
(7)

2.2.2 RELATION TO CHILD-SUM TREE-LSTM

The Child-Sum Tree-LSTM (Tai et al., 2015) can also be derived from our GTreeNet, which uses
RNN aggregation function to aggregate a node’s initial features and its neighbors with no further
transformation.
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2.3 GRAPH TREE ATTENTION NETWORK

The propagation rule of our proposed Graph Tree Attention Network is

hk
u = ELU

(∑
v∈Nu

αk
u,vh

k+1
v + αk

u,uzu

)
(8)

where αk
u,v and αk

u,u are trainable attention weights calculated as

αk
u,v = softmax

(
eku,v

)
eku,v =

{
LeakyReLU

(
wT

[
zu ∥ hk+1

v

])
if u ̸= v

LeakyReLU
(
wT [zu ∥ zu]

)
if u = v

(9)

As compared to the general propagation rule in GTreeNet shown in Equation 1, our GTAN model
uses an MLP as the transformation function ϕ(·), an ELU function as fk(·), and an attention based
weighted sum function as the aggregation function.

The mathematical description of our GTAN model is then formulated as

Z = MLP (X)

HL = Z

hk
u = ELU

(∑
v∈Nu

αk
u,vh

k+1
v + αk

u,uzu

)
, k = L− 1, L− 2, . . . , 0

Yout = softmax
(
H0W0

)
(10)

where αk
u,v and αk

u,u are calculated as in Equation 9.

2.3.1 RELATION TO GAT

The propagation rule in GAT is

hn
u = ELU

((∑
v∈Nu

αn
u,vh

n−1
v + αn

u,uh
n−1
u

)
W n−1

)
(11)

which uses attention based weighted sum to aggregate the hidden features of node u and its neigh-
bors from the last propagation layer, and an MLP with ELU activation function as fn−1(·) to trans-
form the feature representation.

Except for the different information used in aggregation as discussed in Section 2.1.1, another major
difference between our GTAN model and the GAT model is that a transformation function with
trainable parameters is applied after each propagation layer in GAT which introduces more trainable
parameters. This might make the learning difficult and jeopardize the model performance.

2.4 MODEL COMPLEXITY

It is straightforward to see from Equation 4 and 10 that the time complexity of our GTCN and GTAN
models is O(L|E|F ) which is in the same order as the vanilla GCN and GAT. Here |E| is the number
of edges, F is the dimension of hidden features, and L is the model depth.

3 EXPERIMENTS

In this section, we conduct our experiments in three parts. The first one in Section 3.1 is to demon-
strate the performance of our GTCN and GTAN models. We choose a depth of 10 for both models
to aggregate information from up to 10-hop neighbors in the graph, and compare their performances
against two current state-of-the-art deep graph models: APPNP and DAGNN with the same depth.
We also include the most popular GCN and GAT models, as well as the Child-Sum Tree-LSTM as
our baseline models. The second one in Section 3.2 is to demonstrate the deep capability of our mod-
els by comparing our model performance with that of the vanilla GCN and GAT at different model
depths. The Child-Sum Tree-LSTM is also included as a comparison. The third one in Section 3.3
is to discuss the effect of adding an MLP transformation function fk(·) with trainable parameters in
our GTCN and GTAN models. The codes to reproduce our experiments are publicly available.
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Table 1: Statistics of datasets.

Cora Citeseer PubMed Coauthor-CS ogbn-arxiv

Nodes 2708 3327 19717 18333 169343
Edges 10556 9228 88651 81894 1166243
Features/Node 1433 3703 500 6805 128
Classes 7 6 3 15 40
Label Rate 5.2% 3.6% 0.3% 1.6% 53.7%
Training 20/class 20/class 20/class 20/class 90941
Validation 500 500 500 450 29799
Test 1000 1000 1000 17583 48603

Datasets. We work on four popular benchmark datasets (Cora, Citeseer, PubMed and MS Coauthor-
CS) from DGL library (Wang et al., 2019b) and one OGB dataset ogbn-arxiv (Hu et al., 2020a) to
demonstrate the performance of our proposed models. The four datasets from the DGL library are
undirected graphs. Fixed data splits are provided for the Cora, Citeseer and PubMed datasets. For
the Coauthor-CS dataset, we split the data in the following way. We randomly selected 20 training
samples per class and 30 validation samples per class, and all remaining samples are used as the
test samples. We repeat the above process three times yielding three splits for the Coauthor-CS
dataset to avoid any bias. The ogbn-arxiv dataset is a homogeneous, unweighted, directed graph
representing the citation between all Computer Science arXiv papers indexed by MAG. Each paper
has 128-dimensional features obtained by averaging the embeddings of words. The task is to predict
the subject areas (40 total classes) of the paper.

The statistics of the benchmark datasets are summarized in Table 1. Note that the adjacency matrix
for the Citeseer and PubMed datasets provided in DGL (Wang et al., 2019b) includes several self-
loops. We remove these self-loops to obtain the adjacency matrix in our experiments.

3.1 PERFORMANCE OF GRAPH TREE CONVOLUTION AND ATTENTION NETWORKS

Baseline models. We compare our GTCN and GTAN models to five GNN models: the vanilla GCN
(Kipf & Welling, 2017), GAT (Velickovic et al., 2018), Child-Sum Tree-LSTM (Tai et al., 2015) and
the current state-of-the-art APPNP (Klicpera et al., 2018) and DAGNN (Liu et al., 2020) models (we
are also interested in comparing with the AdaGCN model (Sun et al., 2021) but the source code for
the model has not been publicly available yet).

Model hyperparameters. For fair comparisons, all models are set up in almost the same settings
as in their original papers. All implementations use Adam optimizer with two hyperparameters:
learning rate and weight decay.

The detailed experiment setup is described in Appendix A.2.

Results of accurancy. We take 30 runs of each model on each DGL dataset, and 10 runs of each
model on the obgn-arxiv dataset2. The test results of classification accuracy are represented by mean
± std. Test results on the four DGL datasets are summarized in Table 2. The Macro-F1 scores of
each model on the four DGL dataset are summarized in Table 6 (See Appendix A.3). Test results on
the obgn-arxiv dataset are summarized in Table 3.

Our GTCN model outperforms the current state-of-the-art baseline models APPNP and DAGNN on
the Cora, Citeseer, and Coauthor-CS datasets. Our GTAN model achieves state-of-the-art perfor-
mance on the Coauthor-CS dataset and the ogbn-arxiv dataset.

The ogbn-arxiv dataset is much larger with much more complex neighborhood structures as com-
pared to the four DGL datasets. This may explain why our GTAN model outperforms GTCN model.
GTAN has trainable pair-wise attention weights in each propagation layers, while GTCN does not
have trainable weights in all propagation layers, i.e. GTCN employs fixed weights in the message

2This is set by OGB.
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Table 2: Summary of average classification accuracy ± one standard deviation (in percent) after
filtering out the top and bottom 10% data on DGL datasets

Method Cora Citeseer PubMed Coauthor-
CS (1)

Coauthor-
CS (2)

Coauthor-
CS (3)

GCN (hop = 2) 81.5 ± 0.2 71.6 ± 0.3 79.0 ± 0.3 90.7 ± 0.2 90.2 ± 0.2 89.7 ± 0.2
GAT (hop = 2) 83.0 ± 0.5 71.1 ± 0.9 77.6 ± 0.4 90.4 ± 0.3 90.3 ± 0.5 89.5 ± 0.4
Tree-LSTM
(hop = 2)

81.9 ± 0.7 68.6 ± 1.0 76.6 ± 0.6 91.0 ± 0.2 90.8 ± 0.2 90.8 ± 0.2

APPNP (hop =
10)

83.6 ± 0.5 71.6 ± 0.5 79.6 ± 0.2 91.8 ± 0.4 91.8 ± 0.3 91.4 ± 0.3

DAGNN (hop
= 10)

84.0 ± 0.5 72.6 ± 0.5 79.6 ± 0.4 90.4 ± 0.3 90.3 ± 0.4 89.6 ± 0.6

GTAN (hop =
10, ours)

83.4 ± 1.0 71.4 ± 0.4 79.4 ± 0.2 92.2 ± 0.3 92.4 ± 0.2 92.0 ± 0.3

GTCN (hop =
10, ours)

84.5 ± 0.6 72.9 ± 0.5 79.2 ± 0.3 92.7 ± 0.1 92.5 ± 0.1 92.4 ± 0.2

Table 3: Summary of average classification accuracy ± one standard deviation (in percent) on ogbn-
arxiv dataset.

Method ogbn-arxiv

GCN (hop = 3) 71.7 ± 0.2
GAT (hop = 3) 71.8 ± 0.1
Tree-LSTM (hop = 3) 71.4 ± 0.3
APPNP (hop = 5) 71.5 ± 0.1
DAGNN (hop = 16) 72.1 ± 0.3
GTAN (hop = 4, ours) 72.7 ± 0.2
GTCN (hop = 5, ours) 72.3 ± 0.2

aggregation. Therefore GTAN could capture more complex neighborhood structure than GTCN,
and is more favored in such case.

Training time per epoch. The average training time per epoch on the DGL datasets are summarized
in Table 4. Obviously, our GTCN model is scalable to large graph and computational efficient even
with deep layers. Attention based models require computation for attention weights between each
pair of a node and its neighbor nodes in each propagation layer, therefore are less efficient for dense
graphs.

3.2 TEST OF MODEL DEPTH CAPABILITY

In this section, we demonstrate our models’ capability of going deep by testing our models on the
four DGL datasets with different numbers of propagation layers. We compare our GTCN model with
the vanilla GCN, and our GTAN model with the vanilla GAT. We also include the Child-Sum Tree-
LSTM model in the comparison as it is a derivative model within our GTreeNet architecture. All
models are tested with a depth of 2, 5 and 10, respectively. The classification accuracy is obtained
with the same process as described in Section 3.1.

Model hyperparameters. For all models under test, we use 64 hidden units for every intermediate
hidden layer. For the vanilla GCN, the dropout is 0.5, learning rate is 0.01 and weight decay is
5e-4 for all datasets and all model depths. For the vanilla GAT, we use one attention head for all
experiments. At depth 2, the hyperparameters are the same as used in Section 3.1. At depth 5,
the hyperparameters are mostly the same as used at depth 2 except that we set 0 for the attention
dropout for all datasets. At depth 10, the hyperparameters are fine-tuned with the layer dropout and
the attention dropout of (0.2, 0) for all datasets. The learning rate and weight decay are 0.01 and
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Table 4: Average training time per epoch (ms/epoch) on DGL datasets.

Method Cora Citeseer PubMed Coauthor-CS

GCN (hop = 2) 3.5 3.3 3.6 7.4
GAT (hop = 2) 4.7 4.6 5.0 12.0
GCN (hop = 10) 14.3 13.9 19.1 25.9
GAT (hop = 10) 17.6 17.8 21.8 32.7
APPNP (hop = 10) 3.7 3.5 3.8 12.0
DAGNN (hop = 10) 4.7 4.6 5.1 13.2
GTAN (hop = 10, ours) 17.7 18.1 19.4 34.4
GTCN (hop = 10, ours) 3.7 3.6 8.1 18.6

(a) Cora (b) Citeseer

(c) Pubmed (d) Coauthor-CS

Figure 2: Model performance in accuracy at different depths, tested on four datasets: Cora (a),
Citeseer (b), Pubmed (c), and Coauthor-CS (d).

5e-3 respectively for all datasets. For the Child-Sum Tree-LSTM, the settings are consistent for all
three depths and four datasets, with the input dropout and the dropout after the LSTM cell being
(0.8, 0.6), learning rate being 0.01 and weight decay being 5e-4. For our GTCN model, the settings
are the same as used in Section 3.1. For our GTAN model, the settings for depth 2 and 5 are mostly
the same as described in Section 3.1, except that the attention dropout is set to 0.6 for the Cora and
Citeseer datasets.

Results. The test results of all five models at different depths are illustrated in Figure 2. More
details are summarized in Table 7, 8, 9, and 10 respectively in Appendix A.4. The results show that
the performance of Graph Tree Network based models (GTCN, GTAN and Child-Sum Tree-LSTM)
does not compromise in general when going deep, while the performance of the vanilla GCN and
GAT models degrades significantly when going deep which is known as the ”over-smoothing” issue.
This comparison demonstrates the superiority of the message passing scheme in our GTreeNet.
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3.3 EFFECT OF ADDING TRANSFORMATION AFTER PROPAGATION

We find that adding an MLP network as fk in Equation 1 will degrade the model performance. To
demonstrate this experimentally, we construct a variant of our GTCN model by adding an MLP
with the ReLU activation function after each propagation layer, and call it a GTCN2 model. The
propagation rule in GTCN2 model is now Hk = ReLU

((
A1H

k+1 +A2Z
)
W

)
. We compare the

performance of the GTCN and GTCN2 models on the Cora dataset at different depths (2, 5, and 10).
Same tests are also performed on our GTAN model, and all results are summarized in Table 5.

Adding an MLP network after each propagation layer introduces additional trainable parameters,
which may cause worse fitting especially when training samples are limited. The results also show
that the model performance degrades as stacking more propagation layers after adding an MLP
network after each propagation layer, which are consistent with the findings by Liu et al. (2020).

Table 5: Model performance in accuracy with and without nonlinear layers, tested on the Cora
dataset.

Method (Cora) Depth = 2 Depth = 5 Depth = 10

GTCN 83.3 ± 0.3 84.4 ± 0.6 84.5 ± 0.5
GTCN2 80.7 ± 0.5 80.6 ± 0.6 80.0 ± 0.8
GTAN 83.0 ± 0.4 83.7 ± 0.7 83.3 ± 1.0
GTAN2 80.8 ± 0.6 79.1 ± 0.6 78.6 ± 1.0

4 CONCLUSION

In this paper, we propose an innovative self-interpretive graph learning architecture: deep Graph
Tree Network (GTreeNet), which is naturally derived from the tree representation of graphs. The
message passing scheme in the GTreeNet has better interpretability than that in the vanilla GCN and
GAT models. Two models within the GTreeNet architecture are proposed - Graph Tree Convolution
Network (GTCN) and Graph Tree Attention Network (GTAN), with demonstrated state-of-the-art
performance on several benchmark datasets and the capability of going deep by stacking multiple
propagation layers. The major advantage of the message passing scheme in the GTreeNet is that
models adopting this message passing scheme can go deep by stacking multiple propagation layers
instead of calculating multi-hop information directly, where only information from the direct neigh-
bors is used in each layer. This advantage may allow us to extend our GTCN and GTAN models to
heterogeneous graphs. Dealing with metapaths in heterogeneous graphs is one of the biggest hurdles
confronted by most of the current heterogeneous models like MAGNN (Fu et al., 2020) and HAN
(Wang et al., 2019c), as the number of metapaths increases dramatically when aggregating multi-hop
neighbors. The message passing scheme in our models helps avoid dealing with metapaths explicity
as information on metapaths is self-contained by stacking multiple propagation layers. This opens
future research opportunities. The general propagation rule we formulate in the GTreeNet architec-
ture may also open new research opportunities by exploring combination of different aggregation
schemes and transformation functions.
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Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29:3844–3852, 2016.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp. 315–324, 2020.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

9



Under review as a conference paper at ICLR 2022

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pp. 417–426, 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using
graph convolutional networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In Proceedings of The Web Conference 2020, pp.
2331–2341, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020a.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020b.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, pp. 2704–2710, 2020c.

Xiangyang Ju, Steven Farrell, Paolo Calafiura, Daniel Murnane, Lindsey Gray, Thomas Klijnsma,
Kevin Pedro, Giuseppe Cerati, Jim Kowalkowski, Gabriel Perdue, et al. Graph neural networks
for particle reconstruction in high energy physics detectors. arXiv preprint arXiv:2003.11603,
2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
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A APPENDIX

A.1 GTREENET ILLUSTRATION

Figure 3 is an illustration of our Graph Tree Network (GTreeNet).

A.2 EXPERIMEMT SETUP

The maximum training epochs is set to 1000 for all experiments.
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Figure 3: Illustration of GTreeNet on the sample graph in Figure 1.

A.2.1 TEST ON DGL DATASETS

For the vanilla GCN, we use two layers with 64 hidden units and the dropout is 0.5 for all datasets.
The learning rate and weight decay are 0.01 and 5e-4 respectively for all datasets.

For the vanilla GAT, we also use two layers with 64 hidden units, and other hyperparameters are
fine-tuned to obtain the best performance. One attention head is used for both layers3. The layer
dropout and attention dropout are 0.8 and 0.8 respectively for the Cora and Citeseer datasets, 0.8
and 0.2 respectively for the PubMed and Coauthor-CS datasets. The learning rate and weight decay
are 0.01 and 5e-4 respectively for all datasets.

For the 2-layer Child-Sum Tree-LSTM model, the input dropout and the dropout after the LSTM
cell are 0.8 and 0.6 respectively. The learning rate and weight decay are 0.01 and 5e-4 respectively
for all datasets.

For the APPNP, DAGNN, and our GTCN and GTAN models, we use a maximum hop of 10, the
same as that used by the original paper of the APPNP model (Klicpera et al., 2018). 64 hidden
units are used for these four deep models. For the APPNP, the dropout is 0.5 for the first MLP layer
and the edge dropout is 0.5 for the propagation layer, the teleport probability α is 0.1 for the Cora,
Citeseer and Pubmed datasets, and 0.2 for the Coauthor-CS dataset.4 For the DAGNN, the dropout
is 0.8 and learning rate is 0.01 for all datasets. The weight decay is 2e-2 for the Citeseer dataset, and
5e-3 for the Cora, PubMed and Coauthor-CS datasets. For our GTCN, we have two dropouts: one

3The original paper (Velickovic et al., 2018) uses 8 heads for the first layer, but we find that 1 head already
achieves matching results.

4We have validated with greedy search that the α value used in the original paper is approximately optimal.
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Table 6: Summary of average Macro-F1 score ± one standard deviation (in percent) after filtering
out the top and bottom 10% data.

Method Cora Citeseer PubMed Coauthor-
CS (1)

Coauthor-
CS (2)

Coauthor-
CS (3)

GCN (hop = 2) 80.5 ± 0.4 68.8 ± 0.3 78.8 ± 0.3 87.7 ± 0.3 87.5 ± 0.4 86.4 ± 0.3
GAT (hop = 2) 81.6 ± 0.5 67.0 ± 0.7 77.1 ± 0.3 87.8 ± 0.4 87.8 ± 0.4 86.9 ± 0.4
Tree-LSTM
(hop = 2)

80.7 ± 0.6 64.2 ± 0.9 76.2 ± 0.6 88.8 ± 0.2 88.5 ± 0.2 88.1 ± 0.2

APPNP (hop =
10)

81.8 ± 0.4 68.3 ± 0.3 78.9 ± 0.2 89.1 ± 0.5 89.6 ± 0.3 88.8 ± 0.5

DAGNN (hop
= 10)

82.5 ± 0.4 68.9 ± 0.3 78.9 ± 0.3 87.5 ± 0.7 87.4 ± 0.5 86.9 ± 0.5

GTAN (hop =
10, ours)

81.7 ± 0.6 68.0 ± 0.4 78.6 ± 0.3 90.2 ± 0.4 90.6 ± 0.3 89.8 ± 0.3

GTCN (hop =
10, ours)

82.8 ± 0.7 69.1 ± 0.6 78.9 ± 0.3 90.6 ± 0.2 90.5 ± 0.2 90.2 ± 0.2

Table 7: Model performance in accuracy with different depths, tested on the Cora dataset

Method (Cora) Depth = 2 Depth = 5 Depth = 10

GCN 81.5 ± 0.2 78.1 ± 0.6 72.3 ± 1.4
GAT 83.0 ± 0.5 80.1 ± 0.6 78.9 ± 0.9
Tree-LSTM 81.9 ± 0.7 80.9 ± 0.7 80.4 ± 0.7
GTAN (ours) 83.0 ± 0.4 84.3 ± 0.5 83.4 ± 1.0
GTCN (ours) 83.3 ± 0.3 84.4 ± 0.6 84.5 ± 0.5

is for the initial one-layer MLP, and the other is for the propagation layer. Corresponding dropout
values are set to (0.6, 0.6) for the Cora dataset, (0.8, 0.6) for the Citeseer dataset, (0.8, 0.5) for the
Pubmed dataset and (0.6, 0.2) for the Coauthor-CS dataset. The learning rate is 0.01 for the Cora,
Citeseer and Coauthor-CS datasets, and 0.02 for the PubMed dataset. The weight decay is 5e-4 for
the Cora, Citeseer and PubMed datasets, and 5e-3 for the Coauthor-CS dataset. For our GTAN, we
have the same two dropouts as for the GTCN, which are set to (0.6, 0) for the Cora, Citeseer and
PubMed datasets, and (0.2, 0.2) for the Coauthor-CS dataset. The learning rate is set to 0.01 for all
datasets. The weight decay is set to 5e-4 for the Cora, Citeseer and PubMed datasets, and 5e-3 for
the Coauthor-CS dataset.

The early-stopping patience number is set to 100 for the DAGNN model (the same number is used
in the original paper (Liu et al., 2020)), 300 for our GTAN model, and 200 for all other models.

A.2.2 TEST ON OGB DATASET

For the vanilla GCN, we use three layers with 256 hidden units and the dropout is 0.5. The learning
rate and weight decay are 0.01 and 0, respectively.

For the vanilla GAT, we use three layers with 128 hidden units. One attention head is used for all
layers. The input dropout and attention dropout are 0.2 and 0, respectively. The learning rate and
weight decay are 0.01 and 0, respectively.

For Child-Sum Tree-LSTM model, we use three layers with 256 hidden units. The input dropout
and the dropout after the LSTM cell are 0.2 and 0, respectively. The learning rate and weight decay
are 0.01 and 0, respectively.

For the APPNP model, we use 5 layers with 256 hidden units. The input dropout and the dropout
after each propagation layer are 0.2 and 0, respectively. The learning rate and weight decay are 0.01
and 0, respectively.
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Table 8: Model performance in accuracy with different depths, tested on the Citeseer dataset

Method (Citeseer) Depth = 2 Depth = 5 Depth = 10

GCN 71.6 ± 0.3 64.8 ± 1.0 58.8 ± 1.9
GAT 71.1 ± 0.9 68.1 ± 0.9 66.6 ± 1.0
Tree-LSTM 68.6 ± 1.0 65.8 ± 1.1 64.7 ± 1.2
GTAN (ours) 71.5 ± 0.6 71.7 ± 0.6 71.4 ± 0.4
GTCN (ours) 72.2 ± 0.7 72.8 ± 0.5 72.9 ± 0.5

Table 9: Model performance in accuracy with different depths, tested on the PubMed dataset

Method (PubMed) Depth = 2 Depth = 5 Depth = 10

GCN 79.0 ± 0.3 76.7 ± 0.6 75.3 ± 0.9
GAT 77.6 ± 0.4 76.9 ± 0.5 77.1 ± 0.7
Tree-LSTM 76.6 ± 0.6 76.9 ± 0.4 77.3 ± 0.5
GTAN (ours) 79.1 ± 0.4 79.3 ± 0.4 79.4 ± 0.2
GTCN (ours) 78.5 ± 0.5 78.6 ± 0.5 79.2 ± 0.3

Table 10: Model performance in accuracy with different depths, tested on the Coauthor-CS(3)
dataset

Method (Coauthor-CS) Depth = 2 Depth = 5 Depth = 10

GCN 89.7 ± 0.2 87.1 ± 0.7 82.9 ± 0.8
GAT 89.5 ± 0.4 85.9 ± 1.6 83.8 ± 0.6
Tree-LSTM 90.8 ± 0.2 91.0 ± 0.1 90.8 ± 0.2
GTAN (ours) 91.7 ± 0.2 91.7 ± 0.2 92.0 ± 0.3
GTCN (ours) 92.1 ± 0.2 92.0 ± 0.2 92.4 ± 0.2
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For the DAGNN model, we use 16-hop with 256 hidden units. The dropout is 0.2. The learning rate
and weight decay are 0.005 and 0, respectively.

For our GTAN model, we use 4 layers with 128 hidden units. The input dropout and the dropout
after each propagation layer are 0.2 and 0, respectively. The learning rate and weight decay are 0.01
and 5e-5, respectively.

For our GTCN model, we use 5 layers with 256 hidden units. The input dropout and the dropout
after each propagation layer are 0.2 and 0.2, respectively. The learning rate and weight decay are
0.01 and 5e-5, respectively.

A.3 TEST RESULTS ON MODEL PERFORMANCE IN MACRO-F1 SCORE

The test results of model performance in Macro-F1 score on the four DGL datasets are summarized
in Table 6.

A.4 TEST RESULTS ON MODEL PERFORMANCES WITH DIFFERENT DEPTHS

The test results of model accuracy on the four DGL datasets with different number of propagation
layers are summarized in Table 7, 8, 9, and 10, respectively.
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