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Figure 1. SpatialTrackerV2 produces consistent 3D scene geometry, camera poses, and 3D point trajectories all at once from monocular
videos of arbitrary scenarios, e.g., robotic manipulation, first-person egocentric views, and dynamic sports (drifting and skating) shown in
this figure. Try our online demo at https://huggingface.co/spaces/Yuxihenry/SpatialTrackerV2.

Abstract

We present SpatialTrackerV2, a feed-forward 3D point
tracking method for monocular videos. Going beyond
modular pipelines built on off-the-shelf components for
3D tracking, our approach unifies the intrinsic connec-
tions between point tracking, monocular depth, and cam-
era pose estimation into a high-performing and feedforward
3D point tracker. It decomposes world-space 3D motion

* Partially completed during Ant internship. T Corresponding author.

into scene geometry, camera ego-motion, and pixel-wise ob-
Jject motion, with a fully differentiable and end-to-end ar-
chitecture, allowing scalable training across a wide range
of datasets, including synthetic sequences, posed RGB-D
videos, and unlabeled in-the-wild footage. By learning ge-
ometry and motion jointly from such heterogeneous data,
SpatialTrackerV2 outperforms existing 3D tracking meth-
ods by 30%, and matches the accuracy of leading dynamic
3D reconstruction approaches while running 50x faster.


https://huggingface.co/spaces/Yuxihenry/SpatialTrackerV2
https://arxiv.org/abs/2507.12462v2

1. Introduction

3D point tracking aims to recover long-term 3D trajec-
tories of arbitrary points from monocular videos. As
a universal dynamic scene representation, it has recently
shown strong potential in diverse applications, including
robotics [48, 56, 67], video generation [22, 29, 57, 81],
and 3D/4D reconstruction [10, 34, 38, 76]. Compared to
parametric motion models (e.g., SMPL [47], MANO [63],
skeletons, or 3D bounding boxes), it offers greater flexi-
bility and generalization over various real-world scenes, as
shown in Fig. 1.

Existing solutions [1, 4, 54, 75, 86] of 3D point track-
ing extensively explored the well-developed low/mid-level
vision models, such as optical flow [45, 68] and monocular
depth estimation [27, 87], and took benefits from 2D point
tracking models [15, 23, 33]. Among them, optimization-
based methods [42, 75, 95] distill the optical flow, monocu-
lar depth models and camera motions for each given monoc-
ular video with promising results obtained, while being
computationally expensive due to their per-scene optimiza-
tion designs. SpatialTracker [86] moved forward to effi-
cient 3D point tracking with a feed-forward model, and the
more recent works [ 1, 4, 54] explored different architecture
designs and rendering constraints to achieve higher-quality
3D tracking. Nevertherless, the feed-forward solutions are
limited to training data scalability issues due to the need for
ground-truth 3D tracks as supervision, which downgrades
the tracking quality in real-world casual captures. More-
over, overlooking the inherent interplay between camera
motion, object motion, and scene geometry results in error
entanglement and accumulation across modules.

These limitations motivate our core insights: (1) The re-
liance on ground-truth 3D trajectories constrains the scal-
ability of existing feed-forward models, highlighting the
need for designs that can generalize across diverse and
weakly-supervised data sources. (2) The absence of joint
reasoning over scene geometry, camera motion, and object
motion leads to compounded errors and degraded perfor-
mance, underscoring the importance of disentangling and
explicitly modeling these motion components. To address
these challenges, we decompose 3D point tracking into
three distinct components: video depth, ego (camera) mo-
tion, and object motion, and integrate them within a fully
differentiable pipeline that supports scalable joint training
across heterogeneous data.

In our SpatialTrackerV2, a front-end and back-end ar-
chitecture is proposed. The front end is a video depth es-
timator and camera pose initializer, adapted from typical
monocular depth prediction frameworks [88] with attention-
based temporal information encoding [74]. The predicted
video depths and camera poses are then fused through a
scale-shift estimation module, which ensures consistency
between the depth and motion predictions. The back end

consists of a proposed Joint Motion Optimization Module,
which takes the video depth and coarse camera trajecto-
ries as input and iteratively estimates 2D and 3D trajec-
tories, along with trajectory-wise dynamics and visibility
scores. This enables an efficient bundle adjustment process
for optimizing camera poses in the loop. At its core lies a
novel SyncFormer, which separately models the 2D and 3D
correlations in two branches, connected by multiple cross-
attention layers. This design mitigates mutual interference
between 2D and 3D embeddings and allows the model to
update representations in two distinct spaces, namely the
image (UV) space and the camera coordinate space. Fur-
thermore, benefiting from this dual-branch design, bundle
adjustment can be effectively applied to jointly optimize
camera poses as well as the 2D and 3D trajectories.

This unified and differentiable pipeline makes large-
scale training on diverse datasets possible. For RGB-D
datasets with camera poses, we jointly train 3D tracking
using consistency constraints from ground-truth depth and
camera poses for static points, while dynamic points seam-
lessly contribute to the optimization. For video datasets that
provide only camera pose annotations and lack depth infor-
mation, we leverage consistency among camera poses, and
2D and 3D point tracking to drive the model’s optimization.
Relying on this framework, we successfully scale up train-
ing of the entire pipeline across 17 datasets.

Evaluations on the TAPVid-3D benchmark [37] show
that our method sets a new state-of-the-art in 3D point
tracking, achieving 21.2 AJ and 31.0 APD3p, surpass-
ing DELTA [54] with relative improvements of 61.8%
and 50.5%, respectively. Additionally, extensive experi-
ments on dynamic reconstruction show our superior results
on consistent video depth and camera poses estimation.
Specifically, SpatialTrackerV2 beats the best dynamic re-
construction method, MegaSAM [42], on most video depth
datasets and achieves comparable results on various camera
pose benchmarks, while its inference speed is 50 x faster.

2. Related work

This section covers relevant literature on 3D tracking,
depth, and camera pose estimation.

2.1. Point tracking

PIPs [23] revisited the 2D point tracking task first intro-
duced in [64] and proposed a deep learning approach to
solve it. TAP-Vid [14] redefined the problem and intro-
duced both a benchmark and a simple architecture, TAP-
Net. Subsequently, the performance was improved in
TAPIR [15] by combining the global matching capabilities
of TAP-Net with the local refinement offered by PIPs. Co-
Tracker [33] pioneered tracking through occlusions using
a transformer architecture combined with joint attention,
followed by TAPTR [40] and LocoTrack [11], which im-



proved efficiency and introduced 4D correlation volumes.
Recently, BootsTAPIR [16] and CoTracker3 [32] explored
the use of unlabeled data to achieve better performance.

While 2D point tracking has been extensively studied,
3D point tracking remains a relatively new field. The first
method to demonstrate 3D point tracking capabilities was
the test-time optimization-based OmniMotion [75]. Later,
SpatialTracker [86] introduced the first feed-forward 3D
point tracker by combining a 2D point tracker [33] with
depth priors from a monocular depth estimator [3]. Scene-
Tracker [71] proposed a new architecture for 3D tracking
with depth priors, while DELTA [54] improved efficiency
and achieved dense 3D tracking. Recently, TAPIP3D [90]
improved 3D tracking robustness by lifting image features
into the world coordinate space and performing tracking
there. All of these 3D tracking models were trained on small
synthetic datasets.

Unlike these methods, we present a scalable 3D tracking
framework trained on a collection of both real and synthetic
datasets, while also explicitly modeling camera motion to
improve performance on egocentric videos.

2.2. Depth estimation

Early methods such as Eigen et al. [17] introduced single-
view depth estimation using CNNs, but were limited by
dataset scale and poor generalization [18, 89]. MiDaS [5]
improved this by mixing datasets for broader coverage, and
ZoeDepth [3] adapted it for metric depth, though ambigu-
ity from missing camera intrinsics remained. Later, Met-
ric3D [26] and UniDepth [60] addressed this by jointly es-
timating intrinsics and normalized depth.

With large-scale pretraining (e.g., diffusion [13, 41],
DINO [8]), recent models like Marigold [70] and
DepthAnything [87, 88] have significantly advanced zero-
shot depth. Extensions to video [9, 27] have also emerged.

In this work, we build on DepthAnythingV2 and extend
it to video, aiming for not just consistent depth, but a uni-
fied framework that also predicts camera poses and tracks,
with proper scale alignment—posing new challenges be-
yond static depth estimation.

2.3. Camera estimation

Traditional camera pose estimation methods [24, 58] rely on
image-to-image point correspondences using keypoint de-
tectors (e.g., SIFT [49, 50], SURF [2]) and matching tech-
niques such as nearest neighbors, followed by geometric al-
gorithms like the five-point and eight-point methods [24, 25,
39, 55, 85]. Bundle Adjustment [69] is also commonly em-
ployed to further enhance accuracy. Recently, direct regres-
sion approaches using neural networks [35, 43, 51, 84, 92]
have emerged, aiming to overcome limitations in sparse-
view scenarios or when correspondences are unreliable.
Diffusion models, such as PoseDiffusion [72] and RayDif-

fusion [93], have also been explored, offering strong accu-
racy but suffering from high inference costs. In contrast, the
camera head of VGGS{M [73] or VGGT [74] adopts an iter-
ative refinement paradigm similar to RAFT [68], striking a
balance between accuracy and inference cost, and enabling
estimation of both extrinsic and intrinsic parameters.

3. Method

Given a video with T frames (Z*)Z_; and N query points
Q; = (z4,y;) € R%i =1,..., N, the goal of 3D tracking
is to recover pixel-wise 3D trajectories 7 = (ﬂt)f:]Tv
for each query. In order to account for static and dynamic
parts of the scene, we decompose 7 into the ego camera

motion 7ego and object motion Topject as shown in Fig. 2.

3.1. Ego Motion Component

Ego motion, represented by camera trajectories 7ego, is @
major contributor to the 3D flow in camera coordinates. To
compute the 3D tracks induced by ego motion, we need to
estimate scale-aligned camera trajectories and video depth.
Video Depth. Monocular depth estimation models, such as
DepthAnything [87], typically follow an encoder-decoder
design with a vision encoder like DINO [8] and a DPT-style
decoder. Following VGGT [74], we extend the monocu-
lar encoder into a temporal encoder using an alternating-
attention mechanism. This mechanism alternates between
intra-frame self-attention and inter-frame attention over flat-
tened video tokens, effectively balancing performance and
efficiency. Furthermore, two learnable tokens, Py and
S0k, are incorporated into the alternating-attention layers to
capture high-level semantics for pose and scale regression.
Camera Tracker. Similar to [73, 74], we adopt a dif-
ferentiable pose head, #, to decode pose, scale and shift
directly:

Pt7a7b = H(Ptobstok)a (1)

where P* € RT*8 is the camera encoding parameterized
by a quaternion, a translation vector, and the normalized
focal length concatenated together; The parameters a and b
represent the scale and shift used to align the depth with the
estimated camera poses. After that, we can easily obtain the
3D trajectories induced by ego-motion 7ego:

%go - W(P, a * Dnorm + b)v (2)

where Dporm 1 the raw results after DPT head with activa-
tion functions and )V is the camera transformation.

3.2. Joint Motion Optimization.

After ego-motion initialization, we jointly estimate 2D tra-
jectories 724 € RT*N>2in UV space and their correspond-
ing 3D trajectories 7°¢ € RT*N*3 in the camera coordi-
nate system using an iterative transformer module, referred
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Figure 2. Pipeline Overview. Our method adopts a front-end and back-end architecture. The front-end estimates scale-aligned depth and
camera poses from the input video, which are used to construct initial static 3D tracks. The back-end then iteratively refines both tracks

and poses via joint motion optimization.
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Figure 3. SyncFormer. The model takes previous estimates and
their corresponding embeddings as input, and updates them iter-
atively. The 2D and 3D embeddings are processed in separate
branches that interact via cross-attention.

to as SyncFormer. In parallel, the SyncFormer also dynam-
ically estimates the visibility probability p"* and dynamic
probability p®" for each trajectory, enabling an efficient
bundle adjustment process to refine the camera poses P.
SyncFormer. As illustrated in Fig. 3, in every iteration,
SyncFormer takes 2D embeddings, 3D embeddings, and
camera poses as input, and updates the 2D trajectories 729,
3D trajectories 7°¢, dynamic probabilities p®", and visibil-
ity scores p"i*:

2d 3d dyn vis 2d 43d _dyn vis
7-k:+1777c+17pk}j|>17pk+1 :fSynC(,];c 7776 ,pky ; Pk 7Pk)7 (3)

where fqync denotes the transformer-based update function.
To better capture the distinct characteristics of 2D and 3D
motion, the 2D and 3D trajectory updaters are modeled us-
ing separate attention layers. To reduce computational cost,

correlation embeddings are first encoded into a compact set
of 2D and 3D proxy tokens using cross-attention. Then, in-
formation is exchanged between the 2D and 3D branches
via a cross-attention layer between the respective proxy to-
kens. This design decouples the mutual influence between
2D and 3D tracking, which are updated in two different do-
mains: the UV space for 2D trajectories and the camera
coordinate space for 3D trajectories.

2D and 3D Embeddings. As the input for SyncFormer,
the 2D and 3D embeddings encode the status of cur-
rent estimations while recording the neighbourhood infor-
mation for updating. For 2D embeddings, we keep the
same to Cotracker3 [33]. The 3D embeddings E3¢ =
(Corrsp, e'ime, eGpos ;dyn 1Visy contains the 3D correlation
features Corrsp, the time embeddings '™, global position
embeddings €%P° and dynamic-visibility scores. The 3D
correlation Corrsp is the main features for the 3D embed-
ding. Different to 2D correlations, we expect 3D tracking
branch updates the 3D position in the camera coordinate
space. Therefore, we calculate the 3D correlations on the
normalized point maps from front-end instead of depth map.
Similar to 2D correlations, we construct multi-resolution
point maps and compute the relative translations between
each point and its neighbors within radius of 3. We then ap-
ply harmonic positional encoding to project these relative
translations into high-dimensional feature representations,
which are combined with semantic features to compute the
final 3D correlations:

y

Corryp = [K(i s

1)
k;s+’

+0):0€Z,0]c <Al (4)
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Figure 4. Iterative Process of SyncFormer. The left subfig-
ure shows the convergence curve of reprojection error, illustrat-
ing rapid reprojection error reduction. The right subfigures visu-
alizes the progressive alignment between 2D tracking results (in
green) and projections of 3D (world) tracking transformed by cam-
era poses (in red).

with A set to 3 and at multiple scales s = 1,2,3,4, K
denotes the operator for encoding relative translation fea-
tures. Besides, in order to encode the camera pose to assist
the tracking estimations, we propose €°P% which transforms
the query points Q; into each frames with the current cam-
era poses, denoted as anchor points Q3™. €0P% is calculated
from the relative translation between the current position
and €%P°, and they are then projected into high dimension
with same tricks as above.

Camera Motion Optimization. After each iteration,

d d dyn vis

the updates of 7.2¢, 724, pi”l,, p}}; naturally form self-
consistency constraints with the camera poses. These intrin-
sic constraints can be seamlessly incorporated into a bundle
adjustment formulation. Specifically, we apply a weighted
Procrustes analysis to register 7., into the world coordi-
nate frame, where the alignment weights are given by the
dynamic scores. This coarse alignment process is differen-
tiable and provides effective supervision for learning the dy-
namic probability. Then we fuse the aligned 77€3i1 to world
points P! € RV*3, where the dynamic points are fil-
tered with the estimated dynamic scores. After this, we ap-
ply a direct bundle adjustment to optimize the camera poses
with paired P};folld, ki , and p};ii 1- In the next iteration, the
updated camera poses P41 influence the subsequent loop
through global position embedding. It is worth noting that
the 2D and 3D trajectories are not updated via bundle ad-
justment; instead, the entire system is primarily driven by
SyncFormer. As shown in Fig. 4, the reprojection errors
decrease rapidly over iterations, while the 2D trajectories
gradually become consistent with the 3D projections trans-
formed by camera motion.

3.3. Training

Training Datasets. Our model is trained on a large collec-
tion of 17 datasets, each providing different forms of super-
vision. The training data can be broadly categorized into
three types: (1) Posed RGB-D with tracking annotations,

(2) Posed RGB-D, (3) Pose-only or unlabeled data. For (1)
containing Kubric [21], PointOdyssey [96] and Dynamic
Replica [31], we add the full supervisions of camera poses,
video depth, dynamic segmentation and 2D, 3D tracking.
Within category (2), including VKITTI [7], TartanAir [80],
Spring [53], DL3DV [44], BEDLAM [6], MVS-Synth [28],
CO3Dv2 [61], COP3D [65], WildRGBD [83], Scan-
Net++ [12] and OmniObject3D [82], we leverage depth su-
pervision to improve the video depth estimator. In addi-
tion, joint training losses are applied to ensure that the 3D
tracking remains consistent with the estimated depth. As
for category (3), it includes HOI4D [46], Ego4D [20], and
Stereo4D [30]. For this type of data, we apply camera loss
and joint training losses here, and follow [9] by using a
monocular depth model [78] as a teacher to preserve rel-
ative depth accuracy. It is worth noting that Stereo4D [30]
provides only very sparse depth on valid 3D tracks. There-
fore, we choose not to use its annotations and instead treat
it as pose-only data, given that it is sourced from Internet
videos with rich scene diversity.

Implementation details. Our training recipe consists of
several stages. Stage 1. We first train the front end model
to jointly estimate video depth and camera poses on cat-
egory (1) and (2) datasets which sums up to 14 datasets.
Training is conducted with mixed BF16 precision, while
the DPT and camera tracker modules use full precision to
ensure stable optimization. We use the AdamW optimizer
with a learning rate of 5 x 1075 and apply gradient clip-
ping with a threshold of 0.1. Stage 1 training is performed
for 200k iterations on 64 H20 GPUs. We shuffle the video
length from 1-24 during the training. Stage 2. At this stage,
we initialize SyncFormer using the category (1) datasets,
where ground-truth depth is provided and camera poses are
initialized as identity matrices. We load the Cotracker3 [32]
checkpoint to initialize the 2D tracking branch. This stage
training takes 3 days of 100k iterations on 8 H20 GPUs.
The video length is shuffle from 12-48 during the training.
Stage 3. Finally, we fixed the alternation-attention layers in
front end and train the whole pipeline in all datasets for 20
hours to converge.

4. Experiments

We evaluate our model across all sub-tasks, including
3D tracking (Sec. 4.1), and dynamic 3D reconstruction
(Sec. 4.2). In addition, we conduct comprehensive abla-
tion studies (Sec. 4.3) to analyze the impact of key de-
sign choices and to demonstrate the effectiveness of unified
modeling and scaling up training.

4.1. 3D Point Tracking

Dataset. We evaluate our model and compare it with exist-
ing baselines on TAPVid-3D [37], a comprehensive bench-
mark spanning diverse scenarios including Driving, Ego-



Table 1. 3D tracking results on the TAPVid-3D benchmark. We report the 3D Average Jaccard (AJ), Average 3D Position Accuracy
(APD3p), and Occlusion Accuracy (OA) across the Aria, DriveTrack, and PStudio subsets. offf™ and offi~ denote our offline model
with/without considering the camera motion, respectively. COL, Univ2, and Mega are abbreviations for COLMAP, UnidepthV2, and

MegaSAM. The best and the second best are highlighted.

Methods Type Depth / Aria DriveTrack PStudio Average

P CamPose | AJT APD3pt OAT | AJt APD;pt OA?T | AIT APDspT OA1 | AIT APDspT OAT
BootsTAPIR | Type I COL 9.1 14.5 78.6 | 11.8 18.6 838 | 69 11.6 81.8 | 93 14.9 81.4
TAPTR Type [ Univ2 15.7 24.2 87.8 | 124 19.1 848 | 73 13.5 843 | 11.8 18.9 85.6
LocoTrack Type [ Univ2 15.1 24.0 835 | 13.0 19.8 828 | 72 13.1 80.1 | 11.8 19.0 82.3
COL 8.0 12.3 786 | 11.7 19.1 81.7 | 8.1 13.5 772 | 93 15.0 79.1
CoTracker3 Type I Univ2 15.8 24.4 889 | 135 19.9 87.1 | 92 13.8 842 | 12.8 19.4 86.7
Mega 20.4 30.1 89.8 | 14.1 20.3 885 | 17.4 272 85.0 | 173 25.9 87.8
SvatialTracker | Tyve 11 Univ2 13.6 20.9 90.5 | 83 14.5 828 | 8.0 15.0 75.8 | 10.0 16.8 83.0
p P Mega | 159 238  90.1 | 7.7 135 852 | 153 252 78.1 | 130 208 845

SceneTracker | Type II Univ2 - 23.1 - 6.8 - - 12.7 - - - 14.2 -
DELTA Type 11 Univ2 16.6 24.4 86.8 | 14.6 22.5 858 | 82 15.0 764 | 13.1 20.6 83.0
o _ Tyve 11 Univ2 18.6 26.3 90.8 | 16.4 24.3 902 | 18.1 27.6 86.7 | 17.7 26.0 89.2
urs-offt M Mega | 223 322 937 | 158 230 900 | 182 286 873 | 187 279 905
TAPIP3D | Typelll | Mega | 235 328 912 | 149 218 826 | 181 277 855 | 188 274 86.4
Ours-offf* Tyoeqp | Mega | 247 35.2 939 | 16.0 23.4 90.1 | 18.6 28.7 86.1 | 19.8 29.1 90.0
59 P Full-ours | 24.6 34.7 93.6 | 17.6 26.1 90.8 | 21.9 321 874 | 21.2 31.0 90.6

Table 2. Video depth evaluation. Type I represents the methods specialized in video depth estimation, while Type II are neural re-
construction model, jointly recovering the geometry and camera motion from the video. Type III denotes the SoTA optimization-based

method. The best and the second best results are highlighted.

Method / Metrics Average KITTI[19] TUM Dyn [66] Bonn [59] Sintel [52]
AbsRel () d1.25 (1) | AbsRel (1)  d1.05 (1) | AbsRel () d1.25 (1) | AbsRel (1) 125 (1) | AbsRel () 1.5 (1)

DepthCrafter [27] 0.143 0.857 0.111 0.885 0.123 0.873 0.066 0.979 0.272 0.693
VDA [9] 0.154 0.882 0.080 0.951 0.118 0.920 0.049 0.982 0.370 0.674
DUSt3R [79] 0.240 0.766 0.124 0.849 0.187 0.792 0.174 0.835 0.475 0.591
MonST3R [91] 0.171 0.802 0.083 0.934 0.197 0.726 0.061 0.954 0.343 0.594
CUT3R [77] 0.186 0.814 0.104 0.899 0.108 0.847 0.068 0.950 0.466 0.560
VGGT [74] 0.104 0.881 0.051 0.966 0.068 0.939 0.056 0.963 0.242 0.659
MegaSAM [74] ‘ 0.093 0.894 0.069 0.916 ‘ 0.081 0.935 ‘ 0.037 0.977 0.185 0.746
Ours | 0.081 0910 | 0.052 0.973 | 0.045 0976 | 0.028 0.988 | 0.199 0.703

centric, and Studio. This benchmark consists of 4,569 eval-
uation videos, where the video length varies from 25 to 300
frames, and three 3D point tracking metrics are reported.
Specifically, Occlusion Accuracy (OA) measures the pre-
cision of occlusion predictions; APD;p denotes the aver-
age percentage of estimated errors within multiple threshold
scales §; and Average Jaccard (AJ) quantifies the accuracy
of both position and occlusion estimation.

Baselines and Settings. The existing baselines can
be broadly categorized into three types. Type I: 2D
trackers followed by depth lifting. We report the cur-
rent state-of-the-art 2D tracking models, CoTracker3 [32]
and BootsTAPIR [16], as representatives of this category.
Type II: 3D trackers in camera space. We include Spa-
tialTrackerV1 [86] and DELTA [54], evaluated with two
state-of-the-art depth estimators, i.e., UnidepthV2 [60] and
MegaSAM [42]. Notably, MegaSAM is an optimization-
based SLAM system for estimating consistent video depth,

which generally performs better than feedforward models
such as UnidepthV2. To ensure fair comparisons under the
same camera-space 3D tracking setup, our 3D tracker mod-
ule is also evaluated in combination with these depth esti-
mators. Type III: 3D trackers in world space. We com-
pare our fully end-to-end model with the recently released
TAPIP3D [90], which requires consistent video depth and
camera poses as input, provided by MegaSAM. For a thor-
ough and fair comparison, we also report results where
our depth and pose estimations are replaced by those from
MegaSAM.

Quantitative Results and Analysis. In the TAPVid-3D
benchmark, our method achieves the best results across var-
ious settings, consistently outperforming all baselines un-
der comparable conditions as in Tab. 1. From those detailed
comparisons, we can draw several conclusions from it.

* Better depth estimation is crucial for 3D tracking: For
Type I methods, the 3D tracking performance largely re-



Figure 5. Fused Point Clouds, Camera Poses, and 3D Point
Trajectories. We visualize the fused point clouds reconstructed
from our video depth and camera poses, along with long-term 3D
point trajectories in world space.

Ry ar .. % Y

— & \ i " el T ¥ 0N ".U.? o

: & ﬁ"‘?& 97 gt wf«\‘.
] B ‘«'\Q ¢ ’:“\

VGGT SpatialTrackerV2

Figure 6. Qualitative Comparisons on Internet Videos. To as-
sess generalization, we compare our method with VGGT [74] on
challenging Internet videos.

flects the accuracy of the underlying 2D tracks and the
associated depth predictions. Intriguingly, CoTracker3 +
MegaSAM achieves substantial improvements over Co-
Tracker3 + UniDepthV2, with 17.3 vs. 12.8 in AJ, 25.9
vs. 19.4 in APDs3p, and 87.8 vs. 86.7 in OA. This
represents the best performance among Type I meth-
ods. However, our method Ours-offl—, which uses the
weaker depth estimator UniDepthV2, still outperforms
CoTracker3 with MegaSAM, achieving 18.7 vs. 17.3 in
Al and 27.4 vs. 25.9 in APD3p. This is because Type
I methods rely purely on back-projection, making them
more sensitive to depth inconsistencies. In contrast, our
method directly predicts 3D trajectories using a spatial-

temporal transformer, which provides inherent temporal
smoothness and robustness to noisy inputs.

¢ Camera motion decomposition improves 3D track-
ing: As shown in the comparison between Ours-offl
+ MegaSAM and Ours-offiT + MegaSAM, incorporat-
ing camera pose estimation clearly improves 3D track-
ing accuracy. For example, on the Aria subset, our
method achieves 24.7 vs. 22.3 in AJ and 35.2 vs. 32.2
in APD3sp. This improvement is largely due to the de-
sign of the TAPVid-3D benchmark, which includes a sub-
stantial number of background points for evaluation in
Aria. These background points primarily reflect camera
motion and are particularly challenging for methods that
only track in camera space, especially due to frequent
out-of-view scenarios. In DriveTrack and Pstudio, the
improvements are less, as DriveTrack includes only dy-
namic points on moving vehicles, while Pstudio contains
static scenes with no camera motion.

¢ Conclusion: Our systematic experiments strongly vali-
date our core insight: decomposing 3D point tracking
into video depth and camera pose estimation not only
enhances each component individually, but also leads to
significantly more accurate and robust 3D tracking as a
whole, as shown in Fig. 5.

4.2. Dynamic 3D Reconstruction
4.2.1. Video Depth Evaluation

Datasets. To illustrate the effectiveness and generaliza-
tion ability of our method, we evaluate our video depth
estimation method across four mainstream datasets, i.e.,
KITTI [19], Sintel [52], Bonn [59], TUM Dynamics [66].
These datasets encompass both indoor and outdoor scenes,
featuring video sequences ranging from 50 to 110 frames,
providing a comprehensive benchmark for assessing depth
estimation consistency across varied environments.
Baselines. We compare our approach against three cate-
gories of methods. Type I includes SoTA video depth meth-
ods, DepthCrafter [27] and Video Depth Anything [87].
Type II consists of SoTA deep reconstruction approaches,
i.e. DUST3R [79], MonST3R [91], CUT3R [77] and
VGGT [74] Type III denotes the SOTA dynamic Structure-
from-Motion (SfM) system, MegaSAM [42]. It leverages
an optimization-based paradigm to jointly estimate consis-
tent video depths and camera poses, with constraints en-
forced by optical flow and monocular depth priors.
Metrics. We evaluate the performance of video depth esti-
mation using geometric accuracy metrics. To ensure fair
comparisons with previous works [9, 77, 91], we follow
their approach by aligning the predicted video depth to the
ground truth using a shared scale and shift, and then com-
pute the Absolute Relative Error (AbsRel) and §; metrics.
Quantitative Results. As shown in Tab. 2, our method
clearly outperforms all existing approaches. Specifically,



Table 3. Evaluation on Camera Pose Estimation on TUM-
dynamic [66], Lightspeed [12], and Sintel [52]. All values are
absolute trajectory error (ATE), relative pose error (RPE) for trans-
lation and rotation. The best and the second best are highlighted.

Method TUM-dynamic Lightspeed Sintel
(ATE/RPE, /RPE,) (ATE/RPE,/RPE,) (ATE/RPE;/RPE,)
Particle-SfM [95] - 0.185/0.075/2.990 0.129/0.031/0.535
Robust-CVD [36] | 0.153/0.026 /3.528 -/-/- 0.360/0.154/3.443
CasualSAM [94] | 0.071/0.010/1.712 —/=/- 0.141/0.035/0.615
DUST3R [79] 0.140/0.106/3.286 0.412/0.177/20.100 0.290/0.132/7.869
CUT3R [77] 0.046/0.015/0.473  0.274/0.067 /1.561  0.213/0.066/ 0.621
MonST3R [91] 0.098/0.019/0.935 0.149/0.046/1.210 0.078/0.038 /0.490
VGGT [74] 0.021/0.0137/0.327 0.226/0.086/1.729  0.082/0.043 /1.253
MegaSAM [42] | 0.013/0.011/0.340 0.105/0.040/0.996 0.023 / 0.008 / 0.060
Ours-Front 0.038/0.022/0.480 0.203/0.079/1.689 0.075/0.045/0.805
Ours 0.012/0.010/0.305 0.134/0.039/1.340 0.054/0.027 / 0.288

we surpass our baseline in Type II, VGGT [74], by a sig-
nificant margin. On average, our method achieves an Ab-
sRel of 0.081 compared to 0.104 (—22.1%), and a §; 25 of
0.910 compared to 0.881 (4+3.3%). Besides, compared to
MegaSAM (Type III), our method also maintain clear ad-
vantages with 0.081 v.s. 0.093 in AbsRel, and 0.910 v.s.
0.894 in 7 5. It is important to note that MegaSAM [42]
usually needs 5-10 min for a 100 frames video, while our
method only takes 5-10 seconds for each which nearly
achieves 50 x faster.

4.2.2. Camera Poses

To evaluate the accuracy of camera motion estimation, we
conduct the comparisons on Sintel [52], TUM Dynam-
ics [66], and Lightspeed [62]. Sintel and Lightspeed con-
tains numerous challenging dynamic scenes with large ego-
motion and object motions, and they are both the synthetic
data. TUM Dynamics [66] is a real data, captured by well-
calibrated RGBD sensors. We report Absolute Translation
Error (ATE), Relative Rotation Error (RPE rot) and Rela-
tive Translation Error (RTE) after Sim(3) alignment with
the ground truth, as in [77, 91]. Shown in Tab. 3, our method
outperforms all regression-based methods, much better than
our baseline, VGGT [74] and on par with MegaSAM [42].
Besides, the table illustrates the significance of back end
optimization. After joint motion optimization, the pose es-
timations become nearly twice accurate than before.

4.2.3. Internet Videos.

We present further qualitative comparisons with VGGT [74]
on diverse Internet videos. As illustrated in Fig. 6, our
method achieves more consistent depth and accurate camera
poses, showcasing superior generalization.

4.3. Ablation Analysis

Our ablation study investigates the impact of training data,
joint training, and the SyncFormer design on 2D and 3D
point tracking. For depth estimation, we analyze different

(b) w/o Joint  (c) w/ Joint  (d) w/o Joint  (e) w/ Joint

(a) Query

Figure 7. The influence of Joint Training.

Table 4. TAP-Vid DAVIS results. Cotracker3-3D is a fine-tuned
model by adding simple 3D project layer. Mean represents the
average of AJ and 6.

Method Lift 3D Al T 6;;‘,; T OAT Mean?
TAPTR X 63.0 76.1 9l1.1 69.5
LocoTrack X 629 753 872 69.1
CoTracker3 X 644 769 91.2 70.7
DELTA 3D-Dec 62.7 767  88.2 69.7
SpatialTracker ~ Tri-plane 61.1 763 895 68.7
CoTracker3-3D  3D-Proj 516 652 853 58.4
Ours SyncFormer 649 77.5 91.0 71.2

loss functions and training strategies to improve the gener-
alizability of video depth prediction.

3D Point Tracking. To illustrate the gains brought by
scaling up the 3D point tracking to a wider range of
data, we naively train a base model (Base@K in Table 5),
and an advanced one, Base @V K,P, which is trained on
VKITTI, Kubric, and PointOdyssey. As the table shows,
Base@V,K,P outperforms Base@K by a clear margin.
Meanwhile, our final version is clearly better than these two.
Besides, different from Base@K, Base@V,K,P is jointly
trained on VKITTI, which brings very significant improve-
ments on a similar type of real data: DriveTrack shows 14.7
vs. 7.4 in AJ and 21.9 vs. 13.3 in APD3p. Fig. 7 qualita-
tively demonstrates the meaning of joint training, i.e., joint
training contributes to minimizing the 3D tracking drifts
when the model is trained on new patterns of data.

2D Point Tracking. We report a naive alternative to
SyncFormer by modifying the final output layer of Co-
Tracker3 [33] to output 2D and 3D tracking. The 2D and 3D
embeddings are directly concatenated and projected back to
the original dimension using an inserted, learnable linear
layer. We name this naive baseline as Cotracker3-3D. As
shown in Tab. 4, a simple adaptation of 3D lifting leads to
a significant drop in 2D tracking accuracy—AJ drops from
64.4t0 51.6, ¢ from 76.9 to 65.2, and OA from 91.2 to 85.3.
This degradation occurs because the 2D and 3D correlation
signals become entangled, disrupting the model’s ability to
focus on reliable features. Moreover, the update dynamics
in 2D and 3D differ substantially, as they occur in separate
spaces—UVD space for 2D and camera space for 3D. We
also report comparisons with other 3D lifting techniques.
These results validate our SyncFormer design, which effec-
tively lifts tracking into 3D while preserving—or even im-



proving—accuracy in 2D.

Depth Estimation. We ablate different training datasets
and their coverage to assess their impact on model perfor-
mance. Additionally, we study the influence of different
loss functions applied to real data, i.e., the pearson loss and
full depth losses. As shown in Tab. 2, if we applied the full
losses for depth will cause the obvious performance drop in
the synthetic data, i.e. Sintel. On the contrary, if we only
used the synthetic data to train the model, we found the per-
formance in the real dataset, especially KITTI will heavily
drop. Therefore, we leverage the strategy of using differ-
ent losses for real and synthetic data to offset the influence
of domain gap and different errors distribution. As shown
in Tab. 2, Ours-Synthetic is our method trained only on the
synthetic datasets. Ours-Real-Full is our method using the
full depth loss in the real data, where the model was in-
fluenced by the noised distributions in the real dataset. The
noised of real data has the negative influence on the model’s
influence on the synthetic data. Meanwhile, the different er-
rors pattern also worsen the model’s zero-shot capabilities
in the real data.

Table 5. Ablation of Training Data and Joint Training. K, V,
P represents Kubric [21], VKITTI [7] and PointOdyssey [96] in
training. Inference depths are provided by Unidepthv2.

Method Joint Aria DriveTrack PStudio
ethe Training | A]  APDsp | Al APDsp | Al APDsp
Base@K No 16.0 24.4 74 133 12.6 203
Base@V, K, P Yes 15.7 24.1 14.7 21.9 17.2 27.4

5. Conclusion

This work introduces SpatialTrackerV2, a feedforward,
scalable, and state-of-the-art approach for 3D point track-
ing in monocular videos. Built upon a deep exploration of
widely-used low- and mid-level representations of motion
and scene geometry, our method unifies consistent scene
geometry, camera motion, and pixel-wise 3D motion into
a fully differentiable end-to-end pipeline. SpatialTrack-
erV2 accurately reconstructs 3D trajectories from monoc-
ular videos, achieving strong quantitative results on public
benchmarks and demonstrating robust performance on ca-
sually captured Internet videos. We believe SpatialTrack-
erV2 establishes a solid foundation for real-world motion
understanding and brings us a step closer to physical intel-
ligence by exploring large-scale vision data.
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