
Efficient Bayesian Learning Curve Extrapolation
using Prior-Data Fitted Networks

Steven Adriaensen
University of Freiburg

adriaens@cs.uni-freiburg.de

Herilalaina Rakotoarison
University of Freiburg

rakotoah@cs.uni-freiburg.de

Samuel Müller
University of Freiburg

muellesa@cs.uni-freiburg.de

Frank Hutter
University of Freiburg

Bosch Center for Artificial Intelligence
fh@cs.uni-freiburg.de

Abstract

Learning curve extrapolation aims to predict model performance in later epochs of
a machine learning training, based on the performance in the first k epochs. In this
work, we argue that, while the varying difficulty of extrapolating learning curves
warrants a Bayesian approach, existing methods are (i) overly restrictive, and/or
(ii) computationally expensive. We describe the first application of prior-data
fitted neural networks (PFNs) in this context. PFNs use a transformer, pre-trained
on data generated from a prior, to perform approximate Bayesian inference in a
single forward pass. We present preliminary results, demonstrating that PFNs can
more accurately approximate the posterior predictive distribution multiple orders
of magnitude faster than MCMC, as well as obtain a lower average error predicting
final accuracy obtained by real learning curve data from LCBench.

1 Introduction

Learning curve extrapolation [Domhan et al., 2015, Gargiani et al., 2019] aims to predict how much a
machine learning model will improve with more training data, e.g., to determine how much more
training data to collect [Cortes et al., 1993, Frey and Fisher, 1999, Kolachina et al., 2012], or to
define an early-stopping criterion in online learning [Yao et al., 2007], and has recently been widely
studied as a speed up technique of automated machine learning and hyperparameter optimization of
deep neural networks [Swersky et al., 2014, Domhan et al., 2015, Klein et al., 2017, Wistuba et al.,
2022]. Despite these efforts, learning curve extrapolation is yet to be widely adopted in practice, e.g.,
state-of-the-art multi-fidelity hyperparameter optimization techniques, like BOHB [Falkner et al.,
2018], still rely on successive halving [Li et al., 2017], i.e., the crude heuristic that learning curves
mostly do not cross. One reason is that, while many learning curves are well-behaved, some exhibit
chaotic behavior and are intrinsically difficult to accurately predict [Choi et al., 2018]. In this setting,
Bayesian approaches [Mockus et al., 1978], predicting the reliability of the extrapolation, show
great potential. However, existing methods for Bayesian inference either (i) put strong restrictions
on the prior, and are incapable of modeling the variable nature of learning curves, or (ii) are too
computationally expensive, limiting their practical applicability.

In this work, we investigate the potential of learning curve extrapolation using prior-data fitted
networks (PFNs), a meta-learned approximate Bayesian inference method proposed by Müller et al.
[2022]. PFNs combine great flexibility with efficient and accurate approximation of the posterior
predictive distribution (PPD) in a single forward pass of a transformer [Vaswani et al., 2017] trained

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.

on artificial data from the prior only. In particular, we compare PFNs to the MCMC approach
of Domhan et al. [2015] in terms of the quality and cost of PPD approximation.

2 Methods

2.1 Bayesian inference using prior-fitted networks (PFNs)

Prior-data fitted networks (PFNs, Müller et al., 2022) are neural networks trained to perform approxi-
mate Bayesian prediction for supervised learning settings. That is, PFNs are trained to predict some
output y ∈ R (in our case algorithm performance), conditioned on an input (in our case the epoch
t ∈ {1, . . . ,m}) and a training set of given input-output examples (in our case the learning curve up
to some cutoff point T ′, D = {(t′, yt′)}T

′

t′=1). The PFN is trained for this task with samples obtained
from a pre-defined prior distribution p, i.e., D ∼ p(D), described in the next section. The loss function
for training a PFN qθ with parameters θ is the cross entropy ℓθ = E(t,y)∪D∼p(D)[−log qθ(y|t,D)]
for predicting the hold-out example's label y. Müller et al. [2022] proved that minimizing this loss
over many sampled tasks (D, t, y) directly coincides with minimizing the KL divergence between
the PFN’s predictions and the true PPD. In essence, the PFN meta-learns to perform approximate
posterior inference on (meta-train) synthetic tasks sampled from the prior, and at inference time also
does so for a (meta-test) real task.

2.2 Defining a prior over learning curves

Let yt ∈ [0, 1] represent the model accuracy at training step t ∈ {1, . . . ,m}. Following Domhan
et al. [2015], we model y as a linear combination of K basis growth curves fk, each parameterized
by θk, and i.i.d. additive Gaussian noise with variance σ2, i.e.,

yt ∼ N (fcomb(t|ξ), σ2) with fcomb(t|ξ) =
K∑

k=1

wk · fk(t|θk),

where we assume our model parameters ξ = (w1, . . . , wK ,θ1, . . . ,θK , σ2) to be random variables
with prior p(ξ). Here, Domhan et al. [2015] assumed an uninformative prior (i.e., p(ξ) ∝ 1), with
exception of some hard constraints. We adopt a strictly more informative prior, because (i) the
original prior puts almost all probability mass on parameterizations yielding invalid learning curves,
e.g., yt /∈ [0, 1]; and (ii) we cannot practically sample from this prior having unbounded support, a
requirement for PFNs.1 Concretely, our prior distribution takes the form:

p(ξ) ∝

(
K∏

k=1

p(wk) · p(θk)

)
·p(σ2)·1(fcomb(1|ξ) < fcomb(m|ξ))·

(
m∏
t=1

1(fcomb(t|ξ) ∈ [0, 1])

)
,

with log(σ2) ∼ N (−4, 1) and log(wk) ∼ U(log(R)
(1−R)K , R log(R)

(1−R)K) to satisfy E[wk] =
1
K and impose

wk

wk′
≤ R = 100 as upper bound for the weight ratio. Finally, we limit ourselves to three basis curves

(K = 3, see Table 1). These basis curves were chosen to capture a variety of growth trends and
convergence behavior. See Figure 3 in Appendix A.2 for examples of curves sampled from this prior.

Table 1: Formulas of the three parametric basis curves and priors over their parameters
Reference name Formula fk(x) Prior p(θk)

Janoschek α− (α− β)e−κxδ

α, β ∼ U(0, 1.5) κ ∼ U(0, 1)
log(κ) ∼ N (−2, 1) log(δ) ∼ N (0, 0.5)

ilog2 c− a
log(x+1) c ∼ U(0, 1.5) a ∼ U(0, 1)

pow3 c− ax−α c ∼ U(0, 1.5) a ∼ U(0, 1) log(α) ∼ N (0, 2)

1Note that the probability density of p(yt) is well-defined, a requirement for MCMC, but not for PFNs.

2

Figure 1: Extrapolation from 20 to 100 epochs Figure 2: Quality of PPD approximations

3 Experiments

In our experiments, we aim to test the hypothesis that PFNs present a practical Bayesian approach to
learning curve extrapolation. To this end, we compare against the MCMC approach of Domhan et al.
[2015], using the same prior.2 All experiments use the same PFN, a medium sized transformer (see
Appendix A.1) pre-trained on 10M samples from the prior (PFN_10M). To show the effect of PFN
training, we also include PFN checkpoints in our comparison that were trained on only 100K and 1M
samples (PFN_100k, PFN_1M). For MCMC, we reuse the original code3 with modification of the
prior described in Section 2.2. We use the original hyperparameters (e.g., 500 burn-in, 100 walkers),
but analyse the effect of varying chain length, originally 2 500 (MCMC_2500).

Quality of predictions: We first test how well PFNs and MCMC are able to approximate the
posterior predictive distribution (PPD). Note that since both are (approximate) Bayesian inference
methods, using the same prior, they should approximate the same target PPD, given an initial learning
curve. To avoid artifacts due to out-of-distribution data, we use curves sampled from the prior in this
experiment. We further vary the cutoff to analyse how both methods perform given more/less data
and shorter/longer horizons. Figure 1, shows one of these curves, and inferences using PFN_10M
and MCMC_2500 given the data of the first 20 epochs (cutoff). We observe that both predicted mean
and uncertainties (two-sided 90% ci) are indeed similar. More inference examples, with different
cutoffs can be found in Figure 4, in Appendix A.2.

We can measure the quality of inference as the likelihood of hold-out prior data under the in-
ferred PPD. This metric measures the cross-entropy to the true posterior, up to a constant, as
E(t,y)∪D∼p(D)[−log q(y|t,D)] = Et,D[KL(p(·|t,D), qθ(·|t,D))] + Et,D[H(·|t,D)] [Müller et al.,
2022]. Figure 2 shows the average log-likelihood across PFN/MCMC inferences for different cutoffs
of the same 1 000 curves taken from the prior. We observe that PFN_10M dominates all other
approaches, for all cutoffs. We clearly see the benefit of training the PFN longer, since PFN_100K
performed worst overall. The MCMC method is more competitive on larger cutoffs, and MCMC
performance on shorter cutoffs can be somewhat improved by increasing the chain length.

Cost of predictions: Table 2 shows the log-likelihood, as well as the average computational
cost (measured as wall-clock time on a single Intel(R) Xeon(R) Gold 6242 CPU) of the same
1 000 inferences, for each method and cutoff. We find that PFN_10M achieves a superior PPD
approximation roughly 15 000 times faster than the most accurate (MCMC_4500) and 2 500 times
faster than the fastest MCMC method (MCMC_520) in our comparison. For MCMC, the cost and
quality of inference increases with growing chain length and cutoff. For PFNs, the inference time is
the same for all checkpoints. Note that training the PFN on 10M samples from the prior took less than
four hours (single CPU, single RTX2080 GPU) and is a one time cost across all of our experiments.

Predicting real learning curves: While evaluation on data from the prior gives us a controlled
setting to analyse quality/cost of PPD approximation, performance on real-world learning curves is
obviously essential for practical usefulness. Please note that we are interested in relative MCMC/PFN

2https://github.com/automl/lc-pfns (data and code generating figures in this section)
3https://github.com/automl/pylearningcurvepredictor

3

https://github.com/automl/lc-pfns
https://github.com/automl/pylearningcurvepredictor

Table 2: Comparison of PFN_ and MCMC_ variants on prior dataset. See Table 4 for all results.
Cutoff=10 Cutoff=20 Cutoff=40

LL Time LL Time LL Time

MCMC_520 1.7 ± 0.85 100 ± 22 2.1 ± 0.99 106 ± 22 2.3 ± 0.91 107 ± 27
MCMC_1000 1.8 ± 0.86 162 ± 37 2.1 ± 0.98 172 ± 37 2.4 ± 0.92 174 ± 45
MCMC_2500 1.8 ± 0.91 350 ± 83 2.1 ± 1.0 369 ± 83 2.4 ± 0.93 374 ± 99
MCMC_4500 1.8 ± 0.94 598 ± 144 2.2 ± 1.0 626 ± 141 2.4 ± 0.93 633 ± 168
PFN_100k 1.7 ± 0.87 0.0393 ± 0.0007 1.9 ± 0.71 0.0393 ± 0.0008 2.0 ± 0.61 0.0393 ± 0.0007
PFN_1M 1.9 ± 0.95 0.0390 ± 0.0008 2.2 ± 0.92 0.0389 ± 0.0006 2.4 ± 0.86 0.0390 ± 0.0008
PFN_10M 1.9 ± 0.94 0.0400 ± 0.0008 2.2 ± 0.92 0.0401 ± 0.0009 2.4 ± 0.92 0.0400 ± 0.0008

Table 3: Comparison of PFN_10M and MCMC_2500 on LCBench. See Table 5 for all results.
Cutoff=5 Cutoff=10 Cutoff=20

MSE Time MSE Time MSE Time

MCMC_2500 2.18e-03 ± 0.01 85 ± 19 2.95e-04 ± 0.00 88 ± 27 8.01e-05 ± 0.00 95 ± 30
PFN_10M 1.26e-03 ± 0.00 0.0091 ± 0.0009 2.52e-04 ± 0.00 0.0091 ± 0.0008 5.24e-05 ± 0.00 0.0091 ± 0.0007

performance here, since absolute performance is strongly affected by the choice of prior. To this
end, we applied PFN_10M and MCMC_2500 on validation accuracy curves from the LCBench4

benchmark, which provides learning curve data for 2000 configurations of Auto-Pytorch [Zimmer
et al., 2021] trained for 50 epochs (m = 50) on 35 OpenML [Vanschoren et al., 2014] datasets. Table 3
shows the mean squared error (MSE) on the expected a posteriori estimate and the log likelihood
of the final accuracy across 350 curves (10 per dataset) for different cutoffs. We observe that for all
cutoffs in [5, 10, 20] (see Table 5 for all results), PFN_10M obtains a lower MSE than MCMC_2500
and a higher likelihood, while again being a factor of 10 000× faster. However, MCMC_2500 has
lower MSE than PFN_10M for cutoff equal to 40.

4 Limitations and future research

While our preliminary results provide evidence of the potential of PFNs in the context of learning
curve prediction, this initial study also has many limitations, to be addressed in future research.

Empirical evaluation: We focused on approximating the PPD, and compare against a specific
MCMC approach. Future work should more extensively compare PFNs against prior-art, on more
real-world datasets, considering additional performance metrics.

Definition of the prior: For a fair comparison, reusing the original code, our prior (Section 2.2)
closely resembled the one from Domhan et al. [2015], inheriting its limitations. Future work should
further refine this prior, e.g., to model divergence, correlated non-Gaussian noise, etc.

Meta-learning: In an AutoML or HPO context, we generally have more data available than
a single partial learning curve. We may, e.g., have access to other curves on the same dataset,
their hyperparameters, and/or curves of the same method on a different dataset, and meta-features.
Previous work [E.g., Klein et al., 2017, Chandrashekaran and Lane, 2017] has explored exploiting
such information for learning curve prediction and future work should investigate the potential of
extending PFNs to this setting.

PFN limitations: PFNs are memory bound, limiting the size of the input sequence. While we are
unlikely to hit this limit in our single curve setup, this may become an issue when incorporating
meta-learning as described above. Furthermore, in this study we discovered another limitation of
PFNs. PFNs, unlike other Bayesian methods, must learn the prior from data. This implies that the
prior must be generative. Also, it suggests that high entropy priors may present challenges. Future
research should investigate these limitations and how to overcome them.

4https://github.com/automl/LCBench

4

https://github.com/automl/LCBench

Acknowledgments and Disclosure of Funding

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under grant number 417962828. Robert Bosch GmbH is also acknowledged for financial
support. We acknowledge funding by European Research Council (ERC) Consolidator Grant “Deep
Learning 2.0” (grant no. 101045765). Funded by the European Union. Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union or
the ERC. Neither the European Union nor the ERC can be held responsible for them.

5

References
Akshay Chandrashekaran and Ian R Lane. Speeding up hyper-parameter optimization by extrapolation of

learning curves using previous builds. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 477–492. Springer, 2017.

Daeyoung Choi, Hyunghun Cho, and Wonjong Rhee. On the difficulty of dnn hyperparameter optimization
using learning curve prediction. In TENCON 2018-2018 IEEE Region 10 Conference, pages 0651–0656.
IEEE, 2018.

Corinna Cortes, Lawrence D Jackel, Sara Solla, Vladimir Vapnik, and John Denker. Learning curves: Asymptotic
values and rate of convergence. Advances in neural information processing systems, 6, 1993.

T. Domhan, J. Springenberg, and F. Hutter. Speeding up automatic Hyperparameter Optimization of deep neural
networks by extrapolation of learning curves. In Q. Yang and M. Wooldridge, editors, Proceedings of the
24th International Joint Conference on Artificial Intelligence (IJCAI’15), pages 3460–3468, 2015.

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient Hyperparameter Optimization at scale. In J. Dy
and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning (ICML’18),
volume 80, pages 1437–1446. Proceedings of Machine Learning Research, 2018.

Lewis J Frey and Douglas H Fisher. Modeling decision tree performance with the power law. In Seventh
International Workshop on Artificial Intelligence and Statistics. PMLR, 1999.

M Gargiani, A Klein, S Falkner, and F Hutter. Probabilistic rollouts for learning curve extrapolation across
hyperparameter settings. In 6th ICML Workshop on Automated Machine Learning, 2019.

A. Klein, S. Falkner, J. Springenberg, and F. Hutter. Learning curve prediction with Bayesian neural networks.
In Proceedings of the International Conference on Learning Representations (ICLR’17), 2017. Published
online: iclr.cc.

Prasanth Kolachina, Nicola Cancedda, Marc Dymetman, and Sriram Venkatapathy. Prediction of learning curves
in machine translation. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 22–30, 2012.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based configuration
evaluation for Hyperparameter Optimization. In Proceedings of the International Conference on Learning
Representations (ICLR’17), 2017. Published online: iclr.cc.

I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In Proceedings of the
International Conference on Learning Representations (ICLR’17), 2017. Published online: iclr.cc.

J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum. Towards
Global Optimization, 2(117-129), 1978.

S. Müller, N. Hollmann, S. Arango, J. Grabocka, and F. Hutter. Transformers can do bayesian inference. In
Proceedings of the International Conference on Learning Representations (ICLR’22), 2022. URL https:
//openreview.net/forum?id=KSugKcbNf9. Published online: iclr.cc.

K. Swersky, J. Snoek, and R. Adams. Freeze-thaw Bayesian optimization. arXiv:1406.3896 [stats.ML], 2014.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine learning. 15(2):
49–60, 2014.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin. Attention
is all you need. In I. Guyon, U. von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Proceedings of the 30th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’17). Curran Associates, Inc., 2017.

Martin Wistuba, Arlind Kadra, and Josif Grabocka. Dynamic and efficient gray-box hyperparameter optimization
for deep learning. arXiv preprint arXiv:2202.09774, 2022.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning. Construc-
tive Approximation, 26(2):289–315, 2007.

L. Zimmer, M. Lindauer, and F. Hutter. Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:3079 – 3090, 2021.

6

iclr.cc
iclr.cc
iclr.cc
https://openreview.net/forum?id=KSugKcbNf9
https://openreview.net/forum?id=KSugKcbNf9
iclr.cc

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 4
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do

not anticipate any negative societal impacts resulting directly from this work. Note
that the transformers we use are very small (± 50Mb storage) and relatively cheap to
train (a couple of hours on a single CPU/GPU). In fact, if any, we expect a positive
environmental impact, reducing the computational resources required to do (automated)
machine / deep learning adopting efficient learning curve extrapolation methods.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [No] We link a
repository containing the data and code used to generate the plots in Section 3. This
does not include the models or code used for training, which we will release upon
publishing the full paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specified the most crucial aspects in Sections 2.2, 3, A.1.
Note: We specify deviations from Domhan et al. [2015], for more details we refer to
the original work and code.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report mean and standard deviations (sample sizes
are given in text).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 3

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We used an existing
benchmark LCBench and code of an existing MCMC method. We cite the scientific
works that introduced these assets and provide an URL to the code/data.

(b) Did you mention the license of the assets? [No] These are all public and open-source
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

No new assets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] No person data was used
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

7

Table 4: Detailed comparison of PFN_ and MCMC_ variants on prior dataset.
Cutoff=10 Cutoff=20 Cutoff=40 Cutoff=70 Cutoff=90

LL Time LL Time LL Time LL Time LL Time

MCMC_520 1.7 ± 0.85 100 ± 22 2.1 ± 0.99 106 ± 22 2.3 ± 0.91 107 ± 27 2.5 ± 0.93 108 ± 28 2.5 ± 0.95 108 ± 28
MCMC_600 1.7 ± 0.85 111 ± 25 2.1 ± 0.99 117 ± 25 2.4 ± 0.91 119 ± 30 2.5 ± 0.93 120 ± 31 2.5 ± 0.96 120 ± 32
MCMC_1000 1.8 ± 0.86 162 ± 37 2.1 ± 0.98 172 ± 37 2.4 ± 0.92 174 ± 45 2.5 ± 0.93 177 ± 48 2.5 ± 0.96 178 ± 48
MCMC_1500 1.8 ± 0.89 225 ± 53 2.1 ± 1.0 238 ± 53 2.4 ± 0.92 242 ± 63 2.5 ± 0.93 246 ± 67 2.5 ± 0.96 247 ± 68
MCMC_2500 1.8 ± 0.91 350 ± 83 2.1 ± 1.0 369 ± 83 2.4 ± 0.93 374 ± 99 2.5 ± 0.94 380 ± 106 2.5 ± 0.96 383 ± 107
MCMC_3000 1.8 ± 0.92 412 ± 98 2.1 ± 1.0 434 ± 97 2.4 ± 0.93 439 ± 116 2.5 ± 0.94 446 ± 124 2.5 ± 0.96 449 ± 126
MCMC_4500 1.8 ± 0.94 598 ± 144 2.2 ± 1.0 626 ± 141 2.4 ± 0.93 633 ± 168 2.5 ± 0.94 643 ± 180 2.5 ± 0.97 648 ± 182
PFN_100k 1.7 ± 0.87 0.0393 ± 0.0007 1.9 ± 0.71 0.0393 ± 0.0008 2.0 ± 0.61 0.0393 ± 0.0007 2.0 ± 0.6 0.0393 ± 0.0008 2.0 ± 0.61 0.0393 ± 0.0009
PFN_1M 1.9 ± 0.95 0.0390 ± 0.0008 2.2 ± 0.92 0.0389 ± 0.0006 2.4 ± 0.86 0.0390 ± 0.0008 2.4 ± 0.86 0.0389 ± 0.0006 2.4 ± 0.88 0.0390 ± 0.0007
PFN_10M 1.9 ± 0.94 0.0400 ± 0.0008 2.2 ± 0.92 0.0401 ± 0.0009 2.4 ± 0.92 0.0400 ± 0.0008 2.5 ± 0.95 0.0401 ± 0.0008 2.5 ± 0.97 0.0400 ± 0.0009

Table 5: Detailed comparison of PFN_10M and MCMC_2500 on LCBench.
Cutoff=5 Cutoff=10 Cutoff=20 Cutoff=40

MSE LL Time MSE LL Time MSE LL Time MSE LL Time

MCMC_2500 2.18e-03 ± 0.01 1.8 ± 0.69 85 ± 19 2.95e-04 ± 0.00 2.7 ± 0.62 88 ± 27 8.01e-05 ± 0.00 3.4 ± 0.7 95 ± 30 1.88e-05 ± 0.00 3.9 ± 0.65 102 ± 32
PFN_10M 1.26e-03 ± 0.00 2.2 ± 0.59 0.0091 ± 0.0009 2.52e-04 ± 0.00 3.0 ± 0.6 0.0091 ± 0.0008 5.24e-05 ± 0.00 3.6 ± 0.69 0.0091 ± 0.0007 1.19e-04 ± 0.00 4.1 ± 0.41 0.0091 ± 0.0007

A Appendix

A.1 PFN architecture and hyperparameters

We stayed very close to the original PFN architecture and setup. We used a six-layer transformer
with 4 heads, embedding size 512 and hidden size 1024. We used linear encoders for both the
input and the output encoding. We trained on 10 million learning curves with 100 steps/epochs
each. We used Adam (learning rate 0.0001, batch size 100) with cosine annealing [Loshchilov and
Hutter, 2017] and a linear warmup of 2.5 million learning curves. We sampled the cutoff epoch,
after which we predict, uniformly at random between 1 and 100. The training setup can be found in
https://github.com/automl/TransformersCanDoBayesianInference.

A.2 Additional figures

Figure 3: Sample of 10 curves taken i.i.d. from the prior (Section 2.2)

8

https://github.com/automl/TransformersCanDoBayesianInference

cutoff: 10 cutoff: 20 cutoff: 40

Figure 4: Extrapolations of different curves from the prior at 10, 20 and 40 cutoff

9

	Introduction
	Methods
	Bayesian inference using prior-fitted networks (PFNs)
	Defining a prior over learning curves

	Experiments
	Limitations and future research
	Appendix
	PFN architecture and hyperparameters
	Additional figures

