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Abstract
Challenges such as the lack of high-quality annotations, long-tailed data distributions, and
inconsistent staining styles pose significant obstacles to training neural networks to de-
tect abnormal cells in cytopathology robustly. This paper proposes a style-aligned image
composition (SAIC) method that composes high-fidelity and style-preserved pathological
images to enhance the effectiveness and robustness of detection models. Without additional
training, SAIC first selects an appropriate candidate from the abnormal cell bank based on
attribute guidance. Then, it employs a high-frequency feature reconstruction to achieve a
style-aligned and high-fidelity composition of abnormal cells and pathological backgrounds.
Finally, it introduces a large vision-language model to filter high-quality synthesis images.
Experimental results demonstrate that incorporating SAIC-synthesized images effectively
enhances the performance and robustness of abnormal cell detection for tail categories and
styles, thereby improving overall detection performance. The comprehensive quality eval-
uation further confirms the generalizability and practicality of SAIC in clinical application
scenarios. Our code will be released at https://github.com/Joey-Qi/SAIC.
Keywords: Cytopathological Diagnosis, Abnormal Cell Detection, Data Augmentation,
Image Composition

1. Introduction

Due to its non-invasive, efficient, convenient, and cost-effective advantages, abnormal cell
identification from cytopathological images has been widely applied in clinical diagnostics.
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However, traditional cytopathological screening, such as the ThinPrep Cytology Test (TCT)
relies on human experts to identify abnormal cells from gigapixel whole slide images (WSI),
which is time-consuming, tedious, and heavily dependent on the subjective expertise of
pathologists, posing challenges on scarce and imbalanced medical resources (Pan et al.,
2024). Consequently, introducing deep learning methods to address abnormal cell detection
in pathological images to improve efficiency and reduce the workload of physicians has
become a prominent research focus (Yin et al., 2024).

Collecting training sets for abnormal cell detection models faces numerous issues. First,
curating a large-scale and accurate dataset needs highly specialized expertise and substantial
labor costs. Second, the imbalanced abnormal cell distribution exhibits a typical long-tailed
characteristic, leading to performance and robustness concerns in tail categories. Lastly,
pathological images acquired from different institutions or periods often exhibit significant
differences in staining styles and image qualities, requiring robustness to handle the variation
and diversity in real-world scenarios.

One mainstream approach to addressing these issues is to introduce data augmentation.
Traditional methods like affine transformations or noise addition increase the diversity of ge-
ometric and local perturbations. However, they fail to effectively address the lack of diversity
in long-tailed categories and staining styles. With the advancement of GANs (Goodfellow
et al., 2020) and diffusion models (Ho et al., 2020), generation-based data augmentation has
gained significant attention in pathological image analysis. For example, (Hou et al., 2019)
proposed a GAN-based hybrid synthesis pipeline for generating pathological images using
predefined rules and textures. (Shen et al., 2024) explored applying parameter-efficient
fine-tuning (PEFT) techniques to customize diffusion models for synthesizing cervical cy-
topathological images. Despite their effectiveness, these methods require fine-tuning, and
thus remain constrained by data scale, distribution, and style biases. Another mainstream
strategy is to produce augmented data by composing existing foregrounds and backgrounds.
For example, Paint-by-Example (Yang et al., 2023) and ObjectStitch (Song et al., 2023) use
CLIP (Radford et al., 2021) image encoder to convert the foreground image as an embed-
ding for guidance, thus painting a semantic consistency object on the background image.
However, these methods are not specially designed for pathological diagnosis and exhibit
deficiencies in style consistency and fidelity.

This paper proposes a novel training-free Style Aligned Image Composition (SAIC)
framework, which seamlessly “injects” abnormal cells into specified locations of pathological
images while ensuring high fidelity and consistency in categories, types, areas, and staining
styles between the foreground and background. Specifically, SAIC consists of three steps:
(1) Attribute-based selection: Using prior knowledge of category, type, and area to
select candidate abnormal cells from an existing cell bank; (2) Style-aligned composition:
Performing online staining style alignment by reconstructing high-frequency details between
the abnormal cell candidates and the style reference image to ensure style consistency in the
synthesized area; (3) LVLM-based filtration: Leveraging a large visual-language model
(LVLM) to filter high-quality samples from synthesized pathological images. Experimental
results demonstrate that SAIC achieves high-fidelity, style-preserving data augmentation,
effectively enhances the detection of tail categories and rare styles of abnormal cells, and
improves overall cell detection performance.
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Figure 1: Overall pipeline of SAIC.

We summarize the contributions of this paper as follows: (1) We propose an image
composition-based data augmentation architecture for cytopathological abnormal cell de-
tection. (2) Compared to existing generation-based data augmentation methods, the pro-
posed Style Aligned Image Composition (SAIC) framework offers advantages such as being
training-free, style-aligned, and high-fidelity. (3) Extensive experimental results demon-
strate that SAIC-synthesized images effectively improve abnormal cell detection perfor-
mance, particularly for tail categories and rare staining styles, while with high-fidelity.

2. Method

Figure 1 illustrates the overall pipeline of SAIC. First, Attribute-based Selection selects
a candidate abnormal cell from an abnormal cell bank based on category, type, and area
consistency. Then, Style-aligned Composition extracts ID maps and style maps, par-
allelly producing two synthetic images with self- and background-style alignment. Finally,
LVLM-based Filtration picks the image with higher fidelity as the final output.

2.1. Attribute-based Selection

We first create an abnormal cell bank CBank that contains various abnormal cells with region
and attribute annotations, which can be easily acquired from the labeled training set. Given
a background of cytopathological image B and the target region L with the original cell
corig, we select a candidate abnormal cell ccand for composition from the cell bank CBank

according to the category m̂, type t̂ (cell/clumps) and area size â of corig:
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ccand = argminc∈CBank
|ac − â|

s.t. mc = m̂ and tc = t̂
(1)

where mc, tc, and ac represent the abnormal cell c’s category, type, and area, respectively.

2.2. Style-aligned Composition

As the candidate abnormal cell is selected, we must compose it with the background while
preserving identity and style consistency. To this end, we design a three-step process:
Identity map extraction. For identity preservation, we extract discriminative identity
features from the abnormal cell as an ID map. First, we segment the cell region with
an interactive SAM (Kirillov et al., 2023) and center-align it. Then extract the visual
feature with a DINOv2 encoder (Oquab et al., 2023), followed up with a visual-to-text
linear projection to get the ID maps FID.
Style map extraction. For style preservation, we extract the style map with high-
frequency information to incorporate style-aware detail guidance. Specifically, first, we
select a style reference cell cref from the abnormal cell bank CBank to provide high-frequency
information akin to the background’s staining style. The selection process is denoted as:

S(corig, c) =
DINOv2(corig) · DINOv2(c)

‖DINOv2(corig)‖‖DINOv2(c)‖
,

Cref = argmaxc∈Cbank
S(corig, c)

(2)

Subsequently, we extract high-frequency maps Ht and Hr for the candidate abnormal
cell and the reference cell, respectively by High-pass Filters (Kanopoulos et al., 1988).
Considering the style preservation of both the candidate cell and background, we parallelly
extract two kinds of high-frequency maps for self- and background-style alignment:

Hn =

{
Ht, self-style alignment.
α ·Ht + (1− α) ·Hr, background-style alignment

(3)

In practice, the reconstruction coefficient α is empirically set to 0.1 to keep the most im-
portant textual information of the candidate cell.

Finally, we stitch both kinds of high-frequency maps into the background and concate-
nate them with the shape mask of the composition location as inputs of a ControlNet (Zhang
et al., 2023) to generate hierarchical style maps Fstyle.
Conditioned Composition. Injecting the ID map FID and style map Fstyle into a Stable
Diffusion model (Rombach et al., 2022) to guide the composition. Specifically, FID are
integrated via cross-attention at each UNet layer for identity preservation, while Fstyle are
concatenated with decoder features at each resolution for style preservation. The latent
representation of the synthesized image is generated as follows:

zt = αtx̂θ(ε,FID,Fstyle) + σtε, (4)

where αt and σt are denoising hyperparameters, which stay aligned with the setting of
Stable Diffusion.

All the aforementioned models, including the interactive SAM segmenter, DINOv2-
based encoder and its Linear layer, ControlNet, and Stable Diffusion, directly apply the
parameters pre-trained on general datasets and do not need specific domain fine-tuning.
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Figure 2: Overview of Comparison detector Database. Figures (a) and (b) respectively
demonstrate examples of each category and their distribution in the dataset.

2.3. LVLM-based Filtration

As we produce two synthetic images with self- and background-style aligned in parallel (See
Appendix A for examples), we need to keep the more harmonized one as the final output
to raise the augmented data quality. We introduce an LVLM (GPT-4) to make the choice.
The detailed prompt setting of filtration and the LVLM’s filtration ratio of the two styled
images are shown in Appendix B.

3. Experiment

3.1. Datasets and Settings

Dataset. We conduct experiments on the Comparison Detector Database (Liang et al.,
2018), the largest public dataset for cervical cancer cell detection. This dataset comprises
7,410 cervical microscopic images with 50,447 abnormal cells across 11 categories, as illus-
trated in Figure 2. We define the categories with fewer than 500 cells as tail categories,
while the remainder are non-tail categories. The abnormal cell bank CBank is composed of
824 randomly selected abnormal cells, where each category includes 68-90 samples.
Implementation details. We evaluate data augmentation methods using two object
detectors: YOLOv8 (Varghese and Sambath, 2024) and Faster R-CNN (Ren, 2015). Models
are trained using the SGD optimizer (Ruder, 2016) with an initial learning rate of 0.01, a
momentum of 0.937, a weight decay of 0.0005, and a batch size of 8, for 150 epochs.
Evaluation metrics. We use mAP to evaluate augmentation effectiveness. Specifically,
AP50 (a strong indicator of good localization and classification scores) is calculated with an
IoU threshold of 0.5 for each category, and averaged for mAP50. Additionally, we use FID
(Heusel et al., 2017) to assess the overall realism of synthetic images, and DINOv2 Score to
evaluate the foreground fidelity.
Methods for comparison. We compare three types of data augmentation methods.
(1) Copy & Paste: A simple method by copying abnormal cells from the abnormal cell
bank, resizing and pasting them onto the specified locations in the background images.
(2) Generation-based method: We adopt GLIGEN (Li et al., 2023), an advanced diffusion
model for image inpainting, following the setting of (Shen et al., 2024), we fine-tuned on
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Table 1: Performance comparison of different methods (Best results, second best results).

Detector Method mAP50
Tail Non-tail

flora actin herps cand lsil ascus scc asch agc trich hsil

YOLOv8

Baseline 51.7 68.9 64.3 83.6 54.7 43.8 28.0 21.1 19.8 66.3 68.4 50.1
Copy & Paste 52.1 72.5 68.9 86.7 48.3 43.7 28.5 22.9 18.2 66.2 66.7 50.4
GLIGEN (CVPR 2023) 51.8 77.6 65.6 79.9 54.8 41.2 30.9 20.3 17.6 66.2 66.7 49.2
Paint-by-Example (CVPR 2023) 48.7 64.6 62.9 79.9 44.3 40.9 30.9 20.4 15.2 63.2 65.0 48.5
ObjectStitch (CVPR 2023) 50.2 69.9 66.0 84.8 47.0 40.4 30.0 17.6 17.3 64.3 65.2 49.3
SAIC (Ours) 54.8 84.4 77.5 85.8 51.7 44.3 31.5 22.8 19.6 67.6 66.9 50.7

Faster R-CNN

Baseline 59.4 72.8 78.9 83.5 68.8 60.7 43.0 31.8 23.7 69.6 67.9 52.6
Copy & Paste 59.5 70.5 77.6 83.6 73.5 59.9 44.7 35.0 22.8 68.3 66.8 51.3
GLIGEN (CVPR 2023) 59.5 76.6 77.4 82.0 79.5 57.3 42.5 32.9 19.8 69.1 66.1 50.9
Paint-by-Example (CVPR 2023) 59.1 81.4 74.7 77.2 72.3 58.2 43.8 31.0 22.7 67.6 68.4 52.7
ObjectStitch (CVPR 2023) 59.7 77.1 82.5 82.9 68.2 55.6 44.1 34.8 21.9 70.4 65.8 52.9
SAIC (Ours) 61.9 83.7 85.6 85.9 76.3 59.4 44.8 36.9 22.9 68.4 65.2 52.3

the Comparison detector Database for 50k iterations. (3) Composition-based methods: We
include Paint-by-Example (Yang et al., 2023) and ObjectStitch (Song et al., 2023), two
mainstream models that support the same input format as ours and require no additional
parameter fine-tuning.

3.2. Validation of Data Augmentation Effectiveness

We validate the effectiveness of our SAIC through its improvement in detector performance
and complement to staining styles in the training set.
Improvement in detector performance. Under identical experimental conditions of
adding 5,696 synthetic images into the initial training set, we compared the performance
improvements achieved by different augmentation methods. As shown in Table 1, SAIC
yields the best average performance improvement across both detection models, enhancing
YOLOv8 by 3.1 points and Faster R-CNN by 2.5 points. This method is especially effective
for tail categories. For example, flora achieves improvements of 15.5 points for YOLOv8
and 10.9 points for Faster R-CNN; and actinomyces (actin) gain 13.2 points for YOLOv8
and 6.7 points for Faster R-CNN.
Complement to staining styles. For the four tail categories, we use color histograms
to roughly represent their staining styles and perform t-SNE analysis on style distributions
of their training sets, augmented data, and test sets. As shown in Figure 3, SAIC effec-
tively complements the staining styles distribution in the training set, thereby enhancing
the detector’s robustness to staining variations. More investigations of data augmentation
effectiveness are shown in Appendix C.

3.3. Quality Evaluation of Augmented Image

We evaluate the quality of augmented images synthesized by SAIC through qualitative
comparisons, quantitative comparisons, and a user study.
Qualitative comparisons. As shown in Figure 4, Copy & Paste produces synthetic
images with a low informational density as it does not introduce new information. The
Generation-based method GLIGEN (Li et al., 2023) generates visually realistic images but
struggles with tail category representation and fidelity to real cells due to diffusion models’
bias toward simpler, in-distribution samples. In contrast, our SAIC synthesizes images
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Figure 3: t-SNE analysis of staining style complement on tail categories. The first/second
value of legends indicates the detection state before/after augmentation, and T/F represents
the true/false detection.

Figure 4: Qualitative comparisons across augmentation methods on flora, actin (top-2 tail
categories) and hsil (top-1 non-tail category).

with high fidelity and rich informational density, outperforming other Composition-based
methods. More examples are shown in Appendix D.
Quantitative comparisons. As shown in Table 2, compared to other composition-based
methods, our SAIC significantly excels in the overall realism of synthetic images (indicated
by FID), and achieves the highest foreground fidelity (indicated by DINOv2 Score). Al-
though the fine-tuned GLIGEN (Li et al., 2023) offers marginally better overall realism, it
falls short of preserving the fidelity of candidate cells used as the foreground, which limits its
effectiveness for downstream tasks. In contrast, our SAIC provides a balanced performance,
excelling in both aspects.
User study. We conduct a user study involving 8 experienced pathologists to evaluate
the quality of SAIC-synthesized images. Each pathologist was required to assess 50 images
(25 synthetic and 25 real) for their realism within a 30-minute timeframe. According to
the mean and standard deviation results presented in Table 3, the average accuracy of
distinguishing between real and synthetic images was 50%. And the judgment distributions
of actual real and synthetic images are consistent. The results demonstrate that the fidelity
of the synthetic images is sufficient to deceive human observers and reaffirm their high
quality in supporting cytopathological diagnostics.
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Table 2: Quantitative comparisons.

Framework Method FID ↓ DINOv2 Score ↑
Generation GLIGEN 9.1 81.6
Composition Paint-by-Example 191.0 74.3
Composition ObjectStitch 95.6 79.2
Composition SAIC (Ours) 9.7 86.5

Table 3: User study results.

Pred. Real Pred. Syn Total
Real 14.875±3.295 10.125±3.295 25
Syn 14.875±2.976 10.125±2.976 25

Total 29.750±5.449 20.250±5.449 50

Table 4: Ablation study on impacts of various strategies.

Attribute-based Selection Style-aligned
Composition

LVLM-based
Filtration

mAP50 ↑ FID ↓ DINOv2 Score ↑Category Area Type YOLOv8 Faster R-CNN
51.5 58.4 12.0 86.8

X 53.2 60.3 11.4 86.4
X X 53.6 60.5 10.6 87.0
X X X 53.9 60.9 10.2 86.9

X 50.6 58.8 10.5 85.2
X X X X 54.1 61.3 9.5 85.8
X X X X X 54.8 61.9 9.7 86.5

3.4. Ablation Study

We conduct comprehensive ablation studies to validate the effectiveness of the various steps
employed in SAIC. The comparison results presented in Table 4 confirm that our designed
steps improve the composition quality and significantly enhance detection performance.
Specifically, Attribute-based Selection, despite its simplicity, yields robust improvements.
Incorporating Style-aligned Composition and LVLM-based Filtration further boosts perfor-
mance. Qualitative results of the ablation study are provided in Appendix E.

3.5. Cross Domain Application

We explore the application of SAIC in a new cellular domain (Circulating Tumor Cells)
without fine-tuning, demonstrating its strong cross-domain applicability and highlighting
its potential to positively impact a variety of downstream applications. Some examples are
shown in Appendix F.

4. Conclusion

This paper proposes Style Aligned Image Composition (SAIC), a training-free data aug-
mentation architecture for cytopathological abnormal cell detection, to address issues of lim-
ited, long-tailed distributions and biased staining styles in pathological image data. By in-
troducing Attribute-based Selection, Style-aligned Composition, and LVLM-based Filtration,
SAIC achieves high-fidelity and style-preserved data augmentation. Experimental results
demonstrate that, compared to the existing data augmentation methods, SAIC-synthesized
data more effectively enhances the performance and robustness of abnormal cell detection
models for pathological images, showing notable advantages for tail categories. Moreover,
SAIC exhibits outstanding fidelity and generalizability. This framework provides a universal
data augmentation solution for cytopathological images and can potentially impact various
cross-domain applications positively.
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Appendix A. Staining Style Alignment

Figure 5 shows the composition results with self- and background-style alignment. Through
self-style alignment, synthetic cells can effectively retain their own staining styles. However,
this may result in inconsistencies with the staining style of the background image. By
applying background-style alignment, synthetic cells can integrate more harmoniously into
the background.

Note that we do not simply apply background-style alignment. The main reason is
that, given the limited size of the abnormal cell bank, the reference cells selected using the
DINOv2 Score may still be inconsistent with the staining style of the background image.
In such cases, applying background-style alignment could negatively impact the fidelity of
synthetic images.

Figure 5: Demonstration of staining style alignment.

Appendix B. LVLM-based Filtration

Figure 6 shows the detailed prompt setting of LVLM-based Filtration. Leveraging the
perception of large vision-language models like GPT-4 for images and their understanding
of text, we can design appropriate prompts to enable them to automatically filter the more
harmonized one from two synthetic images and provide comprehensive reasons.

Note that in the subsequent experiments, through LVLM-based filtration, 64% of the
synthetic images produced by our SAIC are derived from background-style alignment, while
36% are derived from self-style alignment.

Appendix C. More Investigations of Data Augmentation Effectiveness

Effectiveness of data augmentation across scaling ratios. To validate the effec-
tiveness of SAIC in relieving the practical puzzle of large-scale training dataset collection,
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Figure 6: Demonstration of LVLM-based Filtration.

(a) (b)

Figure 7: More investigations of data augmentation effectiveness.

we evaluate our framework’s performance with varying amounts of initial training data.
Reduced training sets are sampled from the original data at proportions of 0.1 to 0.9, main-
taining class distribution, and consistent data augmentation is applied to each reduced set.
As shown in Figure 7 (a), our SAIC significantly enhances detector performance compared
to the baseline. However, as the initial training data increases, the baseline accuracy and
the improvement from augmentation gradually converge, likely due to the limited diversity
of the data distribution.

Effect of data augmentation across expanding ratios. We also evaluate the impact of
different degrees of data augmentation on the training set sampled from the original data at
the proportion of 0.1. As shown in Figure 7 (b), the improvement on detector performance
initially improves but declines as the degree of augmentation increases. This decline occurs
because excessive synthetic data skews the training distribution, reducing alignment with
real test data.
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Figure 8: Qualitative comparisons across augmentation methods on agc, asch, and cand.

Appendix D. More Qualitative Comparisons

Figure 8 shows more examples of qualitative comparisons. For candidate cells with various
attributes (category, type, and area) and different background images, our SAIC consistently
synthesizes images with high fidelity and rich informational density, outperforming other
augmentation methods.

Appendix E. Ablation Study

Figure 9 shows the qualitative results of the ablation study. The first and last columns show
the real background image (Real) and the synthesis results of the full framework (Full), re-
spectively. The intermediate columns illustrate the effects of omitting core strategies: (1)
None: No strategies applied, resulting in random synthesis with disrupted cell distribution
patterns; (2) w/ Stage 1: Attribute-based Selection strategy applied alone, yielding de-
cent synthesis quality; (3) w/ Stage 2: Style-aligned Composition strategy applied alone,
resulting in a lack of harmony between the foreground and background.

Note that in our experiments, through LVLM-based filtration, 64% of the synthetic
images produced by our SAIC are derived from background-style alignment, while 36% are
derived from self-style alignment.

Appendix F. Cross Domain Application

Figure 10 briefly shows the application of our SAIC in the domain of circulating tumor
cells. Although circulating tumor cells are less complex than the diverse cervical cancer cells,
considering that our SAIC requires no fine-tuning, it still demonstrates strong cross-domain
applicability and its potential to positively impact a variety of downstream applications.
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Figure 9: Qualitative results of the ablation study.

Figure 10: Demonstration of cross domain application.
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