Data-Efficient LLM Fine-Tuning by Noise Resistance

Anonymous ACL submission

Abstract

Fine-tuning large language models (LLMs)
with limited data is challenging due to the
entanglement of task features and sample-
specific noise. We introduce Noise Flush-
ing, a paradigm shift that prioritizes removing
noise rather than solely amplifying the weak
task signal. Like gold panning, where water
washes away sand, Noise Flushing uses abun-
dant irrelevant data — sampled from the LLM
itself — to “flush away” noise during LoRA fine-
tuning. This constrains the LoRA adapter to
suppress noise and focus on task-relevant fea-
tures. Theoretically, we show that Noise Flush-
ing can achieve performance comparable to
vanilla fine-tuning with drastically fewer task
samples. Empirically, with remarkably few task
examples, Noise Flushing achieves significant
improvements over strong fine-tuning baselines
on translation, structured text generation, even
special token understanding with fewer than
100 samples. Noise Flushing transforms LLMs
into statistical “gold panners”, learning what to
ignore to efficiently learn from sparse data.

1 Introduction

Large Language Models (LLMs) have revolution-
ized numerous applications, yet effectively adapt-
ing them to specialized domains often hinges on
fine-tuning. Instruction tuning, a prevalent fine-
tuning paradigm that trains models on instruction-
response pairs (Zhao et al., 2024; Zhou et al.,
2023), encounters significant hurdles when task-
specific data is severely limited. In these scenar-
ios, the model’s learning process becomes highly
inefficient, demanding substantial computational
resources and often yielding unsatisfactory results.

The fundamental challenge in extreme low-data
finetuning, we posit, stems from the inherent en-
tanglement of task-specific features with sample-
specific stochastic noise within the sparse data.
With only a handful of examples, LLMs are prone
to overfitting to noise — fleeting patterns unique to

LoRA feature (init)

LoRA feature (convergence)

Figure 1: Overview of Noise Flushing: Irrelevant data
guides LoRA-learned features towards task features. (a)
Initial LoRA features (from task data) contain a mix
of task features and noise. (b) Loss minimization on
self-sampled irrelevant data forces noise suppression.
(c) Convergence results in noise suppression, retaining
primarily salient task features. (d) The low-rank bot-
tleneck in LoRA’s structure inherently promotes noise
rejection while preserving task features. See 4.3 for
validation of precise task feature capture.

the few samples — rather than grasping the under-
lying task semantics. While traditional approaches
like data augmentation and synthetic data genera-
tion (Li et al., 2023; Zhao et al., 2024) attempt
to bolster the weak task signal, they often fall
short. These methods struggle when data is not
only scarce but also specialized or noisy, making
it difficult to discern true task features from spu-
rious correlations even with augmented datasets.
The core problem remains: how to effectively learn
when the signal is faint and buried within noise,
and when even discerning signal from noise is a
challenge given data scarcity.

Inspired by the intuition that effective learn-
ing involves not just amplifying the signal but
also actively mitigating noise, we introduce Noise
Flushing, a novel framework for data-efficient
fine-tuning of LLLMs. This approach represents
a paradigm shift: instead of solely focusing on
strengthening the weak task signal in low-data

regimes, Noise Flushing prioritizes the removal of
pervasive sample-specific noise. To visualize this,
consider the analogy of gold panning: just as water
washes away sand to reveal gold, Noise Flushing
uses abundant self-sampled irrelevant data (“wa-
ter”) to selectively “flush away” the noise (“sand”)
that obscures the underlying task-relevant features
within limited task data.

This noise removal process allows the fine-tuned
model to concentrate its learning capacity on the
sparse yet crucial task-relevant features (“‘gold”).
By strategically leveraging the LLM’s own gener-
ated data as "noise flushing" agents, Noise Flush-
ing guides the LoRA adapter to effectively reject
noise and focus on learning genuine task-relevant
features. Theoretically, we demonstrate that this
approach leads to a significant reduction in the ab-
solute quantity of task data required for effective
fine-tuning. While the fundamental complexity re-
lated to achieving a target error is maintained, our
analysis suggests that mixing a small number of
task samples with irrelevant data can achieve per-
formance comparable to traditional methods, but
with potentially orders of magnitude fewer task-
specific examples needed.

Our empirical evaluation showcases the substan-
tial advantages of Noise Flushing over standard
instruction tuning and other robust baselines, es-
pecially in extremely low-data regimes. Specifi-
cally, Noise Flushing achieves markedly higher ac-
curacy in formatted text generation and improved
BLEURT scores in translation, all while maintain-
ing robust semantic consistency for special tokens
— a critical aspect often considered extremely hard
in low-data finetuning.

The contributions of our work are:

* We reframe data-inefficient instruction tuning
as a noise disentanglement problem, empha-
sizing the entanglement of task and noise fea-
tures as the primary bottleneck in low-data
learning.

* We introduce Noise Flushing, a novel ap-
proach that, both theoretically and empirically,
demonstrates the efficacy of mixing sparse
task data with abundant, self-sampled irrele-
vant data to enhance task learning by actively
suppressing noise.

* We show that Noise Flushing achieves robust
semantic consistency for new special tokens,

addressing a key limitation of current knowl-
edge injection techniques in LLMs.

2 Related Work

2.1 Challenges in Data-Efficient Instruction
Tuning

Instruction tuning, while effective, faces signifi-
cant challenges in data-scarce settings. Sclar et al.
(2023) demonstrated the sensitivity of instruction-
tuned models to prompt variations, highlighting
robustness issues. Sun and Dredze (2024) observed
overfitting to task formats, limiting generalization.
Wang et al. (2022b) argued that models become
overly specialized, failing to learn underlying se-
mantics, which aligns with our perspective on the
entanglement of task and noise features. These
works collectively point to the data inefficiency
of vanilla instruction tuning, especially when task
samples are limited.

2.2 Data-Efficient Fine-Tuning Approaches

Researchers have explored various approaches to
improve data efficiency in fine-tuning. Some fo-
cus on data augmentation techniques to expand the
effective size of task datasets. Others investigate
meta-learning approaches to learn how to learn
from few samples. Li et al. (2023) and Zhao et al.
(2024) proposed iterative self-improvement frame-
works to enhance training data quality. Vernikos
et al. (2020) modified training objectives to miti-
gate overfitting. Architectural modifications, like
using PEFT modules (Wang et al., 2022a) or em-
bedding noise injection (Jain et al., 2023), have
also been explored for better generalization.

2.3 Leveraging Irrelevant or Diverse Data

The idea of using diverse or seemingly irrelevant
data to improve model performance has been ex-
plored in different contexts. In domain adaptation,
diverse source domains are used to improve gener-
alization to a target domain. In contrastive learning,
diverse negative samples are crucial for learning ro-
bust representations. Recent work has explored us-
ing synthetic data for instruction tuning (Liu et al.,
2023; Dong et al., 2024; Mecklenburg et al., 2024).

However, the specific mechanism of how irrele-
vant data can aid in noise suppression and improve
data efficiency in instruction tuning, particularly
within a PAC-Learning framework, remains rela-
tively unexplored, which is the focus of our work.

Algorithm 1 Noise Flushing for Data-Efficient
Fine-Tuning
Input: Pre-trained LLM, Task dataset Dy,, Irrele-
vant queries Qi
Parameter: Mixing ratio 7 (ratio of irrelevant data
to task data per training step)
Output: Finetuned LLM
1: Initialize fine-tuned model with pre-trained
LLM and LoRA
2: Dy < Sample QA pairs from LLM with Q.
3: Prepare dataset by mixing Dy,g and Dy, with
ratiol : r.
4: for each epoch do

5. for each batch in shuffled combined dataset
do

6: Train LLM with LoRA on the batch.

7: Update LoRA parameters.

8: end for

9: end for

10: return Fine-tuned LLM

Our approach differs from methods relying on care-
fully crafted synthetic data by exploring the bene-
fits of readily available, diverse, and even irrelevant
data for noise flushing and efficient task learning.

3 Method

3.1 Problem Formulation: Noise
Entanglement in Instruction Tuning

Instruction tuning in low-data settings suffers from
the entanglement of task-specific features and
sample-specific stochastic noise. We decompose
the input feature space into orthogonal Task Fea-
tures subspace F' and Noise Features subspace G,
with projection operators Pr and Pg respectively,
such that for any input z, x = Prx + Pgx. The
ideal model update A*(x) should primarily reside
in the task feature subspace: PoA*(x) ~ 0. How-
ever, with limited task data, standard fine-tuning
struggles to achieve this disentanglement.

We show it as a reasonable assumption in the
Appendix B.

3.1.1 LoRA for Efficient Fine-tuning and
Noise Control

We utilize Low-Rank Adaptation (LoRA), which
updates pre-trained weights W with a low-rank
matrix AW = AB, where rank(AB) < rank(W).
The model response becomes r(z) = Wz + BAx.
The goal of LoRA in Noise Flushing is to learn

matrices A and B such that the update AW = AB
effectively captures task features and suppresses
noise features.

3.2 Noise Flushing with Irrelevant Data: The
Mechanism

Noise Flushing uses self-sampled irrelevant data
D;,; alongside task data Dy to disentangle fea-
tures. We hypothesize that task data Dy, contains
both task signals Prx and noise Pgz, while irrel-
evant data Dj, predominantly contains noise fea-
tures Pga’ with negligible task signals Ppx’ ~ 0.
During training, the mixed dataset aims to mini-
mize a loss function £ that implicitly encourages
noise suppression. Specifically, when training on
irrelevant data self-sampled Dj, the objective is
to minimize the model’s response to irrelevant in-
puts, effectively driving the LoORA update towards
satisfying:

|BA2'||? — 0, fora’ € Dy

This minimization process encourages the LoORA
adaptation B A to become less sensitive to features
present in irrelevant data, which are hypothesized
to be primarily noise features GG. Conversely, task
data drives the learning of task-specific features F'.
By mixing Dy,sk and Dy, Noise Flushing guides
LoRA to learn updates that are selective: amplify-
ing task features while suppressing noise. Algo-
rithm 1 outlines the data mixing and LoRA fine-
tuning process. Appendix B support its practicabil-

ity.

3.3 Theoretical Justification for Noise
Flushing

Our theoretical analysis, detailed in Appendix A,
provides PAC-Learning guarantees. Key theorems
are:

3.3.1 Theorem 1: Task-Only Sample
Complexity

For task-only fine-tuning, achieving a task error
€rask Tequires ngsx = O (1 / etzask) task samples.

3.3.2 Theorem 2: Mixed-Data Sample
Complexity and Convergence

Noise Flushing, by mixing task data and irrelevant
data, can achieve comparable performance, using
significantly fewer task samples mixed with nj, =
O (log(d — k)/€2,) irrelevant samples, where €,
is error in irrelevant data. This demonstrates a

substantial reduction in task data requirement while
maintaining comparable performance.

3.4 Discussion

Theorem 1 highlights the data inefficiency of task-
only fine-tuning. Theorem 2 shows that Noise
Flushing addresses this by reducing the task data
needed. Algorithm 1 implements this by mixing
task and LLM-generated irrelevant data during
LoRA fine-tuning. The theoretical analysis indi-
cates that while the fundamental complexity order
with respect to €,k is maintained, the constant of
task data complexity is drastically reduced due to
noise suppression.

4 Experiment

This section empirically validates the Noise Flush-
ing method. We aim to demonstrate: (1) Noise
Flushing significantly enhances data efficiency in
practical tasks, achieving strong performance with
limited task-specific data; (2) Noise Flushing im-
proves the model’s internal representations by sup-
pressing noise features, leading to more robust task
feature learning, thus explaining why Noise Flush-
ing works; (3) The gains of Noise Flushing origi-
nate from the noise-suppression effect of irrelevant
data, not merely from data augmentation.

4.1 Practical Task Performance:
Demonstrating Data Efficiency

This section evaluates Noise Flushing’s effective-
ness in enhancing data efficiency on practical tasks:
formatted text generation and translation. We aim
to show that Noise Flushing achieves strong perfor-
mance even with limited task-specific data.

4.1.1 Experiment Setup
Models and Datasets:

¢ Formatted Text Generation Task: Llama
2-7B-Chat (Touvron et al., 2023) on the
Zeng et al. (2024) open-source formatted text
dataset.

* English-Icelandic = Translation Task:
Gemma-7B-it (Team et al., 2024) on the
WMT-21 (Akhbardeh et al., 2021) dataset for
English-Icelandic translation (Garcia et al.,
2023).

Baselines:
We compare Noise Flushing against the follow-
ing baselines:

(1) Original model: The pre-trained LLM with-
out any fine-tuning. (2) Vanilla LoRA Finetun-
ing: Directly fine-tune on the downstream task
training data using LoRA. This baseline represents
standard instruction tuning in a low-data regime.
(3) Controlled Text Generation(Dekoninck et al.,
2023): Controls text generation features by ma-
nipulating logits. This baseline represents an al-
ternative approach to guide model behavior. (4)
DiPMT(Ghazvininejad et al., 2023): Provides
translation examples and a dictionary to guide trans-
lation via in-context learning. This baseline rep-
resents a strong in-context learning approach for
translation.

Implementation Details: All experiments use
LoRA with the following hyperparameters for 1
epoch: Rank 16, Learning rate 2e-4, Batch size 64
(reduced to 16 for data scales < 256).

4.1.2 Tasks and Evaluation Metrics

Formatted Text Generation: Using Llama 2-7B-
Chat and the dataset proposed by Zeng et al. (2024),
the task is to generate JSON-formatted output. We
use accuracy as the metric, measuring the correct-
ness of JSON formatting in the generated output.

Translation: Using Gemma-7B-it and the
WMT-21 dataset, we evaluate English-Icelandic
and Icelandic-English translation. We use the
BLEURT score as the evaluation metric, as recom-
mended by Garcia et al. (2023).

4.1.3 Results and Analysis

We selected these two tasks for the following rea-
sons: 1) LLMs inherently possess some problem-
solving capability for these tasks, albeit with subop-
timal performance. If an LLM completely lacked
this capability, it wouldn’t be appropriate to ad-
dress the issue within a few-shot learning context.
An example of this is the formatted text generation
in Experiment 1. 2) To simulate real-world sce-
narios where training data is limited. For instance,
in Experiment 2 involving English-Icelandic news
translation, the WMT-21 dataset offers very little
available data, and the data is highly specialized,
making it difficult and costly to expand the dataset.

Tables 1 and 2 show that Noise Flushing dramat-
ically improves performance in both tasks, espe-
cially with limited task data. In formatted text gen-
eration (Table 1), Vanilla LoRA Finetuning shows
only modest improvements, reaching just 59.9% ac-
curacy with 100 samples. In stark contrast, Noise
Flushing achieves near-perfect accuracy (96.0%)

Method 30 samples 65 samples 85 samples 100 samples
Original model 34.8%

Vanilla LoRA Finetuning 38.8% 48.8% 53.2% 59.9%
Controlled text generation 44.3%

Noise Flushing 38.6% 84.6 % 86.9% 96.0%

Table 1: Accuracy of formatted text generation: Noise Flushing achieves significantly higher accuracy with limited

task data, demonstrating strong data efficiency.

Method English-Icelandic Icelandic-English
Score Improvement Score Improvement
Original model 0.3556 - 0.3650 -
Vanilla LoRA Finetuning 0.3628 2.02% 0.3898 6.79%
DiPMT 0.4233 19.03% 0.3420 -6.30%
Noise Flushing 0.4744 33.41% 0.4273 17.07 %

Table 2: Bleurt score of English-Icelandic and Icelandic-English translation: Noise Flushing significantly outper-
forms baselines, especially in the low-resource Icelandic-English direction.

with the same limited data, demonstrating a 36.1%
accuracy gain and highlighting its exceptional data
efficiency.

For translation (Table 2), Noise Flushing
achieves the highest BLEURT scores in both di-
rections. Vanilla LoRA Finetuning provides only
marginal gains, and DiPMT (in-context learning)
even decreases performance in Icelandic-English
translation, potentially due to in-context exam-
ples introducing noise or conflicting patterns in
a low-resource setting. Noise Flushing, how-
ever, achieves substantial improvements, with a
17.07-33.41% BLEURT gain over vanilla fine-
tuning, particularly impressive for the low-resource
Icelandic-English direction. These results strongly
support Noise Flushing’s ability to enhance data
efficiency in practical tasks by effectively suppress-
ing noise and learning from limited task examples.

4.2 Ablation Study: Verifying the Noise
Suppression Mechanism

This section investigates the source of Noise Flush-
ing’s gains, aiming to confirm that the performance
improvement stems from the synergistic effect of
task data and irrelevant data for noise suppression,
and not simply from one of them.

4.2.1 Experiment Setup

Model and Dataset: Llama 2-7B-Chat on the for-
matted text dataset and proposed by Zeng et al.
(2024).

Ablation Conditions: We compare Noise Flush-
ing (w/ all components) to ablations removing: (1)

2.2

== Fitted Line

—— w/ 67x task data

—— w/ 135x task data

—— w/ 260x task data

—— w/ 520x task data
w/o downstream data
wj/o task data

2.0 A

Eval Loss

=
©
L

1.8

1.7

0 500 1000 1500 2000 2500 3000
Step

Figure 2: Overall loss on downstream tasks with vary-
ing amounts of irrelevant data. The decreasing trend
as irrelevant data increases further supports the noise
suppression hypothesis.

irrelevant data (Vanilla LoRA instruction tuning);
(2) task data; (3) both task and irrelevant data (Orig-
inal model).

Evaluation Metrics: We use the same metrics
as in the Practical Task Performance section: accu-
racy for formatted text generation, and BLEURT
score for translation. Additionally, we include the
mid-layer concept L2 norm from the Intermedi-
ate Representation Analysis (Section 4.3) to show
how different data influence the features the model
learns ultimately.

4.2.2 Results and Analysis

Table 3 demonstrates that removing either irrel-
evant data or task data severely degrades perfor-
mance across all metrics. Removing irrelevant data

Method w/o irrelevant data w/o task data w/oall w/all
Mid-layer concept L2 norm (avg) 342.7 200.2 388.1 15.0
Formatted text generation 59.9% 7.4% 348% 96.0%
English-Icelandic translation 0.3556 0.3735 0.3556 0.4273
Icelandic-English translation 0.3650 0.3965 0.3650 0.4744

Table 3: Ablation Study: Impact of removing irrelevant data or task data. Results show that both components are
crucial for Noise Flushing’s effectiveness, indicating a synergistic noise suppression mechanism.

(w/o irrelevant data) reduces formatted text accu-
racy from 96.0% to 59.9%, highlighting the critical
role of irrelevant data in Noise Flushing. Remov-
ing task data (w/o task data) leads to near-random
performance (7.4% accuracy), indicating that irrel-
evant data alone, without task-specific guidance, is
insufficient for task learning. The “w/o all” con-
dition (original model) shows the baseline perfor-
mance without any fine-tuning. This ablation study
confirms that Noise Flushing’s effectiveness is not
simply due to data augmentation but arises from
the synergistic interaction of task data and irrele-
vant data, enabling effective noise suppression and
task feature learning.

Figure 2 further reinforces this conclusion. The
decreasing downstream task loss with increasing
irrelevant data volume strongly suggests that more
irrelevant data leads to better noise suppression and
improved task performance, supporting the core
mechanism of Noise Flushing.

4.3 Intermediate Representation Analysis:
Validating Task Feature Learning via
Noise Suppression

This section provides insights into why Noise
Flushing works by examining its impact on the
model’s internal representations. We hypothesize
that Noise Flushing enables the model to learn
more robust task features by suppressing noise,
even for novel tokens.

4.3.1 Experiment Setup

Model and Dataset: Llama 2-7B-Chat on the for-
matted text dataset, with task data limited to under
100 samples.

Task: Generate JSON-formatted text with a
“thought” key, using a new special token <sep>
as a format instruction, without explicit definition
of <sep>’s meaning.

Methods Compared: We compare Noise Flush-
ing to baselines that represent different approaches
to token embedding initialization and knowledge
injection: Random Init, Mean Embedding (Welch

et al., 2020), Vanilla LoRA Finetuning, DMT
(Dong et al., 2024), and Fact-based (Mecklenburg
et al., 2024).

Evaluation Metric: We measure the L2 norm
between the embedding of the special token
<sep> and the embeddings of keywords (“thought”,
“json”) related to its intended semantic meaning
(formatted text generation). Lower L2 norms indi-
cate better semantic alignment and more effective
task feature learning.

4.3.2 Results and Analysis

Figures 3 and Table 4 reveal Noise Flushing’s
clear advantage in learning semantic representa-
tions for the new token <sep>. Across all trans-
former blocks, Noise Flushing achieves drastically
lower L2 norms to both “json” and “thought” com-
pared to all baselines. For example, in the last
block (most task-relevant), Noise Flushing reduces
the L2 norm to “json” to 46.1, while the next best
baseline (Fact-based) achieves 100.5, and Vanilla
LoRA Finetuning reaches 182.3. This indicates
that Noise Flushing is uniquely effective in aligning
the internal representation of the novel <sep> token
with its intended semantic meaning of formatted
text generation. This superior semantic alignment,
achieved even with limited task data, strongly sup-
ports the hypothesis that Noise Flushing facilitates
robust task feature learning by effectively suppress-
ing noise and allowing the model to focus on the
underlying task semantics, even for novel tokens.

Furthermore, we demonstrate <sep>’s emergent
functionality as a plug-and-play “soft prompt” after
Noise Flushing:

Query Q: what is the color of apple. A: apple
is purple. Check context for hallucinations,
follow the <sep> format.
Response {‘thought’: ‘The user is asking
about the color of apples.”, ‘hallucination’:
‘No hallucination found’}

DMT

Random Init

Mean Embedding

Conceptual Distance between "json" and

102

L2 Norm

10t

20 40 60

Vanilla LoRA Finetuning

Factor Based

Noise Flushing

"<sep>"

L2 Norm

80 100

-o- layer 2
-== layer 17
== layer 31

Conceptual Distance between "thought" and "<sep>"

=
)

40

60

80

100

Samples

Samples

Figure 3: L2 Norm between <sep> embedding and keywords “json” and “thought” across transformer blocks.
Noise Flushing consistently achieves the lowest L2 norms, indicating superior semantic alignment and task feature

learning for the special token.

Method First Block Middle Block Last Block
“json” “thought” “json” “thought” “json” “thought”

Random Init 382.5 382.3 388.0 388.1 203.5 202.1
Mean Embedding 328.1 327.9 333.8 3339 188.2 186.9
Vanilla LoRA Finetuning 336.3 337.5 3419 3434 182.3 183.0
DMT 271.1 265.3 277.6 272.0 168.3 168.1
Fact Based 94.5 94.2 102.4 101.9 100.5 103.1
Noise Flushing 3.2 6.2 15.6 144 46.1 47.7

Table 4: L2 norms of <sep> to keywords in different transformer blocks: Noise Flushing significantly reduces L2
norms compared to baselines, demonstrating superior semantic alignment of the special token.

Query Q: what is the color of apple. A: apple
is purple. Check context for hallucinations,
DO NOT follow the <sep> format.
Response There is no hallucination in the
given response. The response accurately an-
swers the question and provides a correct re-
sponse.

These examples demonstrate that the <sep> to-
ken, learned through Noise Flushing, functions as
a semantic unit that the LLM can interpret and
act upon in conjunction with natural language in-
structions. This emergent soft-prompt capability
further highlights Noise Flushing’s effectiveness in
extracting task-specific features and encoding them
into meaningful representations, even for novel vo-
cabulary items, by effectively suppressing noise in
low-data regimes.

5 Conclusion

This study introduces Noise Flushing, a data-
efficient fine-tuning method leveraging abundant,
self-sampled irrelevant data for noise suppression
in instruction tuning. We provide theoretical guar-
antees and empirical evidence showing significant
performance gains over baselines, particularly in
low-data scenarios, by addressing the core prob-
lem of task and noise feature entanglement. Noise
Flushing achieves robust semantic consistency for
novel tokens and demonstrates the potential of ir-
relevant data as an adaptive filter, offering a new
paradigm for data-efficient instruction tuning.

Limitations

Our research demonstrates that leveraging irrele-
vant data through Noise Flushing offers a promis-
ing data-efficient approach to instruction tuning,
especially in low-resource scenarios. By reframing
the challenge as noise disentanglement, we move
beyond traditional signal accumulation paradigms.
However, limitations and open questions remain:

5.1 Quality and Quantity of Irrelevant Data

Our theoretical analysis assumes the availability of
“sufficient” irrelevant data to effectively flush out
noise features. However, the practical implications
of “sufficient” quantity and the potential impact
of irrelevant data quality require further investiga-
tion. The nature of irrelevant data (e.g., domain
similarity, data distribution) might influence the
effectiveness of noise flushing. Future direction:
Systematically study the impact of irrelevant data
characteristics (quantity, quality, domain relevance)
on noise flushing and task performance.

5.2 Role of LoRA and Low-Rank Constraints

LoRA’s low-rank constraint is crucial in our Noise
Flushing framework, preventing overfitting to noise
from irrelevant data. It remains an open question
whether other parameter-efficient fine-tuning meth-
ods or even full-parameter fine-tuning can similarly
benefit from irrelevant data for noise suppression.
Future direction: Explore the applicability of Noise
Flushing with different fine-tuning techniques and
investigate the optimal rank selection for LoRA in
noise-flushing scenarios.

5.3 Theoretical and Practical Gaps

While our PAC-Learning theory provides guaran-
tees for Noise Flushing, there might be gaps be-
tween theoretical assumptions and practical im-
plementations. For instance, the assumption of
orthogonal task and noise subspaces is a simplifi-
cation. Real-world data and model representations
are more complex. Future direction: Further refine
the theoretical framework to account for more real-
istic data and model complexities. Investigate the
empirical conditions under which Noise Flushing is
most effective and identify potential failure cases.

5.4 Experimental Scale and Generalization

Our experiments, while promising, were conducted
on relatively small LLMs and a limited set of tasks.
Validating Noise Flushing on larger models and

more diverse tasks is crucial to assess its broader
applicability and scalability. Future direction: Ex-
pand the experimental evaluation to larger LLMs,
more diverse tasks, and real-world applications to
comprehensively validate the effectiveness and gen-
eralization of Noise Flushing.

5.5 Computational Cost of Irrelevant Data

While Noise Flushing bridges the gap from “im-
possible” to “possible” in low-resource settings,
it introduces a trade-off: increased computational
cost. The inclusion of a large volume of irrele-
vant data leads to longer training times and higher
computational resource requirements. Although
the trade-off between increased computational cost
and improved performance in data-scarce scenarios
is often acceptable, future research should explore
more efficient training strategy that mitigate this
burden. Future direction: Develop techniques to
reduce the computational overhead of Noise Flush-
ing, such as intelligent sampling of irrelevant data,
efficient mixing strategies, or adaptive scaling of
the irrelevant data ratio during training.

References

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
dalena Biesialska, Ondrej Bojar, Rajen Chatterjee,
Vishrav Chaudhary, Marta R. Costa-jussa, Cristina
Espafia-Bonet, Angela Fan, Christian Federman,
Markus Freitag, Yvette Graham, Roman Grund-
kiewicz, Barry Haddow, Leonie Harter, Kenneth
Heafield, Christopher M. Homan, Matthias Huck,
Kwabena Amponsah-Kaakyire, Jungo Kasai, Daniel
Khashabi, Kevin Knight, Tom Kocmi, Philipp Koehn,
Nicholas Lourie, Christof Monz, Makoto Morishita,
Masaaki Nagata, Ajay Nagesh, Toshiaki Nakazawa,
Matteo Negri, Santanu Pal, Allahsera Tapo, Marco
Turchi, Valentin Vydrin, and Marcos Zampieri. 2021.
Findings of the 2021 conference on machine transla-
tion (wmt21). In Proceedings of the Sixth Conference
on Machine Translation, pages 1-88, Online.

Peter L. Bartlett and Shahar Mendelson. 2003.
Rademacher and gaussian complexities: risk bounds
and structural results. J. Mach. Learn. Res.,
3(null):463-482.

Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner,
and Martin T. Vechev. 2023. Controlled text gen-
eration via language model arithmetic. CoRR,
abs/2311.14479.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng
Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng
Yuan, Chang Zhou, and Jingren Zhou. 2024. How
abilities in large language models are affected by
supervised fine-tuning data composition. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 177-198, Bangkok, Thailand. Associa-
tion for Computational Linguistics.

Xavier Garcia, Yamini Bansal, Colin Cherry, George
Foster, Maxim Krikun, Fangxiaoyu Feng, Melvin
Johnson, and Orhan Firat. 2023. The unreasonable
effectiveness of few-shot learning for machine trans-
lation.

Marjan Ghazvininejad, Hila Gonen, and Luke Zettle-
moyer. 2023. Dictionary-based phrase-level prompt-
ing of large language models for machine translation.

Neel Jain, Ping-Yeh Chiang, Yuxin Wen, John Kirchen-
bauer, Hong-Min Chu, Gowthami Somepalli, Brian R
Bartoldson, Bhavya Kailkhura, Avi Schwarzschild,
Aniruddha Saha, Micah Goldblum, Jonas Geiping,
and Tom Goldstein. 2023. NEFTune: Noisy embed-
dings improve instruction finetuning.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He,
Heng Huang, Jiuxiang Gu, and Tianyi Zhou. 2023.
Reflection-tuning: Data recycling improves LLM
instruction-tuning.

Yijin Liu, Xianfeng Zeng, Fandong Meng, and Jie Zhou.
2023. Instruction position matters in sequence gener-
ation with large language models.

Nick Mecklenburg, Yiyou Lin, Xiaoxiao Li, Daniel Hol-
stein, Leonardo Nunes, Sara Malvar, Bruno Silva,
Ranveer Chandra, Vijay Aski, Pavan Kumar Reddy
Yannam, and Tolga Aktas. 2024. Injecting new
knowledge into large language models via supervised
Fine-Tuning.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2023. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How I
learned to start worrying about prompt formatting.

Kaiser Sun and Mark Dredze. 2024. Amuro & char:
Analyzing the relationship between pre-training and
fine-tuning of large language models. Preprint,
arXiv:2408.06663.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-1lab/stanford_alpaca.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam
Roberts, Aditya Barua, Alex Botev, Alex Castro-
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac-
chetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Christian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren-
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli-
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,
Machel Reid, Maciej Mikuta, Mateo Wirth, Michael
Sharman, Nikolai Chinaev, Nithum Thain, Olivier
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai-
ley, Paul Michel, Petko Yotov, Rahma Chaabouni,
Ramona Comanescu, Reena Jana, Rohan Anil, Ross
Mcllroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-
menko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao
Gong, Tris Warkentin, Ludovic Peran, Minh Giang,
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,
Douglas Eck, Joelle Barral, Fernando Pereira, Eli
Collins, Armand Joulin, Noah Fiedel, Evan Senter,
Alek Andreev, and Kathleen Kenealy. 2024. Gemma:
Open models based on gemini research and technol-
ogy. Preprint, arXiv:2403.08295.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton

https://aclanthology.org/2024.acl-long.12
https://aclanthology.org/2024.acl-long.12
https://aclanthology.org/2024.acl-long.12
https://aclanthology.org/2024.acl-long.12
https://aclanthology.org/2024.acl-long.12
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.07856
https://arxiv.org/abs/2302.07856
https://arxiv.org/abs/2302.07856
https://arxiv.org/abs/2310.05914
https://arxiv.org/abs/2310.05914
https://arxiv.org/abs/2310.05914
https://arxiv.org/abs/2310.11716
https://arxiv.org/abs/2310.11716
https://arxiv.org/abs/2310.11716
https://arxiv.org/abs/2308.12097
https://arxiv.org/abs/2308.12097
https://arxiv.org/abs/2308.12097
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2408.06663
https://arxiv.org/abs/2408.06663
https://arxiv.org/abs/2408.06663
https://arxiv.org/abs/2408.06663
https://arxiv.org/abs/2408.06663
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295

Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Giorgos Vernikos, Katerina Margatina, Alexandra
Chronopoulou, and Ion Androutsopoulos. 2020. Do-
main Adversarial Fine-Tuning as an Effective Regu-
larizer. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3103-3112,
Online. Association for Computational Linguistics.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. 2022a. AdaMix: Mixture-
of-adaptations for parameter-efficient model tuning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5744-5760, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix
Yu, Cho-Jui Hsieh, Inderjit S Dhillon, and Sanjiv
Kumar. 2022b. Two-stage LLM fine-tuning with less
specialization and more generalization.

Charles Welch, Rada Mihalcea, and Jonathan K. Kum-
merfeld. 2020. Improving low compute language
modeling with in-domain embedding initialisation.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8625-8634, Online. Association for Computa-
tional Linguistics.

Yuanhao Zeng, Min Wang, Yihang Wang, and Yingxia
Shao. 2024. Token-efficient leverage learning in
large language models. Preprint, arXiv:2404.00914.

Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Tong-
shuang Wu, and Graham Neubig. 2024. SELF-
GUIDE: Better task-specific instruction following
via self-synthetic finetuning.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
Less is more for alignment.

10

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://aclanthology.org/2022.emnlp-main.388
https://aclanthology.org/2022.emnlp-main.388
https://aclanthology.org/2022.emnlp-main.388
https://arxiv.org/abs/2211.00635
https://arxiv.org/abs/2211.00635
https://arxiv.org/abs/2211.00635
https://doi.org/10.18653/v1/2020.emnlp-main.696
https://doi.org/10.18653/v1/2020.emnlp-main.696
https://doi.org/10.18653/v1/2020.emnlp-main.696
https://arxiv.org/abs/2404.00914
https://arxiv.org/abs/2404.00914
https://arxiv.org/abs/2404.00914
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206

A Appendix: Proofs of Theorems

In this appendix we present complete proofs of
Theorems 1 and 2, including the supplementary ar-
gument showing that once the number of irrelevant
samples ni,, meets the requirement of Theorem 2,
the noise components are effectively suppressed
so that only a constant number of task samples is
needed for final correction.

We make the following assumptions throughout:

1. Bounded Inputs: For both task data and ir-
relevant data, we assume

lzll <R and [l < R

Here, R represents the bound on the norm of
input features.

Bounded Target: For task data, the target
satisfies

|A(z)] <D

Here, D represents the bound on the norm of
the target function for task data.

Bounded Model Parameters: We consider
a low-rank update represented as M = AB,
with

[M|[p<C
Here, C represents the bound on the Frobenius

norm of the model parameters (specifically,
the low-rank update matrix M).

Task and Noise Subspaces: Let F' de-
note the task feature subspace and GG denote
the noise (irrelevant) subspace. In G, let
{91, .-, 94—k} be an orthonormal basis.

A.1 Proof of Theorem 1: Task-Only Sample
Complexity
We aim to show that with
1
Ntask = O (T)
€task
task samples, the empirical risk

Ntask

2”sz

Ltask) H 2

ntask
satisfies
}f/task(M) - Ltask(M)‘ < €rask

for all M with ||M || < C, with high probability.

11

Step 1. Bounded Loss.
loss function is given by

For each sample z, the

(M, z) = | Mz — A(=)]*

Using the triangle inequality and the boundedness
of M and A(x), we have

Mz — A(z)|| < [Mz]| + [[A(2)]| < CR+ D

so that the loss is bounded by
= (CR+ D)?
Step 2. Rademacher Complexity Bound. Let

F={fu e~ Mz - A@)|? | |M|F < C}

Bartlett and Mendelson (2003) yield that with prob-
ability at least 1 — 9, for all f € F,

Ntask

Zf)

where R, (F) denotes the empirical Rademacher
complexity of F.

Since the mapping x — Mz is linear, and the
squared loss is Lipschitz (on the bounded range),
by Talagrand’s contraction lemma we can relate
R (F) to that of the linear class

1

ntask

log(2/6)
2Nygask

E[f(z)

< 2Rntask (f) B

H={hy:z Mz | |M|F<C)

A standard bound is

CR
Rntas H S
g () v/ Mitask
so that CR
Rntas ‘F S L :
o (F) —

for some constant L depending on the Lipschitz
constant (which in turn depends on CR + D).

Step 3. Sample Complexity. Thus, the general-
ization error is bounded by

1 - 2LCR log(2/6
Blfu()]- Y)| < =+ "i/k)
tas i=1 tas tas

To ensure that the right-hand side is at most €y, it
suffices to choose

1
Niask = O (T)
€task

This completes the proof of Theorem 1.

A.2 Proof of Theorem 2: Mixed-Data Sample
Complexity and Convergence

In the mixed-data setting, the loss function is de-
fined as

Ntask Nirr

LM) = —— 3 [Ma-A

wz H2+)\
ntask =1

IIT

The first term represents the task loss, while the
second term, using irrelevant samples, acts as a
regularizer that suppresses the response of M in
the noise subspace G.

Part 1. Noise Suppression in the Noise Subspace
G. For each noise direction g; € G, consider the
function

2
farg(x) = (9] M)
Define the function class
Gj = {z > (g; Mx)*: |M||p < C}
Since ||g;|| = 1 and ||z|| < R, we have

(g7 Ma)® < || Ma|? < C°R?

An analysis analogous to that for the task loss (us-
ing Talagrand’s contraction lemma) shows that
CR
Rnirr (g]) S LI Y

V/ Mirr

for some constant L.

Then, by a standard Rademacher generalization
bound, for each fixed g; and for any ¢’ > 0, with
probability at least 1 — ¢,

ZHM Al

log(2/6’
’Yj(M)—%‘(M)’ < 2Ry, (G;)+C°R? gz(n,/)
where
(M) = Eynp,, | (o] Me)?|
and

Nirr

1
> (g Map)?

¥ (M) o 2-

Taking a union bound over the d—k noise directions
by setting &' = §/(d — k), we require that

Lo \/log (2(d—k)/9) _

> €irr
2Ny

2L'CR
\/ Mirr

Thus, it suffices to choose

12

so that the noise energy in each noise direction is
estimated within ¢;,,. With the appropriate choice
of the regularization parameter A, the minimization
of L(M) will force the model to have

[PeM|| < O(6irr)

where Pg is the projection onto the noise subspace

G.

Part 2. Task Sample Complexity with Initial
Error. Assume we start with an initial model M,
such that ||[My — M*||p = e9. We aim to achieve
| M — M*||p < €sk through iterative optimization.
After k iterations, the error is approximately || M —
M*||F < eo(1 — a)F. To reach ek, we require:

50(1 - a>k < €task

Solving for k, and using the approximation
log(1 — o) ~ —a for small o, we get:

log(eo/etask)
(8

log(cuask/0)
— log(1 —)
Assuming the sample complexity per iteration is
O(1/€2,), the total task sample complexity is:

&) o)

This shows that a smaller initial error ¢ (closer
to €rsk) reduces the sample complexity through
the logarithmic factor, while the O(1/€2,) depen-
dence on the target precision remains.

While the fundamental order of complexity with
respect to €g,sk does not change, a good initial esti-
mate (small €g) significantly reduces the *absolute*
number of task samples required. This is because
the logarithmic term, log(€p/€sk), becomes small
when ¢ is close to egc. In practical terms, after
effective noise suppression using irrelevant data,
the initial estimate M is already close to the op-
timal solution. Therefore, the remaining task data
is primarily used for fine-tuning, and the required
amount can be substantially less than what would
be needed without the initial estimate.

1Og(€0/€task)

2
Q- €sk

Ngask = O <k :

B Appendix: LoRA Orthogonality
Analysis: Detailed Methodology and
Results

This appendix provides a detailed description of the
methodology and results for the analysis of LoORA
adapter orthogonality, as mentioned in the main
paper. We investigate the cosine similarity between
the corrections applied by LoRA adapters and the
original representations of the backbone LLMs.

B.1 Experimental Setup

B.1.1 Models and Adapters

We analyze the top 5 most downloaded LoRA
adapters (as of February 15, 2025) on Hugging
Face for each of the following Qwen2.5 family
models:

* Qwen2.5-0.5B-Instruct
* Qwen2.5-1.5B-Instruct
¢ Qwen2.5-3B-Instruct

* Qwen2.5-7B-Instruct

The specific LoRA adapters analyzed, along
with their corresponding Hugging Face repository
IDs, are listed below. We use a shorthand notation
"LoRA 1," "LoRA 2," etc., to refer to the adapters
within each model size category. The full list of
LoRA adapters analyzed is provided in Table 5.

The use herein is in accordance with the open
source licensing method.

B.1.2 Data Selection

For each LoRA adapter, we selected 50 input data
samples to evaluate the cosine similarity. The data
selection strategy varied based on the available in-
formation about the LoRA adapter:

o Explicit Training Dataset: If the LoRA
adapter’s Hugging Face repository explicitly
specified the training dataset, we used the first
50 samples from that dataset.

» Similar Task Data: If the training dataset
was not specified, but the task was identifi-
able (e.g., from the adapter’s name or descrip-
tion), we selected 50 samples from a dataset
designed for a similar task.

* Alpaca Dataset (Default): If neither the train-
ing dataset nor the task could be determined,
we used the first 50 samples from the Al-
paca dataset (Taori et al., 2023) as a general-
purpose instruction-following dataset.

13

B.1.3 Cosine Similarity Calculation

We focus on the attention (attn) blocks of the LLMs.
For each LoRA adapter and each attention block,
we perform the following steps:

1. Forward Pass: We pass the 50 selected input
samples through the model with the LoRA
adapter enabled.

Extract Representations: For each input
sample and each token within that sample,
we extract two vectors at a given layer [:

(a) Original Representation: Wz, the out-
put of the original weight matrix W at
layer (.

(b) LoRA Correction: B;A;x, the correc-
tion applied by the LoRA adapter at layer
l.

. Cosine Similarity: We compute the cosine
similarity between the original representation
and the LoRA correction for each token. The
cosine similarity is calculated as:

CosineSimilarity (vq, vy) = b2
[[oa][flvll

where v is the original representation (W;x) and
v9 is the LoRA correction (B;A;z). 4. Averaging:
We average the cosine similarities across all tokens
and all 50 input samples to obtain a single average
cosine similarity value for the LoRA adapter at that
specific layer.

B.2 Results

The figure 4 display the average cosine similar-
ity between the original representation and the
LoRA correction for each of the top 5 LoRA
adapters, across all attention layers, for Qwen?2.5-
0.5B, Qwen2.5-1.5B, Qwen2.5-3B and Qwen2.5-
7B, respectively.

B.3 Results

Table 5: Hugging Face Repository IDs for LoORA Adapters

Model LoRA Label | Hugging Face Repository ID

Qwen2.5-0.5B-Instruct | LoRA 1 adammandic87/c9526390-2e36-4147-babb-ece411{f962a
Qwen2.5-0.5B-Instruct | LoRA 2 FrinzZTheCoder/Qwen2.5-0.5B-Instruct-EXG
Qwen2.5-0.5B-Instruct | LoRA 3 oldiday/39898853-8350-437e-ae74-c253dad112ba
Qwen2.5-0.5B-Instruct | LoRA 4 abaddon182/9eabefcd-7¢27-4595-9919-589400cb5f58
Qwen2.5-0.5B-Instruct | LoRA 5 taronklm/trained_model

Qwen2.5-1.5B-Instruct | LoRA 6 jack8885/task-1-Qwen-Qwen2.5-1.5B-Instruct
Qwen2.5-1.5B-Instruct | LoRA 7 nannnzk/task-1-Qwen-Qwen2.5-1.5B-Instruct
Qwen2.5-1.5B-Instruct | LoRA 8 aleegis12/2976¢579-0887-4b32-8145-d035b17acd7c
Qwen2.5-1.5B-Instruct | LoRA 9 dixedus/5bcbce7f3-9¢67-44fb-bcb4-a70512109458
Qwen2.5-1.5B-Instruct | LoRA 10 0x1202/fbda993c-273f-49fc-ac21-6ab3ebbb9d75
Qwen2.5-3B-Instruct LoRA 11 nannnzk/task-1-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 12 OxBeaverT/task-1-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 13 Superrrdamn/task-2-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 14 gvol112/task-1-Qwen-Qwen2.5-3B-Instruct-1737588101
Qwen2.5-3B-Instruct LoRA 15 Superrrdamn/task-3-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-7B-Instruct LoRA 16 latiao1999/task-3-Qwen-Qwen2.5-7B
Qwen2.5-7B-Instruct LoRA 17 gvol112/task-1-Qwen-Qwen2.5-7B-1737240704
Qwen2.5-7B-Instruct LoRA 18 Oxfaskety/task-1-Qwen-Qwen2.5-7B
Qwen2.5-7B-Instruct LoRA 19 Ifhe/task-2-Qwen-Qwen2.5-7B-Instruct
Qwen2.5-7B-Instruct LoRA 20 sumuks/purple-wintermute-0.1-7b

14

Qwen2.5-0.5B-Instruct - LoRA 1 - Cosine Similarity (Attention Layers)

—e— QProj
—e— KProj
—e— VProj
015 —— 0Proj
=
£ o1
E
@
2
g
S o0os
g
g
E \
' '\/\//"
~0.05
o 1 15 20
Layer
Qwen2.5-0.5B-Instruct - LoRA 2 - Cosine Similarity (Attention Layers)
—— QProj
—e— VProj
004
£ o
£
E
@
g
8 4] '4
)
5
Z -0.02
~0.04
o H 10 15 20
Layer
Qwen2.5-0.5B-Instruct - LORA 3 - Cosine Similarity (Attention Layers)
—e— QProj
o KProj
010 —e— VProj
—e— 0Proj
005
2z
5
£ 000
@
g
8 —0.05
¥ —
H 4 \ / 'SRV
5
£ -o10
-0.15
-0.20
o H 10 15 20
Layer
Qwen2.5-0.5B-Instruct - LoRA 4 - Cosine Similarity (Attention Layers)
0,075 \ /K\
TR /h A\ AR
2 o025 v /\ »
H ‘\/\4 /
a
5 0000 V
& ~0.025 v
8| V1
g
2 -0.050
-0.075
—e— QProj
—o KProj
-0.100 —e— VProj
—e— 0Prj
o 10 15 20
Layer
Qwen2.5-0.5B-Instruct - LoRA 5 - Cosine Similarity (Attention Layers)
015
010
2 o0s
E
@
2
S
o
g
2 -0.05
2
-0.10
-0.15

Figure 4: Cosine Similarity between Original Representation and LoRA Correction for Different Qwen2.5-Instruct

LoRA Adapters (Continued on next page).

15

Qwen2.5-1.5B-Instruct - LoRA 6 - Cosine Similarity (Attention Layers)

0.06
004
z2
& o
2
8
% A
g 000 o
-0.02
—e— QProj
~o— VProj
10 15 20 25
Layer
Qwen2.5-1.5B-Instruct - LoRA 7 - Cosine Similarity (Attention Layers)
0.08 —e— QProj
A v
I
Z o004
5
E
@
2
£ o002
8
S
2 000
; - N :
-0.02
-0.04
o i 10 20 25
Layer
Qwen2.5-1.5B-Instruct - LoRA 8 - Cosine Similarity (Attention Layers)
0125 —e— QProj
—o— KProj
—e— VProj
0100 —e— 0Proj
0075
z
H
E 0050
&
£
8 0025
S
a !
§ 0000
) YA YR
-0.025
-0.050
) ¢ v 4
o H 10 15 20 25
Layer
Qwen2.5-1.5B-Instruct - LoRA 9 - Cosine Similarity (Attention Layers)
—e— QProj
—o— KProj
—e— VProj
010 —o— 0Proj
z2
£ o0
&
2
S
o
2 000
s
z
-0.05
3 10 20 25
Layer
Qwen2.5-1.5B-Instruct - LoRA 10 - Cosine Similarity (Attention Layers)
° —e- QProj
015 —o— KProj
—o— VProj
—e— 0Proj
010
z2
° oos e 2
i V5
o
g
g
§ oo
~0.05 y N V \ \
10 15 20 25

Layer

Qwen2.5-3B-Instruct - LoRA 11 - Cosine Similarity (Attention Layers) Qwen2.5-7B-Instruct - LoRA 16 - Cosine Similarity (Attention Layers)

? —e— QProj
o010 —o— KProj
| o= vProj r ?

wl i . wl T i
) 000 ¥ a JAPZN .
\

Average Cosine Similarity
Average Cosine Similarity

i\

—e— QProj

—0.10 { —o= KProj 004
—e— VProj
—e— 0Proj
o 10 15 20 25 0 3 10 15 20 25
Layer Layer
Qwen2.5-3B-Instruct - LoRA 12 - Cosine Similarity (Attention Layers) Qwen2.5-7B-Instruct - LoRA 17 - Cosine Similarity (Attention Layers)
008 —e— QProj
0.04 —o— KProj

) —- vProj
A A AT
002 y, SRS Y)

-0.02

-0.02

[T ki
] = &

~0.04

Average Cosine Similarity
o o o
g & 2
8 R 8
Average Cosine Similarity

-0.06 + K Proj
. e \ 008 \
008 —e— 0Proj
o H 10 5 20 25 0 B o i 10 15 20 25
Layer Layer
Qwen2.5-3B-Instruct - LoRA 13 - Cosine Similarity (Attention Layers) Qwen2.5-7B-Instruct - LORA 18 - Cosine Similarity (Attention Layers)
020 ——) 0075 1 —— QProj
e KProj —o— KProj
—e— VProj —e— VProj
o015 —e— 0Proj 0.050 1 e~ 0 Proj
- 5 0025
€ o10 2
5 H
E E
@ @ 0000 ¥
@ »
g oos 2
\ |
1y g 0025 \V4 b
§ oo £
= = 0050
-0.05
¢
¢ -0.075
-0.10
-0.100
o H 10 5 20 25 0 B o H 10 15 20 25
Layer Layer
Qwen2.5-3B-Instruct - LORA 14 - Cosine Similarity (Attention Layers) Qwen2.5-7B-Instruct - LoRA 19 - Cosine Similarity (Attention Layers)
006 —e— QProj 004 Py —e— QProj
—o— VProj) —e— VProj
0.02
004
z Zz o000
] H A
E ﬂ g
g 002 A 1 E ~0.02 v
[S
& & —0.04
g g
g 1 A : \f
E z
V \/ v V' 1% v\ ~0.06
-0.08
00244 3 Y {
-0.10
o 10 15 20 25 30 35 10 15 20 25
Layer Layer
Qwen2.5-3B-Instruct - LoRA 15 - Cosine Similarity (Attention Layers) Qwen?2.5-7B-Instruct - LoRA 20 - Cosine Similarity (Attention Layers)
e QProj 02 —e— QProj
o f P koo
—e— VProj —e— VProj
A —e— 0Proj o1 A —e— 0Proj
0075)
g | /\/\ i
g M w.;& M /(W/'J‘ g ¢
& 0000 ¥ & & V
:
z z
-0.025 f\ 02
~0.050
Y
{ y V s
~0.075
4 10 15 20 25 E 3 10 15 20 25
Layer Layer

Figure 5: Cosine Similarity between Original Representation and LoRA Correction for Different Qwen2.5-Instruct

LoRA Adapters (Continued from previous page).
16

B.4 Discussion

The figures reveal a consistent trend across all
model sizes and LoRA adapters: the cosine simi-
larity between the original representation and the
LoRA correction is generally very close to zero,
indicating near-orthogonality. This suggests that
the LoRA adapters are primarily learning to mod-
ify the model’s representations in directions that
are orthogonal to the original representations, even
when using task-relevant data. This finding is non-
trivial, as one might expect the LoRA correction to
primarily amplify or attenuate existing features in
the original representation for a related task. The
observed near-orthogonality supports the core con-
cept of Noise Flushing. The LoRA adapter appears
to be learning task-specific features within a sub-
space largely orthogonal to the original model’s
representation of the task.

17

	Introduction
	Related Work
	Challenges in Data-Efficient Instruction Tuning
	Data-Efficient Fine-Tuning Approaches
	Leveraging Irrelevant or Diverse Data

	Method
	Problem Formulation: Noise Entanglement in Instruction Tuning
	LoRA for Efficient Fine-tuning and Noise Control

	Noise Flushing with Irrelevant Data: The Mechanism
	Theoretical Justification for Noise Flushing
	Theorem 1: Task-Only Sample Complexity
	Theorem 2: Mixed-Data Sample Complexity and Convergence

	Discussion

	Experiment
	Practical Task Performance: Demonstrating Data Efficiency
	Experiment Setup
	Tasks and Evaluation Metrics
	Results and Analysis

	Ablation Study: Verifying the Noise Suppression Mechanism
	Experiment Setup
	Results and Analysis

	Intermediate Representation Analysis: Validating Task Feature Learning via Noise Suppression
	Experiment Setup
	Results and Analysis

	Conclusion
	Quality and Quantity of Irrelevant Data
	Role of LoRA and Low-Rank Constraints
	Theoretical and Practical Gaps
	Experimental Scale and Generalization
	Computational Cost of Irrelevant Data

	Appendix: Proofs of Theorems
	Proof of Theorem 1: Task-Only Sample Complexity
	Proof of Theorem 2: Mixed-Data Sample Complexity and Convergence

	Appendix: LoRA Orthogonality Analysis: Detailed Methodology and Results
	Experimental Setup
	Models and Adapters
	Data Selection
	Cosine Similarity Calculation

	Results
	Results
	Discussion

