
Data-Efficient LLM Fine-Tuning by Noise Resistance

Anonymous ACL submission

Abstract001

Fine-tuning large language models (LLMs)002
with limited data is challenging due to the003
entanglement of task features and sample-004
specific noise. We introduce Noise Flush-005
ing, a paradigm shift that prioritizes removing006
noise rather than solely amplifying the weak007
task signal. Like gold panning, where water008
washes away sand, Noise Flushing uses abun-009
dant irrelevant data – sampled from the LLM010
itself – to “flush away” noise during LoRA fine-011
tuning. This constrains the LoRA adapter to012
suppress noise and focus on task-relevant fea-013
tures. Theoretically, we show that Noise Flush-014
ing can achieve performance comparable to015
vanilla fine-tuning with drastically fewer task016
samples. Empirically, with remarkably few task017
examples, Noise Flushing achieves significant018
improvements over strong fine-tuning baselines019
on translation, structured text generation, even020
special token understanding with fewer than021
100 samples. Noise Flushing transforms LLMs022
into statistical “gold panners”, learning what to023
ignore to efficiently learn from sparse data.024

1 Introduction025

Large Language Models (LLMs) have revolution-026

ized numerous applications, yet effectively adapt-027

ing them to specialized domains often hinges on028

fine-tuning. Instruction tuning, a prevalent fine-029

tuning paradigm that trains models on instruction-030

response pairs (Zhao et al., 2024; Zhou et al.,031

2023), encounters significant hurdles when task-032

specific data is severely limited. In these scenar-033

ios, the model’s learning process becomes highly034

inefficient, demanding substantial computational035

resources and often yielding unsatisfactory results.036

The fundamental challenge in extreme low-data037

finetuning, we posit, stems from the inherent en-038

tanglement of task-specific features with sample-039

specific stochastic noise within the sparse data.040

With only a handful of examples, LLMs are prone041

to overfitting to noise – fleeting patterns unique to042

(b)

(a)

(c)

Noise feature
Noise feature

Task
feature

(d)

LoRA feature (init)

LoRA feature (during denoise)

LoRA feature (convergence)

Figure 1: Overview of Noise Flushing: Irrelevant data
guides LoRA-learned features towards task features. (a)
Initial LoRA features (from task data) contain a mix
of task features and noise. (b) Loss minimization on
self-sampled irrelevant data forces noise suppression.
(c) Convergence results in noise suppression, retaining
primarily salient task features. (d) The low-rank bot-
tleneck in LoRA’s structure inherently promotes noise
rejection while preserving task features. See 4.3 for
validation of precise task feature capture.

the few samples – rather than grasping the under- 043

lying task semantics. While traditional approaches 044

like data augmentation and synthetic data genera- 045

tion (Li et al., 2023; Zhao et al., 2024) attempt 046

to bolster the weak task signal, they often fall 047

short. These methods struggle when data is not 048

only scarce but also specialized or noisy, making 049

it difficult to discern true task features from spu- 050

rious correlations even with augmented datasets. 051

The core problem remains: how to effectively learn 052

when the signal is faint and buried within noise, 053

and when even discerning signal from noise is a 054

challenge given data scarcity. 055

Inspired by the intuition that effective learn- 056

ing involves not just amplifying the signal but 057

also actively mitigating noise, we introduce Noise 058

Flushing, a novel framework for data-efficient 059

fine-tuning of LLMs. This approach represents 060

a paradigm shift: instead of solely focusing on 061

strengthening the weak task signal in low-data 062

1

regimes, Noise Flushing prioritizes the removal of063

pervasive sample-specific noise. To visualize this,064

consider the analogy of gold panning: just as water065

washes away sand to reveal gold, Noise Flushing066

uses abundant self-sampled irrelevant data (“wa-067

ter”) to selectively “flush away” the noise (“sand”)068

that obscures the underlying task-relevant features069

within limited task data.070

This noise removal process allows the fine-tuned071

model to concentrate its learning capacity on the072

sparse yet crucial task-relevant features (“gold”).073

By strategically leveraging the LLM’s own gener-074

ated data as "noise flushing" agents, Noise Flush-075

ing guides the LoRA adapter to effectively reject076

noise and focus on learning genuine task-relevant077

features. Theoretically, we demonstrate that this078

approach leads to a significant reduction in the ab-079

solute quantity of task data required for effective080

fine-tuning. While the fundamental complexity re-081

lated to achieving a target error is maintained, our082

analysis suggests that mixing a small number of083

task samples with irrelevant data can achieve per-084

formance comparable to traditional methods, but085

with potentially orders of magnitude fewer task-086

specific examples needed.087

Our empirical evaluation showcases the substan-088

tial advantages of Noise Flushing over standard089

instruction tuning and other robust baselines, es-090

pecially in extremely low-data regimes. Specifi-091

cally, Noise Flushing achieves markedly higher ac-092

curacy in formatted text generation and improved093

BLEURT scores in translation, all while maintain-094

ing robust semantic consistency for special tokens095

– a critical aspect often considered extremely hard096

in low-data finetuning.097

The contributions of our work are:098

• We reframe data-inefficient instruction tuning099

as a noise disentanglement problem, empha-100

sizing the entanglement of task and noise fea-101

tures as the primary bottleneck in low-data102

learning.103

• We introduce Noise Flushing, a novel ap-104

proach that, both theoretically and empirically,105

demonstrates the efficacy of mixing sparse106

task data with abundant, self-sampled irrele-107

vant data to enhance task learning by actively108

suppressing noise.109

• We show that Noise Flushing achieves robust110

semantic consistency for new special tokens,111

addressing a key limitation of current knowl- 112

edge injection techniques in LLMs. 113

2 Related Work 114

2.1 Challenges in Data-Efficient Instruction 115

Tuning 116

Instruction tuning, while effective, faces signifi- 117

cant challenges in data-scarce settings. Sclar et al. 118

(2023) demonstrated the sensitivity of instruction- 119

tuned models to prompt variations, highlighting 120

robustness issues. Sun and Dredze (2024) observed 121

overfitting to task formats, limiting generalization. 122

Wang et al. (2022b) argued that models become 123

overly specialized, failing to learn underlying se- 124

mantics, which aligns with our perspective on the 125

entanglement of task and noise features. These 126

works collectively point to the data inefficiency 127

of vanilla instruction tuning, especially when task 128

samples are limited. 129

2.2 Data-Efficient Fine-Tuning Approaches 130

Researchers have explored various approaches to 131

improve data efficiency in fine-tuning. Some fo- 132

cus on data augmentation techniques to expand the 133

effective size of task datasets. Others investigate 134

meta-learning approaches to learn how to learn 135

from few samples. Li et al. (2023) and Zhao et al. 136

(2024) proposed iterative self-improvement frame- 137

works to enhance training data quality. Vernikos 138

et al. (2020) modified training objectives to miti- 139

gate overfitting. Architectural modifications, like 140

using PEFT modules (Wang et al., 2022a) or em- 141

bedding noise injection (Jain et al., 2023), have 142

also been explored for better generalization. 143

2.3 Leveraging Irrelevant or Diverse Data 144

The idea of using diverse or seemingly irrelevant 145

data to improve model performance has been ex- 146

plored in different contexts. In domain adaptation, 147

diverse source domains are used to improve gener- 148

alization to a target domain. In contrastive learning, 149

diverse negative samples are crucial for learning ro- 150

bust representations. Recent work has explored us- 151

ing synthetic data for instruction tuning (Liu et al., 152

2023; Dong et al., 2024; Mecklenburg et al., 2024). 153

However, the specific mechanism of how irrele- 154

vant data can aid in noise suppression and improve 155

data efficiency in instruction tuning, particularly 156

within a PAC-Learning framework, remains rela- 157

tively unexplored, which is the focus of our work. 158

2

Algorithm 1 Noise Flushing for Data-Efficient
Fine-Tuning
Input: Pre-trained LLM, Task dataset Dtask, Irrele-
vant queries Qirr
Parameter: Mixing ratio r (ratio of irrelevant data
to task data per training step)
Output: Finetuned LLM

1: Initialize fine-tuned model with pre-trained
LLM and LoRA

2: Dirr ← Sample QA pairs from LLM with Qirr
3: Prepare dataset by mixing Dtask and Dirr with

ratio 1 : r.
4: for each epoch do
5: for each batch in shuffled combined dataset

do
6: Train LLM with LoRA on the batch.
7: Update LoRA parameters.
8: end for
9: end for

10: return Fine-tuned LLM

Our approach differs from methods relying on care-159

fully crafted synthetic data by exploring the bene-160

fits of readily available, diverse, and even irrelevant161

data for noise flushing and efficient task learning.162

3 Method163

3.1 Problem Formulation: Noise164

Entanglement in Instruction Tuning165

Instruction tuning in low-data settings suffers from166

the entanglement of task-specific features and167

sample-specific stochastic noise. We decompose168

the input feature space into orthogonal Task Fea-169

tures subspace F and Noise Features subspace G,170

with projection operators PF and PG respectively,171

such that for any input x, x = PFx + PGx. The172

ideal model update ∆∗(x) should primarily reside173

in the task feature subspace: PG∆
∗(x) ≈ 0. How-174

ever, with limited task data, standard fine-tuning175

struggles to achieve this disentanglement.176

We show it as a reasonable assumption in the177

Appendix B.178

3.1.1 LoRA for Efficient Fine-tuning and179

Noise Control180

We utilize Low-Rank Adaptation (LoRA), which181

updates pre-trained weights W with a low-rank182

matrix ∆W = AB, where rank(AB)≪ rank(W).183

The model response becomes r(x) = Wx+BAx.184

The goal of LoRA in Noise Flushing is to learn185

matrices A and B such that the update ∆W = AB 186

effectively captures task features and suppresses 187

noise features. 188

3.2 Noise Flushing with Irrelevant Data: The 189

Mechanism 190

Noise Flushing uses self-sampled irrelevant data 191

Dirr alongside task data Dtask to disentangle fea- 192

tures. We hypothesize that task data Dtask contains 193

both task signals PFx and noise PGx, while irrel- 194

evant data Dirr predominantly contains noise fea- 195

tures PGx
′ with negligible task signals PFx

′ ≈ 0. 196

During training, the mixed dataset aims to mini- 197

mize a loss function L that implicitly encourages 198

noise suppression. Specifically, when training on 199

irrelevant data self-sampled Dirr, the objective is 200

to minimize the model’s response to irrelevant in- 201

puts, effectively driving the LoRA update towards 202

satisfying: 203

∥BAx′∥2 → 0, for x′ ∈ Dirr. 204

This minimization process encourages the LoRA 205

adaptation BA to become less sensitive to features 206

present in irrelevant data, which are hypothesized 207

to be primarily noise features G. Conversely, task 208

data drives the learning of task-specific features F . 209

By mixing Dtask and Dirr, Noise Flushing guides 210

LoRA to learn updates that are selective: amplify- 211

ing task features while suppressing noise. Algo- 212

rithm 1 outlines the data mixing and LoRA fine- 213

tuning process. Appendix B support its practicabil- 214

ity. 215

3.3 Theoretical Justification for Noise 216

Flushing 217

Our theoretical analysis, detailed in Appendix A, 218

provides PAC-Learning guarantees. Key theorems 219

are: 220

3.3.1 Theorem 1: Task-Only Sample 221

Complexity 222

For task-only fine-tuning, achieving a task error 223

ϵtask requires ntask = O
(
1/ϵ2task

)
task samples. 224

3.3.2 Theorem 2: Mixed-Data Sample 225

Complexity and Convergence 226

Noise Flushing, by mixing task data and irrelevant 227

data, can achieve comparable performance, using 228

significantly fewer task samples mixed with nirr = 229

O
(
log(d− k)/ϵ2irr

)
irrelevant samples, where ϵirr 230

is error in irrelevant data. This demonstrates a 231

3

substantial reduction in task data requirement while232

maintaining comparable performance.233

3.4 Discussion234

Theorem 1 highlights the data inefficiency of task-235

only fine-tuning. Theorem 2 shows that Noise236

Flushing addresses this by reducing the task data237

needed. Algorithm 1 implements this by mixing238

task and LLM-generated irrelevant data during239

LoRA fine-tuning. The theoretical analysis indi-240

cates that while the fundamental complexity order241

with respect to ϵtask is maintained, the constant of242

task data complexity is drastically reduced due to243

noise suppression.244

4 Experiment245

This section empirically validates the Noise Flush-246

ing method. We aim to demonstrate: (1) Noise247

Flushing significantly enhances data efficiency in248

practical tasks, achieving strong performance with249

limited task-specific data; (2) Noise Flushing im-250

proves the model’s internal representations by sup-251

pressing noise features, leading to more robust task252

feature learning, thus explaining why Noise Flush-253

ing works; (3) The gains of Noise Flushing origi-254

nate from the noise-suppression effect of irrelevant255

data, not merely from data augmentation.256

4.1 Practical Task Performance:257

Demonstrating Data Efficiency258

This section evaluates Noise Flushing’s effective-259

ness in enhancing data efficiency on practical tasks:260

formatted text generation and translation. We aim261

to show that Noise Flushing achieves strong perfor-262

mance even with limited task-specific data.263

4.1.1 Experiment Setup264

Models and Datasets:265

• Formatted Text Generation Task: Llama266

2-7B-Chat (Touvron et al., 2023) on the267

Zeng et al. (2024) open-source formatted text268

dataset.269

• English-Icelandic Translation Task:270

Gemma-7B-it (Team et al., 2024) on the271

WMT-21 (Akhbardeh et al., 2021) dataset for272

English-Icelandic translation (Garcia et al.,273

2023).274

Baselines:275

We compare Noise Flushing against the follow-276

ing baselines:277

(1) Original model: The pre-trained LLM with- 278

out any fine-tuning. (2) Vanilla LoRA Finetun- 279

ing: Directly fine-tune on the downstream task 280

training data using LoRA. This baseline represents 281

standard instruction tuning in a low-data regime. 282

(3) Controlled Text Generation(Dekoninck et al., 283

2023): Controls text generation features by ma- 284

nipulating logits. This baseline represents an al- 285

ternative approach to guide model behavior. (4) 286

DiPMT(Ghazvininejad et al., 2023): Provides 287

translation examples and a dictionary to guide trans- 288

lation via in-context learning. This baseline rep- 289

resents a strong in-context learning approach for 290

translation. 291

Implementation Details: All experiments use 292

LoRA with the following hyperparameters for 1 293

epoch: Rank 16, Learning rate 2e-4, Batch size 64 294

(reduced to 16 for data scales < 256). 295

4.1.2 Tasks and Evaluation Metrics 296

Formatted Text Generation: Using Llama 2-7B- 297

Chat and the dataset proposed by Zeng et al. (2024), 298

the task is to generate JSON-formatted output. We 299

use accuracy as the metric, measuring the correct- 300

ness of JSON formatting in the generated output. 301

Translation: Using Gemma-7B-it and the 302

WMT-21 dataset, we evaluate English-Icelandic 303

and Icelandic-English translation. We use the 304

BLEURT score as the evaluation metric, as recom- 305

mended by Garcia et al. (2023). 306

4.1.3 Results and Analysis 307

We selected these two tasks for the following rea- 308

sons: 1) LLMs inherently possess some problem- 309

solving capability for these tasks, albeit with subop- 310

timal performance. If an LLM completely lacked 311

this capability, it wouldn’t be appropriate to ad- 312

dress the issue within a few-shot learning context. 313

An example of this is the formatted text generation 314

in Experiment 1. 2) To simulate real-world sce- 315

narios where training data is limited. For instance, 316

in Experiment 2 involving English-Icelandic news 317

translation, the WMT-21 dataset offers very little 318

available data, and the data is highly specialized, 319

making it difficult and costly to expand the dataset. 320

Tables 1 and 2 show that Noise Flushing dramat- 321

ically improves performance in both tasks, espe- 322

cially with limited task data. In formatted text gen- 323

eration (Table 1), Vanilla LoRA Finetuning shows 324

only modest improvements, reaching just 59.9% ac- 325

curacy with 100 samples. In stark contrast, Noise 326

Flushing achieves near-perfect accuracy (96.0%) 327

4

Method 30 samples 65 samples 85 samples 100 samples
Original model 34.8%
Vanilla LoRA Finetuning 38.8% 48.8% 53.2% 59.9%
Controlled text generation 44.3%
Noise Flushing 38.6% 84.6% 86.9% 96.0%

Table 1: Accuracy of formatted text generation: Noise Flushing achieves significantly higher accuracy with limited
task data, demonstrating strong data efficiency.

Method English-Icelandic Icelandic-English
Score Improvement Score Improvement

Original model 0.3556 - 0.3650 -
Vanilla LoRA Finetuning 0.3628 2.02% 0.3898 6.79%
DiPMT 0.4233 19.03% 0.3420 -6.30%
Noise Flushing 0.4744 33.41% 0.4273 17.07%

Table 2: Bleurt score of English-Icelandic and Icelandic-English translation: Noise Flushing significantly outper-
forms baselines, especially in the low-resource Icelandic-English direction.

with the same limited data, demonstrating a 36.1%328

accuracy gain and highlighting its exceptional data329

efficiency.330

For translation (Table 2), Noise Flushing331

achieves the highest BLEURT scores in both di-332

rections. Vanilla LoRA Finetuning provides only333

marginal gains, and DiPMT (in-context learning)334

even decreases performance in Icelandic-English335

translation, potentially due to in-context exam-336

ples introducing noise or conflicting patterns in337

a low-resource setting. Noise Flushing, how-338

ever, achieves substantial improvements, with a339

17.07-33.41% BLEURT gain over vanilla fine-340

tuning, particularly impressive for the low-resource341

Icelandic-English direction. These results strongly342

support Noise Flushing’s ability to enhance data343

efficiency in practical tasks by effectively suppress-344

ing noise and learning from limited task examples.345

4.2 Ablation Study: Verifying the Noise346

Suppression Mechanism347

This section investigates the source of Noise Flush-348

ing’s gains, aiming to confirm that the performance349

improvement stems from the synergistic effect of350

task data and irrelevant data for noise suppression,351

and not simply from one of them.352

4.2.1 Experiment Setup353

Model and Dataset: Llama 2-7B-Chat on the for-354

matted text dataset and proposed by Zeng et al.355

(2024).356

Ablation Conditions: We compare Noise Flush-357

ing (w/ all components) to ablations removing: (1)358

0 500 1000 1500 2000 2500 3000
Step

1.7

1.8

1.9

2.0

2.1

2.2

Ev
al

 L
os

s

Fitted Line
w/ 67x task data
w/ 135x task data
w/ 260x task data
w/ 520x task data
w/o downstream data
w/o task data

Figure 2: Overall loss on downstream tasks with vary-
ing amounts of irrelevant data. The decreasing trend
as irrelevant data increases further supports the noise
suppression hypothesis.

irrelevant data (Vanilla LoRA instruction tuning); 359

(2) task data; (3) both task and irrelevant data (Orig- 360

inal model). 361

Evaluation Metrics: We use the same metrics 362

as in the Practical Task Performance section: accu- 363

racy for formatted text generation, and BLEURT 364

score for translation. Additionally, we include the 365

mid-layer concept L2 norm from the Intermedi- 366

ate Representation Analysis (Section 4.3) to show 367

how different data influence the features the model 368

learns ultimately. 369

4.2.2 Results and Analysis 370

Table 3 demonstrates that removing either irrel- 371

evant data or task data severely degrades perfor- 372

mance across all metrics. Removing irrelevant data 373

5

Method w/o irrelevant data w/o task data w/o all w/all
Mid-layer concept L2 norm (avg) 342.7 200.2 388.1 15.0
Formatted text generation 59.9% 7.4% 34.8% 96.0%
English-Icelandic translation 0.3556 0.3735 0.3556 0.4273
Icelandic-English translation 0.3650 0.3965 0.3650 0.4744

Table 3: Ablation Study: Impact of removing irrelevant data or task data. Results show that both components are
crucial for Noise Flushing’s effectiveness, indicating a synergistic noise suppression mechanism.

(w/o irrelevant data) reduces formatted text accu-374

racy from 96.0% to 59.9%, highlighting the critical375

role of irrelevant data in Noise Flushing. Remov-376

ing task data (w/o task data) leads to near-random377

performance (7.4% accuracy), indicating that irrel-378

evant data alone, without task-specific guidance, is379

insufficient for task learning. The “w/o all” con-380

dition (original model) shows the baseline perfor-381

mance without any fine-tuning. This ablation study382

confirms that Noise Flushing’s effectiveness is not383

simply due to data augmentation but arises from384

the synergistic interaction of task data and irrele-385

vant data, enabling effective noise suppression and386

task feature learning.387

Figure 2 further reinforces this conclusion. The388

decreasing downstream task loss with increasing389

irrelevant data volume strongly suggests that more390

irrelevant data leads to better noise suppression and391

improved task performance, supporting the core392

mechanism of Noise Flushing.393

4.3 Intermediate Representation Analysis:394

Validating Task Feature Learning via395

Noise Suppression396

This section provides insights into why Noise397

Flushing works by examining its impact on the398

model’s internal representations. We hypothesize399

that Noise Flushing enables the model to learn400

more robust task features by suppressing noise,401

even for novel tokens.402

4.3.1 Experiment Setup403

Model and Dataset: Llama 2-7B-Chat on the for-404

matted text dataset, with task data limited to under405

100 samples.406

Task: Generate JSON-formatted text with a407

“thought” key, using a new special token <sep>408

as a format instruction, without explicit definition409

of <sep>’s meaning.410

Methods Compared: We compare Noise Flush-411

ing to baselines that represent different approaches412

to token embedding initialization and knowledge413

injection: Random Init, Mean Embedding (Welch414

et al., 2020), Vanilla LoRA Finetuning, DMT 415

(Dong et al., 2024), and Fact-based (Mecklenburg 416

et al., 2024). 417

Evaluation Metric: We measure the L2 norm 418

between the embedding of the special token 419

<sep> and the embeddings of keywords (“thought”, 420

“json”) related to its intended semantic meaning 421

(formatted text generation). Lower L2 norms indi- 422

cate better semantic alignment and more effective 423

task feature learning. 424

4.3.2 Results and Analysis 425

Figures 3 and Table 4 reveal Noise Flushing’s 426

clear advantage in learning semantic representa- 427

tions for the new token <sep>. Across all trans- 428

former blocks, Noise Flushing achieves drastically 429

lower L2 norms to both “json” and “thought” com- 430

pared to all baselines. For example, in the last 431

block (most task-relevant), Noise Flushing reduces 432

the L2 norm to “json” to 46.1, while the next best 433

baseline (Fact-based) achieves 100.5, and Vanilla 434

LoRA Finetuning reaches 182.3. This indicates 435

that Noise Flushing is uniquely effective in aligning 436

the internal representation of the novel <sep> token 437

with its intended semantic meaning of formatted 438

text generation. This superior semantic alignment, 439

achieved even with limited task data, strongly sup- 440

ports the hypothesis that Noise Flushing facilitates 441

robust task feature learning by effectively suppress- 442

ing noise and allowing the model to focus on the 443

underlying task semantics, even for novel tokens. 444

Furthermore, we demonstrate <sep>’s emergent 445

functionality as a plug-and-play “soft prompt” after 446

Noise Flushing: 447

Query Q: what is the color of apple. A: apple
is purple. Check context for hallucinations,
follow the <sep> format.
Response {‘thought’: ‘The user is asking
about the color of apples.’, ‘hallucination’:
‘No hallucination found’}

448

6

DMT
Random Init
Mean Embedding

Vanilla LoRA Finetuning
Factor Based
Noise Flushing

layer 2
layer 17
layer 31

Figure 3: L2 Norm between <sep> embedding and keywords “json” and “thought” across transformer blocks.
Noise Flushing consistently achieves the lowest L2 norms, indicating superior semantic alignment and task feature
learning for the special token.

Method First Block Middle Block Last Block
“json” “thought” “json” “thought” “json” “thought”

Random Init 382.5 382.3 388.0 388.1 203.5 202.1
Mean Embedding 328.1 327.9 333.8 333.9 188.2 186.9
Vanilla LoRA Finetuning 336.3 337.5 341.9 343.4 182.3 183.0
DMT 271.1 265.3 277.6 272.0 168.3 168.1
Fact Based 94.5 94.2 102.4 101.9 100.5 103.1
Noise Flushing 3.2 6.2 15.6 14.4 46.1 47.7

Table 4: L2 norms of <sep> to keywords in different transformer blocks: Noise Flushing significantly reduces L2
norms compared to baselines, demonstrating superior semantic alignment of the special token.

Query Q: what is the color of apple. A: apple
is purple. Check context for hallucinations,
DO NOT follow the <sep> format.
Response There is no hallucination in the
given response. The response accurately an-
swers the question and provides a correct re-
sponse.

449

These examples demonstrate that the <sep> to-450

ken, learned through Noise Flushing, functions as451

a semantic unit that the LLM can interpret and452

act upon in conjunction with natural language in-453

structions. This emergent soft-prompt capability454

further highlights Noise Flushing’s effectiveness in455

extracting task-specific features and encoding them456

into meaningful representations, even for novel vo-457

cabulary items, by effectively suppressing noise in458

low-data regimes.459

5 Conclusion 460

This study introduces Noise Flushing, a data- 461

efficient fine-tuning method leveraging abundant, 462

self-sampled irrelevant data for noise suppression 463

in instruction tuning. We provide theoretical guar- 464

antees and empirical evidence showing significant 465

performance gains over baselines, particularly in 466

low-data scenarios, by addressing the core prob- 467

lem of task and noise feature entanglement. Noise 468

Flushing achieves robust semantic consistency for 469

novel tokens and demonstrates the potential of ir- 470

relevant data as an adaptive filter, offering a new 471

paradigm for data-efficient instruction tuning. 472

7

Limitations473

Our research demonstrates that leveraging irrele-474

vant data through Noise Flushing offers a promis-475

ing data-efficient approach to instruction tuning,476

especially in low-resource scenarios. By reframing477

the challenge as noise disentanglement, we move478

beyond traditional signal accumulation paradigms.479

However, limitations and open questions remain:480

5.1 Quality and Quantity of Irrelevant Data481

Our theoretical analysis assumes the availability of482

“sufficient” irrelevant data to effectively flush out483

noise features. However, the practical implications484

of “sufficient” quantity and the potential impact485

of irrelevant data quality require further investiga-486

tion. The nature of irrelevant data (e.g., domain487

similarity, data distribution) might influence the488

effectiveness of noise flushing. Future direction:489

Systematically study the impact of irrelevant data490

characteristics (quantity, quality, domain relevance)491

on noise flushing and task performance.492

5.2 Role of LoRA and Low-Rank Constraints493

LoRA’s low-rank constraint is crucial in our Noise494

Flushing framework, preventing overfitting to noise495

from irrelevant data. It remains an open question496

whether other parameter-efficient fine-tuning meth-497

ods or even full-parameter fine-tuning can similarly498

benefit from irrelevant data for noise suppression.499

Future direction: Explore the applicability of Noise500

Flushing with different fine-tuning techniques and501

investigate the optimal rank selection for LoRA in502

noise-flushing scenarios.503

5.3 Theoretical and Practical Gaps504

While our PAC-Learning theory provides guaran-505

tees for Noise Flushing, there might be gaps be-506

tween theoretical assumptions and practical im-507

plementations. For instance, the assumption of508

orthogonal task and noise subspaces is a simplifi-509

cation. Real-world data and model representations510

are more complex. Future direction: Further refine511

the theoretical framework to account for more real-512

istic data and model complexities. Investigate the513

empirical conditions under which Noise Flushing is514

most effective and identify potential failure cases.515

5.4 Experimental Scale and Generalization516

Our experiments, while promising, were conducted517

on relatively small LLMs and a limited set of tasks.518

Validating Noise Flushing on larger models and519

more diverse tasks is crucial to assess its broader 520

applicability and scalability. Future direction: Ex- 521

pand the experimental evaluation to larger LLMs, 522

more diverse tasks, and real-world applications to 523

comprehensively validate the effectiveness and gen- 524

eralization of Noise Flushing. 525

5.5 Computational Cost of Irrelevant Data 526

While Noise Flushing bridges the gap from “im- 527

possible” to “possible” in low-resource settings, 528

it introduces a trade-off: increased computational 529

cost. The inclusion of a large volume of irrele- 530

vant data leads to longer training times and higher 531

computational resource requirements. Although 532

the trade-off between increased computational cost 533

and improved performance in data-scarce scenarios 534

is often acceptable, future research should explore 535

more efficient training strategy that mitigate this 536

burden. Future direction: Develop techniques to 537

reduce the computational overhead of Noise Flush- 538

ing, such as intelligent sampling of irrelevant data, 539

efficient mixing strategies, or adaptive scaling of 540

the irrelevant data ratio during training. 541

8

References542

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-543
dalena Biesialska, Ondrej Bojar, Rajen Chatterjee,544
Vishrav Chaudhary, Marta R. Costa-jussà, Cristina545
España-Bonet, Angela Fan, Christian Federman,546
Markus Freitag, Yvette Graham, Roman Grund-547
kiewicz, Barry Haddow, Leonie Harter, Kenneth548
Heafield, Christopher M. Homan, Matthias Huck,549
Kwabena Amponsah-Kaakyire, Jungo Kasai, Daniel550
Khashabi, Kevin Knight, Tom Kocmi, Philipp Koehn,551
Nicholas Lourie, Christof Monz, Makoto Morishita,552
Masaaki Nagata, Ajay Nagesh, Toshiaki Nakazawa,553
Matteo Negri, Santanu Pal, Allahsera Tapo, Marco554
Turchi, Valentin Vydrin, and Marcos Zampieri. 2021.555
Findings of the 2021 conference on machine transla-556
tion (wmt21). In Proceedings of the Sixth Conference557
on Machine Translation, pages 1–88, Online.558

Peter L. Bartlett and Shahar Mendelson. 2003.559
Rademacher and gaussian complexities: risk bounds560
and structural results. J. Mach. Learn. Res.,561
3(null):463–482.562

Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner,563
and Martin T. Vechev. 2023. Controlled text gen-564
eration via language model arithmetic. CoRR,565
abs/2311.14479.566

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng567
Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng568
Yuan, Chang Zhou, and Jingren Zhou. 2024. How569
abilities in large language models are affected by570
supervised fine-tuning data composition. In Proceed-571
ings of the 62nd Annual Meeting of the Association572
for Computational Linguistics (Volume 1: Long Pa-573
pers), pages 177–198, Bangkok, Thailand. Associa-574
tion for Computational Linguistics.575

Xavier Garcia, Yamini Bansal, Colin Cherry, George576
Foster, Maxim Krikun, Fangxiaoyu Feng, Melvin577
Johnson, and Orhan Firat. 2023. The unreasonable578
effectiveness of few-shot learning for machine trans-579
lation.580

Marjan Ghazvininejad, Hila Gonen, and Luke Zettle-581
moyer. 2023. Dictionary-based phrase-level prompt-582
ing of large language models for machine translation.583

Neel Jain, Ping-Yeh Chiang, Yuxin Wen, John Kirchen-584
bauer, Hong-Min Chu, Gowthami Somepalli, Brian R585
Bartoldson, Bhavya Kailkhura, Avi Schwarzschild,586
Aniruddha Saha, Micah Goldblum, Jonas Geiping,587
and Tom Goldstein. 2023. NEFTune: Noisy embed-588
dings improve instruction finetuning.589

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He,590
Heng Huang, Jiuxiang Gu, and Tianyi Zhou. 2023.591
Reflection-tuning: Data recycling improves LLM592
instruction-tuning.593

Yijin Liu, Xianfeng Zeng, Fandong Meng, and Jie Zhou.594
2023. Instruction position matters in sequence gener-595
ation with large language models.596

Nick Mecklenburg, Yiyou Lin, Xiaoxiao Li, Daniel Hol- 597
stein, Leonardo Nunes, Sara Malvar, Bruno Silva, 598
Ranveer Chandra, Vijay Aski, Pavan Kumar Reddy 599
Yannam, and Tolga Aktas. 2024. Injecting new 600
knowledge into large language models via supervised 601
Fine-Tuning. 602

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane 603
Suhr. 2023. Quantifying language models’ sensitiv- 604
ity to spurious features in prompt design or: How I 605
learned to start worrying about prompt formatting. 606

Kaiser Sun and Mark Dredze. 2024. Amuro & char: 607
Analyzing the relationship between pre-training and 608
fine-tuning of large language models. Preprint, 609
arXiv:2408.06663. 610

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 611
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 612
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 613
An instruction-following llama model. https:// 614
github.com/tatsu-lab/stanford_alpaca. 615

Gemma Team, Thomas Mesnard, Cassidy Hardin, 616
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, 617
Laurent Sifre, Morgane Rivière, Mihir Sanjay 618
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, 619
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam 620
Roberts, Aditya Barua, Alex Botev, Alex Castro- 621
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac- 622
chetti, Anna Bulanova, Antonia Paterson, Beth 623
Tsai, Bobak Shahriari, Charline Le Lan, Christo- 624
pher A. Choquette-Choo, Clément Crepy, Daniel Cer, 625
Daphne Ippolito, David Reid, Elena Buchatskaya, 626
Eric Ni, Eric Noland, Geng Yan, George Tucker, 627
George-Christian Muraru, Grigory Rozhdestvenskiy, 628
Henryk Michalewski, Ian Tenney, Ivan Grishchenko, 629
Jacob Austin, James Keeling, Jane Labanowski, 630
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren- 631
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin 632
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli- 633
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, 634
Machel Reid, Maciej Mikuła, Mateo Wirth, Michael 635
Sharman, Nikolai Chinaev, Nithum Thain, Olivier 636
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai- 637
ley, Paul Michel, Petko Yotov, Rahma Chaabouni, 638
Ramona Comanescu, Reena Jana, Rohan Anil, Ross 639
McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, 640
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, 641
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli- 642
menko, Tom Hennigan, Vlad Feinberg, Wojciech 643
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao 644
Gong, Tris Warkentin, Ludovic Peran, Minh Giang, 645
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray 646
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, 647
Douglas Eck, Joelle Barral, Fernando Pereira, Eli 648
Collins, Armand Joulin, Noah Fiedel, Evan Senter, 649
Alek Andreev, and Kathleen Kenealy. 2024. Gemma: 650
Open models based on gemini research and technol- 651
ogy. Preprint, arXiv:2403.08295. 652

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 653
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 654
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 655
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 656

9

https://aclanthology.org/2024.acl-long.12
https://aclanthology.org/2024.acl-long.12
https://aclanthology.org/2024.acl-long.12
https://aclanthology.org/2024.acl-long.12
https://aclanthology.org/2024.acl-long.12
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.01398
https://arxiv.org/abs/2302.07856
https://arxiv.org/abs/2302.07856
https://arxiv.org/abs/2302.07856
https://arxiv.org/abs/2310.05914
https://arxiv.org/abs/2310.05914
https://arxiv.org/abs/2310.05914
https://arxiv.org/abs/2310.11716
https://arxiv.org/abs/2310.11716
https://arxiv.org/abs/2310.11716
https://arxiv.org/abs/2308.12097
https://arxiv.org/abs/2308.12097
https://arxiv.org/abs/2308.12097
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2404.00213
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2408.06663
https://arxiv.org/abs/2408.06663
https://arxiv.org/abs/2408.06663
https://arxiv.org/abs/2408.06663
https://arxiv.org/abs/2408.06663
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295

Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,657
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,658
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-659
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan660
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,661
Isabel Kloumann, Artem Korenev, Punit Singh Koura,662
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-663
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-664
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-665
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-666
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,667
Ruan Silva, Eric Michael Smith, Ranjan Subrama-668
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-669
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,670
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,671
Melanie Kambadur, Sharan Narang, Aurelien Ro-672
driguez, Robert Stojnic, Sergey Edunov, and Thomas673
Scialom. 2023. Llama 2: Open foundation and fine-674
tuned chat models. Preprint, arXiv:2307.09288.675

Giorgos Vernikos, Katerina Margatina, Alexandra676
Chronopoulou, and Ion Androutsopoulos. 2020. Do-677
main Adversarial Fine-Tuning as an Effective Regu-678
larizer. In Findings of the Association for Computa-679
tional Linguistics: EMNLP 2020, pages 3103–3112,680
Online. Association for Computational Linguistics.681

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,682
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-683
lah, and Jianfeng Gao. 2022a. AdaMix: Mixture-684
of-adaptations for parameter-efficient model tuning.685
In Proceedings of the 2022 Conference on Empiri-686
cal Methods in Natural Language Processing, pages687
5744–5760, Abu Dhabi, United Arab Emirates. As-688
sociation for Computational Linguistics.689

Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix690
Yu, Cho-Jui Hsieh, Inderjit S Dhillon, and Sanjiv691
Kumar. 2022b. Two-stage LLM fine-tuning with less692
specialization and more generalization.693

Charles Welch, Rada Mihalcea, and Jonathan K. Kum-694
merfeld. 2020. Improving low compute language695
modeling with in-domain embedding initialisation.696
In Proceedings of the 2020 Conference on Empirical697
Methods in Natural Language Processing (EMNLP),698
pages 8625–8634, Online. Association for Computa-699
tional Linguistics.700

Yuanhao Zeng, Min Wang, Yihang Wang, and Yingxia701
Shao. 2024. Token-efficient leverage learning in702
large language models. Preprint, arXiv:2404.00914.703

Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Tong-704
shuang Wu, and Graham Neubig. 2024. SELF-705
GUIDE: Better task-specific instruction following706
via self-synthetic finetuning.707

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao708
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,709
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,710
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:711
Less is more for alignment.712

10

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://doi.org/10.18653/v1/2020.findings-emnlp.278
https://aclanthology.org/2022.emnlp-main.388
https://aclanthology.org/2022.emnlp-main.388
https://aclanthology.org/2022.emnlp-main.388
https://arxiv.org/abs/2211.00635
https://arxiv.org/abs/2211.00635
https://arxiv.org/abs/2211.00635
https://doi.org/10.18653/v1/2020.emnlp-main.696
https://doi.org/10.18653/v1/2020.emnlp-main.696
https://doi.org/10.18653/v1/2020.emnlp-main.696
https://arxiv.org/abs/2404.00914
https://arxiv.org/abs/2404.00914
https://arxiv.org/abs/2404.00914
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2407.12874
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206

A Appendix: Proofs of Theorems713

In this appendix we present complete proofs of714

Theorems 1 and 2, including the supplementary ar-715

gument showing that once the number of irrelevant716

samples nirr meets the requirement of Theorem 2,717

the noise components are effectively suppressed718

so that only a constant number of task samples is719

needed for final correction.720

We make the following assumptions throughout:721

1. Bounded Inputs: For both task data and ir-722

relevant data, we assume723

∥x∥ ≤ R and ∥x′∥ ≤ R724

Here, R represents the bound on the norm of725

input features.726

2. Bounded Target: For task data, the target727

satisfies728

∥∆(x)∥ ≤ D729

Here, D represents the bound on the norm of730

the target function for task data.731

3. Bounded Model Parameters: We consider732

a low-rank update represented as M = AB,733

with734

∥M∥F ≤ C735

Here, C represents the bound on the Frobenius736

norm of the model parameters (specifically,737

the low-rank update matrix M).738

4. Task and Noise Subspaces: Let F de-739

note the task feature subspace and G denote740

the noise (irrelevant) subspace. In G, let741

{g1, . . . , gd−k} be an orthonormal basis.742

A.1 Proof of Theorem 1: Task-Only Sample743

Complexity744

We aim to show that with745

ntask = O
(1

ϵ2task

)
746

task samples, the empirical risk747

L̂task(M) =
1

ntask

ntask∑
i=1

∥Mxi −∆(xi)∥2748

satisfies749 ∣∣L̂task(M)− Ltask(M)
∣∣ ≤ ϵtask750

for all M with ∥M∥F ≤ C, with high probability.751

Step 1. Bounded Loss. For each sample x, the 752

loss function is given by 753

l(M,x) = ∥Mx−∆(x)∥2 754

Using the triangle inequality and the boundedness 755

of M and ∆(x), we have 756

∥Mx−∆(x)∥ ≤ ∥Mx∥+ ∥∆(x)∥ ≤ CR+D 757

so that the loss is bounded by 758

B = (CR+D)2 759

Step 2. Rademacher Complexity Bound. Let 760

F = {fM : x 7→ ∥Mx−∆(x)∥2 | ∥M∥F ≤ C} 761

Bartlett and Mendelson (2003) yield that with prob- 762

ability at least 1− δ, for all f ∈ F , 763

∣∣∣E[f(x)]− 1

ntask

ntask∑
i=1

f(xi)
∣∣∣ ≤ 2Rntask(F)+B

√
log(2/δ)

2ntask
764

whereRntask(F) denotes the empirical Rademacher 765

complexity of F . 766

Since the mapping x 7→ Mx is linear, and the 767

squared loss is Lipschitz (on the bounded range), 768

by Talagrand’s contraction lemma we can relate 769

Rntask(F) to that of the linear class 770

H = {hM : x 7→Mx | ∥M∥F ≤ C} 771

A standard bound is 772

Rntask(H) ≤
CR
√
ntask

773

so that 774

Rntask(F) ≤ L · CR
√
ntask

775

for some constant L depending on the Lipschitz 776

constant (which in turn depends on CR+D). 777

Step 3. Sample Complexity. Thus, the general- 778

ization error is bounded by 779

∣∣∣E[fM (x)]− 1

ntask

ntask∑
i=1

fM (xi)
∣∣∣ ≤ 2LCR
√
ntask

+B

√
log(2/δ)

2ntask
780

To ensure that the right-hand side is at most ϵtask, it 781

suffices to choose 782

ntask = O
(1

ϵ2task

)
783

This completes the proof of Theorem 1. 784

11

A.2 Proof of Theorem 2: Mixed-Data Sample785

Complexity and Convergence786

In the mixed-data setting, the loss function is de-787

fined as788

L̂(M) =
1

ntask

ntask∑
i=1

∥Mxi−∆(xi)∥2+λ
1

nirr

nirr∑
l=1

∥Mx′l∥2789

The first term represents the task loss, while the790

second term, using irrelevant samples, acts as a791

regularizer that suppresses the response of M in792

the noise subspace G.793

Part 1. Noise Suppression in the Noise Subspace794

G. For each noise direction gj ∈ G, consider the795

function796

fM,j(x) =
(
gTj Mx

)2
797

Define the function class798

Gj = {x 7→ (gTj Mx)2 : ∥M∥F ≤ C}799

Since ∥gj∥ = 1 and ∥x∥ ≤ R, we have800

(gTj Mx)2 ≤ ∥Mx∥2 ≤ C2R2801

An analysis analogous to that for the task loss (us-802

ing Talagrand’s contraction lemma) shows that803

Rnirr(Gj) ≤ L′ CR
√
nirr

,804

for some constant L′.805

Then, by a standard Rademacher generalization806

bound, for each fixed gj and for any δ′ > 0, with807

probability at least 1− δ′,808

∣∣∣γj(M)−γ̂j(M)
∣∣∣ ≤ 2Rnirr(Gj)+C2R2

√
log(2/δ′)

2nirr
809

where810

γj(M) = Ex∼Dirr

[
(gTj Mx)2

]
811

and812

γ̂j(M) =
1

nirr

nirr∑
l=1

(gTj Mx′l)
2813

Taking a union bound over the d−k noise directions814

by setting δ′ = δ/(d− k), we require that815

2L′CR
√
nirr

+ C2R2

√
log (2(d− k)/δ)

2nirr
≤ ϵirr816

Thus, it suffices to choose817

nirr = O
(log(d− k)

ϵ2irr

)
818

so that the noise energy in each noise direction is 819

estimated within ϵirr. With the appropriate choice 820

of the regularization parameter λ, the minimization 821

of L̂(M) will force the model to have 822

∥PGM∥ ≤ O(ϵirr) 823

where PG is the projection onto the noise subspace 824

G. 825

Part 2. Task Sample Complexity with Initial 826

Error. Assume we start with an initial model M0 827

such that ∥M0 −M∗∥F = ϵ0. We aim to achieve 828

∥M−M∗∥F ≤ ϵtask through iterative optimization. 829

After k iterations, the error is approximately ∥Mk− 830

M∗∥F ≤ ϵ0(1− α)k. To reach ϵtask, we require: 831

ϵ0(1− α)k ≤ ϵtask 832

Solving for k, and using the approximation 833

log(1− α) ≈ −α for small α, we get: 834

k ≥ log(ϵtask/ϵ0)

log(1− α)
≈ log(ϵ0/ϵtask)

α
835

Assuming the sample complexity per iteration is 836

O(1/ϵ2task), the total task sample complexity is: 837

ntask = O

(
k · 1

ϵ2task

)
= O

(
log(ϵ0/ϵtask)

α · ϵ2task

)
838

This shows that a smaller initial error ϵ0 (closer 839

to ϵtask) reduces the sample complexity through 840

the logarithmic factor, while the O(1/ϵ2task) depen- 841

dence on the target precision remains. 842

While the fundamental order of complexity with 843

respect to ϵtask does not change, a good initial esti- 844

mate (small ϵ0) significantly reduces the *absolute* 845

number of task samples required. This is because 846

the logarithmic term, log(ϵ0/ϵtask), becomes small 847

when ϵ0 is close to ϵtask. In practical terms, after 848

effective noise suppression using irrelevant data, 849

the initial estimate M0 is already close to the op- 850

timal solution. Therefore, the remaining task data 851

is primarily used for fine-tuning, and the required 852

amount can be substantially less than what would 853

be needed without the initial estimate. 854

12

B Appendix: LoRA Orthogonality855

Analysis: Detailed Methodology and856

Results857

This appendix provides a detailed description of the858

methodology and results for the analysis of LoRA859

adapter orthogonality, as mentioned in the main860

paper. We investigate the cosine similarity between861

the corrections applied by LoRA adapters and the862

original representations of the backbone LLMs.863

B.1 Experimental Setup864

B.1.1 Models and Adapters865

We analyze the top 5 most downloaded LoRA866

adapters (as of February 15, 2025) on Hugging867

Face for each of the following Qwen2.5 family868

models:869

• Qwen2.5-0.5B-Instruct870

• Qwen2.5-1.5B-Instruct871

• Qwen2.5-3B-Instruct872

• Qwen2.5-7B-Instruct873

The specific LoRA adapters analyzed, along874

with their corresponding Hugging Face repository875

IDs, are listed below. We use a shorthand notation876

"LoRA 1," "LoRA 2," etc., to refer to the adapters877

within each model size category. The full list of878

LoRA adapters analyzed is provided in Table 5.879

The use herein is in accordance with the open880

source licensing method.881

B.1.2 Data Selection882

For each LoRA adapter, we selected 50 input data883

samples to evaluate the cosine similarity. The data884

selection strategy varied based on the available in-885

formation about the LoRA adapter:886

• Explicit Training Dataset: If the LoRA887

adapter’s Hugging Face repository explicitly888

specified the training dataset, we used the first889

50 samples from that dataset.890

• Similar Task Data: If the training dataset891

was not specified, but the task was identifi-892

able (e.g., from the adapter’s name or descrip-893

tion), we selected 50 samples from a dataset894

designed for a similar task.895

• Alpaca Dataset (Default): If neither the train-896

ing dataset nor the task could be determined,897

we used the first 50 samples from the Al-898

paca dataset (Taori et al., 2023) as a general-899

purpose instruction-following dataset.900

B.1.3 Cosine Similarity Calculation 901

We focus on the attention (attn) blocks of the LLMs. 902

For each LoRA adapter and each attention block, 903

we perform the following steps: 904

1. Forward Pass: We pass the 50 selected input 905

samples through the model with the LoRA 906

adapter enabled. 907

2. Extract Representations: For each input 908

sample and each token within that sample, 909

we extract two vectors at a given layer l: 910

(a) Original Representation: Wlx, the out- 911

put of the original weight matrix Wl at 912

layer l. 913

(b) LoRA Correction: BlAlx, the correc- 914

tion applied by the LoRA adapter at layer 915

l. 916

3. Cosine Similarity: We compute the cosine 917

similarity between the original representation 918

and the LoRA correction for each token. The 919

cosine similarity is calculated as: 920

CosineSimilarity(v1, v2) =
v1 · v2
∥v1∥∥v2∥

921

where v1 is the original representation (Wlx) and 922

v2 is the LoRA correction (BlAlx). 4. Averaging: 923

We average the cosine similarities across all tokens 924

and all 50 input samples to obtain a single average 925

cosine similarity value for the LoRA adapter at that 926

specific layer. 927

B.2 Results 928

The figure 4 display the average cosine similar- 929

ity between the original representation and the 930

LoRA correction for each of the top 5 LoRA 931

adapters, across all attention layers, for Qwen2.5- 932

0.5B, Qwen2.5-1.5B, Qwen2.5-3B and Qwen2.5- 933

7B, respectively. 934

B.3 Results 935

13

Table 5: Hugging Face Repository IDs for LoRA Adapters

Model LoRA Label Hugging Face Repository ID
Qwen2.5-0.5B-Instruct LoRA 1 adammandic87/c9526390-2e36-4147-ba6b-ece411ff962a
Qwen2.5-0.5B-Instruct LoRA 2 FrinzTheCoder/Qwen2.5-0.5B-Instruct-EXG
Qwen2.5-0.5B-Instruct LoRA 3 oldiday/39898853-8350-437e-ae74-c253dad112ba
Qwen2.5-0.5B-Instruct LoRA 4 abaddon182/9eabefcd-7c27-4595-9919-589400cb5f58
Qwen2.5-0.5B-Instruct LoRA 5 taronklm/trained_model
Qwen2.5-1.5B-Instruct LoRA 6 jack8885/task-1-Qwen-Qwen2.5-1.5B-Instruct
Qwen2.5-1.5B-Instruct LoRA 7 nannnzk/task-1-Qwen-Qwen2.5-1.5B-Instruct
Qwen2.5-1.5B-Instruct LoRA 8 aleegis12/2976c579-0887-4b32-8145-d035b17acd7c
Qwen2.5-1.5B-Instruct LoRA 9 dixedus/5bcbc7f3-9c67-44fb-bcb4-a70512109458
Qwen2.5-1.5B-Instruct LoRA 10 0x1202/fbda993c-273f-49fc-ac21-6ab3ebbb9d75
Qwen2.5-3B-Instruct LoRA 11 nannnzk/task-1-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 12 0xBeaverT/task-1-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 13 Superrrdamn/task-2-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 14 gvo1112/task-1-Qwen-Qwen2.5-3B-Instruct-1737588101
Qwen2.5-3B-Instruct LoRA 15 Superrrdamn/task-3-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-7B-Instruct LoRA 16 latiao1999/task-3-Qwen-Qwen2.5-7B
Qwen2.5-7B-Instruct LoRA 17 gvo1112/task-1-Qwen-Qwen2.5-7B-1737240704
Qwen2.5-7B-Instruct LoRA 18 0xfaskety/task-1-Qwen-Qwen2.5-7B
Qwen2.5-7B-Instruct LoRA 19 lfhe/task-2-Qwen-Qwen2.5-7B-Instruct
Qwen2.5-7B-Instruct LoRA 20 sumuks/purple-wintermute-0.1-7b

14

Figure 4: Cosine Similarity between Original Representation and LoRA Correction for Different Qwen2.5-Instruct
LoRA Adapters (Continued on next page).

15

Figure 5: Cosine Similarity between Original Representation and LoRA Correction for Different Qwen2.5-Instruct
LoRA Adapters (Continued from previous page).

16

B.4 Discussion936

The figures reveal a consistent trend across all937

model sizes and LoRA adapters: the cosine simi-938

larity between the original representation and the939

LoRA correction is generally very close to zero,940

indicating near-orthogonality. This suggests that941

the LoRA adapters are primarily learning to mod-942

ify the model’s representations in directions that943

are orthogonal to the original representations, even944

when using task-relevant data. This finding is non-945

trivial, as one might expect the LoRA correction to946

primarily amplify or attenuate existing features in947

the original representation for a related task. The948

observed near-orthogonality supports the core con-949

cept of Noise Flushing. The LoRA adapter appears950

to be learning task-specific features within a sub-951

space largely orthogonal to the original model’s952

representation of the task.953

17

	Introduction
	Related Work
	Challenges in Data-Efficient Instruction Tuning
	Data-Efficient Fine-Tuning Approaches
	Leveraging Irrelevant or Diverse Data

	Method
	Problem Formulation: Noise Entanglement in Instruction Tuning
	LoRA for Efficient Fine-tuning and Noise Control

	Noise Flushing with Irrelevant Data: The Mechanism
	Theoretical Justification for Noise Flushing
	Theorem 1: Task-Only Sample Complexity
	Theorem 2: Mixed-Data Sample Complexity and Convergence

	Discussion

	Experiment
	Practical Task Performance: Demonstrating Data Efficiency
	Experiment Setup
	Tasks and Evaluation Metrics
	Results and Analysis

	Ablation Study: Verifying the Noise Suppression Mechanism
	Experiment Setup
	Results and Analysis

	Intermediate Representation Analysis: Validating Task Feature Learning via Noise Suppression
	Experiment Setup
	Results and Analysis

	Conclusion
	Quality and Quantity of Irrelevant Data
	Role of LoRA and Low-Rank Constraints
	Theoretical and Practical Gaps
	Experimental Scale and Generalization
	Computational Cost of Irrelevant Data

	Appendix: Proofs of Theorems
	Proof of Theorem 1: Task-Only Sample Complexity
	Proof of Theorem 2: Mixed-Data Sample Complexity and Convergence

	Appendix: LoRA Orthogonality Analysis: Detailed Methodology and Results
	Experimental Setup
	Models and Adapters
	Data Selection
	Cosine Similarity Calculation

	Results
	Results
	Discussion

