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Abstract

We address the computational and theoretical limitations of current distributional alignment
methods for source-free unsupervised domain adaptation (SFUDA). In particular, we focus
on estimating classification performance and confidence in the absence of target labels.
Current theoretical frameworks for these methods often yield computationally intractable
quantities and fail to adequately reflect the properties of the alignment algorithms employed.
To overcome these challenges, we introduce the Optimal Transport (OT) score, a confidence
metric derived from a novel theoretical analysis that exploits the flexibility of decision
boundaries induced by Semi-Discrete Optimal Transport alignment. The proposed OT score
is intuitively interpretable and theoretically rigorous. It provides principled uncertainty
estimates for any given set of target pseudo-labels. Experimental results demonstrate
that OT score outperforms existing confidence scores. Moreover, it improves SFUDA
performance through training-time reweighting and provides a reliable, label-free proxy for
model performance.

1 Introduction

In recent years, deep neural networks have achieved remarkable breakthroughs across a wide range of
applications. However, if the distribution of the training and test data differs, significant performance
degradation occurs, which is known as a domain shift (Tsymbal, 2004), which makes retraining critical for
the model to re-gain the generalization ability in new domains.

Unsupervised domain adaptation (UDA) mitigates the domain shift problem where only unlabeled data is
accessible in the target domain (Glorot et al., 2011). A key approach for UDA is aligning the distributions of
both domains by mapping data to a shared latent feature space. Consequently, a classifier trained on source
domain features in this space can generalize well to the target domain. Several existing works (Long et al.,
2015; 2017; Damodaran et al., 2018; Courty et al., 2016; Rostami & Galstyan, 2023) exhibit a principled way
to transform target distribution to be "closer" to the source distribution so that the classifier learned from
the source data can be directly applied to the target domain thus pseudo-labels (or predictions) can be made
accordingly.

This leads to the question of whether such transformations from the target to the source distribution can
accurately match the corresponding class-conditional distributions. For any given target dataset, it is always
possible to align its feature distribution with that of the source domain using a divergence function, regardless
of whether classes overlap. However, performing UDA in this way is reasonable only if target features remain
well-separated by the decision boundaries induced through alignment in the latent feature space—something
that is typically difficult to determine in practice. Moreover, the marginal distribution alignment approach
complicates the identification of samples with low-confidence pseudo-labels (i.e., samples close to overlapping
regions), potentially causing noisy supervision and thus degrading classification performance. This issue
becomes particularly critical when no labeled information for the target data is available. Some existing
works (Luo & Ren, 2021; Ge et al., 2023; Le et al., 2021) minimize a class-conditional discrepancy between
the class-conditional feature distributions PS(Z | Y ) and PT (Z | Y ). However, using pseudo labels from
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Figure 1: (Left) Overlapping clusters. (Right) Separated clusters with flexible decision boundaries.

model predictions to determine the target class-conditional distributions exposes the alignment to noisy
supervision—especially early in training.

Under the Optimal Transport (OT) framework, it has been investigated in some theoretical works that
the generalization error on the target domain is controlled by both the marginal alignment loss and the
entanglement between the source and target domains. For example, Redko et al. (2017) proves the following:
Theorem 1 (Informal Redko et al. (2017)). Under certain assumptions, with probability at least 1 − δ for all
hypothesis h and ς ′ <

√
2 the following holds:

ϵT (h) ≤ ϵS(h) +W1 (µ̂S , µ̂T ) +

√
2 log

(
1
δ

)
/ς ′

(√
1
NS

+
√

1
NT

)
+ λ

where λ is the combined error of the ideal hypothesis h∗ that minimizes the combined error of ϵS(h) + ϵT (h).

A bad pulling strategy on target domain T might minimize W1 term to 0 without any guarantee for the λ
term in the feature space. Similarly, Koç et al. (2025) also show that, during the optimal transport association
process, the source inputs x can be associated to target inputs x′ that have different matching labels.
Minimizing the marginal Wasserstein distance between such entangled pairs can cause the entanglement term
to increase. To address these challenges, we will focus on the following question in this work:

Question: What is the condition on the domain shift so that the target distribution can
be aligned back to the source while preserving the correct class labels? Additionally, with
only potentially noisy target pseudo-labels available, is there a theoretically guaranteed and
computable metric to quantify the degree of violation of this condition?

Formally, we seek conditions under which the OT between the marginals is label-preserving—i.e., it decomposes
into per-class OT between the class-conditional marginals. We formalize and prove these conditions in Section 3.
Guided by our theoretical analysis under the semi-discrete OT framework (Section 3.2), we propose the OT
score—a confidence metric designed to quantify uncertainty in pseudo-labeled target samples. It measures the
degree to which the assigned pseudo-label would violate marginal alignment, thereby serving as a diagnostic
of class-conditional alignment. As illustrated in Figure 1, the OT score reflects the flexibility of decision
boundaries induced by semi-discrete OT alignment, which enables effective uncertainty estimation in the
target domain. This allows the algorithm to abstain from classifying samples with high uncertainty. Compared
to fully continuous or fully discrete OT formulations, semi-discrete OT is computationally more efficient,
especially in high-dimensional spaces and large-scale datasets. A detailed comparison with existing confidence
scores is provided in Appendix A.

We also propose two applications of OT score. First, within SFUDA it acts as a training-time reweighting
signal: less confident pseudo labels are down-weighted, suppressing harmful updates and improving accuracy.
Second, it provides a reliable label-free proxy for target performance: the mean OT score serves as a surrogate
for target error, enabling model selection without target labels.
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Contributions:

• We provide theoretical justifications about allowed distribution shifts in order to have a label-preserving
OT.

• We define a novel confidence score, the OT score, which is theoretically interpretable and accounts
for the geometry induced by OT alignment between the source and target distributions.

• Experimental results demonstrate that filtering out low-confidence predictions consistently improves
classification accuracy, and that the proposed OT score significantly outperforms existing confidence
metrics across diverse pseudo-labeling strategies.

• We demonstrate two practical uses of the OT score: (i) as a training-time reweighting signal for
SFUDA that down-weights less confident target pseudo-labels to suppress harmful updates and
improve accuracy; and (ii) as a label-free proxy for target performance, which enables model selection
without target labels.

Notation. Given any probability measure µ and a measurable map T between measurable spaces, T : X −→ Y ,
we denote T#µ the pushforward measure on Y which is characterized by (T#µ) (A) = µ

(
T−1(A)

)
for

measurable set A. Let µ̂ denote the corresponding empirical measure 1
N

∑N
i=1 δxi

where xi are i.i.d. samples
from µ. We also write x ∈ µ̂ to indicate x ∈ {xi}N

i=1. If not otherwise specified, ∥ · ∥ represents the Euclidean
norm.

2 Optimal Transport and Domain Adaptation

In this section, we first present the domain adaptation problem. Then we give necessary backgrounds of
optimal transport.

2.1 Domain Adaptation

Let Ω ⊆ Rd be the sample space and P(Ω) be the set of all probability measures over Ω. In a general
supervised learning paradigm for classification problems, we have a labeling function fθ∗ : Rd → Rk obtained
from a parametric family fθ by training on a set of points XS = {xS

1 , ..., x
S
NS } sampled from a source

distribution PS ∈ P(Ω) and corresponding one-hot encoded labels YS = {yS
1 , ..., y

S
NS }.

Let XT = {xT
1 , ..., x

T
NT } be a dataset sampled from a target distribution PT ∈ P(Ω) without label information.

The difference between PS and PT may lead to a poor performance if we use fθ∗ for the new classification
problem. In order to overcome the challenge of distributional shift, a common way is to decompose a neural
network fθ into a feature mapping ϕv composed with a classifier hw such that fθ = hw ◦ ϕv, followed by
minimizing the distance between (ϕv∗)#PS and (ϕv)#PT so that the target distribution will be aligned
with the source distribution in the feature space. Then we may classify target data points based on the
optimization result in the feature space. Various choices of divergence objective D((ϕv∗)#PS , (ϕv)#PT ) can
be utilized. In this work, we focus on the distributional alignment between (ϕv∗)#PS and (ϕv)#PT using
Wasserstein distance.

2.2 Optimal Transport

2.2.1 General Theory of OT

Given two probability distributions µ, ν ∈ P(Rd), the Wasserstein-p distance for p ∈ [1,+∞] is defined by

Wp(µ, ν) :=
(

min
γ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥pdγ
) 1

p

,
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where Γ(µ, ν) is the collection of all couplings of µ and ν. The optimization problem

min
γ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥pdγ (KP)

is referred as the Kantorovitch problem in optimal transport. It is shown by Kantorovich–Rubinstein Duality
theorem that equation KP has a dual form (Santambrogio, 2015):
Theorem 2 (Kantorovich–Rubinstein Duality).

min
(KP )

= sup
{∫

Rd

ϕ(x) dµ+
∫
Rd

ψ(y) dν : (ϕ, ψ) ∈ Lipb(Rd) × Lipb(Rd), ϕ(x) + ψ(y) ≤ ∥x− y∥p
}
.

In addition, when the supremum in the dual formulation is a maximum, the optimal value is attained at a
pair (ϕ, ϕc) with ϕ, ϕc bounded and Lipschitz, where ϕc(y) := infx∈Rd ∥x− y∥p − ϕ(x).

With the dual problem introduced, Brenier (1991) proves Brenier’s theorem, which gives a sufficient condition
under which the minimizer of the optimal transport problem is unique and is induced by a map T = ∇ϕ for
some convex function ϕ, i.e. the OT map exists.

Under mild conditions on µ and ν, Brenier’s theorem is satisfied when c(x, y) = ∥x− y∥p for p > 1. Although
there is no guarantee about uniqueness of the optimal transport map when p = 1, the existence of an optimal
transport map can be proved through a secondary variational problem (Santambrogio, 2015):
Theorem 3 (Existence of optimal transport map when p = 1). Let O(µ, ν) be the optimal transport plans for
the cost ∥x− y∥ and denote by Kp the functional associating to γ ∈ P(Ω × Ω), the quantity

∫
∥x− y∥p dγ.

Under the usual assumption µ ≪ Ld, the secondary variational problem

min {K2(γ) : γ ∈ O(µ, ν)}

admits a unique solution γ̄, which is induced by a transport map T.

2.2.2 Semi-discrete Optimal Transport

A special case of interest is when ν =
∑m

j=1 bjδyj is a discrete probability measure. Adapting the duality
result to this setting, we have

W p
p (µ, ν) = max

w∈Rm

∫
Rd

wc(x) dµ+
m∑

j=1
wjbj ,

and in this case, wc(x) := minj ∥x− yj∥p − wj .

We can define a disjoint decomposition of the whole space using the Laguerre cells associated to the dual
weights w:

Lw(yj) :=
{
x ∈ Rd : ∀j′ ̸= j, ∥x− yj∥p − wj ≤ ∥x− yj′∥p − wj′

}
.

Then

W p
p (µ, ν) = max

w∈Rm

m∑
j=1

∫
Lw(yj)

(
∥x− yj∥p − wj

)
dµ+ ⟨w, b⟩.

The optimization problem above can be solved by (stochastic) gradient ascent methods since the j-th entry
of gradient for the objective function can be computed via bj −

∫
Lw(yj) dµ. Once the optimal vector w is

computed, the optimal transport map T ν
µ simply maps x ∈ Lw(yj) to yj (Peyré et al., 2019). Also, it can

be shown such OT map is unique under mild assumptions (Hartmann & Schuhmacher, 2017; Geiß et al.,
2013). In the rest of the paper, for any x ∈ suppµ and yj ∈ supp ν, we denote d̃w(x, yj) := ∥x− yj∥p − wj .
Convergence properties of semi-discrete optimal transport have been studied extensively; see, e.g., Genevay
et al. (2016) and Peyré et al. (2019) for details.
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3 Theoretical Analysis

In this section, we present theoretical insights into the use of OT for addressing DA problems. Complete
proofs of all theoretical results are provided in Appendix C. For clarity and tractability, we focus on binary
classification tasks. An extension to multiclass classification follows by a one-vs-all reduction. As discussed in
Section 2.1, our interest lies in neural network–based DA. To this end, we adopt assumptions inspired by
Neural Collapse (Kothapalli, 2022), a prevalent phenomenon observed in well-trained neural networks. The
extent to which the target feature distribution conforms to the Neural Collapse structure depends on the
severity of the distributional shift between the source and target domains.
Remark 1 (Neural Collapse). Neural collapse (NC) is a phenomenon observed in well-trained neural networks
where the learned features of samples belonging to the same class converge to a single point or form tightly
clustered structures in the feature space, while the features of different classes become maximally separated.
NC emerges while training modern classification DNNs past zero error to further minimize the loss (Papyan
et al., 2020). During NC, the class means of the DNN’s last-layer features form a symmetric structure with
maximal separation angle, while the features of each individual sample collapse to their class means. This
simple structure of the feature layer not only appears beneficial for generalization but also helps in transfer
learning and adversarial robustness. There are three main theoretical frameworks proposed to explain the
emergence of NC: "Unconstrained Features Model" (Lu & Steinerberger, 2022; Tirer & Bruna, 2022; Ji et al.,
2021), "Local Elasticity" (Zhang et al., 2021) and "Neural (Tangent Kernel) Collapse" (Seleznova et al.,
2024).

In the following subsection, we focus on the setting where the class-conditional distributions in both the
source and target domains are supported on, or concentrated within, bounded subsets of the feature space.
Stronger NC in the source representation yields smaller cluster radii, thereby strengthening our results. Under
this assumption, we analyze how data clusters are transported by the OT map.

3.1 Sufficient Conditions for Correct Classification

We begin by presenting a necessary condition on the target data distribution under which correct classification
can be expected after applying optimal transport. The following theorem quantifies the relationship between
the probability of misclassification and the concentration properties of class-conditional distributions. Intu-
itively, if each class distributions is concentrated within a bounded region and these regions are well-separated
across classes, classification results after OT map will be correct with high probability.
Theorem 4. Suppose for each of the probability measures µi, νi there exist disjoint bounded sets Eµi

(or Eνi
)

such that µi(Eµi
) ≥ 1 − ϵ and (rµ1 + rν1 + l1) + (rµ2 + rν2 + l2) < L1 + L2, where rµi

(or rνi
) is the diameter

of Eµi(or Eνi), li = d(Eµi , Eνi), L1 = d(Eµ1 , Eν2), L2 = d(Eµ2 , Eν1). Assume further that Eν1 and Eν2 are
correctly separated by the trained classifier. Then with probability greater than 1 − 7ϵ, target samples will be
correctly classified after the optimal transportation Tµ

ν .
Remark 2. Our concentration assumption applies to various probability distributions including subgaussian
distributions.

The proof is based on the intuitive observation from the following lemma:
Lemma 5. Suppose we have probability measures µi and νi with bounded support. Also assume suppµ1 and
suppµ2 are disjoint, supp ν1 and supp ν2 are disjoint. Let rµi

denote the diameter of the support of µi and
set li = d(suppµi, supp νi), L1 = d(suppµ1, supp ν2), L2 = d(suppµ2, supp ν1). Suppose µ := 1

2µ1 + 1
2µ2,

ν := pν1+(1−p)ν2 for some p ∈ (0, 1
2 ]. If (rµ1 +rν1 +l1)+(rµ2 +rν2 +l2) < L1+L2, then Tµ

ν (supp ν1) ⊂ suppµ1
up to a ν negligible set.

3.2 Semi-Discrete Setting

Although results in Section 3.1 provide valuable theoretical insights into OT alignment, they remain difficult
to compute or verify in practical settings. In this section, we leverage the semi-discrete OT formulation to
derive an equivalent condition for perfect classification under OT alignment. Building upon this, we introduce
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a novel quantity, OT score, that can be utilized in practice to post-check the performance of the classification
from distributional alignment based DA algorithms. Also, we will show later how the following theorem
inspires a way to recognize target data points classified with low confidence.
Theorem 6. Suppose µ and ν are compactly supported. Then (T µ̂

ν )#ν1 = µ̂1 and (T µ̂
ν )#ν2 = µ̂2 if and only if

sup
x∈ν1

max
z∈µ̂2

min
y∈µ̂1

d̃w(x, y) − d̃w(x, z) ≤ 0 ≤ inf
x∈ν2

max
z∈µ̂2

min
y∈µ̂1

d̃w(x, y) − d̃w(x, z),

where d̃ is defined as in Section 2.2.2

With µ being the source measure and ν being the target measure, we define a new function g(x) :=
maxz∈µ̂2 miny∈µ̂1 d̃(x, y) − d̃(x, z). Hence, the g value gap infx∈ν2 g(x) − supx∈ν1 g(x) reflects the flexibility
of a classification boundary induced by semi-discrete OT and a larger g value gap implies better classification
performance. See Figure 1 for a visual illustration.

In practice, this g value gap can be used as a post-check tool once target pseudo labels have been assigned by
any algorithm. We can compute the gap infx∈ν1 g(x) − supx∈ν2 g(x) based on pseudo-labeled partition of the
target distribution ν1 and ν2. In addition to global assessment, the individual g(x) values can also serve as
confidence indicators. Specifically, for target samples pseudo-labeled as class ν2, larger g(x) values indicate
higher classification confidence; conversely, for samples labeled as class ν1, smaller g(x) values indicate higher
confidence.
Remark 3. Although a similar version of Theorem 6 can be derived in the discrete OT setting using analogous
techniques, we choose to adopt the semi-discrete OT formulation for computing the OT score in our work,
due to the following reasons:

(1) Efficient incremental optimization: Semi-discrete OT can be updated incrementally with SGD instead
of being solved from scratch. As target pseudo-labels evolve, we reuse the previous solution as initialization
and perform a few mini-batch SGD updates to reflect the new assignments.

(2) Handling ambiguity in low-confidence filtering: In the discrete case, there exists ambiguity in
determining which points should be eliminated as low-confidence samples—whether to remove points with split
weights across transport plans, or those with only small transport margins. The semi-discrete formulation
mitigates such ambiguity by providing more stable and geometrically meaningful transport behavior.

The following corollary might be helpful in some computation scenarios: it enables computing the semi-discrete
OT for each component separately, thereby reducing the dimension of the dual weights.
Corollary 7. Under assumptions of 6 and suppose m and l are the weight vectors associated with T µ̂1

ν1
and

T µ̂2
ν2

, respectively. Then (T µ̂
ν )#ν1 = µ̂1 and (T µ̂

ν )#ν2 = µ̂2 if and only if

sup
x∈ν1

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y) − d̃l(x, z) ≤ inf
x∈ν2

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y) − d̃l(x, z).

4 OT score Computation

In this section, we extend the definition of OT score to multiclass setting and present the algorithm used for
computation. Specifically, we model the source distribution in the feature space as a discrete measure and
treat the target data as samples drawn from a continuous measure.
Definition 1. Suppose the source data (or features) XS consists of c classes. For each target sample x with
pseudo label i and any class label j, we define the binary OT score as

gj(x) := max
y∈XSi

min
z∈XSj

d̃(x, z) − d̃(x, y),

where d̃(·, ·) requires computing the semi-discrete OT. The OT score is defined as

g(x) := min
j
gj(x).
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Algorithm 1 OT score
1: Input: Source class-wise mean feature representations ZS , corresponding labels yS , source sample weights

a, target features ZT and corresponding predicted labels (or pseudo labels) ŷT , entropic regularization
parameter ε, learning rate γ.

2: Initialize w0 = 0.
3: Compute class proportions pc = |{zT

i ∈ZT :ŷT
i =c}|

|ŷT | .
4: for t = 1, 2, . . . ,max_iter do
5: Draw a batch of samples ZT

Bt
from ZT .

6: Compute smoothed indicator functions of Laguerre cells Lwt
(zS

j ) for each zS
j :

χε
j(x,w) = e

−∥x−zS
j

∥+w
j
t

ε∑
ℓ e

−∥x−zS
ℓ

∥+w
j
t

ε

.

7: Update wt: wt+1 = wt − γ
[
χε

j(x,wt) − aj

]NS

j=1 ∈ RNS .
8: end for
9: for (zT

i , ŷ
T
i ) ∈ (ZT , ŷT ) do

10: Compute gj(x) := maxy∈X
ŷT

i

minz∈Xj
d̃(x, z) − d̃(x, y) for each class j.

11: Compute OT score of zT
i : g(zT

i ) = minj gj(zT
i )

12: end for

We summarize our OT score computation in Algorithm 1. We represent the source distribution by class-wise
mean features. Accordingly, the definition of gj simplifies to gj(x) = d̃(x, µj) − d̃(x, µi), where µi and µj are
the mean features of classes i and j, respectively. Under this setting, we show that classification accuracy
increases as samples with low OT scores are filtered out.
Theorem 8. Let ν1, ν2 be the continuous probability measures with means m1 and m2, respectively and
µ̂i consists of singletons yi. Denote ν := 1

2ν1 + 1
2ν2 and µ̂ := 1

2 µ̂1 + 1
2 µ̂2. Suppose νi(|Xi − mi| ≥ t) ≤

2 exp
(

− t2

2σ2

)
and ∥m1 − y1∥ + ∥m2 − y2∥ < ∥m1 − y2∥ + ∥m2 − y1∥, then P

(
T µ̂

ν (Xi) ̸= Yi|g(Xi) > g
)

≤

2 exp
(

− mini=1,2 dist(mi,S)2

2σ2

)
, where

(1) S :=
{
x : ∥x− y1∥ − (w∗ + g) = ∥x− y2∥

}
(2) d := ∥y2 − y1∥, e := y2−y1

d , m = αe+ u, u ⊥ e is the orthogal decomposition of m and denote
ρ := ∥u∥.

(3)dist(m,S) = minr≥0

√(
t(r) − α

)2 +
(
r − ρ

)2 where t(r) is defined through√
t2 + r2 =

√
(t− d)2 + r2 + (w∗ + g), r ≥ 0.

5 Applications and Empirical Evaluation

In this section, we present: (i) an Area Under the Risk–Coverage Curve (AURC) evaluation across confidence
scores (Section 5.1); (ii) an SFUDA application using the OT score for training-time reweighting to improve
accuracy (Section 5.2); and (iii) a label-free model-selection analysis showing that the mean OT score on
the target set correlates with final accuracy (Section 5.3). Additional details and results are provided in
Appendix D.

5.1 AURC Comparisons

To demonstrate the effectiveness of the proposed OT score, we compare it against several widely-used
confidence estimation methods, including Maxprob, Entropy (Ent), and JMDS. The evaluation is conducted
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Table 1: Evaluation of confidence scores based on AURC.

Dataset Task Maxprob Ent Cossim JMDS OT Score

Office-Home

Ar → Cl 0.3485 0.3592 0.3013 0.2885 0.2623
Ar → Pr 0.1697 0.1789 0.1297 0.1237 0.1208
Ar → Rw 0.1032 0.1133 0.0897 0.0797 0.0770
Cl → Ar 0.2686 0.2849 0.2045 0.2362 0.2020
Cl → Pr 0.1916 0.2027 0.1182 0.1483 0.1424
Cl → Rw 0.1703 0.1837 0.1180 0.1275 0.1179
Pr → Ar 0.2629 0.2753 0.1977 0.2123 0.2063
Pr → Cl 0.3910 0.4052 0.3189 0.3193 0.3249
Pr → Rw 0.0997 0.1085 0.0757 0.0786 0.0741
Rw → Ar 0.1516 0.1621 0.1315 0.1369 0.1167
Rw → Cl 0.3339 0.3463 0.2873 0.2664 0.2539
Rw → Pr 0.0731 0.0796 0.0639 0.0737 0.0557
Avg. 0.2137 0.2250 0.1697 0.1743 0.1628

VisDA-2017 T → V 0.3071 0.3203 0.2780 0.2021 0.1704

ImageCLEF-DA

C → I 0.0515 0.0570 0.0181 0.0325 0.0252
C → P 0.1902 0.1991 0.1579 0.1459 0.1143
I → C 0.0099 0.0131 0.0038 0.0055 0.0036
I → P 0.1198 0.1221 0.1280 0.1170 0.1000
P → C 0.0260 0.0303 0.0062 0.0216 0.0092
P → I 0.0347 0.0382 0.0177 0.0276 0.0186
Avg. 0.0720 0.0766 0.0553 0.0583 0.0452

on four standard UDA benchmarks: Digits, Office-Home, ImageCLEF-DA, and VisDA-17. We compute
confidence scores in the feature space extracted by the last layer of our neural network.

For evaluation, we adopt the Area Under the Risk-Coverage Curve (AURC) proposed by Geifman et al.
(2018); Ding et al. (2020) and subsequently employed in Lee et al. (2022). Specifically, after obtaining the
high-confidence subset XT

h :=
{
xT

i | s
(
xT

i , ŷ
T
i

)
> h

}
, where h is a predefined confidence threshold, the risk

is computed as the average empirical loss over XT
h , and the coverage corresponds to

∣∣XT
h

∣∣ / ∣∣XT
∣∣. A lower

AURC value indicates higher confidence reliability, as it implies a lower prediction risk at a given coverage
level. Notably, when the 0/1 loss is applied, a high AURC reflects a high error rate among pseudo-labels,
thus indicating poor correctness and calibration of the confidence scores.

Maxprob and Ent use labels assigned by the pretrained source classifier while Cossim, JMDS, OT score
receive pseudo labels from a Gaussian Mixture Model (GMM), following the same setup of Lee et al. (2022).

To further assess the robustness of the proposed OT score under varying pseudo-label quality, we consider
another case where the pseudo labels are generated by the DSAN algorithm (Zhu et al., 2020). Under this
setting, only Cossim and OT score are capable of incorporating externally generated high-quality pseudo
labels. Table 5 in Appendix D shows the significant benefits of leveraging high quality pseudo labels. The
OT score achieves the lowest AURC value in most adaptation tasks across the considered scenarios.

5.2 OT Score Reweighting

We integrate the OT score into CoWA-JMDS (Lee et al., 2022) as a per-sample weight for pseudo-labeled
target instances. For each target sample xi, we set

wi = 2 · OT(xi) · JMDS(xi),

where JMDS(xi) is computed online from features during training, while OT(xi) is computed from features
extracted by the pre-adaptation model, thereby decoupling the confidence signal from the evolving target
representation. Relying solely on the same training-time features that are continually updated by pseudo-
labels risks self-reinforcement (confirmation bias): incorrect pseudo-labels → representation drift → inflated
“confidence” → further amplification. We mitigate this by computing the OT score from pre-adaptation
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Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

BAIT (Yang et al.,
2020)

57.4 77.5 82.4 68.0 77.2 75.1 67.1 55.5 81.9 73.9 59.5 84.2 71.6

SHOT (Liang et al.,
2020)

57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

NRC (Yang et al., 2021) 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
ELR (Yi et al., 2023) 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6
CPD (Zhou et al., 2024) 59.1 79.0 82.4 68.5 79.7 79.5 67.9 57.9 82.8 73.8 61.2 84.6 73.0

CoWA (Lee et al., 2022) 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
OTScore 58.0 79.6 81.5 69.6 80.2 80.0 68.3 57.6 82.3 73.2 61.1 84.7 73.0

Table 2: Accuracy (%) on Office-Home (ResNet-50).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

SFIT (Hou & Zheng,
2021)

94.3 79.0 84.9 63.6 92.6 92.0 88.4 79.1 92.2 79.8 87.6 43.0 81.4

SHOT (Liang et al.,
2020)

94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9

NRC (Yang et al., 2021) 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
AdaCon (Chen et al.,
2022)

97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8

ELR (Yi et al., 2023) 97.3 89.1 89.8 79.2 96.9 97.5 92.2 82.5 95.8 94.5 87.3 34.5 86.4
CPD (Zhou et al., 2024) 96.7 88.5 79.6 69.0 95.9 96.3 87.3 83.3 94.4 92.9 87.0 58.7 85.8

CoWA (Lee et al., 2022) 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
OTScore 95.6 89.0 82.8 78.3 96.3 98.0 91.2 86.8 95.5 94.7 89.9 55.7 87.8

Table 3: Accuracy (%) on VisDA-2017 (ResNet-101).

features, which constrains the pseudo-label feedback loop and reduces confirmation bias. Here, the OT score
is normalized to [0, 1]; the prefactor 2 offsets the dynamic-range compression induced by the product of two
numbers in [0, 1].

This integration yields higher accuracy than the original CoWA-JMDS. We evaluate on Office-Home (Tables 2)
and VisDA-2017 (Tables 3) in the SFUDA setting, reporting target-domain accuracy averaged over three
seeds (see Appendix D).Training settings (backbone, optimizer, pseudo-labeling) follow Lee et al. (2022); the
only change is the per-sample weight wi.

5.3 Model Comparison

The OT score also serves as a label-free proxy for adaptation performance. This is particularly valuable
when target labels are unavailable, as training accuracy on noisy pseudo-labels can be a misleading indicator
(Zhang et al., 2016). At the end of adaptation training, we compute the mean OT score over the target set
predictions. As shown in Fig. 2, for a fixed source domain, the mean OT score provides an ordinal proxy
of post-adaptation accuracy across targets: higher mean OT corresponds to higher accuracy. Moreover,
comparing MNIST→USPS with FLIP-USPS→USPS shows that a source model obtained via pixel-value
inversion (FLIP-USPS) yields substantially lower SFUDA performance than using MNIST as the source as
shown in Table 4.
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Figure 2: Mean OT Score vs. accuracy on Office-Home.
Lines connect targets sharing the same source. Points denote
individual target domains.

Table 4: Accuracy (%) on USPS with
different sources.

Source Mean Score Accuracy (%)

MNIST 4.02 94.7
FLIP-USPS 0.55 47.8

6 Conclusion and Future Work

We investigate theoretical guarantees about allowed distribution shifts in order to have a label-preserving OT.
Using semi-discrete OT, we derive the OT score which considers the decision boundary induced by the OT
alignment. The definition of OT score can be easily extended to other cost functions other than the standard
Euclidean norm. Additionally, confidence scores are helpful for training-time sample reweighting and model
comparison.

Currently, we address class imbalance in the OT-score computation by weighting the source class mean
features with class proportions estimated from pseudo labels. However, when pseudo labels are unreliable,
these estimates can be biased. Under the assumptions in Section E, we show that the OT objective is
minimized when the source and target class proportions coincide (see Theorem 11). A natural next step is to
model and propagate class-proportion uncertainty into the confidence score.
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A Related Works

Theory about DA: Several theoretical works have investigated the learnability and generalization guarantees
of domain adaptation (DA). Specifically, Ben-David & Urner (2012) analyzes the DA learnability problem
and sample complexity under the standard VC-dimension framework, and identifies a setting in which no
algorithm can successfully solve the DA problem. In a related direction, Redko et al. (2019) provides a
theoretical analysis about the existence of a hypothesis that performs well across both source and target
domains, and further establishes finite-sample approximation properties of the λ term. Le et al. (2021)
alleviates the label mismatching problem by searching for a transformation T that satisfies the following
conditions: (1) T#µS = µT , and (2) T preserves the labels.

Confidence Scores: Uncertainty estimation and confidence score have been prevalently employed in machine
learning to improve model robustness. In particular, ordinal ranking techniques have been commonly used
for selective classification (Lakshminarayanan et al. (2017); Geifman & El-Yaniv (2017); Mandelbaum &
Weinshall (2017); Nair et al. (2020)), where the goal is to prioritize or filter samples based on their confidence
scores in order to exclude low-confidence samples during training. Karim et al. (2023) select reliable pseudo-
labels by thresholding the maximum softmax probability of the teacher’s augmentation-averaged prediction.
Litrico et al. (2023) reweight the classification loss by entropy, assigning higher weights to low-entropy (more
confident) samples. Lee et al. (2022) propose the JMDS score to effectively identify low-confidence samples,
thereby enhancing the reliability of the DA process. However, most existing confidence scores rely primarily
on cluster-level information in the feature space, without explicitly modeling the geometric relationship
between domains. In contrast, our proposed OT score take into account the geometry induced by the OT
map, establishing a stronger connection between the source and target domains when computing confidence
scores.

B Confidence Scores

We provide details of the confidence scores used for comparison. Let xT
i denote the i-th target sample, and

let pS represent the class probability predicted by the pretrained source model. Here, K is the total number
of classes, and CŷT

i
denotes the center of the cluster corresponding to the predicted label ŷT

i for xT
i .

Maxprob
(
xT

i

)
= max

c
pS

(
xT

i

)
c
,

Ent
(
xT

i

)
= 1 +

ΣK
c=1pS

(
xT

i

)
c

log pS
(
xT

i

)
c

logK ,

Cossim
(
xT

i

)
= 1

2

1 +

〈
xT

i , CŷT
i

〉
∥∥xT

i

∥∥ ∥∥∥CŷT
i

∥∥∥
 .

JMDS score is computed by JMDS
(
xT

i

)
= LPG

(
xT

i

)
·MPPL

(
xT

i

)
. LPG is the Log-Probability Gap computed

from log data-structure-wise probability log pdata
(
xT

i

)
using GMM on the target feature space. MPPL

provides high scores for samples whose GMM pseudo-label is the same based on pS
(
xT

i

)
and pdata

(
xT

i

)
.

Details about JMDS score can be found in Lee et al. (2022).

C Proofs

Proof of Theorem 4. Due to the concentration assumptions on µ and ν, we can pick sets Eµi and Eνi such
that µ1(Eµ1) = µ2(Eµ2) ≥ 1 − ϵ. So 1

2 + 1
2ϵ ≥ µ(Eµi) ≥ 1

2 − 1
2ϵ. The same holds for ν(Eνi).
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Consider Fi = (Tµ
ν )−1(Eµi

), we have ν(Fi) = µ(Eµi
) ≥ 1

2 − 1
2ϵ as well. Let F = F1 ∪ F2. So Eνi

∩ F is a
bounded set with

1
2 + 1

2ϵ ≥ ν(Eνi
∩ F ) = ν(Eνi

) − ν(Eνi
∩ F c) (1)

≥ 1
2 − 1

2ϵ− ν(F c) (2)

≥ 1
2 − 1

2ϵ− ϵ = 1
2 − 3

2ϵ (3)

Without loss of generality, we assume ν(Eν1 ∩ F ) ≥ ν(Eν2 ∩ F ). Since ν ≪ L, we can pick R > 0 such that
ν(Eν1 ∩ F ∩BR) = ν(Eν2 ∩ F ).

Now consider the optimal transport map Tµ
ν restricted on (Eν1 ∩ F ∩ BR) ∪ (Eν2 ∩ F ). By (Villani et al.,

2009, Theorem 4.6), this restricted map is an optimal transport map between the marginal measures.

Since µ
(
Tµ

ν (Eν1 ∩ F ∩BR) ∪ Tµ
ν (Eν2 ∩ F )

)
= ν

(
(Eν1 ∩ F ∩BR) ∪ (Eν2 ∩ F )

)
≥ 1 − 3ϵ, we get an estimate

µ
(
(Tµ

ν (Eν1 ∩F ∩BR) ∪ Tµ
ν (Eν2 ∩F )) ∩Eµi

)
≥ (1 − 3ϵ) − ( 1

2 + 1
2ϵ) = 1

2 − 7
2ϵ. Therefore, we can use Lemma 9

to conclude that with probability greater than 1 − 7ϵ, target samples will be correctly classified after optimal
transportation.

Lemma 9. Suppose we have probability measures µi and νi with bounded support. Also assume that suppµ1
and suppµ2 are disjoint, supp ν1 and supp ν2 are disjoint. Let rµi denote the diameter of the support of µi

and set li = d(suppµi, supp νi), L1 = d(suppµ1, supp ν2), L2 = d(suppµ2, supp ν1). Suppose µ := 1
2µ1 + 1

2µ2,
ν := pν1+(1−p)ν2 for some p ∈ (0, 1

2 ]. If (rµ1 +rν1 +l1)+(rµ2 +rν2 +l2) < L1+L2, then Tµ
ν (supp ν1) ⊂ suppµ1

up to a negligible set.

Proof of Lemma 9. Suppose there exists a set A ⊂ supp ν1 with ν(A) = δ > 0 and Tµ
ν (A) ⊂ suppµ2. Then

there must be a set B ⊂ supp ν2 with ν(B) ≥ δ + 1 − p − 1
2 = 1

2 + δ − p and Tµ
ν (B) ⊂ suppµ1. Since

νi ≪ L, we can pick B′ ⊂ B such that ν(B′) = δ. Then for any measurable T̃ such that T̃ (A) = Tµ
ν (B′) and

T̃ (B′) = Tµ
ν (A),∫

A∪B′
∥T̃ (x) − x∥ dx ≤ δ(rµ1 + rν1 + l1) + δ(rµ2 + rν2 + l2) < δ(L1 + L2) ≤

∫
A∪B′

∥Tµ
ν (x) − x∥ dx,

which contradicts the optimality of Tµ
ν .

Proof of Theorem 6. Let w be any weight vector associated with T µ̂
ν̄ . We start with the observation that

(T µ̂
ν̄ )#ν̄1 = µ̂1 and (T µ̂

ν̄ )#ν̄2 = µ̂2 is equivalent to the following two conditions:

(1) For ∀x ∈ ν̄1, d̃w(x, µ̂1) ≤ d̃w(x, µ̂2).

(2) And for ∀x ∈ ν̄2, d̃w(x, µ̂2) ≤ d̃w(x, µ̂1).

(1) requires any point from ν̄1 to be assigned to some point in µ̂1 and (2) requires any point from ν̄2 to be
assigned to some point in µ̂2, i.e.

sup
x∈ν̄1

d̃w(x, µ̂1) − d̃w(x, µ̂2) ≤ 0 ≤ inf
x∈ν̄2

d̃w(x, µ̂1) − d̃w(x, µ̂2). (4)

We rewrite 4 by unwarpping the definition of d̃ to get

sup
x∈ν̄1

(
min
y∈µ̂1

d̃w(x, y)
)

−
(

min
z∈µ̂2

d̃w(x, z)
)

≤ 0 ≤ inf
x∈ν̄2

(
min
y∈µ̂1

d̃w(x, y)
)

−
(

min
z∈µ̂2

d̃w(x, z)
)
, (5)

i.e.
sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃w(x, y) − d̃w(x, z) ≤ 0 ≤ inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃w(x, y) − d̃w(x, z). (6)
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Proof of Corollary 7. Observe that w1 = m +C and w2 = l +D are also weight vectors for T µ̂1
ν̄1

and T µ̂2
ν̄2

for
any constants C and D.

Moreover,
sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃w1(x, y) − d̃w2(x, z) ≤ inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃w1(x, y) − d̃w2(x, z),

which is the same as

C −D + sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y) − d̃l(x, z) ≤ C −D + inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y) − d̃l(x, z). (7)

Choosing the difference C−D allows us to conclude (T µ̂
ν̄ )#ν̄1 = µ̂1 and (T µ̂

ν̄ )#ν̄2 = µ̂2 by setting w = [w1,w2].

Conversely, let w be the corresponding weight vector of T µ̂
ν̄ and assume (T µ̂

ν̄ )#ν̄1 = µ̂1, (T µ̂
ν̄ )#ν̄2 = µ̂2. Then

w1 (or w2) differs from m (or l) by some constant C (or D) (Geiß et al., 2013, Theorem 2). By Theorem 6,

sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃w1(x, y) − d̃w2(x, z) ≤ 0 ≤ inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃w1(x, y) − d̃w2(x, z),

which implies

C −D + sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y) − d̃l(x, z) ≤ 0 ≤ C −D + inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y) − d̃l(x, z),

i.e.
sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y) − d̃l(x, z) ≤ D − C ≤ inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y) − d̃l(x, z).

This proposition shows how the classification accuracy improves with samples conditioned on high confidence
scores ∆w.
Theorem 10. Let ν1, ν2 be the continuous probability measures with means m1 and m2, respectively and
µ̂i consists of singletons yi. Denote ν := 1

2ν1 + 1
2ν2 and µ̂ := 1

2 µ̂1 + 1
2 µ̂2. Suppose νi(|Xi − mi| ≥ t) ≤

2 exp
(

− t2

2σ2

)
and ∥m1 − y1∥ + ∥m2 − y2∥ < ∥m1 − y2∥ + ∥m2 − y1∥, then P

(
T µ̂

ν (Xi) ̸= Yi|g(Xi) > ∆w
)

≤

2 exp
(

− mini=1,2 dist(mi,S)2

2σ2

)
, where

(1) S :=
{
x : ∥x− y1∥ − (w∗ + ∆w) = ∥x− y2∥

}
(2) d := ∥y2 − y1∥, e := y2−y1

d , m = αe+ u, u ⊥ e is the orthogal decomposition of m and denote
ρ := ∥u∥.

(3)dist(m,S) = minr≥0

√(
t(r) − α

)2 +
(
r − ρ

)2 where t(r) is defined through√
t2 + r2 =

√
(t− d)2 + r2 + (w∗ + ∆w), r ≥ 0.

Proof. Let w∗ be the dual weight corresponding to T µ̂
ν and let w := w + ∆w. Denote Lw(y1) :=

{
x :

∥x− y1∥ − w ≤ ∥x− y2∥
}

and similarly for Lw(y2).

Define S :=
{
x : ∥x− y1∥ − w = ∥x− y2∥

}
. Without loss of generality, we assume y1 = 0. For an arbitrary

point m ∈ Rn, write the orthogonal decomposition

d := ∥y2∥, e := y2

d
, m = αe+ u, u ⊥ e, ρ := ∥u∥.

For every x write
x = t e+ v, t ∈ R, v ⊥ e, r := ∥v∥.
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Under this decomposition

∥x∥ =
√
t2 + r2, ∥x− y2∥ =

√
(t− d)2 + r2.

Hence x ∈ S iff

√
t2 + r2 =

√
(t− d)2 + r2 + w, r ≥ 0. (8)

Since for any fixed r,
√
t2 + r2 −

√
(t− d)2 + r2 is strictly increasing, solution to equation 8 is unique and

we denote it by t(r).

The squared distance between x = t e+ v and m is

∥x−m∥2 = (t− α)2 + ∥v − u∥2 = (t− α)2 + r2 + ρ2 − 2rρ cos θ,

where θ is the angle between v and u. For fixed (t, r) this expression is minimized when θ = 0, i.e. v is chosen
to be colinear with u. Without loss of generality set v = (r/ρ)u when ρ ̸= 0.

The minimal squared distance at any given (t, r) is therefore (t− α)2 + (r − ρ)2. Since t = t(r) is uniquely
determined by r, the distance optimization reduces to

dist(m,S) = min
r≥0

√(
t(r) − α

)2 +
(
r − ρ

)2
.

By a direct derivative analysis, the minimizer for dist(m,S) is unique.

Therefore, take m = m1, we have ν1(Lw(y1)) ≥ 1 − 2 exp
(

− dist(m1,S)2

2σ2

)
.

D Experiment details

D.1 Synthetic Data

In this section, we use synthetic data to validate and illustrate our theoretical findings. Specifically, we
consider a 2D scenario where data points are sampled from circular regions. The source domain consists
of class-separated samples drawn from disjoint circles, whereas the target domain includes clusters with
partial overlap. The distribution of the generated data is visualized in Figure 3(a). We compute the max-min
values as described in Theorem 6 and present the results in Figure 3(b). As shown in Figure 3(c), many
of the generated pseudo labels within the overlapping region are misclassified. However, after removing
low-confidence predictions, the remaining samples are almost entirely classified correctly, as illustrated in
Figure 3(d). Notably, the separation between the two clusters becomes significantly more obvious after this
filtering step.
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(a) Sample distributions (b) Sample with g values

(c) Value gap = 0.09 (d) Value gap = 2.21

Figure 3: OT score performance on overlapping distributions.

D.2 Real-World Datasets

To ensure a fair comparison, we following the training setting of Lee et al. (2022). In our main experiments,
we compare OT score with other confidence scores including Maxprob, Ent, Cossim, and JMDS. The details
for other confidence scores are presented in Appendix B. We compare the performance of confidence scores on
four standard UDA benchmarks: ImageCLEFDA, Office-Home, and VisDA-2017. All code can be efficiently
executed on a single NVIDIA RTX 4070 GPU without requiring specialized hardware. For ImageCLEFDA,
Office-Home datasets, we use ResNet-50 backbone pretrained on the ImageNet as a base network. The source
model is trained for 50 epochs. For VisDA-2017, we use ResNet-101 for GMM pseudo labeling and ResNet-50
for DSAN pseudo labeling. The source model is obtained by finetuning a pretrained network on the source
domain for 10 epochs. We use SGD optimizer with the momentum term set to be 0.9. We set lr=1e-4 for the
base network and lr=1e-3 for the classifier layer. For digit recognition tasks, we use the ResNet-18 network
as the base model. The network is initialized with random weights. We finetune this network on source
domains using lr=1e-4, epochs=50, momentum=0.9, decay=1e-4. For OT score computation, we fix the
entropic regularization parameter ε to be 0.0001.

Pseudo-label generation via DSAN: To obtain pseudo labels, we need to further train the neural network using
the DSAN algorithm with the following settings: number of training epochs = 20, transfer_loss_weight
= 0.5, transfer_loss = LMMD, learning rate = 0.01, weight decay = 5 × 10−4, momentum = 0.9.
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Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw
OTScore 58.0 ± 0.6 79.6 ± 0.1 81.5 ± 0.1 69.6 ± 0.4 80.2 ± 0.8 80.0 ± 0.2

Method Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

OTScore 68.3 ± 0.5 57.6 ± 0.7 82.3 ± 0.4 73.2 ± 0.1 61.1 ± 0.9 84.7 ± 0.4 73.0 ± 0.1

Table 6: Accuracy (%) on Office-Home (ResNet-50).

Dataset Mean Accuracy Classwise Mean Accuracy

VisDA-2017 85.0 ± 0.3 87.8 ± 0.1

Table 7: Accuracy (%) on VisDA-2017.

lr_scheduler is enabled with lr_gamma = 0.0003, lr_decay = 0.75. comparison for DSAN generated
pseudo labels are provided in Table 5.

We report mean ± standard deviation over three independent runs (random seeds) in Table 6 for Office-Home
and Table 7 for VisDA-2017.

Table 5: Evaluation of confidence scores based on AURC (DSAN).

Dataset Task Maxprob Ent Cossim JMDS OT Score

ImageCLEF-DA

C → I 0.0301 0.0318 0.0506 0.0258 0.0240
C → P 0.2024 0.2040 0.1913 0.1391 0.1331
I → C 0.0090 0.0109 0.0084 0.0105 0.0090
I → P 0.1135 0.1120 0.1607 0.1223 0.1119
P → C 0.0102 0.0121 0.0075 0.0096 0.0097
P → I 0.0136 0.0150 0.0186 0.0140 0.0135
Avg. 0.0631 0.0643 0.0729 0.536 0.0502

Office-Home

Ar → Cl 0.4306 0.4284 0.4170 0.4515 0.3403
Ar → Pr 0.2745 0.2738 0.2512 0.2849 0.2133
Ar → Rw 0.1469 0.1493 0.1521 0.1860 0.1157
Cl → Ar 0.2600 0.2631 0.2340 0.3228 0.2097
Cl → Pr 0.1757 0.1777 0.1612 0.2225 0.1503
Cl → Rw 0.1834 0.1848 0.1865 0.2246 0.1493
Pr → Ar 0.2371 0.2381 0.2245 0.2776 0.1984
Pr → Cl 0.3139 0.3105 0.3149 0.3302 0.2711
Pr → Rw 0.0974 0.0992 0.1037 0.1250 0.0817
Rw → Ar 0.1301 0.1318 0.1268 0.1751 0.1023
Rw → Cl 0.2581 0.2555 0.2641 0.2718 0.2112
Rw → Pr 0.0681 0.0684 0.0628 0.1026 0.0561
Avg. 0.2146 0.2150 0.2082 0.2478 0.1749

VisDA-2017 T → V 0.2301 0.2290 0.2289 0.2296 0.1799

E Unbalanced Classes

Theorem 11. With the same notations of 9, suppose µ = p∗µ1 + (1 − p∗)µ2 for some p∗ ∈ (0, 1). If
Li ≥ li + rν1 + rν2 + rµ1 + rµ2 then arg minp∈[0,1] W1(µ, ν) = p∗, where ν := pν1 +(1−p)ν2 for some p ∈ (0, 1).
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Proof. W.L.O.G we assume p∗ = 1
2 . Let T denote an OT map between 1

2ν1 + 1
2ν2 and 1

2µ1 + 1
2µ2. Suppose

ν = ( 1
2 +δ)ν1+( 1

2 −δ)ν2. Let F1 be the set such that F1 ⊂ supp ν1 and ν1(F1) = 2δ
1+2δ so that ( 1

2 +δ)ν1(FC
1 ) = 1

2 .
Let F2 ⊂ suppµ2 be defined as F2 := Tµ

ν (F1). This can be done due to Lemma 9. Given Lemma 9, it suffices
to show the following inequality:

∫
F1

∥Tµ
ν (x) − x∥d((1

2 + δ)ν1) +
∫

F C
1

∥Tµ
ν (x) − x∥d((1

2 + δ)ν1) +
∫

supp ν2

∥Tµ
ν (x) − x∥d((1

2 − δ)ν2)

≥ W1(1
2ν1,

1
2µ1) +W1(1

2ν2,
1
2µ2).

Denote µ̄2 := (Tµ
ν )#(( 1

2 − δ)ν2). We can decompose W1( 1
2ν2,

1
2µ2) = a+ b where a corresponds to the cost

on the source probability mass that forms µ̄2 and b corresponds to the cost on the rest of source probability
mass. We denote the source marginal corresponding to a as 1

2 ν̃2. Then it remains to show

∫
F1

∥Tµ
ν (x) − x∥d((1

2 + δ)ν1) − b

≥ W1(1
2ν1,

1
2µ1) −

∫
F C

1

∥Tµ
ν (x) − x∥d((1

2 + δ)ν1)

+ a−
∫

supp ν2

∥Tµ
ν (x) − x∥d((1

2 − δ)ν2)

Note
∫

F C
1

∥Tµ
ν (x) − x∥d(( 1

2 + δ)ν1) achieves the optimal transport between ( 1
2 + δ)ν1 restricted on FC

1 and
1
2µ1. Also,

∫
supp ν2

∥Tµ
ν (x) − x∥d(( 1

2 − δ)ν2) achieves the optimal transport between ( 1
2 − δ)ν2 and µ̄2. By

triangle inequality properties of W1 distance, it suffices to show

LHS ≥ W1(1
2ν1, (

1
2 + δ)ν1|F C

1
) +W1(1

2 ν̃2, (
1
2 − δ)ν2).

Since

RHS ≤ δrν1 + δrν2 ≤ LHS,

the optimality is proved.

We verify Theorem 11 with synthetic data generated within two circular clusters. We compute (discrete)
OT plans under unbalanced cluster settings; see Figure 4 and Figure 5. In this experiment, we generate two
equally sized clusters for the target samples, while the corresponding source clusters are assigned proportions
of 0.2 and 0.8, respectively. As shown in the results, the optimal transport cost is minimized when the
reweighting factor is correctly set to p = 0.2. This observation supports our claim that optimizing the
reweighting factor can effectively mitigate class imbalance in optimal transport–based domain adaptation.
However, this finding has not yet been validated on real-world datasets, where the underlying distributions
are significantly more complex. We leave this investigation for future work.
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Figure 4: Unbalanced clusters with p=0.5
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Figure 5: Unbalanced clusters
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