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Abstract

Antimicrobial peptides (AMPs) offer a promising approach for treating a
wide range of antibiotic-resistant infections. Recently, there has been a
surge of interest in using deep generative models to expedite the discovery of
AMPs. However, most current research focuses on sequence characteristics
and overlooks structural information, which is crucial for AMP biological
function. In this paper, we present a latent sequence-structure model for
AMPs (LSSAMP) that employs multi-scale VQ-VAE to integrate secondary
structures. By sampling from the latent space, LSSAMP can concurrently
generate peptides with optimal sequence properties and secondary structures.
Experimental outcomes indicate that the peptides produced by LSSAMP
exhibit a high likelihood of being AMPs, and two out of 21 candidates have
been confirmed to possess potent antimicrobial activity. We will release
our model to facilitate the generation of high-quality AMP candidates
for subsequent biological experimentation and expedite the overall AMP
discovery process1.

1 Introduction

In recent times, the application of neural networks to drug discovery has garnered increased
interest, as it can expedite the identification of potential treatments while decreasing drug
development time and costs (Stokes et al., 2020). Notable progress has been made in using
deep generative models to hasten the discovery of drug-like molecules (Jin et al., 2018; Shi
et al., 2019; Schwalbe-Koda & Gómez-Bombarelli, 2020; Xie et al., 2020).

Antimicrobial peptides (AMPs) represent one of the most promising new therapeutic agents
to supplant antibiotics. These short proteins can eliminate bacteria by disrupting their
membranes (Aronica et al., 2021; Cardoso et al., 2020). Unlike the chemical interactions
between antibiotics and bacteria that can be circumvented through bacterial evolution, this
physical mechanism is more challenging to resist.

A conventional antimicrobial discovery process typically comprises four stages, depicted in
Figure 1. Initially, a candidate library is constructed based on the existing AMPs database.
Candidates can be created using manual heuristic methods or by training deep generative
models. Next, various sequence-based filters are established to screen candidate peptides
according to diverse chemical features, including computational metrics and predictive models
trained to estimate ideal properties. Subsequently, to ensure that these sequences can adopt
appropriate biologically functional structures, peptide structure predictors such as PEPFold
3 (Shen et al., 2014) are used to model the sequences’ structures, followed by molecular
dynamics simulations. Finally, the filtered sequences are synthesized and examined in wet
laboratory experiments. In Figure 1, the grep region represents the bacterial suspension,
and the white area signifies a low bacterial concentration in this region.

∗Work was done when Danqing Wang was in Bytedance Research.
1The code is available at https://github.com/dqwang122/LSSAMP
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Figure 1: The overview of AMP discovery.
The first two steps focus on sequence at-
tributes and the third models the structure.
The final step is to verify the antimicrobial
activity by inhibiting the growth of bacteria.
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Figure 2: The encoder of LSSAMP. Here, we
use N = 4 pattern selectors to select various
local patterns for each position. The number
of selectors is further discussed in Section 3.4.

Deep generative models have recently achieved considerable success in accelerating AMP
discovery by using sequence attributes to control generation and directly produce peptides
with ideal attributes (Das et al., 2018; 2021; Van Oort et al., 2021). However, these studies
solely consider sequence features and neglect the structure-activity relationship. Generated
sequences still require processing by structure predictors and manual verification, slowing
down the discovery process. Furthermore, the structure significantly influences biological
properties, thereby aiding attribute control (Chen et al., 2019; Torres et al., 2018; Tucker
et al., 2018).

In this paper, we integrate structure information into the generative model and introduce a
Latent Sequence-Structure model for AntiMicrobial Peptide (LSSAMP). It concurrently maps
sequence features and secondary structures into a shared latent space and samples peptides
with optimal sequence compositions and structures. LSSAMP controls generation in a more
refined manner by assigning a latent variable to each position rather than a continuous
variable to control the attributes of the entire sequence. We utilize a multi-scale vector
quantized-variational autoencoder (VQ-VAE) (van den Oord et al., 2017) to capture sequence
and structure patterns of varying lengths. During the generation process, LSSAMP samples
from the latent space and generates a peptide sequence along with its secondary structure.
Public AMP predictor-based experimental results demonstrate that the peptides generated
by LSSAMP exhibit a high AMP probability. Our comprehensive qualitative analysis reveals
that our model captures the sequence and structure distribution. We select 21 generated
peptides for wet laboratory experimentation and discover that 2 of them exhibit potent
antimicrobial activity against Gram-negative bacteria.

To conclude, our contributions are as follows:
• We propose LSSAMP, a sequence-structure generative model that combines secondary

structure information into the generation. It can further accelerate AMP discovery by
merging the first three steps together.

• We develop a multi-scale VQ-VAE to control the generation in a fine-grained manner and
map patterns in sequences and structures into the same latent space.

• Experimental results of AMP predictors show that LSSAMP generates peptides with high
probabilities of AMP. Moreover, 2 of 21 generated peptides show strong antimicrobial
activities in wet laboratory experiments.

2 Method

In this section, we first discuss how existing generative models expedite this process and their
limitations. We then explore previous work employing popular VAE-based models for peptide
generation. Building on this, we present the Latent Sequence-Structure model for AMP
(LSSAMP), which utilizes the multi-scale VQ-VAE to map sequence and structure distributions
into a shared latent space, simultaneously sampling peptides with ideal sequences and
structures.
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Uniq C H uH Combination

VAE 475 18.45% ± 2.92% 2.68% ± 3.28% -2.78% ± 1.64% 0.29% ± 0.74%
AMP-GAN 1966 2.79% ± 0.50% 2.16% ± 0.34% -2.29% ± 0.53% 0.17% ± 0.35%
PepCVAE 208 3.87% ± 1.58% -1.93% ± 1.61% 1.01% ± 2.80% 3.93% ± 1.82%
MLPeptide 2106 -2.48% ± 0.39% 2.01% ± 0.57% 9.24% ± 1.22% 1.12% ± 0.38%

Table 1: The delta ratio of the sequence properties that underwent secondary structure
filtering, which reflects the difference in performance before and after the filter was applied.
Our experiments were repeated thrice, and we calculated the error bars. Uniq is the unique
peptide number in 5000 generated sequences. C, H, uH correspond to charge, hydrophobicity,
hydrophobic moment. Combination is the percentage of satisfying three ranges at the same
time.

Notations The peptide2 is a short protein comprised of amino acids. A peptide of length
L can be represented as x = x1, x2, · · · , xL. The amino acid xi at the i-th position is one
of the 20 common types and is also referred to as a residue. The secondary structure is
employed to describe the local form of the peptide’s 3D structure. Therefore, the structure
of the peptide can be denoted as y = y1, y2, · · · , yL, where yi is the secondary structure label
of the i-th position, belonging to one of eight types 3.

2.1 Antimicrobial Peptide Discovery

Deep generative models have demonstrated potential in accelerating AMP discovery by
merging sequence-based filters with the generation process and directly producing sequences
with user-defined properties as the candidate library. However, previous studies exclusively
focus on learning sequence features. They still need to verify and filter structures using
external computational tools after generating sequences, rendering the generation process
inefficient. For instance, Van Oort et al. (2021) chose 12 cationic and helical peptides among
generated peptides, and Capecchi et al. (2021) employed the predicted α-helix structure
fraction percentage to filter peptides post-generation.

Additionally, there is a strong relationship between peptide structure and activity. We
examine the impact of secondary structure on sequence properties by filtering generated
sequences based on the proportion of α-helices, the most prevalent secondary structure in
AMPs. In Table 1, we use three sequence attributes (charge, hydrophobicity, hydrophobic
moment) vital for the AMP mechanism to assess generation performance (Yeaman & Yount,
2003; Gidalevitz et al., 2003; Wimley, 2010). The ratio in Table 1 represents the performance
difference before and after the secondary structure filter (discussed further in §A.3). We
observe that most results are improved by limiting α-helical structures. These findings
indicate that by controlling the structure, sequence properties can be enhanced. Therefore,
incorporating structure information into generative models can not only speed up discovery
by combining all steps before the wet laboratory but also improve sequence properties,
making the generative process more efficient.

2.2 VAE-based Generative Models

Given a sequence x, the variational auto-encoders assume that it depends on a continuous
latent variable z. Thus the likelihood can be denoted as: p(x) =

∫
p(z)p(x|z)dz. The

controlled sequence generation incorporates the attribute a and models the conditional
probability p(x|a). Based on the dependency between latent variable z and attribute a,
these peptide generative models can be divided into semi-VAEs, such as PepCVAE (Das
et al., 2018), and GM-VAEs, such as CLaSS (Das et al., 2021).

2Here, we use the term peptide to refer to both oligopeptides (< 20 amino acids) and polypeptides
(< 50 amino acids).

3The three alpha helices are denoted as H, G, and I based on their angles. The two beta sheets are
distinguished by E and T according to their shape. The others are random coil structures (Kabsch
& Sander, 1983).
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The vanilla VAE are usually trained in an auto-encoder framework with regularization.
The encoder parameterizes an approximate posterior distribution qϕ(z|x) and the decoder
reconstructs x based on the latent z. The models optimizes a evidence lower bound (ELBO):

Lr = Eqϕ(z|x)[log(pθ(x|z))]−KL(qϕ(z|x)||p(z)), (1)

where the Eqϕ(z|x)[log(pθ(x|z))] is the reconstruction loss and the KL divergence is the
regularization. For the conditional generation, the attributes are directly added to the
latent variable z, or trained on the latent space to get an attribute-conditioned posterior
distribution p(z|a). The VAE-based peptide generative models are first trained on the
unsupervised peptide or protein sequences and then trained with specific sequences with
biological attribute labels.

A latent variable z is sampled from the latent space and then fed to the decoder to generate
a new sequence. The attributes control the generation with the latent z.

2.3 Latent Sequence-Structure Model

Traditional VAE models for peptides only learn the sequence distribution. To combine the
secondary structure with sequence attributes to further accelerate the discovery and build a
more effective candidate library. Different from previous work, we assign a latent variable
zi for each xi instead of a continuous z for the whole sequence. This gives our model a
more fine-grained control on each position. Since it is computationally intractable to sum
continuous latent variables over the sequence, we use VQ-VAE (van den Oord et al., 2017) to
lookup the discrete embedding vector zq = {zq(x1), · · · , zq(xL)} for each position by vector
quantization.

Specifically, the encoder output zi = ze(xi) ∈ Rd will be replaced by the codebook entry
zq(xi) ∈ Rd via a nearest neighbors lookup from the codebook B ∈ RK×d :

zq(xi) = ek, and k = argminj∈{1,··· ,K} ∥ze(xi)− ej∥2 . (2)
Here, K is the slot number of the codebook and d is the dimension of the codebook entry e.
Then, the generator will take zq(xi) as its input and reconstruct xi. The training objective
Lr is defined as:

Lr =

L∑
i=1

log p (xi|zq(xi)) + ∥sg [ze(xi)]− zq(xi)∥22 + β ∥ze(xi)− sg[zq(xi)]∥22 . (3)

Here, sg(·) is the stop gradient operator, which becomes 0 at the backward pass. β is the
commit coefficient. The

∑L
i=1 log p (xi|zq(xi)) is the discrete reconstruction loss and the rest

components perform as the KL divergence regularization, like the second term in Eqn. 1.

For secondary structure modeling, we predict the structure label yi for i-th residue. We add
a separate decoder on top of the latent representation zq′(xi). The training objective Ls is
similar to Eqn. 3 except that the first term is a supervised version

∑L
i=1 log p (yi|zq′(xi)).

The sequence and structure codebook are not necessarily the same, thus we use zq′(xi) to
indicate the structure latent variable.

Multi-scale VQ-VAE The structure motifs are often longer than sequence patterns. For
example, a valid α- helix contains at least 4 residues and may be longer than 12. However,
sequence patterns with specific biological functions are much shorter, usually between 1 and
8 residues. To capture these features and map them into the same latent space, we first apply
N multi-scale pattern selectors Fn. Then, we establish multiple codebooks and use Eqn.
2 to look up the nearest codebook embedding zqn(xi). We share the codebooks between
sequence reconstruction and secondary structure prediction to capture common features and
relationships between the residue and its structure. The concatenated multi-scale codebook
embedding is fed to the sequence generator: zq(xi) = ∥n∈Nzqn(xi), Based on Eqn. 3, the
reconstruction training objective for multi-scale VQ-VAE can be adapted as the sum of loss
on multiple codebooks.

Thus, the total training loss is composed of the reconstruction loss and the labeling loss,
which can be denoted as: L = Lr + γLs (4) where the γ is the weight of the structure
prediction task.
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Training As VAE-based generative models, we first train LSSAMP in an unsupervised manner
with protein sequences via Lr. Then, we incorporate the structure information by jointly
training Lr and Ls on a smaller protein dataset with secondary structure annotation. Finally,
we finetune our model on the AMP dataset to capture the specific AMP characteristics. The
whole training process is described in Algorithm 1 of §.

Prior Model The prior distribution over the codebook is a categorical distribution and can
be made auto-regressive by the extra prior model. To model the dependency between z1:L,
following (van den Oord et al., 2017) we train Transformer-based language models on the
embedding entries. We extract the index sequences generated by Eqn. 2 for each codebook
n and then train Mpriorn on them, as shown in Line 4-9 in Algorithm 1.

Sampling We sample several index sequences from the prior models for each codebook n,
and then lookup the codebook to get the embedding vector zqn . Finally, zqn is fed to the
generator and classifier to generate the sequence with its secondary structure. We also try
to control the secondary structure by existing AMP structure patterns to further improve
the generation quality.

3 Experiment

SVM RF DA Scanner AMPMIC IAMPE amPEP Average

APD 87.78% 91.24% 86.24% 94.66% 98.42% 97.83% 91.50% 92.52%
Decoy 17.43% 13.71% 16.04% 0.25% 18.07% 23.53% 52.92% 20.28%

Random p = 0.1 86.06% 86.12% 84.01% 93.23% 79.14% 95.60% 91.74% 87.99%
Random p = 0.2 76.66% 76.64% 74.83% 86.95% 68.57% 91.14% 87.89% 80.38%
VAE 24.90% 15.30% 13.83% 15.12% 15.25% 40.31% 24.30% 21.29%
AMP-GAN 78.62% 87.29% 83.82% 82.17% 89.58% 93.88% 80.52% 85.13%
PepCVAE 82.84% 85.96% 93.33% 85.44% 98.44% 98.14% 80.77% 89.27%
MLPeptide 90.43% 92.55% 93.08% 93.72% 96.34% 97.05% 91.37% 93.51%

LSSAMP 92.03% 92.60% 93.45% 91.52% 95.84% 96.64% 93.23% 93.62%
LSSAMP w/o cond 78.98% 80.24% 80.01% 86.73% 83.81% 93.80% 85.32% 84.13%

Table 2: The percentage of generated sequences being predicted as AMP. The classifiers are
described in §3.2. The first part is the prediction results on AMP and non-AMP dataset as
the reference. The bold ones are the best model results.

3.1 Experiment Setup

Dataset The Universal Protein Resource (UniProt)4 is a comprehensive protein dataset. We
download reviewed protein sequences (550k) with the limitation of 100 in length as Dr (57k
examples). Then we use a community reimplementation of AlphaFold(AlQuraishi, 2019),
which is called ProSPr5 (Billings et al., 2019) to predict the secondary structure for Dr. After
filtering low-quality examples with all coil or unknown secondary structures, we obtain Ds

with 46k examples, including both sequence and secondary structure information. Here, we
use the predicted secondary structures to augment the limited size of the existing secondary
structures. For the antimicrobial peptide dataset, we download from Antimicrobial Peptide
Database (APD3)6 (Wang et al., 2016) and filter repeated ones to get 3222 AMPs as Damp.
We randomly extract 3,000 examples as validation and 3,000 as test on Dr and Ds. For
Damp, the size of validation and test is both 100. Following Veltri et al. (2018), we create a
decoy set of negative examples without antimicrobial activities for comparison. It removes
peptide sequences with antimicrobial activity from Uniprot, and sequences with length < 10
or > 40, resulting in 2021 non-AMP sequences.

Baseline Traditional methods usually randomly replace several residues on existing AMPs
and conduct biological experiments on them. Thus, we use Random baseline to represent

4https://www.uniprot.org/
5https://github.com/dellacortelab/prospr/tree/prospr1
6https://aps.unmc.edu/
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the method of replacing each residue with probability p. Following Dean & Walper (2020),
we use VAE to embed the peptides into the latent space and sample latent variable z
from the standard Gaussian distribution p ∼ N(0, 1). For a fair comparison, we use the
same Transformer architecture as our model LSSAMP and train on the Uniprot Dr and APD
dataset Damp. AMP-GAN is proposed by Van Oort et al. (2021), which uses a BiCGAN
architecture with convolution layers. It consists of three parts: the generator, discriminator,
and encoder. The generator and discriminator share the same encoder. It is trained on 49k
false negative sequences from UniProt and 7k positive AMP sequences. PepCVAE is a
semi-VAE generative model that concatenates the attribute features to the latent variable
for conditional generation (Das et al., 2018). Since the authors did not release their code,
we use the model architecture from Hu et al. (2017) and modify the reproduced code7 for
AMPs, as described in their paper. The original paper uses 93k sequences from UniProt and
7960/6948 positive/negative AMPs for training. For comparison, we use UniProt dataset
Dr and ADP dataset Damp to train it. MLPeptide (Capecchi et al., 2021) is RNN-based
generator. It is first trained on 3580 AMPs and then transferred to specific bacteria. LSSAMP
is implemented as described in §2.3. The detailed implementation is discussed in §C.1.

3.2 Evaluation Metric

Following previous work (Das et al., 2020; Van Oort et al., 2021), we use open-source AMP
prediction tools to estimate the AMP probability of the generated sequence. Since these
open-source AMP predictors are trained and report results in different AMP datasets, we use
APD and decoy datasets as a reference of their performance. We also evaluate the generative
diversity of these models and the sequence attributes in §B.2.

AMP Classifiers Thomas et al. (2010) trained on the AMP database of 3782 sequences
with random forest (RF), discriminant analysis (DA), support vector machines (SVM)8,
and artificial neural network (ANN)9 respectively. AMP Scanner v210 (Veltri et al., 2018),
short as Scanner, is a CNN-&LSTM-based deep neural network trained on 1778 AMPs
picked from APD. AMPMIC11 (Witten & Witten, 2019) trained a CNN-based regression
model on 6760 unique sequences and 51345 MIC measurement to predict MIC values.
IAMPE12 (Kavousi et al., 2020) is a model based on Xtreme Gradient Boosting. It achieves
the highest correct prediction rate on a a set of ten more recent AMPs (Aronica et al., 2021).
ampPEP13 (Lawrence et al., 2021) is a random forest based model which is trained on 3268
AMP sequences. It has the best performance across multiple datasets (Aronica et al., 2021).

Wet Laboratory Experiments Following the previous AMP design (Capecchi et al.,
2021; Das et al., 2021), we use minimum inhibitory concentration (MIC) to indicate peptide
activity, which is defined as the lowest concentration of an antibiotic that prevents the visible
growth of bacteria. A lower MIC means a higher antimicrobial activity. To determine MIC,
the broth microdilution method was used. The detail setting is put in §C.2

3.3 Experimental Results

We generate 5000 sequences for each baseline. During the generation process, we add some
structural restrictions on positions based on the antimicrobial mechanism. Specifically, we
reject peptides with more than 30% coil structure (‘-’), which can hardly fold in the solution
environment and insert into the bacterial membrane in silico screening. Besides, we limit the
minimum length of a continuous helix (‘H’) to 4 according to physical rules. We name our
model with structural control as LSSAMP and the model without extra conditions as LSSAMP
w/o cond.

7https://github.com/wiseodd/controlled-text-generation
8http://www.camp3.bicnirrh.res.in/prediction.php
9We drop the ANN model because its accuracy on APD is low (82.83%).

10https://www.dveltri.com/ascan/v2/ascan.html
11https://github.com/zswitten/Antimicrobial-Peptides
12http://cbb1.ut.ac.ir/AMPClassifier/Index
13https://github.com/tlawrence3/amPEPpy
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AMP Prediction The results of prediction tools are shown in Table 2. LSSAMP performs
best in four of seven and has the highest average score across all classifiers, indicating its
advantage over baselines. PepCVAE performs best on the AMPMIC and IAMPE predictors,
however, it performs poorly on the other predictors and gets a low average score. MLPeptide
performs relatively evenly across predictors, outperforming other models on only Scanner
and slightly underperforming our model on the average score. The comparison of LSSAMP
and LSSAMP w/o cond indicates that adding fine-grained control on the secondary structure
can further improve the generation performance.

No Activity (ug/mL) ↓ Sequence identity ↓ Hemolysis/Toxicity ↓A. Baumannii P. aeruginose E. coli

P1 16-32 / 32-64 83.30% Low
P2 8 32 / 75.00% Low

Table 3: Wet laboratory experiment results. P1 is GAFGNFLKNVAKKAGIYLLSI-
AQCKLFGTP and P2 is FIGFLFKLAKKIIPSLFQTKTE. ‘Sequence identity’ measures the
similarity with existing AMPs and ‘Hemolysis/Toxicity’ measures the damage to other cells.

Wet Laboratory Experiment We synthesized and conducted experimental tests on
peptides generated using LSSAMP. First, we filtered the produced sequences based on their
physical attributes (as outlined in §A.1) and employed AMP classifiers to choose those
predicted to have antimicrobial properties (as detailed in §3.2). Next, we sorted the sequences
according to their novelty (as described in §B.2) and selected those with a distance greater
than 5. Ultimately, we obtained 21 peptides and examined their antimicrobial activities
against three types of Gram-negative bacteria (A. Baumannii, P. aeruginosa, E. coli), which
took approximately 30 days. We utilized minimal inhibitory concentration (MIC) to assess
the activity. The wet laboratory experiment specifics are provided in §C.2. As indicated
in Table 3, two peptides were found to be effective against A. Baumannii. P2 against P.
aeruginosa and P1 against E. coli also exhibited activity. Additionally, these two newly
identified AMPs differ from existing ones (similarity < 85%) and exhibit low toxicity, making
them promising new therapeutic agents. The wet-lab experiment outcomes demonstrate that
LSSAMP can efficiently identify AMP candidates and decrease the required time.

3.4 Analysis

Ablation Study We conduct the ablation study for our LSSAMP and show the results in
Table 4. PPL is the perplexity of generated sequences that can measure fluency. Loss is
the model loss on the validation set. AA Acc. is the reconstruction accuracy of residue and
SS Acc. is the prediction accuracy of the secondary structure. We can find that without
the first training phase on Dr, the model can hardly generate valid sequences. The second
phase to train the model on the large-scale secondary structure dataset Ds will affect the
prediction performance on the target AMP dataset. If we remove multiple sub-codebooks
(SB) and use a single large codebook with the same size, the performance will decline.

Codebook Number We explore the effect of different numbers of codebooks on generation
performance. From Table 5, we find that a single small codebook can hardly learn enough
information to reconstruct the sequence. The PPL, Loss, and SS Acc. become better with

PPL ↓ Loss ↓ AA Acc.↑ SS Acc.↑
LSSAMP 3.12 1.14 99.93 86.76
w/o Dr 11.56 2.45 66.06 82.78
w/o Ds 3.83 1.34 99.58 85.87
w/o SB 3.49 1.25 99.86 86.61

Table 4: Ablation Study on validation set of
Damp . See §3.4 for details. The full table
with std is Table 10.

Codebook PPL ↓ Loss ↓AA Acc.↑ SS Acc.↑
[1] 19.04 2.94 65.49 83.41
[1, 2] 3.84 1.35 99.40 85.39
[1, 2, 4] 3.32 1.20 100.00 85.95
[1, 2, 4, 8] 3.24 1.17 99.79 87.20

Table 5: The influence of the number of code-
books. ‘[1,2]’ indicates that we use 2 code-
books to capture local features with window
sizes of 1 and 2. The full table is Table 11.
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(a) Y1 (b) Y4 (c) Y9 (d) Y10

Figure 3: 3D structures for sequence Y1, Y4, Y9, and Y10 of Table 8.

the increase of codebook entries. However, the reconstruction accuracy achieves the best
performance when the codebook is 3. This may be due to the relatively short local pattern
of sequences, making the window of 8 too long for it.

Case Study We show 10 peptides generated by LSSAMP in §(Table 8). We further build
3D models of 4 generated sequences by PEPFold 3 (Shen et al., 2014) and draw the picture
by PyMOL (Schrödinger, LLC, 2015) in Figure 3. We can find that all these peptides have
several helical structures, which make them more likely to have the antimicrobial ability. At
the same time, although the model predicts a long continuous helical structure for Y4 and
Y9, in fact, they have a small coil structure between the two helical structures. It indicates
that our model tends to predict a long continuous secondary structure instead of several
discontinuous small fragments.

4 Related work

Antimicrobial Peptide Generation Deep generative models have experienced rapid
growth in recent years. Dean & Walper (2020) encode peptides into a latent space and
interpolate across a predictive vector between a known AMP and its scrambled version to
generate novel peptides. PepCVAE (Das et al., 2018) and CLaSS (Das et al., 2021) utilize
the variational auto-encoder model for sequence generation. AMPGAN (Van Oort et al.,
2021) employs the generative adversarial network to create new peptide sequences, with a
discriminator differentiating real AMPs from artificial ones. To the best of our knowledge,
this is the first study incorporating secondary structure information into the generative phase,
promoting the efficient generation of well-structured sequences with desired properties.

Sequence Generation via VQ-VAE

Sequence Generation via VQ-VAE Variational auto-encoders (VAEs) were first proposed
by Kingma & Welling (2014) for image generation. Instead of mapping input to a continuous
latent space as in VAE, vector quantized-variational autoencoder (VQ-VAE) (van den Oord
et al., 2017) learns a codebook to obtain a discrete latent representation. This method can
circumvent issues of posterior collapse while maintaining performance comparable to VAEs.
Building on this, Razavi et al. (2019) employs a multi-scale hierarchical organization to
capture global and local features for image generation. Bao et al. (2021) learns implicit
categorical information of target words with VQ-VAE and models the categorical sequence
using conditional random fields in non-autoregressive machine translation. In this paper, we
utilize the multi-scale vector quantized technique to obtain the discrete representation for
each position of the peptide.

5 Conclusion

In this paper, we present LSSAMP, which employs multi-scale VQ-VAE for fine-grained control
of each position. It maps sequence and structure features into a shared latent space, and
by sampling the overlapping distribution, it can generate peptides with optimal sequence
attributes and secondary structures. LSSAMP demonstrates strong performance on AMP
predictors and designs two peptides with high activity against Gram-negative bacteria. This
suggests that our generative model can effectively produce an AMP library with high-quality
candidates for subsequent biological experiments, thereby accelerating AMP discovery.
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A Appendix

A.1 Sequence Attributes

According to biological studies (Yeaman & Yount, 2003; Gidalevitz et al., 2003; Wimley,
2010), there are several physical properties crucial for the antimicrobial activity of peptides
based on the mechanism. For example, amino acids with positive charges are more likely to
bind with bacterial membranes as most bacterial surfaces are anionic, while those with high
hydrophobicities tend to move from the solution environment to the bacterial membrane.
Here, we introduce three important sequence attributes for AMPs.

Charge The bacterial membrane usually takes a negative charge. Peptides with a positive
charge are more likely to bind with the membrane. The whole charge of the peptide sequence
S is defined as the sum of the charge of all its residues C(xi) at pH 7.4, which is

C(S) =
∑
xi∈S

C(xi). (5)

We only take integer charges into consideration.

Hydrophobicity The hydrophobicity reflects the tendency to bind lipids on the bacterial
membrane. A peptide with a high hydrophobicity is easy to move from the solution
environment to the bacterial membrane. We use the hydrophobicity scale H(xi) in Eisenberg
et al. (1984) to calculate the hydrophobicity of a sequence, which is

H(S) =
∑
xi∈S

H(xi). (6)

Amphipathicity / Hydrophobic Momentum The amphipathicity measures the ability
of the peptide to bind water and lipid at the same time, which is a definitive feature of
antimicrobial peptides(Hancock & Rozek, 2002). It can be quantified by the hydrophobic
momentum uH(S, θ), defined by Eisenberg et al. (1984). The hydrophobic momentum is
determined by the hydrophobicity H(xi) of each residue xi, along with the angle θ between
residues. The angle can be estimated by the secondary structure. For the α-helix structure,
θ is 100◦ and for β-sheet, θ is 180◦.

uH(S, θ) =
√

R2
cos(S, θ) +R2

sin(S, θ), (7)

Rcos(S, θ) =
∑
xi∈S

H(xi) ∗ cos(i ∗ θ), (8)

Rsin(S, θ) =
∑
xi∈S

H(xi) ∗ sin(i ∗ θ). (9)

For each peptide, we calculate the above attributes to measure its antimicrobial activity. For
comparison, we draw the distribution on the APD and decoy dataset and select a range for
each attribute based on the biological mechanism (Section A.2). We use the percentage of
peptides in each attribute range to exploit the generation performance and use Combination
to measure the percentage of peptides that satisfy three conditions at the same time.

A.2 Attribute Distribution

To determine the effective threshold of charge, hydrophobicity, and hydrophobic moment
of AMP, we analyze the sequence distribution in APD and decoy in Figure 4. For charge,
we follow the rule summarized by experts and choose sequences whose net charge is +2 to
+10. For the remaining two characters, we draw a histogram and compare the proportion in
each box. If the proportion of APD is larger than that in the decoy, we add a bin to the
acceptance range of the evaluation metric. The final ranges are C ∈ [2, 10], H ∈ [0.25,∞],
and uH ∈ [0.5, 0.75] ∪ [1.75,∞].
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Figure 4: The histogram of charge, hydrophobicity, and hydrophobic moment on APD and
decoy dataset.
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Figure 5: An example of the antimicrobial mechanism. The blue indicates the hydrophobic
amino acids, and the red ones are hydrophilic. On the left, although the peptides with
reasonable amino acids have attached to the bacterial membrane, they still can not insert
into it. However, by folding into the helix structure, as shown on the right, the peptides
maintain a stable hole that breaks the membrane of the bacterium.

A.3 Secondary Structure Filter

Similar to proteins, the biological functions of AMPs are determined by their amino acid
sequences and folded structures (Boman, 2003). If the peptide can not fold into an appropriate
structure, it is still difficult to take effect. For example, by forming a helical structure, the
peptide can gather hydrophobic amino acids on one side and hydrophilic amino acids on the
other. This amphiphilic structure helps the peptide insert into the membrane and maintain

Uniq C H uH Combination

Random p = 0.1 2055 7.38% ± 11.01% 37.93% ± 0.44% 4.61% ± 0.31% 4.34% ± 0.41%
Random p = 0.2 1831 6.87% ± 0.31% 9.52% ± 0.31% 1.91% ± 1.06% 2.19% ± 0.66%
VAE 475 18.45% ± 2.92% 2.68% ± 3.28% -2.78% ± 1.64% 0.29% ± 0.74%
AMP-GAN 1966 2.79% ± 0.50% 2.16% ± 0.34% -2.29% ± 0.53% 0.17% ± 0.35%
PepCVAE 208 3.87% ± 1.58% -1.93% ± 1.61% 1.01% ± 2.80% 3.93% ± 1.82%
MLPeptide 2106 -2.48% ± 0.39% 2.01% ± 0.57% 9.24% ± 1.22% 1.12% ± 0.38%
LSSAMP 4876 0.30% ± 0.37% 3.96% ± 0.64% 7.53% ± 0.41% 1.87% ± 0.07%

Table 6: The delta ratio of sequence properties filtered by secondary structures. Uniq is
the uniq peptide number among 5000 generated sequences. C, H, uH correspond to charge,
hydrophobicity, hydrophobic moment. Combination is the percentage satisfying three
ranges at the same time.
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a stable hole with other molecules in the membrane, as shown in Figure 5. Without it, the
peptide can hardly penetrate the membrane and attach to the surface.

But does controlling secondary structure also affect sequence attributes? To answer this
question, we control the secondary structure of the generated peptides to α-helix for our
baseline. The performance gaps are shown in Table 6. From Table 6, we can find that
most of the results are improved by limiting sequences to the α-helix structures. It shows
that by controlling the structure, the sequence attributes can be improved, which verifies
the importance of introducing secondary structures to the controlled generation process.
However, the sequence size has decreased significantly, indicating that this generate-then-filter
pipeline is inefficient.

Uniq C H uH Combination

APD 3222 68.75% 27.96% 4.72% 6.15%
Decoy 2020 21.83% 8.81% 1.98% 0.10%

Random p = 0.1 4978 65.86% ± 0.19% 26.80% ± 0.23% 23.10% ± 0.58% 4.38% ± 0.16%
Random p = 0.2 5000 62.13% ± 0.39% 24.87% ± 0.29% 20.79% ± 0.76% 2.47% ± 0.17%
VAE 4988 38.00% ± 0.36% 21.07% ± 0.58% 12.43% ± 0.66% 0.34% ± 0.11%
AMP-GAN 4976 87.66% ± 0.45% 17.31% ± 0.74% 23.45% ± 0.73% 1.92% ± 0.05%
PepCVAE 1346 15.61% ± 0.06% 14.54% ± 0.55% 11.65% ± 0.23% 2.75% ± 0.25%
MLPeptide 4486 77.95% ± 0.72% 8.11% ± 0.27% 32.91% ± 0.60% 2.90% ± 0.16%

LSSAMP 4876 81.88% ± 0.31% 25.06% ± 0.45% 37.10% ± 0.33% 6.26% ± 0.07%
LSSAMP w/o cond 4903 82.04% ± 0.42% 21.32% ± 0.34% 30.51% ± 0.51% 4.46% ± 0.20%

Table 7: Physical attributes of generated sequences. We use the percentage of peptides
meeting the range to measure the performance. Uniq is the number of unique generated
sequences. C, H, uH correspond to charge, hydrophobicity, hydrophobic moment described
in Section A.1. Combination is the percentage satisfying three ranges at the same time.
The best results are bold.

A.4 Results of Sequence Attributes

Following the previous AMP design (Das et al., 2018; Van Oort et al., 2021; Capecchi et al.,
2021; Das et al., 2021), we use the above three sequence attributes to evaluate the generation
performance. As listed in Table 7, LSSAMP outperforms 1.88% on the combination percentage,
which indicates that our model can generate sequences satisfying multiple properties at the
same time. Besides, the combination percentage is similar to APD, which means that our
model learns the sequence distribution of APD. LSSAMP tends to generate peptides with higher
hydrophobicity, while AMP-GAN and MLPeptide sample more cationic sequences. Besides,
LSSAMP can better capture the amphiphilic secondary structure indicated by the highest
uH. Compared with other models, PepCVAE inefficiently generates redundant sequences,
which results in a significant decrease in the number of unique sequences. Furthermore, we
can find that by further controlling the secondary structure, H, uH and Combination can
be improved. This verifies that secondary structure information has a great influence on
sequence attributes.

Structure Condition As described above, controlling the secondary structure can affect
the attributes of generated peptides. Thus we limit the percentage of the coil structure with
different ratios and calculate the sequence attributes of generated peptides. The results are
shown in Figure 6. We can find that with the decrease in the number of coil structures, the
percentage of positive peptides keeps growing. However, for hydrophobicity and hydrophobic
moment, the percentage drop after 0.3. Therefore, we limit the length of the coil structure
to 30% in our main experiments.

Visualization of Residue Distribution To illustrate the distribution of residues in the
generated peptides, we plot tSNE, shown in Figure 7. We transform the vector with each
dimension representing the probability of a certain residue to represent the peptide. Then
we use tSNE to convert the high-dimensional vector to 2D and visualize them. We find that
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Figure 6: The physical properties of peptides with different percentages of the coil structure.
The x-axis is the maximum percentage and the y-axis is the percentage of peptides that
meet the property range.

there is a large overlap between LSSAMP w/o condition and APD, which indicates that our
model has captured the global distribution of APD instead of collapsing to a local mode.
Furthermore, LSSAMP covers APD and has some outliers. The results show that with the
secondary structure condition, our model can not only learn the existing AMP distribution
but also explore more possible spaces.

tSNE for Amino Acid

APD
LSSAMP_wo_cond
LSSAMP
Decoy

Figure 7: The tSNE plot for the distribution of residue in each sequence on four datasets.

Visualization of LSSAMP Distribution We plot the distribution of residues, charge,
sequence length, hydrophobicity, and hydrophobic momentum for APD, Decoy, and our
models in Figure 8. Without condition, the distribution of LSSAMP is similar to APD, which
indicates that LSSAMP successfully learns the sequence distribution of AMP. However, if we
control the secondary structure, it is more likely to generate sequences with longer lengths
and more positive charges. For hydrophobicity and hydrophobic momentum, the distribution
of the generated sequences is more concentrated.
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Figure 8: The distribution of residues, charge, sequence length, hydrophobicity, hydrophobic
momentum, and a 3D visualization for three sequence attributes.

B More Experimental Results

B.1 Case Study

We show 10 peptides generated by LSSAMP with the sequence, the secondary structure and
attributes discussed above. The peptides all have a long alpha-helix, which makes them
more possible to be AMP.

ID Sequence Secondary Structure C H uH

Y1 FLPLVRVWAKLI –HHHHHHHHHH 2 0.471 0.723
Y2 FLSTVPYVAFKVVPTLFCPIAKTC –HHHHHHHHHHHHHHHHHHHT– 2 0.446 1.812
Y3 FFGVLARGIKSVVKHVMGLLMG –HHHHHHHHHHHHHHHHHH– 3 0.420 0.549
Y4 GVLPAFKQYLPGIMKIIVKF –HHHHHHHHHHHHHHH— 3 0.419 0.523
Y5 VFTLLGAIIHHLGNFVKRFSHVF -HHHHHHHHHHHHHHHHHHHH– 2 0.416 0.514
Y6 FVPGLIKAAVGIGYTIFCKISKACYQ –HHHHHHHHHHHHHHHHHHHT—- 3 0.394 1.815
Y7 ALWCQMLTGIGKLAGKA –HHHHHHHHHHHHHHH 2 0.344 0.506
Y8 LLTRIIVGAISAVTSLIKKS –HHHHHHHHHHHHHHHH– 3 0.334 0.531
Y9 FLSVIKGVWAASLPKQFCAVTAKC –HHHHHHHHHHHHHHHHHHHT– 3 0.334 0.660
Y10 FLNPIIKIATQILVTAIKCFLKKC –HHHHHHHHHHHHHHHHHHHT– 4 0.334 1.940

Table 8: Ten generated peptides and their physical properties and predicted structures. ‘H’
is the α-helix, ‘T’ is the Turn and ‘-’ is the coil.

B.2 Novelty

To measure the novelty of the generated peptides, we define three evaluation metrics:
Uniqueness, Diversity, and Similarity. Uniqueness is the percentage of unique peptides in
the generation phase. Diversity measures the similarity among the generated peptides. We
calculate the Levenshtein distance (Levenshtein et al., 1966) between every two sequences
and normalize it by the sequence length. Then we average the normalized distance to get the
mean as its diversity. The higher the diversity, the more dissimilar the generated peptides
are. Novelty is the difference between the generated peptides and the training AMP set.
For each generated sequence, we search the training set for a peptide which has the smallest
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Uniqueness ↑ Diversity ↑ Novelty ↑
Random p = 0.1 0.995 ± 0.000 0.871 ± 0.021 0.078 ± 0.001
Random p = 0.2 0.999 ± 0.000 0.971 ± 0.022 0.160 ± 0.001
VAE 0.986 ± 0.001 1.011 ± 0.038 0.584 ± 0.002
AMP-GAN 0.995 ± 0.001 0.907 ± 0.023 0.565 ± 0.007
PepCVAE 0.265 ± 0.006 0.367 ± 0.007 0.423 ± 0.005
MLPeptide 0.900 ± 0.003 0.850 ± 0.016 0.416 ± 0.010

LSSAMP 0.981 ± 0.001 0.878 ± 0.018 0.503 ± 0.005
LSSAMP w/o cond 0.976 ± 0.002 0.901 ± 0.013 0.515 ± 0.008

Table 9: The novelty of the sampling. ↑ means higher is better. The detailed descriptions
are in Section B.2.

Algorithm 1 Training and Sampling phase of LSSAMP
Require: A protein dataset Dr, a peptide dataset with secondary structure Ds, and the AMP

dataset Damp. The model Mθ with N codebooks. A set of N prior models Mpriorn .
1: Train on Dr and update Mθ via Eqn. 3.
2: Train on Ds and update the Mθ via Eqn. 4.
3: Finetune Mθ on Damp via Eqn. 4.
4: for each codebook n = 1, 2, · · · , N do
5: Create an empty dataset Cn.
6: for xi ∈ Damp do
7: Save the n-th codebook index of xi via Eqn. 2 to Cn

8: end for
9: Train an auto-regressive language model Mpriorn on Cn.

10: end for

Levenshtein distance from it and normalize the distance according to its length. We calculate
the average length as the Novelty.

From Table 9, we can see that VAE has the highest diversity and novelty. However, from
Table 2, we can find that the peptides generated by VAE do not have a high probability of
AMP. It means that the vanilla VAE trained on AMP datasets without attribute control
can hardly capture the antimicrobial features. It randomly samples in the latent space. At
the same time, LSSAMP has a significant advantage over the above strong baseline PepCVAE
and MLPeptide. It means that our model can generate promising AMPs with relatively
high novelty. Besides, the limitation of secondary structure will lead to a decline in diversity.
However, it does not result in more redundant peptides because the uniqueness does not
decrease. It indicates that the restrictions make the model capture similar local patterns,
but not generate the exact same sequence.

C Reproduction

We run the model several times and calculate the mean and variance of the main experimental
results and analysis. The algorithm can be descibed as Alg. 1. Following Kaiser et al.
(2018), we use Exponential Moving Average (EMA) to update the embedding vectors in
the codebooks. Specifically, we keep a count ck measuring the number of times that the
embedding vector ek is chosen as the nearest neighbor of ze(xi) via Eqn. 2. Thus, the
counts are updated with a sort of momentum: ck ← λck + (1− λ)

∑
i I[zq(xi) = ek], with

the embedding ek being updated as: ek ← λek + (1− λ)
∑

i
I[zq(xi)=ek]ze(xi)

ck
. Here, λ is the

decay parameter.

C.1 Model Implementation

There are three main modules for LSSAMP. The encoder and decoder are based on a 2-layer
Transformer (Vaswani et al., 2017) with dmodel = 128, head = 8. The size of the FFN
projection is dffn = 512 and all dropout rates are 0.1. For the classifier, we use the same
CNN block as Billings et al. (2019) with 32 input channels and a dilation scale of [1, 2, 4, 8, 10].
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PPL ↓ Loss ↓ AA Acc.↑ SS Acc.↑
LSSAMP 3.24 ± 0.16 1.17 ± 0.05 99.79 ± 0.20 87.20 ± 0.62
w/o Dr 11.56 ± 3.81 2.45 ± 0.94 66.06± 0.67 82.78 ± 0.57
w/o Ds 3.83 ± 0.32 1.34 ± 0.04 99.58± 0.26 85.87± 0.35
w/o subbook 3.49 ± 0.20 1.25 ± 0.05 99.86 ± 0.36 86.61 ± 0.95

Table 10: Ablation Study on validation set of Damp. ‘w/o’ indicates that we remove the
module from LSSAMP. ↑ means higher is better, and ↓ is the opposite.

Codebook PPL ↓ Loss ↓ AA Acc.↑ SS Acc.↑
[1] 19.04 ± 2.84 2.94 ± 0.14 65.49 ± 3.49 83.41 ± 2.34
[1, 2] 3.84 ± 0.09 1.35 ± 0.02 99.40 ± 0.45 85.39 ± 0.26
[1, 2, 4] 3.32 ± 0.03 1.20 ± 0.01 100.00 ± 0.00 85.95 ± 0.42
[1, 2, 4, 8] 3.24 ± 0.16 1.17 ± 0.05 99.79 ± 0.20 87.20 ± 0.62

Table 11: The influence of the number of codebooks. ‘[1,2,4,8]’ indicates that we use 4
codebooks with window sizes of 1,2,4,8. The meanings of symbols are the same as Table 4.

For multi-scale codebooks, we first apply CNN as F (n) to extract features. We set n = 4 and
kernel width ranging in [1, 2, 4, 8]. The features will be padded to the same length as the
input sequence. Then, we use 4 codebooks with K = 8 and d = 128. The reconstruction and
prediction share the same codebooks, which means Nr = Ns = 4. The commit coefficient is
set to β = 0.05.

We use PyTorch to implement our model and train it on a single Tesla-V100-32GB. We
optimize the parameter with Adam Optimizer (Kingma & Ba, 2015). During pre-training for
sequence construction on Dr, we set the maximum token in a batch bz as 30,000, learning rate
lr as 0.01 with 8,000 warm-up steps, and decoy weight for EMA as λ = 0.8. For secondary
structure prediction on Ds, the max length is limited to 32, bz = 10, 000, lr = 0.003,
λ = 0.95, and the prediction loss coefficient γ = 1. Finally, we transfer to Damp with the
same hyperparameters except the lr = 0.001.

C.2 Wet Experiment Implementation

A colony of bacteria was grown in LB (Lysogeny broth) medium overnight at 37 degrees. A
peptide concentration range of 0.25 to 128 mg/liter was used for MIC assay. The concentration
of bacteria was quantified by measuring the absorbance at 600 nm and diluted to OD600 =
0.022 in MH medium. The sample solutions(150uL) were mixed with a 4uL diluted bacterial
suspension and finally inoculated with about 5 * 10E5 CFU. The Plates were incubated
at 37 degrees until satisfactory growth 18h. For each test, two columns of plates were
reserved for sterile control (broth only) and growth control (broth with bacterial inoculum,
no antibiotics). The MIC was defined as the lowest concentration of the peptide dendrimer
that inhibited the growth of bacteria visible after treatment with MTT.

C.3 Full Ablation results

Table 10 and 11 the full results with error bars for Table 4 and 5 in Section 3.4.
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