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ABSTRACT

Recent advancements in neural theorem proving integrate large language models
with tree search algorithms like Monte Carlo Tree Search (MCTS), where the lan-
guage model suggests tactics and the tree search finds the complete proof path.
However, many tactics proposed by the language model converge to semantically
or strategically similar, reducing diversity and increasing search costs by expand-
ing redundant proof paths. This issue exacerbates as computation scales and more
tactics are explored per state. Furthermore, the trained value function suffers from
false negatives, label imbalance, and domain gaps due to biased data construction.
To address these challenges, we propose CARTS (diversified tactic CAlibration
and bias-Resistant Tree Search), which balances tactic diversity and importance
while calibrating model confidence. CARTS also introduce preference modeling
and an adjustment term related to the ratio of valid tactics to improve the bias-
resistance of the value function. Experimental results demonstrate that CARTS
consistently outperforms previous methods achieving a pass@l rate of 49.6% on
the miniF2F-test benchmark. Further analysis confirms that CARTS improves
tactic diversity and leads to a more balanced tree search. The code for our imple-
mentation is available at https://github.com/njuyxw/CARTS.

1 INTRODUCTION

Automated theorem proving (ATP) (Harrison et al., 2014) is an essential task of artificial intelligence
(AI) with significant challenge. Recently, the development of large language models has brought
new vitality and advancements to this field (Han et al., 2022; Jiang et al., 2023; Xin et al., 2024a).
For example, AlphaProof (Deepmind, 2024; Trinh et al., 2024) solved four out of six problems
from International Mathematical Olympiad (IMO), achieving the same level as a silver medalist
in the competition. These advancements stem from the integration of language models and formal
theorem proving systems (such as Lean (Moura & Ullrich, 2021) or Isabella (Paulson, 1994)), which
model the theorem proving task as a Markov Decision Process (MDP) (Polu & Sutskever, 2020).
The language model functions as a policy network that provides heuristic proof tactics, while tree
search methods are utilized to explore correct sequence of steps that maximize the reward.

Although the improvements of language models (Xin et al., 2024a) can significantly improve the
performance of theorem proving, efficient tree search methods remains crucial for theorems with
long and complex proof steps. Existing search techniques (Polu & Sutskever, 2020; Wang et al.,
2023; Xin et al., 2024a) primarily rely on Best First Search (BFS) or Monte Carlo Tree Search
(MCTS) (Kocsis & Szepesvári, 2006). While these method can achieve impressive performance,
they have two significant drawbacks. Firstly, the output sampling of auto-regressive language mod-
els frequently exhibits significant redundancy, often producing similar tactics. Although the lan-
guage model generates a substantial number of tactics that differ at the character level, they share
the same underlying semantics. For instance, both ‘intro h’ and ‘intro H’ can be generated
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Figure 1: Overall Framework. Diversified tactic calibration can calibrate the model confidence
and enhance the diversity of candidate tactics, thus mitigating ineffective exploration. The bias-
resistant value function can adapt to the test data, provide more accurate scores for evaluating tactics,
thus improving the efficiency of utilization.

by the language model; however, they convey the same meaning in Lean4, as they both introduce a
hypothesis into the proving context. This redundancy can also lead to an imbalance in the number
of high-level proof strategies. For example, most of the tactics generated by the language model
may focus on the strategy of proof by contradiction, while there are relatively few tactics involv-
ing mathematical induction. These will result in a huge amount of ineffective exploration during the
tree search process, thus increasing search costs. This issue worsens as computation scales and more
tactics are explored per state. Secondly, the construction of value function training data often relies
on existing policy models to generate negative samples and thus introducing bias. On one hand, this
construction may produce a substantial number of negative samples, potentially far exceeding the
positive ones. This could result in label imbalance, causing the cross-entropy loss used in training
the value function to easily converge to local optima. On the other hand, the samples generated
by the policy model may contain false negatives, introducing noise into the dataset. Additionally,
the domain gap between the training dataset (e.g., Mathlib) and the test dataset (e.g., IMO prob-
lems) exacerbates the bias of the value function during the inference stage. This leads to inaccurate
evaluations of the current proof state’s value, hindering effective exploitation during the tree search
process. Overall, these two issues prevent existing tree search techniques from efficient exploration
and effective exploitation, resulting in sub-optimal search performance.

In order to solve these challenge, we propose diversified tactic CAlibration and bias-Resistant Tree
Search (CARTS). Diversified tactic calibration involves reordering and rescoring multiple candidate
tactics generated by a language model’s sampling output. This approach balances importance and di-
versity, thereby enhancing exploration efficiency. We use the Maximal Marginal Relevance (MMR)
algorithm (Peng et al., 2005) to achieve this, which is a classical method in the field of information
retrieval. Meanwhile, we propose a bias-resistant value function. During the training stage, prefer-
ence modeling is employed to construct the training dataset, and the Bradley-Terry model (Bradley
& Terry, 1952) is utilized to train the value network. This approach addresses the issue of data
imbalance and false negatives. During the inference stage, we introduce an adjustment term related
to the ratio of valid tactics into the value function to mitigate the domain gap between the training
and test dataset. This stems from a insight that if the number of valid tactics is limited, concerns
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may arise regarding the effectiveness of the current policy model, necessitating a reduced value for
the current action. Bias-resistant value function can enhance the effectiveness of exploitation during
the search process. The complete framework of CARTS is shown in Figure 1. We conducted suffi-
cient experiments on the widely recognized theorem-proving benchmarks, namely miniF2F (Zheng
et al., 2022) and ProofNet (Azerbayev et al., 2023) in Lean. Our proposed CARTS demonstrates
superior performances compared to all other search methods when the policy network remains un-
changed. We achieved a pass@1 success rate of 49.6% on the miniF2F-test dataset, which is the
state-of-the-art performance among all one-step tree search methods.

To summarize, this paper (i). proposes a diversified tactic calibration assisted monte carlo tree
search to improve the exploration efficiency. (ii). proposes a bias-resistant value function to improve
the exploitation effectiveness. (iii). demonstrates the effectiveness of the proposed method across
different models and benchmarks in experiments.

2 RELATED WORK

Neural theorem proving. In recent years, the advancement of large language models has brought
new progress to theorem proving (Li et al., 2024). GPT-f (Polu & Sutskever, 2020) is the first to
utilize language models trained on proof data to predict candidate proof steps and employ search al-
gorithms to discover the complete proof path. A series of subsequent studies have employed diverse
language model techniques from various perspectives to enhance theorem proving performance. In
terms of model training, PACT (Han et al., 2022) employs a set of self-supervised auxiliary tasks to
train the model. Curriculum Learning (Polu et al., 2023) introduces curriculum expert iterations to
update the network. Llemma (Azerbayev et al., 2024) continues pre-training the CodeLlama models
(Roziere et al., 2023) on a math-focused corpus. AlphaGeometry (Trinh et al., 2024) integrates a
transformer model trained on synthetic geometry data with a symbolic deduction engine to solve
olympiad geometry problems. InterLM2-Math (Ying et al., 2024b) compiles a substantial collec-
tion of both formal and informal contest-level math problems (Ying et al., 2024a; Wu et al., 2024).
First et al. (2023) incorporates a repair feedback mechanism in proof generation. This feedback is
facilitated by an LLM fine-tuned on tuples consisting of incorrect proof, error message and correct
proof. In terms of algorithmic design, Reprover (Yang et al., 2023) employs retrieval-augmented
generation for proof generation. DSP (Jiang et al., 2023) initially uses informal hints to guide proofs
by translating informal proofs into formal sketches, which are then completed with Isabelle’s au-
tomated reasoning tactics. LEGOProver (Xin et al., 2024c) enhances DSP with a skill library that
expands throughout the proof search. Lyra (Zheng et al., 2024) iterates on DSP by using error feed-
back to modify the formal sketch, employing automated reasoning tools to correct incorrect proofs
of intermediate hypotheses. COPRA (Thakur et al., 2024) utilizes in-context learning agents to aug-
ment theorem proving. These methods employ different formal systems. In our paper, we focus on
Lean, which has been verified to perform well on IMO-level tasks (Deepmind, 2024).

Search methods for theorem proving. Neural theorem proving primarily consists of two cate-
gories: whole proof generation methods Xin et al. (2024a); Wang et al. (2024b) and tree search
methods. Tree search methods are increasingly becoming the mainstream approach in recent years.
A typical approach involves using Best First Search (BFS), as seen in methods like GPT-f (Polu
& Sutskever, 2020), Reprover (Yang et al., 2023) and others (Lin et al., 2024; Welleck & Saha,
2023). In contrast, Thakur et al. (2024) employs depth-first search (DFS). Inspired by AlphaZero
(Silver et al., 2018), many methods utilize MCTS, such as HyperTree Proof Search (Lample et al.,
2022). There are also several improvements to the MCTS algorithm for theorem proving tasks. For
instance, DT-Solver (Wang et al., 2023) uses virtual nodes and a proof-level value function to dy-
namically guide the MCTS search. Wang et al. (2024a) introduces a novel method that allows for the
emergence of unproven lemmas during the search, which are subsequently proven recursively. The
aforementioned methods are all one-step tree search techniques, which generates a single tactic at
each step. Recently, multi-step tree search methods have been developed. For instance, DeepSeek-
Prover-V1.5 (Xin et al., 2024b) employs MCTS to enhance the whole proof generation process,
utilizing intrinsic rewards and discounted upper confidence bounds to guide exploration. Despite
the success of these methods, challenges remain, namely the lack of diversity for searched proof
paths and bias in the trained value function. This paper focuses on addressing these challenges by
employing our diversified tactic calibration and bias-resistant tree search.
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Algorithm 1 Maximal Marginal Relevance for Diversified Tactic Calibration
Require: current state s, tactics set {a1, a2, ..., ae}, next state set {s′1, s′2, ..., s′e}, number of se-

lected tactics k, parameter λ
S ← {s}
A← {}
while |A| < min(k, e) do

a∗ ← argmaxai

(
λ · vpolicy(s, ai)− (1− λ) ·maxs′j∈S fenc(s

′
i)

⊤fenc(s
′
j)
)

Add a∗ to A
Add the corresponding next state s∗ to S

end while
return the expanded action set A

3 METHOD

In this section, we present the details of our proposed method CARTS, which consists of two com-
ponents. We begin by introducing the diversified tactic calibration (3.1), followed by giving details
of our bias-resistant value function (3.2). Together, these two approaches enhance the effectiveness
of exploration and exploitation during the search process.

3.1 DIVERSIFIED TACTIC CALIBRATION

In practice, the multiple candidate tactics generated by language models often exhibit redundancy.
Diversified tactic calibration addresses this by calibrating candidate tactics’ model confidence based
on their intrinsic similarity. We implement the calibration using the Maximal Marginal Relevance
(MMR) algorithm (Peng et al., 2005) and structure our method’s framework through Monte Carlo
Tree Search (Kocsis & Szepesvári, 2006).

The standard MCTS method used in theorem proving (Wang et al., 2023; Xin et al., 2024b) involves
three steps: Selection, Expansion and Backpropagation. We incorporate diversified tactic calibration
into the Expansion phase, resulting in our CARTS method, which comprises three steps: Selection,
Calibration & Expansion, and Backpropagation. Details of each step are provided as follows.

Selection. In the selection phase, the algorithm starts from the root node and traverses the tree
down to a leaf node. It uses a tree policy to choose child nodes that balance exploration and ex-
ploitation. The tree policy at a tree node s selects an action a that maximizes the weighted upper
confidence bound (WUCB) score, the WUCB score for each tree node s is formulated as follows:

WUCB(s, a) =
W (s, a)

N(s, a)
+ w(s, a) ·

√
N(s, ·)

N(s, a)
(1)

Here, N(s, a) denotes the count of how many times action a has been taken in state s and N(s, ·)
the total number of times any action has been taken in state s during the whole search. W (s, a)
denotes the total value accumulated. Unlike the PUCT score used in DT-Solver (Wang et al., 2023),
which incorporates probabilities estimated by the language model, we introduce a weight w(s, a)
that represents both importance (model confidence) and diversity for the tactic at the current state.
We will detail the weights in the calibration phase.

Calibration & Expansion. At this stage, multiple candidate tactics are generated from the lan-
guage model, followed by verification through the Lean prover. Verified tactics that pass in Lean
are calibrated and expanded into the search tree. Concretely, the proof generation model is designed
to generate a one-step proof tactic a from a given proof state s, along with a conditional probability
p(a|s). Typically, we use beam search to sample a large collection of tactics (the quantity is E)
from the language model, which may result in much low probabilities for each tactic. This will lead
to reduced exploration during the search process. To fix this, we apply a length penalty, defined
as vpolicy(s, a) = p

1
l (s|a), where l is the token length of tactic a. This value reflects the model’s

confidence or the importance of the current action.
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After verification by Lean, only e tactics remain, denoted as {a1, a2, ..., ae}. Here, we do not
directly expand these tactics into the search tree because they often exhibit significant redundancy.
Therefore, we need to capture the similarity between these tactics and then reorder them for both
diversity and importance. We can compare the similarities between two actions using a pre-trained
and fixed sentence encoder. However, directly using action similarity poses a challenge: similar
actions may lead to different next states, or dissimilar actions may result in the same next state. This
undermines our goal of enhancing search diversity. Therefore, we assess next states similarities after
executing these tactics. Formally, we denote the set of the next states as {s′1, s′2, . . . , s′e}, where s′i
represents the next state of s following the execution of action ai. We use a sentence encoder
fenc(·), which has been already pre-trained on a large-scale corpus, to accept the textualized state
and outputs high-dimensional embeddings. Then we utilize the MMR algorithm to reorder the
tactics and calibrate the model confidence. The algorithm iteratively selects items (e.g., tactics in
our context) from a candidate set to maximize the following objective function:

MMR(s, ai) = λ · vpolicy(s, ai)− (1− λ) ·max
s′j∈S

fenc(s
′
i)

⊤fenc(s
′
j) (2)

Where, λ is a parameter that controls the trade-off between importance and diversity. It typically
ranges from 0 to 1. The calculation of the MMR score serves a calibration, effectively penalizing
tactics with low diversity, as represented by the second term in the formula. The algorithm begins
with an initial state set S = {s} and an empty action set A. While the size of A is less than the
predefined value k, which is smaller than E, the action with the highest MMR score is selected and
added to A, along with its next state being added to S. Once k actions have been chosen, the set A
is returned. If k < e, we select all the tactics and reorder them. The value k serves as a constraint
on the maximum number of expansion nodes. It is worth noting that we add the current state s into
the initial state set S to mitigate the recurrence of identical states. The reason this way is effective is
that our algorithm assigns a lower MMR score to the actions when the next state closely resembles
the current state. Algorithm 1 illustrates the complete process of diversified tactic calibration.

After diversified tactic calibration, we obtain a small set of actions A that contains both importance
and diversity. Then, these actions are treated as edges, with their corresponding next state as nodes,
which are expanded into the current search tree. For each edge ai, we assign a weight w(s, ai) =
max{0,MMR(s, ai)}, utilized during the selection phase to assess the need for exploration. Unlike
traditional MCTS (Kocsis & Szepesvári, 2006) or DT-Solver (Wang et al., 2023), our weights places
greater emphasis on encouraging the exploration of tactics with high diversity.

Backpropagation. At this stage, we update the statistics of the nodes and edges along the search
trajectory. We have a bias-resistant value function V (s, a) which will be detailed in the next section,
estimating the value of taking action a from the source node s. For a given trajectory, we use the
value function to evaluate the value of the leaf node and accumulate this value along all edges in the
path. Specifically, we update the weight of the edge recursively as follows: W (st, at) += V (s, a),
where st and at represent the node and edge at the trajectory. Additionally, we increment the visit
count for the edge: N(st, at) += 1. This process ensures that the statistics reflect the outcomes of
the simulations, allowing for improved selection in future iterations.

3.2 BIAS-RESISTANT VALUE FUNCTION

In MCTS-based methods, training a value function is crucial (Polu & Sutskever, 2020; Lample et al.,
2022), typically involving the creation of positive and negative samples using the policy network on
training data. Positive samples consist of correct actions (or trajectories (Wang et al., 2023)) from the
dataset, while negative samples are those generated by the policy network that lead to undesirable
states. Binary cross-entropy loss is then used to train the value network. Due to the hardness of
verifying the correctness of actions not on the proof path, previous work (Polu & Sutskever, 2020)
often treats these actions as negative samples, resulting in an excessive number of negative samples,
some of which are even inaccurate. This makes binary loss unsuitable and biases the value function.
Furthermore, the domain gap between the training and test datasets also contributes to biases. In this
paper, we conduct debiasing during both training and inference stages, as detailed below.

Training. To mitigate bias introduced by data collection, we first structure the dataset into pref-
erence pairs of positive and negative samples. We utilize an embedding model fenc to effectively
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filter out noisy samples. Specifically, if fenc(s′)⊤fenc(s′pos) > τ , we discard the action a. s′ is
the next state from a sampled negative action a at the current state s, s′pos is the correct next state
and τ is a threshold. This filtering ensures that the selected negative actions are more likely to be
undesirable, thus reducing data noise. Moreover, we adopt the preference modeling framework to
train our bias-resistant value function. We employ the Bradley-Terry (BT) (Bradley & Terry, 1952)
model, a widely used technique for preference modeling. The BT model posits that the probability
of action apos being preferred over action aneg given state s is expressed as:

P(apos ≻ aneg | s) =
exp(Vθ(s, apos))

exp(Vθ(s, apos)) + exp(Vθ(s, aneg))
(3)

Assuming access to the filtered dataset D = {(s(i), a(i)pos, a
(i)
neg)}Ni=1, we can parametrize the value

function Vθ(s, a) and estimate the parameters θ by minimizing the negative log-likelihood.

Preference modeling offers several advantages. Firstly, by only providing the relative superiority
among samples, false negative samples do not require further processing. This is because we can
reasonably assume that the correct proof steps provided in the dataset are always optimal and align
with human theorem proving’s preferences. Additionally, since the dataset is presented in the form
of preference pairs, this effectively oversamples (Shi et al., 2023) the positive pairs, alleviating the
issue of class imbalance between positive and negative samples, as demonstrated in some studies
(Zhang et al., 2024; Pattnaik et al., 2024).

Inference. To mitigate the domain gap between the training and test datasets, we introduce an
adjustment term into the value function during the inference stage. As previously mentioned, before
calibration in CARTS, all E tactics should be processed through the Lean system to filter out e
valid tactics. Intuitively, if the number of valid tactics is small, people will raise concerns about
the capability of the current policy model, needing for a reduced reward for the current action. We
define this reward adjustment as: α = e/E, representing the ratio between the number of valid
tactics and the total number of tactics generated by the language model at the current state. This
adjustment term serves as a test-time adaptation to the test dataset. The final bias-resistant value
function integrates both the trained value network and this adjustment term as:

V (s, a) =


0, if s′ has no child nodes,
1, else if s′ is the proved state,
1
2 (α+ Vθ(s, a)), otherwise.

(4)

Where s′ is the next state. Unlike the intrinsic reward introduced by DeepSeek-Prover-V1.5 (Xin
et al., 2024b), which only considers whether the search expands nodes, we consider both the ex-
pansion capability of the policy network and the generalizability of the value network, forming our
final bias-resistant value function. The adjustment term can be interpreted as a form of test-time
adaptation to the distribution of test data, thus can mitigate the domain gap.

4 EXPERIMENTS

In this section, we evaluate the theorem-proving performance of CARTS in Lean. We first de-
scribe the experimental setup, then present the main results, followed by an analysis of our method.
Currently, theorem-proving methods are primarily categorized into two main types: whole-proof
generation methods and tree search methods. Our approach is applicable exclusively to one-step
tree search methods; therefore, we focus our comparison solely on this category.

4.1 EXPERIMENTAL SETUP

Datasets. We follow Internlm-math (Ying et al., 2024b; Wu et al., 2024) and DeepSeek-Prover-
V1.5 (Xin et al., 2024b), utilizing miniF2F benchmark (Zheng et al., 2022) and ProofNet benchmark
(Azerbayev et al., 2023) for our evaluation. We specifically use the test split of miniF2F same as
(Xin et al., 2024b), which includes 244 problems ranging from basic algebra and number theory and
also contains AIME and IMO challenging problems. ProofNet is a benchmark for undergraduate-
level mathematics, comprising 371 formal problems derived from widely-used undergraduate pure
mathematics textbooks. It covers topics such as real and complex analysis, abstract algebra, and
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Table 1: Results on the miniF2F-test for various models and search methods. The highest perfor-
mance for each search method is highlighted in bold.

Model Sample Budget Search Method miniF2F-test
Tree Search Methods

COPRA(Code Llama) (Thakur et al., 2024) 500 DFS 5.7%
COPRA(GPT-3.5) (Thakur et al., 2024) 60 DFS 9.0%
COPRA(GPT-4) (Thakur et al., 2024) 60 DFS 26.6%
Llemma-7B (Azerbayev et al., 2024) 32× 100 BFS 26.2%
Llemma-34B (Azerbayev et al., 2024) 32× 100 BFS 25.8%
LLMStep (Welleck & Saha, 2023) 32× 100 BFS 27.9%
Curriculum Learning (Polu et al., 2023) 8× 512 BFS 29.6%
InternLM2-Math-7B (Ying et al., 2024b) 32× 100 BFS 30.3%
InternLM2-Math-Plus-7B (Ying et al., 2024a) 32× 100 BFS 43.4%
DeepSeek-Prover-V1.5-SFT (Xin et al., 2024b) 3200 RMaxTS 53.5%
DeepSeek-Prover-V1.5-RL (Xin et al., 2024b) 3200 RMaxTS 55.0%

Reprover-Lean4 (229M) (Yang et al., 2023) 64× 100

BFS 35.7%
MCTS 36.5%

DTSolver 36.0%
CARTS 37.7%

InternLM2-Math-Plus-1.8B (Ying et al., 2024b) 64× 100

BFS 38.9%
MCTS 39.3%

DTSolver 38.5%
CARTS 41.0%

StepProver (7B) (Wu et al., 2024) 32× 300

BFS 48.8%
MCTS 46.7%

DTSolver 46.3%
CARTS 49.6%

topology. This benchmark presents a greater challenge than miniF2F, posing significant difficulties
for theorem provers. Although the original versions of both benchmarks are Lean3, we have modi-
fied them to Lean4 for CARTS’s evaluation, aligning with the development of the Lean community.

Baselines models. We include baselines representing classical and state-of-the-art neural theorem
proving in Lean. COPRA (Thakur et al., 2024) is an in-context learning agent that utilizes general
language models to generate tactics for finding the final proof. Llemma (Azerbayev et al., 2024)
is trained on extensive mathematical corpora. Additionally, we incorporate advanced models such
as LLMStep (Welleck & Saha, 2023), Reprover (Yang et al., 2023), Curriculum Learning (Polu
et al., 2023), InternLM2-Math (Ying et al., 2024b), and StepProver (Wu et al., 2024). All these
models are based on one-step tree search methods. We also include DeepSeek-Prover-V1.5 (Xin
et al., 2024b), which integrates whole proof generation and tree search. However, it is not suitable
for our CARTS, and thus, we mark it in gray.

Search methods. Baseline models employ various search methods, such as depth-first search
(DFS) (Thakur et al., 2024), best first search (BFS) (Yang et al., 2023), and monte carlo tree search
(MCTS). Additionally, DT-Solver extends MCTS using virtual nodes. We compared the perfor-
mance of BFS, MCTS, DT-Solver and CARTS on Reprover (Yang et al., 2023), InternLM2-Math
(Ying et al., 2024b), and InternLM2-StepProver (Wu et al., 2024). For MCTS and DT-Solver, we
replace the value network with the intrinsic reward (Xin et al., 2024b) for simplication. It is note-
worthy that multiple tree search attempts with different seeds can be applied and ensemble (Polu &
Sutskever, 2020; Lin et al., 2024; Xin et al., 2024a); however, due to computational cost limitation,
we only compared the results for one single tree search attempt.

Metrics. We evaluate the performance of various search methods using the pass@1 metric with
a budget B. Similar to (Xin et al., 2024b), if B is a single value, it indicates the number of model
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Table 2: Results on the ProofNet for various models and search methods.

Model Sample Budget Search Method ProofNet

Reprover-Lean4 (Yang et al., 2023) 64× 100

BFS 11.1%
MCTS 11.7%
CARTS 11.9%

StepProver (Wu et al., 2024) 32× 300

BFS 18.1%
MCTS 18.3%
CARTS 18.8%

Figure 2: Improvement curve in pass@1 for the miniF2F test as the expansion budget varies. Left
illustrates Reprover-Lean4 (Yang et al., 2023) and right illustrates StepProver (Xin et al., 2024b).

generations used in tree expansions. If B = E × T , E represents the number of tactics generated
per expansion, and T denotes the number of expansion iterations.

Experimental details. In terms of parameter settings, for Reprover-Lean4 (Yang et al., 2023), we
set λ = 0.8, and for InternLM2-Math-Plus-1.8B (Ying et al., 2024b) and StepProver (Wu et al.,
2024), we set λ = 0.9. Additionally, we set k = 8 for all models. We use the text embedding
model intfloat/e5-small-v2 (Wang et al., 2022) as the encoder fenc. Details regarding data
collection and training for the bias-resistant value function are presented in Appendix A.

4.2 MAIN RESULTS

In Table 1, we illustrate the pass@1 successful rate on the miniF2F-test benchmark of various mod-
els and search methods. Our proposed CARTS surpasses all compared search methods when the
policy model is fixed. The results encompass different architectures and parameter sizes of lan-
guage models, demonstrating that our method is more effective at search stage regardless of the
policy model. Notably, we achieve a 49.6% success rate on the miniF2F-test, representing state-of-
the-art performance among one-step tree search methods. Table 2 demonstrates the results on the
ProofNet benchmark. Due to the dataset’s complexity, current policy models exhibit low accuracy,
which constrain the search performances. However, our proposed CARTS also achieves the highest
performance compared to other search methods when the budget is fixed.

Additionally, to demonstrate that CARTS has the superior search efficiency, we present a comparison
of the pass@1 performance among four search methods on miniF2F-test when varying the expansion
budget, as illustrated in Figure 2. It is evident that while the performance of different search methods
is comparable under a low budget, our method exhibits a significant improvement as the expansion
budget increases. Furthermore, we observed that the CARTS curve increases more rapidly relative
to other search methods. These findings demonstrate that our approach enhances the efficiency and
effectiveness of tree search.
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Table 3: Ablation study of various components of CARTS on the miniF2F-test. We compare the
pass@1 performance across three models, with the highest performance highlighted in bold.

Search Method Model
Reprover-Lean4 InternLM2-Math-Plus-1.8B StepProver

▷ Baselines:

BFS 35.7% 38.9% 48.8%
MCTS 36.5% 39.3% 46.7%

▷ Ablations:

Diversified tactic calibration 36.1% 41.0% 49.2%
Bias-resistant value function 36.9% 40.6% 46.3%
CARTS (without adjustment term) 37.3% 41.3% 49.2%
CARTS (Ours) 37.7% 41.0% 49.6%

4.3 ANALYSIS

In this section, we conduct a detailed analysis of CARTS’ effectiveness through experiments. We
include ablation studies and specifically investigate the length distribution of results produced by
CARTS, supplemented by several case studies.

Ablation for different components of CARTS. CARTS consists of two components: diversified
tactic calibration and a bias-resistant value function. We isolated these components for analysis.
Additionally, we compared the performance of CARTS without the adjustment term in the value
function. The experimental results are shown in Table 3. The results indicate that both components
enhance performance, and their combination further increases the pass rate, suggesting that CARTS
can significantly improve the efficiency of tree search exploration. Our findings reveal that for
InternLM2-Math-Plus-1.8B, CARTS without the adjustment term achieves superior results, whereas
CARTS with the adjustment does not perform optimally. We believe this is because the adjustment
term is merely a heuristic calibration; the policy model generates more unacceptable tactics, the
less likely it is to generate accurate tactics. This is not always valid due to differences between
the properties of the proof state. Nonetheless, experiments across multiple models suggest that it is
generally effective for debiasing the value function.

Ablation study for k. The parameter k limits the maximum expansion number of nodes after di-
versified tactic calibration. A smaller k significantly restricts the search space, potentially leading to
performance degradation. Conversely, a larger k expands the search space, increasing the likelihood
of identifying the correct tactic. However, this comes at the cost of substantially increased search
time, thereby reducing overall efficiency. To assess its impact on CARTS, we test multiple values
of k using Reprover-Lean4 on the miniF2F-test. The experimental results are shown in the left side
of Figure 3. As k increases, the pass@1 rate initially improves, reaching a peak, and then gradually
declines. This indicates that there is an optimal range for k that balances performance and search
efficiency. Therefore, we recommend choosing a moderate k, such as k = 8, in practice.

Analysis of the length distribution of discovered proofs. To comprehensively demonstrate the
effectiveness of CARTS, we analyze the proof step lengths obtained by the Reprover-Lean4 model
on the miniF2F-test. The results are presented on the right side of Figure 3. As illustrated, BFS
yields a higher proportion of theorems with step lengths of one and two, but with none exceeding
three steps. In contrast, CARTS achieves more theorems with lengths of three or greater, signifi-
cantly outperforming both BFS and MCTS. This indicates that CARTS enhances search efficiency,
enabling the exploration of longer proof chains within the same budget. Additionally, we find that
CARTS discover two proofs with the length of five. We examine this case in detail in next paragraph.

Case study. We conduct a comprehensive case study to closely examine the results of the CARTS
search. Figure 4 demonstrates one theorem which is proved by CARTS on Reprover-Lean4 model.
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Figure 3: The left figure shows the ablation study for k, while the right figure illustrates the length
distribution of proofs searched by CARTS. Both analyses are conducted on the miniF2F-test using
the Reprover-Lean4 (Yang et al., 2023) model.

Case: induction 12dvd4expnp1p20

theorem induction_12dvd4expnp1p20 (n : N) : 12 | 4ˆ(n +1) +20 :=
by

norm_num [Nat.pow_succ]
induction’ n with n n_ih
case zero => simpa using n_ih
rw [pow_succ]
omega

Figure 4: Case study. Proved theorem induction 12dvd4expnp1p20 by CARTS in mini-
F2F-test of ReProver-Lean 4 (Yang et al., 2023). This theorem is proved in 77 expansions.

This case has proof path of five length. This theorem induction 12dvd4expnp1p20 pertains to
divisibility and its initial step involves simplification using norm num [Nat.pow succ]. However,
the tactic generated by Repover-Lean4 exhibits a low confidence level, only ranking eight compared
to other incorrect tactics. If the BFS approach is to be applied, it would necessitate the exploration
of numerous redundant tactics before arriving at this specific action. Our experiments reveal that the
CARTS improves the score of this tactic and increases its rank to six. Furthermore, we find that the
score of the second tactic, namely induction’ n with n n ih, improves from an initial rank
of sixth to fourth. While the increase in the ranking of the correct tactic score is only by two, the
exponential growth in the complexity of tree search highlights the significance of early exploration
of the correct action at the root node. Therefore, these improvements in rankings play a crucial role
in successfully proving this theorem within a limited number of expansion.

5 CONCLUSION AND LIMITATION

In this paper, we presented CARTS, a novel approach that combines diversified tactic calibration
with a bias-resistant value function for enhancing the performance of neural theorem proving. Our
diversified tactic calibration effectively mitigates the redundancy in language model generations,
promoting a more diverse and balanced exploration of candidate tactics. The bias-resistant value
function addresses the prevalent biases during both the training and inference stage, thereby refining
the exploitation capabilities of the tree search by providing more accurate and reliable evaluations of
tactics. Experimental results on miniF2F and ProofNet have demonstrated that CARTS significantly
outperforms existing one-step tree search methods, achieving state-of-the-art results.

While CARTS has proven effective, it also has limitations. Our method currently only supports one-
step tree search, whereas multi-step tree search, such as DeepSeek-Prover-V1.5 (Xin et al., 2024b),
has shown promise but is not supported by our approach. In the future, we will explore variants of
CARTS that can be integrated into multi-step tree search methods.
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A DETAILS OF BIAS-RESISTANT VALUE FUNCTION

Data Construction To train our bias-resistant value function on Lean4, we utilized two data
sources. The first source is the random portion of the leandojo benchmark (Yang et al., 2023),
which is derived from mathlib4 (commit: 3ce43c18f614b76e161f911b75a3e1ef641620ff).
The second source is Lean-Github (Wu et al., 2024), a recently released dataset compiled from
over 100 Lean 4 repositories. We employed InternLM2-Math-Plus-7B (Ying et al., 2024b) to gen-
erate eight candidate tactics for each proof state in the dataset. Tactics that differed from the correct
tactic in the generations are used as negative samples, which we then paired with positive samples
to form preference pairs. However, as discussed in the main text, this dataset contains signifi-
cant noise, with positive and negative samples being semantically similar, as illustrated in Figure
5. To address this, we filtered the samples based on their similarity, using the embedding model
intfloat/e5-small-v2 (Wang et al., 2022) and a threshold τ = 0.85. After filtering, the dataset
consists of 1,797,951 (about 1800K) training preference pairs and 2,000 test preference pairs.

Figure 5: This illustrates an example of our dataset organization: the left side contains unfiltered
data with noise, while the right side shows the samples after filtering.

Training Details We utilized the microsoft/phi-1 5 model (Li et al., 2023), which contains
1.3 billion parameters. Phi-1.5 has been trained on a large-scale code corpus, endowing it with a
strong understanding of formal languages. We fine-tuned the model using LoRA (Hu et al., 2021)
for one training epoch, using the learning rate as 1 × 10−4. After training, the model attained an
a ccuracy of 94.10% on the test dataset. The training loss curve and validation accuracy curve are
illustrated in Figure 6.

B EFFECTIVENESS OF BIAS-RESISTANT VALUE FUNCTION

In this section, we supplement experiments to demonstrate the effectiveness of our bias-resistant
value function and draw the following conclusions: 1. The Bradley-Terry (BT) model effectively
addresses the issue of class imbalance in training the value function. 2. Our analysis underscores
the critical importance of data filtering and provides a way for determining the hyperparameter τ .
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Figure 6: The training loss curve and the validation accuracy curve.

B.1 ANALYSIS BETWEEN BT AND CE

We reconstruct the pairwise dataset and employ various models to validate the effectiveness
of the BT modeling approach for the value function. Unlike the main text, where both
leandojo benchmark (Yang et al., 2023) and Lean-Github (Wu et al., 2024) are utilized as
data sources, this analysis exclusively uses leandojo benchmark for training, with its test split
serving as the evaluation dataset. Furthermore, data frome Lean-Github are employed for Out-
of-Distribution (OOD) evaluation. To enable training of Cross-Entropy (CE) loss, we convert the
pair-wise datasets into the binary classification datasets. The training data exhibits an imbalance
between positive and negative samples (approximately 1 : 5), while we ensured that both test sets
remains class-balanced. Detailed statistics of the dataset are presented in Table 4.

Table 4: Statistics of our constructed dataset.

Split Count
For BT For CE

Train 694,600 861,186
Test 3,465 6,930
Test-OOD 3,499 6,998

We conducted training on three models to compare the differences between BT and CE, including
Qwen-2.5-0.5B (Qwen Team, 2024), Llama3.2-1B (Dubey et al., 2024), and Llama3.2-3B (Dubey
et al., 2024). We evaluated the accuracy (Acc) on Test and the out-of-distribution accuracy (Acc-
OOD) on Test-OOD. All experiments are full fine-tuning for one epoch with a learning rate of
1e-5. The experimental results are presented in Table 5.

The experimental results show that BT significantly outperforms CE in terms of in-domain accuracy,
highlighting the advantages of using BT for modeling. Furthermore, we observe a slight perfor-
mance improvement in BT as model size increases; however, the improvements remains relatively
small. We attribute this to the limited dataset size, which hinders the emergence of clear scaling
properties. In addition, we observe that CE shows poor performance in scenarios with a significant
domain gap, and its accuracy is almost the same as random guessing. In contrast, the BT model
achieves approximately a 5% improvement in such cases, although its overall performance remains
limited. We believe this is due to the significant domain gap between the leandojo benchmark
and Lean-Github datasets, making the task inherently challenging. (Note: In our main text, both
datasets were included in the training set to mitigate the gap with miniF2F.)
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Table 5: Results between BE and CE of different models.

Model Method Acc (%) Acc-OOD (%)

Qwen-2.5-0.5B (Qwen Team, 2024) CE 63.2 50.9
BT 76.5 55.2

Llama3.2-1B (Dubey et al., 2024) CE 67.4 52.2
BT 76.6 54.6

Llama3.2-3B (Dubey et al., 2024) CE 63.0 50.7
BT 77.7 56.0

B.2 ANALYSIS OF DATA FILTERING

In Section 3.2, we introduced a filtering step for the data constructed. Here we conduct experiments
to analyze the necessity of this step. Specifically, we perform an ablation study on the filtering
process using the Qwen-2.5-0.5B model (Qwen Team, 2024), comparing the model’s performance
before and after applying filtering. The results in Table 6 demonstrate that filtering improves the
model’s performance. We have presented examples of noise introduced by the absence of filtering
in Figure 5, further highlighting the necessity of this step.

Table 6: Ablation study of data filtering.

Method Acc Acc-OOD
Before filtering 76.2 54.9
After filtering 76.5 55.2

The choice of τ represents a trade-off: setting it too high introduces excessive noisy data, while
setting it too low reduces the number of training samples. To provide insight into the selection of τ ,
we analyze the similarity distribution of positive and negative samples before data filtering, as shown
in Figure 7. The results reveal a bimodal distribution. Higher similarity values indicate a greater
likelihood of noisy samples, leading us to hypothesize that one of the components corresponds to
noise. Using Gaussian Mixture Model (GMM) analysis, we identify an approximate threshold of
0.87 to distinguish noisy samples. Consequently, the selection of 0.85 for τ in the main text is
considered reasonable.

Figure 7: The distribution of similarities between positive and negative samples.
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C EXAMPLE SOLUTIONS

We show several typical theorems proven by CARTS below.

Case 1: mathd algebra 148

theorem mathd_algebra_148 (c : R) (f : R→R)
(h0 : ∀x, f x =c *xˆ3 - 9 *x +3)
(h1 : f 2 =9) : c =3 :=
by

rcases eq_or_ne c 1 with hc | hc
cases c
all_goals simp_all [h0]
on_goal 1 => norm_num at h1

linarith only [h0, h1]

Figure 8: Case 1. Proved theorem mathd algebra 148 by CARTS in mini-F2F-test of
ReProver-Lean 4 (Yang et al., 2023). This theorem is proved in 68 expansions.

Case 2: mathd numbertheory 234

theorem mathd_numbertheory_234
(a b : N)
(h0 : 1 ≤a ∧a ≤9 ∧b ≤9)
(h1 : (10 *a +b)ˆ3 =912673) :
a +b =16 :=

by
simp only [Nat.one_le_iff_ne_zero] at h0

obtain ⟨h2, h3, h4⟩ :=h0

interval_cases a <;> interval_cases b <;> simp_all

Figure 9: Case 2. Proved theorem mathd numbertheory 234 by CARTS in mini-F2F-test of
InternLM2-Plus-1.8B (Ying et al., 2024b). This theorem is proved in 12 expansions.
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Case 3: mathd numbertheory 135

theorem mathd_numbertheory_135
(n A B C : N)
(h0 : n =3ˆ17 +3ˆ10)
(h1 : 11 | (n +1))
(h2 : [A,B,C].Pairwise (·̸=·))
(h3 : {A,B,C} ⊆Finset.Icc 0 9)
(h4 : Odd A ∧Odd C)
(h5 : ¬3 | B)
(h6 : Nat.digits 10 n =[B,A,B,C,C,A,C,B,A]) :
100 *A +10 *B +C =129 :=

by
rw [h0] at h1

simp [h0] at h6

linarith [h6]

Figure 10: Case 3. Proved theorem mathd numbertheory 135 by CARTS in mini-F2F-test of
InternLM2-Plus-1.8B (Yang et al., 2023). This theorem is proved in 38 expansions.

Case 4: mathd numbertheory 314

theorem mathd_numbertheory_314
(r n : N)
(h0 : r =1342 % 13)
(h1 : 0 < n)
(h2 : 1342 | n)
(h3 : n % 13 < r) :
6710 ≤n :=

by
obtain ⟨k, hk⟩ :=h2

contrapose! h1

rw [hk] at h1

have h2 : k < 5 :=by linarith
interval_cases k <;> simp_all

Figure 11: Case 4. Proved theorem mathd numbertheory 314 by CARTS in mini-F2F-test of
StepProver (Wu et al., 2024). This theorem is proved in 159 expansions.

Case 5: artin exercise 13 6 10

theorem exercise_13_6_10 {K : Type*} [Field K] [Fintype Kx] :
(Π x : Kx, x) =-1 :=

by
have h : Πx : Kx, x =Πx : Kx, x−1−1 :=by congr
simp only [inv_inv] at h
haveI : DecidableEq K :=Classical.decEq K
apply FiniteField.prod_univ_units_id_eq_neg_one

Figure 12: Case 5. Proved theorem artin exercise 13 6 10 by CARTS in ProofNet of Step-
Prover (Wu et al., 2024). This theorem is proved in 119 expansions.
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