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Abstract

In cooperative multi-agent reinforcement learning (MARL), agents often can only
partially observe the environment state, and thus communication is crucial to achiev-
ing coordination. Communicating agents must simultaneously learn to whom to
communicate (i.e., communication topology) and how to interpret the received
message for decision-making. Although agents can efficiently learn communication
interpretation by end-to-end backpropagation, learning communication topology
is much trickier since the binary decisions of whether to communicate impede
end-to-end differentiation. As evidenced in our experiments, existing solutions,
such as reparameterization tricks and reformulating topology learning as reinforce-
ment learning, often fall short. This paper introduces a meta-learning framework
that aims to discover and continually adapt the update rules for communication
topology learning. Empirical results show that our meta-learning approach outper-
forms existing alternatives in a range of cooperative MARL tasks and demonstrates
a reasonably strong ability to generalize to tasks different from meta-training.
Preliminary analyses suggest that, interestingly, the discovered update rules occa-
sionally resemble the human-designed rules such as policy gradients, yet remaining
qualitatively different in most cases.

1 Introduction

There have been significant successes of reinforcement learning (RL) recently. Many RL applications
involve multiple agents learning and adapting simultaneously to achieve shared goals, which naturally
fall into the framework of cooperative multi-agent RL (MARL). In addition to challenges in single-
agent RL, there are (at least) two challenges unique to cooperative MARL: (i) Since all agents
are updating their policies, the environment becomes nonstationary from the perspective of any
individual agent, violating assumptions in traditional single-agent RL and perhaps resulting in
learning instability; and (ii) Compared to single-agent RL, the issue of partial observability is often
more severe in MARL, since each individual agent might only observe a fraction of the information
in the global state, leading to potential failure to coordinate. To cope with (i), the paradigm of
centralized training and decentralized execution (CTDE) [1, 2] have been proposed, where agents are
trained with access to global information to mitigate the issue of nonstationarity and choose actions
during execution independently in a decentralized manner. To cope with (ii), it is crucial to enable
communication among agents during execution [3, 4], where agents share their local information
to others, such that each agent can form better knowledge about the global state, leading to better
cooperation. This paper aims to better address multi-agent communication during execution under
the CTDE paradigm.
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For effective multi-agent communication, individual agents must simultaneously solve the problem
of communication interpretation, i.e., how to utilize the received messages from other agents to make
better decisions, and the preceding problem of communication topology, i.e., whom to communicate to.
Recently, many research works have shown that it is effective to learn communication interpretation
by end-to-end backpropagation (e.g., [5, 3]). However, the end-to-end learning of communication
topology is much trickier, since the binary decisions of to whom to communicate impede end-to-end
differentiation. Prior work either uses reparameterization tricks such as Gumbel-Softmax [6] to force
differentiability (e.g., [7]) or reformulates the learning of communication decisions as an RL problem
to apply policy gradient methods (e.g., [8]). However, these existing solutions are not completely
satisfactory: Gumbel-Softmax is known to be unstable, especially for RL tasks; the formulation can
dramatically slow down training due to the trial-and-error nature of RL, especially considering that
the decision space for communication topology is often large.

Motivated by the aforementioned challenges, in this paper we propose to employ a meta-learning
framework that formulates the problem of discovering an update rule for learning communication
topology. We then develop an architecture and an algorithm for discovering and adaptively adjusting
the update rule in an online fashion, with several key design choices aimed to stabilize and facilitate
the meta-learning process. Experimental results show that our algorithm outperforms alternative
baselines such as Gumbel-Softmax and policy gradient for learning communication topology. Our
ablation study confirms the importance of our key design choices for performance. We also conduct
analyses showing that the meta-learned update rule can transfer to different tasks with reasonable
effectiveness. Surprisingly, while it outperforms the policy gradient baseline in most cases, we found
that the update rule discovered by the meta-learning framework occasionally resembles patterns of
the policy gradient update rule, yet remains qualitatively different.

2 Related work

Learning to learn. Meta-learning, aka learning to learn, refers to the objective of improving the
learning process itself (usually an optimization process) to be effective for a variety of learning tasks.
This idea has been around since the late 80s with various formulations such as improving the genetic
programming process [9], learning update rules for neural networks [10], improving domain-invariant
transfer of learned knowledge [11], and, more recently, identifying initial neural network parameters
for fast adaptation [12] using meta-gradients, i.e., gradients obtained from backpropagation of the
meta-learning objective. Recently, Xu et al. [13] introduced the framework of using meta-gradients
to improve the learning of an RL agent, which has been applied to various components of an RL
algorithm, including intrinsic rewards [14], auxiliary tasks [15], hyperparameters of an actor-critic
loss function [16], update target [17, 18]. Meta-learning for multi-agent RL is relatively under-
explored. Du et al. [19] have applied meta-gradients to the discovery of multi-agent intrinsic rewards.
In contrast, our work has an orthogonal contribution of using meta-gradients to learn multi-agent
communication topology.

Communication in cooperative MARL. Communications between agents play an important role in
solving the nonstationarity and partial observability in MARL. A popular training framework to solve
the issue of nonstationarity is CDTE [2], where global information is obtained by all-to-all communi-
cation during training (usually achieved by a centralized module) to mitigate nonstationarity, and no
communication during execution to enable fast deployment. However, when agents only partially ob-
serve the environment state, the augmentation of communication during execution becomes necessary.
A commonly used way is to broadcast the messages from one agent to all the others during execution
if the communication is determined necessary for the current timestep [3][20][21]. However, such
broadcasting of information is not only unscalable when the number of agents is large[22], but also
can potentially include redundant or even harmful information [23][24]. Thus, finding topology
graphs to selectively communicate is crucial. The topology can be obtained by trainable networks
that make the communication decisions [25][22], or obtained naturally by the physical constraints
e.g. only agents within certain distances are viewable [4]. We give a more detailed description of
existing methods on finding communication topology in Section 4.1, in distinction to our approach.
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Figure 1: Left: Our architecture for learning communication topology of cooperative MARL tasks.
Right: Illustration of an agent i selecting its communicating neighbors at a particular timestep.

3 Preliminaries

We consider fully cooperative multi-agent tasks that can be modeled as Markov games [26] augmented
with networked communication [4, 25], in which N agents, indexed by i ∈ N := {1, .., N}, choose
sequential actions. At each timestep t, the task has a global state st ∈ S that is Markovian, and
observation function f i : S → Oi yields observation oit ∈ Oi, for each agent i where Oi is
its observation space. At timestep t, each agent i chooses an action ait ∈ Ai a, forming a joint
action at := (a1t , ..., a

N
t ) ∈ A := ×iAi that induces a transition of the global state according

to the state transition function P (s′|s, a) : S × A × S → [0, 1]. The N agents choose actions
after selectively communicating through a time-variant network, defined by a undirected graph
Gt := (N , Et) with vertex set N and edge set Et ⊆ {(i, j) : i, j ∈ N , i 6= j}. Specifically, let
N i
t := {j : (i, j) ∈ Et} be the neighbors of agent i at timestep t. Based on its observation oit, agent

i selects a subset of its neighbors, Cit ⊆ N i
t , and request the observations from the selected subset,

ot(Cit) := {ojt : j ∈ Cit}. Then, agent i chooses action according to its policy πi, ait ∼ πi(oit, ot(Cit)),
conditioning on both its own observation and observations of the selected neighbors. We consider
the fully cooperative setting in which agents optimize their policies with respect to global reward
function r(s, a) : S ×A → R and discount factor γ ∈ [0, 1]. The discounted return from timestep
t is Gt =

∑∞
l=0 γ

lrt+l, where rt := r(st, at) is the reward at timestep t. The agents’ joint policy
π = (π1, ..., πN ) induce a value function, which is defined as V π(st) = Est+1:∞,at:∞ [Gt|st], and
action-value function Qπ(st, at) = Est+1:∞,at+1:∞ [Gt|st, at].

4 Methods

Figure 1 depicts our neural network architecture for solving the problem formulated in Section 3
with a learned communication topology. The architecture is compatible with any instantiation of
the CTDE framework. Specifically, it consists of a communication network for each agent, a policy
network for each agent, and a centralizer module shared by all agents, which are described next in
detail. For the rest of the paper, we omit the subscript of timestep t when the timestep is clear or
irrelevant to the context.

Comm Net. At each timestep, the communication network selects a subset of each agent’s neighbors
to communicate with based on its current observation, and thus determining the communication
topology. Specifically, we assume agent i’s observation oi contains the IDs of its neighborsN i. Each
agent i’s communication network ci(·) takes oi as input and outputs ci←j(oi) ∈ [0, 1],∀j ∈ N i,
which is interpreted as the probability that agent i communicates with neighboring agent j for its
observation oj . Letting Ii←j be the corresponding Bernoulli random variable with mean ci←j(oi),
the selected subset of communicating neighbors is thus Ci = {j ∈ N i : Ii←j = 1}. The output size
of the communication network is |N i|. When |N i| is a constant (e.g., an agent has a constant number
of n(< N) neighbors), and we can use a simple multi-layer perceptron (MLP) as the communication
network. In general, |N i| is a time-variant variable, and architecture choices such as LSTMs [27],
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transformers [28], and Graph Convolutional Nets (GCNs) [29] to deal with the variable output size.
We use θic to denote the parameters for the communication network of agent i.

Policy Net. In this paper, we consider deterministic policies which are suitable for continuous action
spaces. Our method can be straightforwardly adapted to the stochastic policy case. Specifically,
the agent i’s policy network πi(·) takes as input its local observation oi as well as the received
observations o(Ci) and deterministically outputs an action πi(oi, o(Ci)) ∈ Ai. In order to scale to an
arbitrary number of communicating neighbors, in practice we treat o(Ci) as a sequence of length |Ci|
use an LSTM network that processes the sequence. The final hidden state of the LSTM network is
concatenated with local observation oi and then fed into a multi-layer perceptron (MLP) to produce
the action. We use θiπ to denote the parameters for the policy network of agent i.

Centralizer. As an instantiation of the CTDE framework, our architecture involves a centralizer
module that utilizes global information to guide the training of the modules for decentralized execution.
As the communication and policy networks are the decentralized execution modules, the role of our
centralizer is to provide learning signals for these two types of networks. We follow the prior work and
consider the typical centralized critic that seeks to approximate the action-value function of the joint
policy, Q(o, a) ≈ Qπ(s, a), where o := (o1, ..., oN ) is the joint observation and a := (a1, ..., aN ) is
the joint action; if the global state s is conveniently available, joint observation o can be replaced by
s. Given joint observation o ∈ O, the communication networks and the policy networks {ci, πi}i∈N
together define a (stochastic) joint policy π : O → ∆(A) that maps the joint observation to a
distribution over the joint action, where the stochasticity comes from the selection of communicating
neighbors by the communication networks (assuming the policy network is deterministic). Letting
the critic be parameterized by θQ, the critic can be trained by minimizing the temporal difference
(TD) error:

L(θQ) = E(o,a,r,o′)∼D
[
(Q(o, a; θQ)− y)2

]
, y = r + γQ′(o′, a′; θ′Q)|a′∼π′(o′) (1)

where D is the replay buffer recording joint observations and actions; TD target y is computed by
the target critic network Q′ with delayed parameters θ′Q and target joint policy π′ with delayed
parameters of the communication and policy networks. Following MADDPG [2], the centralized
critic can be used to guide the optimization of each agent i’s network parameters by the optimization
of

max
θiπ,θ

i
c

J(θiπ, θ
i
c) with J(θiπ, θ

i
c) = E(o,a)∼D

[
Q(o, ai, a−i; θQ)|ai=πi(oi,o(Ci);θiπ),Ci∼ci(oi;θic)

]
. (2)

Using the chain rule on the deterministic policy network ai = πi(oi, o(Ci); θiπ), the gradient w.r.t. θiπ
is derived as

∇θiπJ(θiπ, θ
i
c) = E(o,a)∼D

[
∇θiππ

i(oi, o(Ci); θiπ)∇aiQ(o, ai, a−i)|ai=πi(oi,o(Ci);θiπ),Ci∼ci(oi;θic)
]
.

(3)

4.1 Problem of learning communication topology and existing solutions

In contrast with the policy network, the gradient of objective (2) w.r.t. the communication network’s
parameters θic cannot be obtained via the chain rule, since the sampling procedure for the commu-
nicating neighbors, Ci ∼ ci(oi; θic), is non-differentiable. Before presenting our solution using the
meta-gradient framework in Section 4.2, we here review existing solutions in prior work:

No communication, i.e., Cit = ∅ ∀i, t. At the extreme of the no communication topology, no agent
communicates with any neighbor at any time, and thus the action choice is only based on the local
observation, i.e., ait ∼ πi(oit) ∀i, t. Early work on CTDE, e.g., MADDPG [2], uses no communication
as the default topology. No communication suffers from the issue of partial observability of individual
agents.

Full communication, i.e., Cit = N i
t ∀i, t. This solution bypasses the problem of communication

topology learning by simply letting all agents always communicate with all neighbors. Prior work such
as DIAL [5] and CommNet [3] employs such full communication topology. Such topology suffers
from large communication overhead, especially when the number of agents is large. Moreover, later
work (e.g., TarMAC [20]), as well as our empirical results in Section 5, shows that full communication
can even hinder the learning performance, presumably because the agents are forced to interpret
usually excessive messages received from all neighbors.
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RL for communication topology. The communication decisions {Ii←jt }j∈N it made by agent i at
timestep t can be viewed as a |N i

t |-bit action in the RL sense, with reward rt simply being the original
task reward. Therefore, any (multi-agent) RL algorithm can in principle be applied to obtain the
update for the communication network ci that makes the decisions, e.g., REINFORCE [30]:

∆θic ∝ E
[
∇θic

∑
t

∑
j∈N it

(
log ci←j(Ii←jt |oit; θic)

)
Gt

]
∀i ∈ N (4)

where the expectation is w.r.t. trajectories generated by on-policy parameters {θic, θiπ}i∈N . This idea
of reformulating topology learning as an RL problem has been explored in prior work. For example,
I3CNet [8] uses REINFORCE to train a single gating mechanism for each agent to decide whether
to broadcast its observation to all of its neighbors. However, no prior work has attempted to use
RL for training agent-to-agent communication decision-making like our communication network.
We include REINFORCE as a baseline in our experiments, yet we do not claim it as our main
contribution.

Reparameterization tricks. Reparameterization tricks are widely used to address the non-
differentiability caused by sampling. Specifically, Straight Through Gumbel-Softmax [6] can be used
for categorical samplings like Ii←jt ∼ ci←j(oit). While convenient to use, Gumbel-Softmax can be
very unstable. Without carefully chosen regularizers, Gumbel-Softmax can easily degenerate to full
communication, as evidenced in prior work [7, 31, 32] and our experiments.

4.2 Learning communication networks with meta-gradients

Inspired by the success of single-agent meta-RL [13, 14, 17, 18], we here develop a meta-gradient
framework to train the communication networks. Our main hypothesis of this work is that the commu-
nication topology learning rule obtained from our meta-gradient based optimization outperforms the
traditional methods based on the policy gradient and Gumbel-Softmax . The meta-gradient approach
will yield a learning rule with independent advantage estimates for each (i, j) pair of agents (cf.
Âi←jt in (5)), which potentially reduces variance and speeds up learning compared with the policy
gradient method (4) that shares the same advantage estimate Gt for all pairs of agents. Moreover, the
meta-learned update rule does not involve any reparameterization tricks such as Gumbel-Softmax
that can result in unstable learning.

As for the architecture, the centralizer module is augmented with a backward LSTM network
that takes as input the reverse trajectory of all the agents and produces the update direction for
each agent’s communication network. Specifically, the backward LSTM takes as input xt :=
[rt, dt, γ, {ci←j(oit)}(i,j)∈N×N it ] at each timestep t of a trajectory, where rt is the shared reward,
dt is the binary value indicating episode termination, γ is the discount factor, and ci←j(oit) is the
probability of agent i communicating with neighbor j at timestep t that is computed by communication
network ci(·). Since |N i

t | is in general a time-variant variable, the size of input xt is time-variant. We
assume |N i

t | to be bounded by d (i.e., an agent has at most d neighbors), which is always possible
since d can be set to N − 1. Thus, the size of input xt is time-invariant, and xt can be flattened for the
LSTM input. The LSTM outputs, for each agent-neighbor pair of (i, j) ∈ N ×N i

t at each timestep
t, a scalar Âi←jt ∈ R that defines the update of the communication network:

∆θic ∝ E
[
∇θic

∑
t

∑
j∈N it

(
log ci←j(Ii←jt |oit; θic)

)
Âi←jt

]
∀i ∈ N . (5)

Compared with the REINFORCE update in Equation (4), the term of return Gt is replaced by Âi←jt
that is computed by the backward LSTM.

We use η to denote the meta-parameters for the backward LSTM network that defines the update of
Equation (5). The objective of our meta-learning framework is to find the meta-parameters η that
leads to high expected return after a number of K updates for the communication network parameters
θc := {θic}i∈N , given some fixed policy network parameters θπ := {θiπ}i∈N

arg max
η

JK(η) := Eθc(0)[G(θc(K))] (6)

where the expectation is w.r.t. random initializations of θc(0); the initial θc(0) is updated K times
to θc(K) using the fixed η, (θc(0) → ... → θc(K) | η); G(θc(K)) := E[

∑∞
t=0 γ

trt|θc(K), θπ] is
the expected return for the communication network after the K updates θc(K) and the fixed policy
network parameters θπ .
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Since the updates of θc are differentiable with respect to η, we can consider optimizing objective
(6) with the meta-gradient derived using the chain rule ∇ηJK(η) = ∇θc(K)JK(η)∇ηθc(K), with
∇θc(K)JK(η) obtained from the policy gradient, e.g., REINFORCE:

∇ηJK(η) = Eθc(0)
[
∇η
∑
t

∑
(i,j)∈N×N it

(
log ci←j

(
Ii←jt |oit; θic(K)

))
Gt (θc(K))

]
(7)

where Gt(θc(K)) := E[
∑∞
t′=t γ

t′rt′ |θc(K), θπ] is the expected return starting from timestep t. The
true meta-objective (6) and its meta-gradient (7) require backpropagation through the entire K
updates of θc, which is infeasible due to memory constraint if K is large. In practice, we perform
meta-gradient optimization every a small number of K updates while continually updating θc to the
end of learning.

Concurrent parameter updates. The derivation of meta-gradient (7) assumes fixed policy network
parameters, which makes the environment stationary from the perspective of the communication
networks and thus the policy gradient can be used to calculate∇θc(K)JK(η). In practice, to speed up
learning we consider concurrent updates for all parameters, including the communication networks
θc, the policy networks θπ , and the centralized critic θQ.

Learned baseline. To reduce variance, we separately use a baseline V (ot;φ) ≈ Gt parameterized by
φ to approximate the expected return under the current communication and policy networks, which is
learned using n-step TD:

∆φ ∝
(
Gφ,nt − V (ot;φ)

)
∇φV (ot;φ), Gφ,nt =

∑n−1
k=0 γ

krt+k+1 + γnV (ot+n;φ).

The Gt(θc(K)) term in meta-gradient (7) is replaced by Gφ,nt − V (ot;φ), where the trajectory for
computing Gφ,nt is sampled from the on-policy parameters (θc(K), θπ(K)) that have been concur-
rently updated. In our empirical work, we also use a learned baseline for the original REINFORCE
(4) for fair comparison.

Entropy regularization. We also propose to add entropy regularization on the communication
network outputs ci←j to encourage exploration and facilitate learning. The regularized meta-gradient
becomes

∇η(K) := ∇ηJK(η) + β∇η
∑
t

∑
(i,j)∈N×N it

H
(
ci←j

(
oit; θ

i
c(K)

))
(8)

where H(·) is the entropy of the Bernoulli distribution ci←j that is determined by the post-update
θic(K), and β ∈ R+ is the regularization coefficient.

Blending intermediate meta-gradients. The regularized meta-gradient∇η(K) is derived through
the parameters after the K-th update, i.e., θc(K). In practice, we find it effective to blend it with
meta-gradients derived through the intermediate parameters, resulting in our final update for meta-
parameters η:

∆η ∝ 1
K

∑K
k=1∇η(k) (9)

where ∇η(k) is the meta-gradient derived through θc(k) in the same way as Equation (8). We
hypothesize that such blending in Equation (9) can reduce the variance of the gradient estimation and
therefore benefit the optimization of the meta-parameters.

The resulting algorithm is specified in Algorithm 1.

5 Experiments

We aim to answer the following questions in Sections 5.1-5.3, respectively:

• How effective is our algorithm for learning cooperative communication topology?
• How effective is the meta-parameters after being optimized?
• How important are the design choices described in Section 4.2?
• What kind of update rule is learned from the meta-learning process?

Environment. We consider the following scenarios in multiple particle environment (MPE) [33]: (1)
cooperative navigation: N agents move as a team to cover N landmarks. Each agent observes its
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Algorithm 1: Learning cooperative communication topology via meta-gradients
Input: A cooperative multi-agent task with agents N , meta-optimization hyperparameter K

1 Initialize parameters for communication and policy networks θc ≡ {θic}i∈N , θπ ≡ {θiπ}i∈N ,
centralized critic θQ, baseline φ, meta-parameters η, and replay buffer D

2 repeat
3 θc(0), θπ(0)← θc, θπ
4 for k = 1, 2, ...,K do
5 Generated a trajectory τ(k − 1) using (θc(k − 1), θπ(k − 1))
6 Add the trajectory to replay buffer D
7 Update the centralized critic θQ by minimizing L(θQ) in Equation (1) on samples from D
8 Update the policy networks as θπ(k− 1)→ θπ(k) using Equation (3) on samples from D
9 Update the communication networks as θc(k − 1)→ θc(k) using Equation (5) with η

10 end
11 Generated a trajectory τ(K) using (θc(K), θπ(K))

12 Perform updates for baseline φ on trajectories {τ(k)}Kk=1

13 Update η using meta-gradient Equation (9) computed from trajectories {τ(k)}Kk=1
14 θc, θπ ← θc(K), θπ(K)
15 until convergence

location and velocity, the relative location of the nearest l landmarks, and the relative location of other
agents. Our experiments include the tasks of (N = 3, l = 3) as navigation_N3_l3, (N = 6, l = 1)
as navigation_N6_l1, and (N = 6, l = 6) as navigation_N6_l6. (2) predator and prey: N
cooperating predators (agents) are tasked to capture M preys. The preys are environment-controlled
by fixed policies that are pretrained. The movement of both predators and preys is impeded by L
landmarks. Each predator observes its location and velocity, the relative location of the nearest l
landmarks and the nearest l preys, and the relative location of other predators. Our experiments
include the tasks of (N = 3,M = 1, l = 3) as predator_prey_N3_l3, (N = 6,M = 2, l = 1) as
predator_prey_N6_l1, and (N = 6,M = 2, l = 6) as predator_prey_N6_l6. (3) cooperative
push: N cooperating agents are tasked to push a large ball to a target position. Each agent observes
its location and velocity, the relative position of the large ball and the target position, and the relative
location of other agents. We include the tasks of N = 3 as push_N3 and N = 6 as push_N6.

Implementation details. Consistent with prior implementations [2, 34] on MPE, the trajectory
length is set to be equal to the episode length, which is 25 timesteps. The meta-parameters are
updated every K = 10 updates of the parameters, after a grid search over K ∈ {1, 5, 10, 20}. All
algorithms are implemented using JAX [35].

Baselines. We compare our meta-gradient approach against the four baselines discussed in Section
4.1: no-communication, full-communication, learning communication topology with the policy
gradient algorithm of REINFORCE, and learning communication topology with Straight Through
Gumbel-Softmax (STGS). For the ablation study in Section 5.3, we additionally compare against
variants of our algorithm with changes to our key design choices.

5.1 Effectiveness of the meta-learning framework

Figure 2 shows the training curves comparing our method of meta-learning communication topology
against the four baselines. Please view all of the figures in this section in color. Our key observation
is that: no method is uniformly the best among all tasks, yet our method is consistently comparable
to the best for most tasks while each baseline can perform significantly worse in some tasks. Full
communication is, perhaps surprisingly, among the worst in all tasks except for push_N3. No
communication is among the worst in push_N3 and worse than the best in push_N6. REINFORCE is
among the worst in navigation_N3_l3, predator_prey_N6_l1, and push_N3. STGS is among
the worst in all tasks except for navigation_N6_l1 and push_N3. Our meta-learning method is
consistently among the top two in all eight tasks.

7



0.0 0.5 1.0

400

300

navigation_N3_l3

full comm.
no comm.
REINFORCE
STGS
meta-comm. (ours)

0.0 0.5 1.0

4500

4000

3500

navigation_N6_l1

0.0 0.5 1.0
4800

4600

4400

4200

4000

navigation_N6_l6

0.0 0.5 1.0

20

0

20

40

predator_prey_N3_l3

0.0 0.5 1.0

0

100

200
predator_prey_N6_l1

0.0 0.5 1.0

50

0

predator_prey_N6_l6

0.0 0.5 1.0
175

170

165

160

155
push_N3

0.0 0.5 1.0

340

330

320

310

push_N6

Figure 2: Training curves of three runs comparing our algorithm of meta-learning communication
topology against the baselines. Y-axis: episodic reward. X-axis: training step (1e6).
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Figure 3: Effectiveness of fixed meta-parameters. Y-axis: episodic reward. X-axis: training step
(1e6).

5.2 Effectiveness of the meta-learned update rule

Our algorithm continually updates meta-parameters η online. An interesting question is: how effective
is the communication topology learning rule defined by some fixed η that is obtained after meta-
gradient optimization? Figure 3 compares training curves for the two tasks of navigation_N6_l6
and predator_prey_N6_l1 using fixed η that is randomly initialized, or obtained after 10k or 50k
episodes, with the online updated η as a reference point. We consider both the settings in which the
fixed η is obtained from the same task and from a different task. As a sanity check, meta-learned
η (either fixed or online updated) outperforms random initialized η. In navigation_N6_l6, the
meta-learned, fixed η can outperform the online updated η, even for the η obtained from the other
task of predator_prey_N6_l1. However, in predator_prey_N6_l1, the online updated η tends
to perform best. This indicates that the answer to our question is task-dependent: some tasks may
require continually updating meta-parameters for best performance.

5.3 Ablation study and analyses of learned communication topology

Our ablation study that examines the effect of our design choices of entropy regularization and
intermediate meta-gradients introduced in Section 4.2, as well as the effect of the number of parameter
updates K per meta-update Figure 4 (left) summarizes the ablation results . The results show that
both design choices are crucial for performance. As for K, an intermediate value such as 5 and 10
tends to work better than the extreme values of 1 and 20.

To distinguish REINFORCE-learned and meta-learned typologies, we compare the REINFORCE
advantage (i.e., Gt − V (ot;φ) for Equation (4) with learned baseline φ) and the meta-learned
advantage (i.e., Âi←jt computed by η for Equation (5)) that respectively define the two update rules
for the communication network. Figure 4 (right) visualizes the normalized advantages computed from
a same episode of predator_prey_N6_l1. We present the meta-learned advantage Âi←jt computed
by both the randomly initialized η and the updated η after 50k episodes, for the agent indexed by
i = 1 against its neighbors j ∈ {2, ..., 6}. It is clear that the meta-learned η yields advantages that
differ from those at initialization and are contrastingly different among the neighbors j. Interestingly,
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Figure 4: Left: Training curves for ablation study. For each task, we normalize its episodic reward to
[0, 1]. Right: Visualization of the normalized REINFORCE and meta-learned advantages computed
from an episode of predator_prey_N6_l1.

although most updates are significantly different, there is evidence that the meta-learned update rule
occasionally resembles the REINFORCE update rule (see agent 4) for some trajectories.

6 Conclusion and discussion

In this paper, we have proposed a novel meta-learning framework to discover adaptive update rules
for learning communication topology in an online manner. Empirical results showed that our method
outperforms existing alternatives in a range of cooperative MARL tasks. Preliminary analyses suggest
that the discovered update rules resemble the human-designed rules such as policy gradients, yet
remain qualitatively different. We next acknowledge several limitations of this work, which point out
promising future directions. Although we provided in Section 5 preliminary analyses on the topology
learning update rules discovered by our meta-learning algorithm, its nature is not yet fully understood.
It might be interesting and enlightening to better understand the discovered update rules for future
work. Moreover, our meta-learning algorithm continually adapts the update rules online, and the
meta-learned update rules exhibit limited generalization ability as shown in Figure 3. It remains an
open question how we can discover topology learning update rules (defined by fixed meta-parameters)
that work well for a large variety of MARL tasks.
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A Implementation details

A.1 Computing resources

Our implementation is based on JAX [35] using GPUs. A single run took approximately 17 hours
using an NVIDIA Tesla V100 GPU and 7 CPU cores.

A.2 Hyperparameters

Table 1: Hyperparameters for meta-learning η.
Hyperparameter Value
Backward LSTM architecture (η) LSTM(128)-FC(128)-Linear(output size)
Optimizer for η RMSprop with learning rate 0.00005
Gradient clipping norm for η FC(128)-FC(128)-Linear(1)
Baseline~architecture (φ) FC(128)-FC(128)-Linear(1)
Optimizer for φ Adam with learning rate 0.001
Entropy regularization (β) 0.01
Number of parameter updates (K) 10

B Additional results

The main body presents the visualization of normalized advantages for a single episode of
predator_prey_N6_l1. Figure 5 presents visualization for multiple episodes.
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Table 2: Hyperparameters for learning θ. These hyperparameters are shared by our method and the
baselines.

Hyperparameter Value
Episode length 25
Trajectory length 25
Number of training episodes 50000
Discount factor 0.95
Critic network architecture -FC(128)-FC(128)-Linear(1)
Critic network optimizer Adam with learning rate 0.001
Policy network architecture Concat[o(Ci)-LSTM(128), oi]-FC(128)-FC(128)-Linear(action dim)
Policy network optimizer Adam with learning rate 0.001
Communication network architecture -FC(128)-FC(128)-Linear(output size)
Communication network optimizer RMSprop with learning rate 0.001
Target network Polyak averaging rate 0.01
Number of samples from replay buffer 256
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Figure 5: Visualization of the normalized REINFORCE and meta-learned advantages computed from
multiple episodes of predator_prey_N6_l1.
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