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Abstract

Recent advancements in large language models, such as GPT-4, have demonstrated
remarkable capabilities in processing standard queries. Despite these advancements,
their performance substantially declines in advanced mathematical problems
requiring complex, multi-step logical reasoning. To enhance their inferential
capabilities, current research has delved into prompting engineering, exemplified
by methodologies such as the Tree of Thought and Graph of Thought. Nonethe-
less, these existing approaches encounter two significant limitations. Firstly, their
effectiveness in tackling complex mathematical problems is somewhat constrained.
Secondly, the necessity to design distinct prompts for individual problems hampers
their generalizability. In response to these limitations, this paper introduces the
Multi-Agent System for conditional Mining (MACM) prompting method. It not
only resolves intricate mathematical problems but also demonstrates strong gen-
eralization capabilities across various mathematical contexts. With the assistance
of MACM, the accuracy of GPT-4 Turbo on the most challenging level five math-
ematical problems in the MATH dataset increase from 54.68% to 76.73%. The
code is available in https://github.com/bin123apple/MACM.

1 Introduction

Large language models (LLMs) like GPT-4 [12] excel in various problem-solving tasks but still
struggle with complex logical deduction, especially in mathematics involving abstract concepts and
multi-step reasoning [11, 2]. This limitation hinders their accuracy and reliability in fields requiring
precise mathematical reasoning, such as academic research, engineering, and theoretical physics.

A contemporary and efficacious method for tackling this issue is the prompting engineering [19]. It
enhances accuracy in complex problem-solving without necessitating further training of the model.
By strategically crafting prompts, prompting engineering optimizes the utilization of large language
models, guiding their processing pathways more efficiently and effectively [10].

Previous prompting methods mainly include the Chain of Thought (CoT) [18], Self-consistency
Chain of Thought (SC-CoT) [17], Tree of Thought (ToT) [20], and Graph of Thought (GoT) [4, 9].
CoT and SC-CoT show limited capabilities in complex logical reasoning, achieving only 4.0% and
9.0% accuracy in simple tasks like the 24-point game using GPT-4 [20]. While ToT and GoT have
improved LLMs’ problem-solving abilities, they lack generalizability, requiring specific prompts for
each problem, as detailed in Appendix A.

To address two key issues:

1. The insufficient reasoning capability of LLMs for complex mathematical problems.

2. The inadequate generalizability of current prompting methods.
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Figure 1: The comparison between the current mainstream prompting methods and MACM.

We propose the Multi-Agent System for Condition Mining (MACM) prompting method. MACM
has moved beyond being restricted by the specific contents of a problem. Instead, it first abstracts
the conditions and the objective of the problem. Subsequently, through a Multi-Agent interactive
system, it progressively mines new conditions conducive to achieving the objective, thereby ultimately
fulfilling the goal of problem-solving.

The comparison between MACM and current mainstream prompting methods in problem-solving is
shown in Figure 1. MACM extracts conditions and objectives from each math problem, iteratively
adding new insights until enough information is gathered to find a solution. Performance-wise,
MACM improves accuracy by over 10 percentage points on datasets like the 24-point game, matching
the effectiveness of ToT and GoT. Moreover, MACM is versatile; it can apply the same set of
prompts to various mathematical reasoning problems without manual modifications, unlike the
tailored prompts needed for ToT and GoT.

Through several experiments on the math related datasets, we verified MACM’s generalizability and
superior error correction compared to original prompting methods. With MACM, the GPT-4 turbo
model’s accuracy on the MATH dataset increased by 15.14%, and by 7.8% compared to SC-CoT. In
the 24-point game, MACM achieved an accuracy rate 17% higher than ToT.

2 Related Work

In this section, we summarize several major current prompting methods.

I-0 Prompting: Input-Output (I-O) prompting is the most common method for interacting with large
language models, where users specify the problem conditions directly to the model, which generates
responses through a token-level, sequential decision-making process [22].

CoT Prompting: [18]: Chain of Thought (CoT) prompting refines the model’s output into more
structured and logically coherent text by methodically constructing and elaborating upon chains
of reasoning. This approach enhances the model’s ability to produce outputs rooted in logical
deduction. There are several variants of CoT, including Zero-Shot CoT [8], Few-Shot CoT [7], and
Auto-CoT [22], each tailored to different prompting scenarios and requirements to improve logical
reasoning in diverse contexts.

SC-CoT Prompting: [17]: Self-Consistency Chain of Thought (SC-CoT) prompting improves
upon CoT by introducing a voting mechanism, which emphasizes internal consistency and semantic
interconnectedness. In this method, models evaluate (vote on) their own outputs to select the most
coherent response, thereby reducing logical fallacies and inconsistencies.

ToT Prompting: [20]: Tree of Thought (ToT) prompting uses a hierarchical, tree-like structure to
organize and guide the model’s text generation. This method improves precision and structure in
responses, incorporating a voting mechanism to refine outcomes and reduce computational demands.



GoT Prompting : [4, 9]: Graph of Thought (GoT) prompting enhances ToT by allowing interconnec-
tions between thoughts on different branches. It decomposes complex tasks into simpler sub-tasks,
solves them independently, and merges the results, thus reducing computational costs.

3 Method

3.1 MACM Overall Structure
The overall structure of MACM is shown in Figure 2. We have designed an interactive system

r-=I"1
1 1

SRS MO
—@ " h) X
=
T If % : Back to @

Figure 2: The overall structure of MACM. B Original Math problem; '__': Condition list; ¥": True;
X False; - Discard; * : Known Conditions; ' : New Conditions; 0. Objective; " Thinker;

: Judge; . Executor; ®: Initialize the initial condition list and the objective; @: Explore new
Conditions based on current condition list; ®: Check if the new condition is correct; @: Check if the
objective can be achieved based on the current Conditions in the Condition list; ®: Designing steps
for achieving the objective based on current Conditions; ®: Achieve the objective.

comprising three agents: Thinker, Judge, and Executor to solve complex mathematical problems.

» Thinker: Responsible for generating new thoughts or ideas. This role involves creative
thinking and the generation of novel solutions or approaches to problems.

* Judge: Evaluate the thoughts generated by the Thinker. It assesses the viability and
correctness of new ideas, ensuring that only the most logical and beneficial ones are pursued.

» Executor: Performs calculations or actions according to predefined steps. It is focused on
the implementation of the ideas approved by the Judge, turning steps into tangible outcomes.

When a mathematical problem is input into our system, the Thinker initially sets up the Condition
List and defines the final Objective based on the given problem. After initialization, the Thinker
mines new conditions conducive to the objective from the current Condition List, i.e., the Known
Conditions. The Judge then assesses these newly mined conditions. If deemed correct, the Judge
incorporates the new condition into the Condition List. Otherwise, the new condition is discarded.

Once all new Conditions have been reviewed, we obtain a revised Condition List. At this point, the
Judge evaluates whether the current conditions are sufficient to achieve the objective. If the answer
is False, the process reverts to step @ for further mining of new conditions. In our experiments, we
set a limit of five iterations; if the objective is not met after five rounds of mining, we consider the
problem unsolvable. This prevents the program from entering an infinite loop. If the answer is True,
the Thinker designs steps based on the Known Conditions to achieve the Objective. Finally, the
Executor performs calculations following these steps to produce the final result.

MACM achieves a high level of generalizability by abstracting conditions and objectives from each
specific mathematical problem. Through a multi-agent interactive system, where the Thinker is
responsible for ideation and design, the Judge for inspection and decision-making, and the Executor
for computation, most potential errors in reasoning and calculation are eliminated. By repeatedly
mining for conditions and adding the correct ones to the Condition List, MACM ensures depth in
thinking, making it suitable for analyzing complex mathematical problems.

3.2 Theoretical Analysis

MACM moves away from the hierarchical dependencies of previous methods by introducing Condi-
tions and Objectives. It continuously expands Known conditions to derive the final answer, eliminating



the need for manual, problem-specific prompts. This method compresses information from various
Thoughts into existing Condition List, capturing more connections than traditional prompting methods
that rely on navigating a hierarchical structure.

The Thinker initiates a thought set 7; = {T},T#, ..., T{"} contains m new thoughts from question
@ and generates subsequent thought sets 7; = {T}, T?,..., T/} based on the current condition
list C; = {C4,C4,...,C;_1}. Each condition C;_; is derived from the most accurate thought
Ty | in T;_;. At each step i, the Judge selects the correct thought 7 in thought set 7; such that

T; = argmax, P""(T*|T? € Ti,s € {1,--- ,m}), where P"% is the probability that the Judge
confirms the thought as correct. By using this method, we map the whole thoughts space T to the
Condition List C. In an ideal situation where P'"%¢° — 1, we have T — C. The probability of arriving
at the correct answer A orecy based on the final Condition list C is equal to that based on the entire
thoughts space T. Thus we have: PMACM(Acorrect‘C) = PMACM(Acorrect|T > PGOT, ToT, CoT(Acorrect |
{T;; 1i=1,2,...,mand j = 1,2,...,n} C T). In practice, where P - 1, we performed the
experiments to test its performance, the results are shown in Section 4.

3.3 Using Cases

Our prompts and use cases are shown in Figure 3. It demonstrates the specific process of MACM
analyzing algebra and geometry problems. In these two examples, we have employed OpenAlI’s
GPT-4 Turbo [1] as the intelligent agent, which is capable of performing calculations using code. It
is endowed with three roles: Thinker, Judge, and Executor by using the following instructions:

For Thinker: You take the role of a Thinker. I need you to help me gradually ponder over some
problems following my instructions. You need to answer the question by using the following
Jormat: Based on Condition A and Condition B, we can get: C.

For Judge: You take the role of a Judge. I need you to make judgments on some statements. You
are only allowed to use the True or False as the final answer.

For Executor: You take the role of a Executor. I need you to calculate the final result based on
the given conditions and steps.

In the first algebra problem:

2
Let S be the set of all real numbers « such that the function %

quotient of two linear functions. What is the sum of the elements of S?

can be expressed as a

GPT-4 Turbo’s raw response reached an incorrect conclusion: ‘ 2?2+ 5z +a=k(x+11)(z — 4) ‘,
which then led to issues in the subsequent code design, ultimately resulting in an incorrect output.

In the MACM analysis process, the Thinker initially identifies conditions and objectives from the
problem statement and then uncovers new conditions. Although the Thinrker initially identifies the
same incorrect condition as GPT-4 Turbo, the Judge detects and rejects this error, preventing its
addition to the Known Conditions. In the second round, the Thinker identifies two new conditions:

|(—11)2+ 5 x (~11) + ay = 0)|and| (4)* + 5 x (4) + ap = 0| which the Judge verifies and adds
to the Known Conditions list. The Judge then confirms that the Known Conditions are sufficient to

achieve the objective. The Thinker designs steps to reach the objectives based on these conditions,
and finally, the Executor performs the necessary calculations to produce the result.

In the second geometry problem:

Square ABC'D has side lengths of 13 units. Point E lies in the interior of the square such that
AE = 5 units and BE = 12 units. What is the distance from E to side AD?

While GPT-4 Turbo’s response had the correct theoretical approach, it failed to identify relationships
between points in the problem, leading to incorrect expressions and an incorrect final result.
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Figure 3: MACM’s detailed analysis process for complex mathematical problems with specific
prompts, illustrated with an algebra problem (on the left) and a geometry problem (on the right).
We use one set of prompts that can target different types of problems, with prompts 0-6 displayed
in the LI below the dialogue box. In these examples, MACM involves three steps: 1. Extracting
conditions and the objective. 2. Iteratively identifying new conditions. 3. Solve the problem based on
known conditions.

During the MACM analysis, the Thinker first clarifies the conditions and objectives of the ge-
ometry problem and then uncovers new conditions to achieve the goal. Initially, it discovers

that:‘ ANABE is a right triangle ‘ After verification by the Judge, this condition is added to the

known conditions. The Judge then checks if the known conditions are sufficient. A False result
means more conditions are needed, so the Thinker continues searching. In the second round, the

Thinker deduces| AE x EB = EF x AB |, which the Judge verifies and adds to the Condition List.




Upon confirming sufficiency, the Thinker plans the steps to solve the problem, and the Executor
performs the calculations to find the result.

In analyzing these two problems, MACM first extracts the specific conditions and objectives from the
questions. This allows MACM to directly use these conditions and objectives for prompt design in
subsequent processes, enhancing our approach’s generalizability. Previous methods like ToT and GoT
lack this setup, resulting in poorer generalizability. For example, in the 24-point game experiment
with ToT, the lack of this setting necessitated the manual configuration of the following prompt:

Evaluate if given numbers can reach 24 \n (sure/likely/impossible) \n {input}

In MACM, the ‘ if given numbers can reach 24 ‘is obtained by the first step and the evaluation prompt

is generalized to ‘ Evaluate {objective} {input} ‘, ensuring higher generalizability.

4 Experiment

4.1 Performance on MATH benchmark

The MATH dataset [6] includes a variety of mathematical problems. It offers seven types of mathemat-
ical problems, including geometry, algebra, probability theory, etc., with difficulty levels ranging from
1 to 5. We first tested the overall performance of MACM on the MATH dataset without distinguishing
difficulty levels. Afterward, we specifically selected the most difficult mathematical problems from
the MATH dataset for testing. The detailed experimental setup is presented in the Appendix B.

Table 1: Accuracy (%) of GPT-4 Turbo on MATH dataset with different prompting methods.

Algebra C;:gg;g% il;d Geometry Intﬁﬁgl:bdrl;ne llyl?;?obge; Prealgebra  Precalculus  Overall
I-0 88.24 81.63 45.11 66.67 74.51 81.82 71.15 72.78
CoT 92.99 83.67 42.02 68.07 77.31 82.07 74.18 74.36
SC-CoT 94.96 87.17 50.14 71.99 89.91 86.75 79.67 80.12
CSV [23] 86.9 71.3 54.0 56.6 85.6 86.5 53.9 73.54
CSV + Voting [23] 95.6 89.0 64.9 74.4 94.1 91.6 67.8 84.32
MACM 96.07 97.95 62.74 78.43 98.04 94.11 88.46 87.92

In Table 1, we compared the accuracy of GPT-4 Turbo on the MATH dataset with various prompting
methods. We found that compared to the original GPT-4 Turbo, MACM increased its accuracy by 20%.
Compared to CoT, the increase was 13.56%, and compared to SC-CoT, it was 7.8%. Among these,
MACM led to the greatest improvement in accuracy for the original GPT-4 Turbo model on number
theory problems, at 23.53%. In geometry problems, although MACM has increased the accuracy of
GPT-4 Turbo by 17.63%, the final accuracy rate is still only 62.74%. Upon analyzing the causes of
errors, we found that many mistakes were due to GPT-4 Turbo’s difficulty in accurately understanding
the relationships between various geometric figures, thereby failing to design corresponding code to
solve the problems. However, in algebra and number theory problems, MACM, by correcting the
erroneous analysis of GPT-4 Turbo and helping it explore potential approaches, achieved accuracy
rates of 96.07% and 98.04%, respectively. Moreover, compared to the previous SOTA method, CSV
prompting, on the MATH dataset, MACM achieves a 3.6 percentage points higher accuracy rate on
the same dataset. This demonstrates the effectiveness of MACM in solving mathematical problems.

In Figure 4, we tested the performance of MACM on the open-source LLaMA series models on the
MATH dataset and compared it with other prompting methods. Since LLaMA models do not have a
code interpreter like GPT-4 Turbo, we disabled the code-checking function of MACM in this group
of tests. The rest of the experimental setup was consistent with GPT-Turbo. In zero-shot scenarios,
the accuracy rates of LLaMA 7B and LLaMA 13B were both below 5% [14]. Majority voting could
enhance their accuracies to 6.9% and 8.8% respectively [14], while MACM further increased them to
9.5% and 10.2%. On LLaMA 2 [15] and LLaMA 3 [3], compared to 4-shots, MACM could further
improve the accuracy on the MATH dataset by 3-5 percentage points. Overall, We found that MACM
can also be applied to LLaMA models, although the performance improvement was not as significant
as with GPT-4 Turbo. This is because GPT-4 Turbo has a better understanding of MACM’s intrinsic
directive prompts, enabling it to find the correct results more effectively.



Accuracy Comparison of LLaMA Models on MATH Dataset
35 33.7%
LLaMA 32.1%
9
30 LLaMA2 28.7% 30%
LLaMA3-Instruct

17.2%
15 14.6%

Accuracy (%)

10 8.8% 9%

Figure 5: GPT-Turbo’s perfor-
Figure 4: Accuracy comparison of LLaMA models on MATH  mance on MATH dataset Level 5
dataset with different methods. Maj-V.: Majority Voting. problems with/without MACM.

In Figure 5, We focused on the ability of MACM to solve the Level 5 mathematics problems in
MATH. As shown in the figure, MACM improved the accuracy of GPT-4 Turbo in all seven categories
of level 5 problems. The two types of problems that saw the most significant improvement with
MACM were the very categories where the original GPT-4 Turbo performed the worst: Geometry and
Intermediate Algebra. The original GPT-4 Turbo had an accuracy rate of only 18.18% on Geometry
problems and 34.04% on Intermediate Algebra problems. With the support of MACM, it’s accuracy
rate in Geometry problems increased to 50.0%, and in Intermediate Algebra problems, it increased to
65.96%. This demonstrates MACM’s effectiveness in solving difficult mathematical problems.

4.2 Comparison with ToT and GoT

Due to the lack of generalization of ToT and GoT prompting methods (See Appendix A for the
reason), we were unable to test them on the MATH benchmark. To compare MACM with them, we
selected two mathematical problems where their methods are applicable: the 24-point game and
sequence sorting. Among these, ToT tested the 24-point game, while GoT studied the sequence
sorting problem. The detailed experimental setup is presented in the Appendix B.

Table 2: Accuracy (%) comparison of different methods on various tasks.
Code

Task Verification Model Method Accuracy (%)
X GPT4 0 73
X GPT-4 CoT [20] 4
X GPT-4 SC-CoT [20] 9
S doints same X GPT-4 ToT (b = 1) [20] 45
pomts & X GPT-4 ToT (b = 5) [20] 74
X GPT-3.5 MACM B
X GPT-4 MACM 91
v GPT-4 Turbo MACM 99
) X GPT-3.5 GoT [4] 89.06*
Sequence sorting X GPT-3.5 MACM )
(64 elements) v GPT-4 Turbo MACM 100

In Table 2, We compared MACM with 10, CoT, SC-CoT, and ToT models on the 24-point game.
When the model is GPT-4, MACM is 17% higher than ToT (b = 5). Note that here, to ensure a fair
comparison, we used the standard GPT-4 without any code capabilities. Additionally, with the support
of MACM, GPT-3.5 also achieved an accuracy of 67% in the 24-point game, which is higher than the
GPT-4 model with ToT (b = 1) support. Upon analyzing the reasons for the improvement in accuracy,
we found that MACM’s Judge corrected many thoughts that were mistakenly evaluated in ToT,
leading to GPT-4 choosing incorrect approaches. This correction process significantly contributed to
the increase in accuracy. In addition, We compared the GPT-3.5 model’s ability to sort 64 numbers
using GoT and MACM. MACM outperformed GoT by 2.94%. Note that some results marked with
* were estimated from graphs without specific data. Additionally, GPT-4 Turbo achieved 100%
accuracy on the Sequence Sorting task due to its problem-based code construction capability.



4.3 Performance on other datasets

This section primarily tests two capabilities of MACM:

1. The ability to solve more challenging mathematical problems. We applied MACM to two datasets,
SciBench [16] and TheoremQA [5], which claim their difficulty surpasses the middle school level of
the MATH dataset, reaching the Undergraduate Level.

2. Transferability to General Logic Reasoning Tasks. Although MACM focuses on solving
mathematical problems, to test its applicability, we applied it to the Reclor logic reasoning dataset [21].

Table 3: Accuracy (%) comparison of different methods on the math-related Table 4: TheoremQA re-
subset of the SciBench dataset. Except for MACM, all results are from [16]. sults with GPT-4 Turbo.

Method diff (%) stat (%) calc (%) Method Acc. (%)
GPT-4 32 49.33 54.76 0-shot 46.45
GPT4 + CoT 22 50.67 42.86 CoT 41.18
GPT-4 + Few-shots + CoT 30 49.33 45.24 PoT 55.88
GPT-4 + Few-shots + Python 44 68 38.1 MACM 79.41
GPT-4 Turbo 46 61.33 52.38
GPT-4 Turbo + CoT 38 64 54.76 Table 5: Reclor results.
GPT-4 Turbo + Few-shots + CoT 32 65.33 50 Method  Acc. (%)
GPT-4 Turbo + Few-shots+ Python 34 42.67 30.95 0-shots 88.1
GPT-4 + MACM 48.78 69.44 64.29 CoT 88.5
GPT-4 Turbo + MACM 60.98 77.78 76.2 MACM 88.9

Table 3 displays the testing results of MACM on the SciBench dataset. The SciBench dataset includes
problems in chemistry, physics, and mathematics. We only selected the math-related subset for
testing, which includes: the diff, stat and calc subset. The experimental setup was consistent with the
testing on the MATH dataset (as shown in Appendix B). The results demonstrate that, in contrast
to the Chain of Thought (CoT) method, which resulted in decreased accuracy for both GPT-4 and
GPT-4 Turbo on this dataset, MACM led to an approximate 20 percentage points.

Table 4 presents the performance of GPT-4 Turbo on the TheoremQA dataset using various prompting
methods. The TheoremQA dataset encompasses problems from multiple domains including mathe-
matics, physics, finance, and computer science. Notably, its mathematics subset contains numerous
conceptual and definitional questions that do not involve logic reasoning processes; thus, these were
not considered in our experiments. We solely tested questions within the TheoremQA mathematics
subset that involve logic reasoning and have definite answers (e.g., a specific number, rather than an
interpretation of a theorem). The experimental setup was consistent with the testing on the MATH
dataset (as detailed in Appendix B). The results indicate that MACM enabled a roughly 30 percentage
points increase in accuracy for GPT-4 Turbo on this subset.

Table 5 shows the test results of GPT-40 [13] on the Reclor dataset using various prompting methods.
For general logical reasoning problems, we adjusted the computation-related prompts in the original
MACM to make them suitable for non-mathematical logical reasoning problems, while maintaining
the overall structure consistent. Results show that MACM can also improve the accuracy of general
logic reasoning tasks, but the increase is smaller compared to math tasks.

4.4 Ablation Study

In this section, we primarily investigate two issues. ® Explore the relationship between MACM
Accuracy and LLM Queries, comparing it with other methods. @ Analyze the proportional impact of
each component within the MACM on the overall accuracy improvement. We performed these two
experiments on 200 randomly selected questions from the MATH dataset that the original GPT-4
Turbo model answered incorrectly.

Trade-off Between Accuracy and LLM Queries: In general, increasing the number of responses
generated by LLMs leads to an improvement in accuracy. Each prompting method has parameters
that can increase it, such as the length of the chain / in CoT, the number of voters v in SC-CoT,
and the Tree breadth b in ToT. To measure the search efficiency of each method, we compared the
relationship between the accuracy and the number of responses generated by GPT-4 Turbo.



We increased the number of answers generated by various prompting methods. For I-O prompting,
we directly adjusted the model’s response generation parameter n, which enables the model to n
responses. For CoT, we adjusted not only the parameter n but also the length [ of the Chain. For

SC-CoT, we built on the first two methods by adding an adjustment to the number of voters v.
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Figure 6: The trade-off between the accuracy and
the responses generated by GPT-4 turbo. Com-
pared to I-O, CoT, and SC-CoT, MACM has
stronger error correction capabilities when the
GPT-4 Turbo generates more responses.
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As shown in Figure 6, although I-O, CoT, and SC-CoT only require simple queries to correct the
original errors made by GPT-4 Turbo, their upper limits are not high. Even if we continue to increase
the number of queries, they can only correct about 20% of the original errors made by GPT-4 Turbo.
In contrast, MACM can correct nearly 90% of the original errors of GPT-4 Turbo when the number
of queries is high. This is actually quite reasonable because the MACM structure is more complex,
including multiple processes of mining conditions and checking. These processes allow the large
model to gradually think and identify errors, thus significantly improving accuracy.

Proportional Impact of Various Components: To analyze the functions of each component in
MACM, we randomly combined the four components within MACM: Condition Mining, Multi-
Agent System, Self-Checking, and Voting, and tested their performance. During the experiment, we
maintained a maximum of 2 Condition Mining iterations and used 3 Voters.

As shown in Figure 7, the combination of all four components yields the best performance. Among
the individual components, Multi-Agents and Condition Mining have comparable error correction
capabilities. In the combinations of two components, the pairing of Self-Checking and Condition
Mining shows the best performance. Among the three-component combinations, the combination of
Multi-Agents, Condition Mining, and either Voting or Self-Checking achieves better results.

5 Conclusion

We introduce MACM, a new and generalizable prompting technique that significantly enhances the
inferential capabilities of large language models on mathematical problems. MACM can be applied
to different types of mathematical questions. Through comparisons in several experiments on the
math related datasets, we have verified the superiority of our method over the original prompting
methods. With the aid of MACM, the accuracy of the GPT-4 Turbo model on the MATH dataset
has increased by 15.14%. Compared to SC-CoT, its accuracy has increased by 7.8%. For the most
challenging level 5 mathematical problems in the MATH dataset, its accuracy increased from 54.68%
to 76.73%. In the game of 24 points, using the same GPT-4 model, MACM’s accuracy is 17% higher
than that of ToT. At the same time, by comparing accuracy with the number of times the large model
responds, we find that MACM has a higher limit; increasing the number of responses from the large
model can significantly improve accuracy. These experiments demonstrate MACM’s generalizability
and its powerful error-correction capability for complex mathematical problems in original LLMs.
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A Why is the generalizability of ToT and GoT limited

This section demonstrates specific examples of using ToT and GoT to further illustrate why their
generalizability is limited.

ToT conducted three sets of experiments in the original study, requiring specially designed prompts
for each. The official implementation on their GitHub page https://github.com/princeton-nlp/tree-
of-thought-1lm/tree/master/src/tot/prompts includes the specific prompts set up for each experiment.
Taking the 24-point game as an example, specific prompts such as propose prompt, value prompt, and
value last step prompt were required (lines 51 to 134 in game24.py). During ToT’s operation, the LLM
executes traversal searches, voting, filtering, etc., based on these written prompts. The authors also
mention in the ToT readme section How to Add a New Task (https://github.com/princeton-nlp/tree-
of-thought-1lm?tab=readme-ov-file#how-to-add-a-new-task) that setting up task-specific prompts is
necessary for different problems, further illustrating the limited generalizability of ToT and GoT due
to the need for task-specific prompt engineering.

GoT faces the same issue, with their original paper conducting experiments in four tasks:
Sorting, Set Operations, Keyword Counting, and Document Merging. For each type of
problem, specific prompts must be set up on their official GitHub. Taking Sorting as an
example, the specific prompts for sorting are displayed in https://github.com/spcl/graph-of-
thoughts/blob/main/examples/sorting/example_prompts_sorting_032.md. They provide the LLM
with the instruction: Split the following list of 32 numbers into 2 lists of 16 numbers each, the first
list should contain the first 16 numbers and the second list the second 16 numbers. Only output the
final 2 lists in the following format without any additional text or thoughts! This instruction is clearly
tailored to this specific problem, illustrating the limited generalizability of GoT due to the necessity
for problem-specific prompt engineering, similar to ToT.

Take ToT as an example, they tested three tasks, for the game of 24 task, the propose prompt is:

Input: 2 8 8 14 \n Possible next steps: \n2 + 8 = 10 (left: 8 10 14)\n8/2 =4 (left: 48 14)\n
14 +2=16(left: 88 16)\n2 *8 =16 (left: 814 16)\n8 -2 =6 (left: 68 14)\n14-8 =06
(left: 26 8)\n14/2 =7 (left: 78 8)\n 14 -2 = 12 (left: 8 8 12)\n Input: {input}\n Possible
next steps:

for the cross word task, the propose prompt is:

Let’s play a 5 x 5 mini crossword, where each word should have exactly 5 letters. \n {input} \n
Given the current status, list all possible answers for unfilled or changed words, and your
confidence levels (certain/high/medium/low), using the format "hl. apple (medium)". Use
"certain" cautiously and only when you are 100% sure this is the correct word. You can list more
than one possible answer for each word.

for the creative writing task, the propose prompt is:

Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must be:
{input} \n Make a plan then write. Your output should be of the following format: \n Plan: \n
Your plan here. Passage: \n Your passage here.

Each time the problem is changed, both ToT and GoT require an update to their respective prompts.
The requirement to tailor prompts for each specific problem limits the generalizability of ToT and
GoT to broader issues. MACM successfully addresses this challenge.

B Experimental Setup
For the experiments on the MATH dataset: We utilized the GPT-4 Turbo model (between January

1, 2024, and February 1, 2024) to test MACM'’s performance on the MATH dataset. For tests that did
not distinguish by difficulty, we randomly selected one-third of the questions from the MATH dataset
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for evaluation. For the high-difficulty tests, we extracted all questions with a difficulty level of 5 and
randomly selected half of the questions from each category for testing. The experiment are performed
by using I-O, CoT, SC-CoT, and MACM methodologies. For all prompting methods, we standardized
the number of responses n generated by GPT-4 Turbo to 1, Top,, = 1, and the temperature ¢ = 0.
For CoT, we set the maximum length of the chain [ = 5, for SC-CoT, the number of voters v = 5,
and the maximum length of the chain [ = 5. For these three methods, we consistently maintained
max_tokens at 512. For MACM, we kept the thinker’s max_tokens at 512, the judge’s max_tokens at
4, and the executor’s max_tokens at 256.

For the 24-point game experiment: We sourced data from 4nums.com, which offers 1,362 games
ranked from easy to hard based on the time it takes humans to solve them. We focused on a subset of
these games, specifically those ranked 901 to 1,000 (The same as ToT), to test on relatively difficult
challenges. Success for each task is defined as producing a valid equation that results in 24, utilizing
each of the input numbers exactly once. The performance metric is the success rate across these
100 challenging games.We utilized the GPT-4 and GPT-3.5 model (between January 1, 2024, and
February 1, 2024) to perform the experiments. The MACM configuration for this experiment includes
setting the number of responses generated by the model n = 1, T'opy, = 1, temperature ¢ = 0, with
the thinker’s max_tokens at 512, the judge’s max_tokens at 4, and the executor’s max_tokens at 256.

For the sequence sorting experiment: We randomly generated 100 sequences, each containing
64 elements, for testing. We utilized the GPT-3.5 model (between January 1, 2024, and February 1,
2024) to perform the experiments. The MACM configuration for this experiment includes setting the
number of responses generated by the model n = 1, Topy, = 1, temperature ¢ = 0, with the thinker’s
max_tokens at 512, the judge’s max_tokens at 4, and the executor’s max_tokens at 256.

C Limitation and Discussion

While MACM significantly enhances the accuracy of large language models in tackling complex
mathematical challenges, it incurs the cost of multiple invocations of the large language model
for inference, leading to increased problem-solving time. Additionally, our evaluations using the
MATH dataset indicate limitations in effectively addressing geometry problems. Addressing these
challenges necessitates further advancements in the model’s own cognitive capabilities. A proposed
strategy involves employing prompting methods like MACM to assist the LLM in eliminating
incorrect responses. This approach enables the creation of expansive, high-quality datasets, which are
otherwise challenging to compile manually, and subsequently refining the LLM with these datasets.
Through this iterative process, the model’s intrinsic intelligence is progressively augmented. This
research direction will constitute our future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The paper’s contributions is included in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation and discussion are included in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The Theoretical Analysis is shown in Section 3.2. And we provide the
corresponding assumptions for each conclusion.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code is provided in supplementary material and the experiment conditions
are described in Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the supplemental material with detailed running
instruction.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment settings are detailed in Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Calling GPT-4 Api is expensive. Due to funding constraints, we use the greedy
sampling method (temperature = 0, do_sample = False) to generate the output. Each time,
the generated results will be the same. This will avoid the potential inaccurate caused by the
randomness.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: It is provided in the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We discussed the positive societal impacts. We did not find the negative
societal impacts of this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited their work in our paper.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: we did not provide new models or new datasets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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