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Abstract
We consider the problem of estimating the con-
ditional probability distribution of missing val-
ues given the observed ones. We propose an ap-
proach, which combines the flexibility of deep
neural networks with the simplicity of Gaussian
mixture models (GMMs). Given an incomplete
data point, our neural network returns the parame-
ters of Gaussian distribution (in the form of Factor
Analyzers model) representing the corresponding
conditional density. We experimentally verify that
our model provides better log-likelihood than con-
ditional GMM trained in a typical way. Moreover,
imputation obtained by replacing missing values
using the mean vector of our model looks visually
plausible.

1. Introduction
Estimating missing values from incomplete observations
is one of the basic problems in machine learning and data
analysis (Goodfellow et al., 2016). A typical approach relies
on replacing missing values with a single vector based on
available information contained in observed inputs (Jerez
et al., 2010; Van Buuren, 2018). While imputation tech-
niques are frequently used by practitioners, they only give
point estimate instead of a probability distribution. Quan-
tifying the probability distribution of missing values plays
an important role in generative models (Li et al., 2019a),
uncertainty prediction (Ghahramani & Jordan, 1994), rec-
ommender systems (Ma et al., 2018) as well as is useful in
applying classification models to incomplete data (Śmieja
et al., 2018; Williams & Carin, 2005; Dick et al., 2008).

While deep generative models such as VAE, GAN or WAE
(Kingma & Welling, 2014; Goodfellow et al., 2014; Tol-
stikhin et al., 2017) are capable of modeling the distribution
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Figure 1. The idea of the proposed DMFA. Given a missing data
point, our model returns the parameters of conditional Gaussian
density: mean, factor loading matrix (we use 4 latent factors) and
noise matrix for the model of Factor Analyzers, which describes a
distribution of missing data (the area inside the blue square).

of complex high dimensional data, such as images, it may
be difficult to use them to estimate the uncertainty contained
in missing data (Mirza & Osindero, 2014; Sohn et al., 2015).
In the case of VAE, the nonlinear form of decoder makes
the conditional distribution of missing data hard to assess
(Nazabal et al., 2020). By applying a type of Gibbs sam-
pling (Rezende et al., 2014; Mattei & Frellsen, 2018) or
importance sampling (Mattei & Frellsen, 2019), it is at least
possible to generate imputations from this conditional distri-
bution. Similarly, it is challenging to obtain a closed-form
expression for such a conditional distribution in GAN, but
one can design a procedure to sample from it (Yoon et al.,
2018; Li et al., 2019a). It was recently shown that deep flow
models can be trained to represent a conditional density as
a neural network transformation of some prior distribution
(Trippe & Turner, 2018; Li et al., 2019b). Nevertheless,
the constructed density cannot be maximized analytically.
One can only produce samples or attempt to maximize the
corresponding density numerically.

In the case of shallow density models, such Gaussian mix-
ture models (GMMs), we can easily calculate a conditional
density function related to missing values in a closed-form
(Ghahramani & Jordan, 1994; Delalleau et al., 2012) as
well as to maximize it analytically. Moreover, simple Gaus-
sian form of the conditional density function allows us to
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combine conditional GMM with other machine learning
techniques that can process missing data without using any
imputations at preprocessing stage (Śmieja et al., 2018;
2019). Another related line of work has explored autore-
gressive models for conditional data generation or density
estimation (Van den Oord et al., 2016; Papamakarios &
Murray, 2016).

In this paper, we propose DMFA (Deep Mixture of Factor
Analyzers) for estimating the probability density function
of missing values, which combines the features of deep
learning models and GMMs. We construct a neural network,
which takes an incomplete data point and returns the param-
eters of Gaussian density (represented as Factor Analyzers
model) modeling the distribution of missing values, see Fig-
ure 1. Since the proposed network returns an individual
Gaussian density for every missing data point, its expres-
siveness is higher than using GMM with a fixed number of
components. In contrast to classical GMM, which is a type
of generative model that estimates a density of the whole
data, DMFA follows a discriminative approach and directly
maximizes the likelihood function on missing values (Ng
& Jordan, 2002). In consequence, the obtained Gaussian
density has a better quality in the context of missing data
than the conditional distribution computed from GMM (see
experimental section). Nonetheless, our model still provides
an analytical formula for a distribution of missing values,
which is useful in diverse applications, and may be more
attractive than adapting deep generative models to the case
of missing data. We also verified that the imputations ob-
tained by replacing missing values with the mean vector of
returned Gaussian density look visually plausible.

Our work is strictly related with (Bishop, 1994), but instead
of using isotropic covariance matrix and many Gaussian
components for conditional density, we follow (Richardson
& Weiss, 2018) and employ Factor Analyzers model, which
suits better to high dimensional spaces such as images. Our
preliminary work suggests that isotropic covariance is not
able to model dependencies between pixels while the mix-
ture often tends to collapse to a single Gaussian.

2. Density model for missing data
In this section, we introduce DMFA model. First, we recall
basic facts concerning GMM and MFA in high dimensional
data. Next, we show how to compute conditional density
from GMM. Finally, we present the proposed DMFA – a
deep learning model for estimating conditional Gaussian
density on missing values.

Conditional Gaussian mixture model for high dimen-
sional data. GMM is one of the most popular probabilis-
tic models for describing a density of data (McLachlan &

Peel, 2004). A density function of GMM is given by

p(x) =

k∑
i=1

piN(µi,Σi)(x),

where pi > 0 is the weight of i-th Gaussian component
with mean vector µi and covariance matrix Σi (we have∑k

i=1 pi = 1). Given a datasetX ⊂ Rn, GMM is estimated
by minimizing the negative log-likelihood:

l(x) = −
∑
x∈X

log p(x).

While theoretically GMM can be estimated using EM or
SGD, this procedure may fail in the case of high dimen-
sional data, such as images. Observe that for color images
of size 32 × 32, the covariance matrix of a single compo-
nent has 4.7 · 106 free parameters. In training phase, we
need to store and invert these covariance matrices, which is
computationally inefficient and may cause many numerical
problems (Richardson & Weiss, 2018).

It is widely believed that high-dimensional data, such as
images, are embedded in a lower-dimensional manifold and
using full covariance matrix may not be necessary. For this
reason, it is recommended to use the Mixture of Factor An-
alyzers (MFA) (Ghahramani et al., 1996) or Probabilistic
PCA (PPCA) (Tipping & Bishop, 1999), in which every
Gaussian density is spanned on a lower-dimensional sub-
space. In contrast to the typical GMM, the covariance matrix
in MFA is given by

Σ = AAT +D,

where A = An×l is a factor loading matrix, which is com-
posed of l vectors a1, . . . , al ∈ Rn such that l � n, and
D = Dn×n = diag(d) is a diagonal matrix representing
noise1 defined by d ∈ Rn. The set of vectors ai defines a
linear subspace, which spans a Gaussian density N(µ,Σ),
while adding a noise matrix guarantees that Σ is invertible.
The use of MFA drastically reduces the number of parame-
ters in a covariance matrix as well as avoids problems with
inverting large matrices. Recent studies show that MFA
can be effectively estimated from image data and is able
to describe a higher spectrum of data density than GAN
models, see (Richardson & Weiss, 2018) for details.

It is important to note that GMM can not only describe a
density of data, but is also useful for quantifying the uncer-
tainty of missing data. A missing data point is denoted by
x = (xo, xm), where xo represents known values, while xm
describes absent attributes. Given a missing data point x, a
natural question is: what is the distribution of missing values
given the observed ones? In the case of density models, the

1PPCA uses spherical matrix D.
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answer is given by a conditional density (Ghahramani &
Jordan, 1994):

p(xm|xo) =
p(xo, xm)

p(xo)
=

p(x)

p(xo)
.

In contrast to many deep generative models, e.g. GANs or
VAE, the formula for conditional density can be found ana-
lytically for GMM (see (Colquhoun & Hawkes, 1995) for
detailed formula). Note however that in high dimensional
spaces, the conditional Gaussian mixture model reduces nu-
merically to a single Gaussian density. This is caused by the
fact that the tails of Gaussian densities decrease exponen-
tially and, in consequence, a single component dominates
the others (other components simply become irrelevant).

Deep conditional Gaussian density for missing data.
An important advantage of GMM is that the conditional den-
sities can be calculated and maximized analytically, which
may be appealing in the context of missing data. However,
GMM is not trained to estimate a density of missing data
– its objective is the log-likelihood computed on all data
points. In consequence, there are no guarantees that the
resulting conditional density gives optimal log-likelihood
for missing values.

In this paper, we are motivated by typical deep learning mod-
els used for image inpainting (Pathak et al., 2016; Iizuka
et al., 2017; Yu et al., 2018), which are trained to give
the most reliable imputations. The proposed DMFA cre-
ates a Gaussian density, which minimizes the negative log-
likelihood on missing values. More precisely, given a data
point x ∈ Rn, we first generate a random binary mask M
to simulate missing attributes. The pair (x,M) induces a
missing data point (xo, xm). DMFA defines a neural net-
work f , which takes (xo, xm) together with M and returns
the parameters of conditional Gaussian density p(xm|xo).
Following MFA model, we represent covariance matrix us-
ing factor loading matrix A = An×l = (a1, . . . , al), and
the noise matrix D = Dn×n = diag(d). In the case of im-
ages, f simply returns the mean image µ and the covariance
matrix Σ = AAT + D represented by l images spanning
a Gaussian density supplied with the noise image (l + 2
images in total) .

Given the output µ and Σ of the neural network f , we define
a conditional Gaussian density as

p(xm|xo) = N(µm,Σmm),

where µm and Σmm denote the restrictions of µ and Σ to
missing coordinates, see Figure 1 for illustration. Since the
number of missing values can be different for subsequent
data points, f has to output the parameters of n-dimensional
Gaussian density N(µ,Σ). However, N(µ,Σ) does not
need to estimate a density of the whole data. In our case,

Σmm = Am·A
T
m· + Dmm, where Am· denotes the restric-

tion of matrix A = An×l to the rows indexed by m.

DMFA is trained to minimize the negative log-likelihood of
conditional density p(xm|xo) which is given by:

l(xo, xm) = − log p(xm|xo) = − logN(µm,Σmm)(xm).

Observe that the above objective is calculated only on the
parameters of µ,Σ corresponding to missing values (other
entries are not used by the model). This means that f can
theoretically return irrelevant values on coordinates related
to the observed values. The most important thing is that
DMFA directly minimizes the log-likelihood of p(xm|xo)
and thus should provide a better estimate of missing values
than using conditional density obtained by a typical GMM.

Let us highlight that we do not need to specify the number
of mixture components as in the classical GMM. Once the
neural network is fed with a missing data point, it generates
an individual density for this data point. In the case of the
classical mixture model, conditional density is formed by
restricting the most probable Gaussian components (from
the set of mixture components) to missing values. In conse-
quence, our conditional density should be more expressive
than the one obtained from the classical GMM, where the
number of components is fixed.

3. Experiments
In this section, we compare the quality of a density pro-
duced by DMFA with a conditional density obtained from
GMM. We intentionally do not use methods based on deep
generative models (mentioned in the introduction), because
they do not give a closed-form expression for a conditional
density. We consider two typical image datasets: MNIST
(LeCun et al., 1998) and CelebA (Liu et al., 2015) (aligned,
cropped and resized to 32× 32) datasets. The code is avail-
able at Github: https://github.com/mprzewie/
dmfa_inpainting.

DMFA is instantiated using 4 convolutional layers. This is
followed by a dense layer, which produces the final output
vectors (the number of latent dimensions l determining the
covariance matrix equals 4). Our model is trained with a
learning rate 4 · 10−5 for 50 epochs. As a baseline, we use
the implementation of MFA (Richardson & Weiss, 2018)
trained in a classical way2. Following the authors’ code,
the number of components k and latent dimensions l equal:
k = 50, l = 6 for MNIST and k = 300, l = 10 for CelebA.

We examine the imputation constructed by replacing miss-
ing values with the mean vector of corresponding condi-
tional density. For each test image, we drop a square patch,

2The code was taken from https://github.com/
eitanrich/torch-mfa.
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Figure 2. Sample imputation results produced by DMFA and MFA.

which covers 1/4 area of image. Analogical missing re-
gions were generated for training images. Sample results
presented in Figure 2 for MNIST show that MFA produces
sharper imputations than DMFA. However, the results re-
turned by MFA do not always agree with ground-truth (7th
and 9th rows). This is confirmed by verifying the mean-
square error (MSE) of imputations, Table 1. Since DMFA
usually gives images more similar to the ground-truth, it
obtains lower MSE values than MFA. It is also evident
from Table 1 that a density returned by DMFA has sig-
nificantly higher log-likelihood, which means that DMFA
finds a better solution to the underlying problem. In the
case of CelebA, DMFA produces more visually plausible
imputations, which at the same time coincides with ground-
truth. The results obtained by MFA are not satisfactory. The
visual inspection is confirmed by quantitative assessment
presented in Table 1.

In previous experiments, DMFA was trained on the same
sizes of missing regions as they appear in the test set. We
check whether DMFA can deal with estimating conditional
distributions on missing patterns that was not presented in
the training set. For this purpose, we modified a test set and
created missing patterns of the size: 10x15 for MNIST and
12x20 for CelebA. The results presented in Table 2 show
that DMFA still gives better performance that MFA both in
terms of NLL and MSE. However the difference between
these models is smaller than before in the case of CelebA.

Table 1. Negative log-likelihood (NLL) and mean-square error
(MSE) of the most probable imputation obtained by DMFA and
MFA (lower is better).

Dataset Measure MFA DMFA

MNIST NLL 58.10 -244.81
MSE 18.59 12.96

CelebA NLL -882.54 -1222.85
MSE 9.82 7.73

Table 2. Negative log-likelihood (NLL) and mean-square error
(MSE) of the most probable imputation obtained by DMFA and
MFA when the sizes of missing regions were different in training
and test set (test set contains the missing regions of the size: 10x15
for MNIST and 12x20 for CelebA).

Dataset Measure MFA DMFA

MNIST NLL 5.85 -147.29
MSE 12.09 9.04

CelebA NLL -815.60 -885.85
MSE 11.73 10.03

It suggests that creating more diverse missing patterns in
training set could improve the performance on test set in this
case. Note however that MFA does not use missing values
in training and, in consequence, it was supposed to perform
better in this case. Visual comparison is shown in the Figure
3.

4. Conclusion
We proposed a deep learning approach for estimating the
conditional Gaussian density of missing values given the
observed ones. Experiments showed that the obtained den-
sity has significantly lower value of negative log-likelihood
function than conditional GMM trained in a classical way.
Moreover, imputations produced by replacing missing val-
ues with the mean vector of resulting Gaussian look visually
plausible.
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