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Abstract001

Modern speech applications require compact002
embeddings that generalize across both linguis-003
tic and paralinguistic tasks. However, most004
existing embeddings are task-specific and fail005
to transfer effectively across domains. We006
propose wavCSE, a feature-based multi-task007
learning model that produces a fixed-size uni-008
fied speech embedding suitable for both lin-009
guistic and paralinguistic tasks. wavCSE is010
jointly trained on keyword spotting, speaker011
identification, and emotion recognition, achiev-012
ing state-of-the-art performance on all three013
tasks. The resulting unified embedding is then014
evaluated on twelve downstream tasks span-015
ning both linguistic and paralinguistic domains.016
Experimental results show that it outperforms017
strong baselines on nine of the twelve tasks,018
indicating effective generalization across do-019
mains. To streamline embedding generation,020
we introduce a recursive layer selection strat-021
egy to identify the most informative hidden022
layer outputs from the upstream model and023
refine how these selected outputs are aggre-024
gated in the downstream model. These enhance-025
ments reduce memory usage and computational026
cost while improving task performance, mak-027
ing them broadly applicable to self-supervised028
learning-based speech processing models.029

1 Introduction030

Speech is a time-varying signal that conveys multi-031

ple layers of information, including linguistic con-032

tent, speaker identity, emotional state, and other033

paralinguistic attributes (wen Yang et al., 2021).034

To represent raw speech effectively, prior work035

has explored two main strategies: feature engineer-036

ing and representation learning (Latif et al., 2023).037

Feature engineering relies on domain expertise to038

manually design features such as Mel-frequency039

cepstral coefficients (MFCCs), which aim to ex-040

tract relevant acoustic properties from the signal.041

In contrast, representation learning enables models042

to automatically learn informative features from 043

data, which typically leads to better generalization 044

across a variety of speech processing tasks. 045

Speech representation learning has evolved 046

through successive methodological advances. Early 047

approaches relied on clustering and statisti- 048

cal models such as Gaussian Mixture Models 049

(GMMs) (Gauvain and Lee, 1994) and Hidden 050

Markov Models (HMMs) (Bahl et al., 1986) to 051

capture low-level acoustic patterns. These were fol- 052

lowed by supervised deep neural networks, which 053

enabled more expressive representations but re- 054

quired large amounts of labeled data. More re- 055

cently, self-supervised learning (SSL) has become 056

the dominant paradigm, with models such as 057

wav2vec (Baevski et al., 2020), HuBERT (Hsu 058

et al., 2021), WavLM (Chen et al., 2022), and 059

Whisper (Radford et al., 2023) pre-trained on large- 060

scale unlabeled speech corpora. Representations 061

extracted from these SSL models have achieved 062

state-of-the-art (SOTA) performance on a wide 063

range of downstream tasks (wen Yang et al., 2021; 064

Chen et al., 2022), demonstrating strong general- 065

ization and the ability to capture diverse speech 066

characteristics. 067

The representations discussed so far are typically 068

variable-length sequences of vectors that scale with 069

the duration of the speech signal (Baevski et al., 070

2020). Each vector corresponds to a short, fixed- 071

duration time window, commonly referred to as 072

a frame, and captures low-level acoustic features 073

specific to that frame. In contrast, a speech em- 074

bedding is a higher-level representation derived 075

by aggregating frame-level representations using 076

neural networks, resulting in a single fixed-size 077

vector that summarizes the entire speech signal, 078

regardless of its duration (Shi et al., 2020). This 079

compact format enables efficient storage on edge 080

devices and real-time transmission of speech of 081

any length. However, converting variable-length 082

sequences into fixed-size vectors often leads to in- 083
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formation loss (Porjazovski et al., 2024), posing084

a key challenge in designing embeddings that pre-085

serve the full richness of the original speech signal.086

Most existing speech embeddings are optimized087

for specific tasks and do not generalize well across088

different types of downstream tasks. For exam-089

ple, speaker embeddings such as i-vector (Dehak090

et al., 2011), d-vector (Variani et al., 2014), and091

x-vector (Snyder et al., 2018) are primarily de-092

signed for speaker verification (SV). Similarly, task-093

specific embeddings have been proposed for lin-094

guistic content (Haque et al., 2019). However, the095

development of a fixed-size unified speech embed-096

ding that supports both linguistic and paralinguistic097

tasks remains relatively underexplored. This limita-098

tion is increasingly problematic for modern speech099

applications such as virtual assistants, which de-100

mand models capable of performing multiple tasks101

simultaneously. For instance, keyword spotting102

(KS) enables wake-word detection, speaker identi-103

fication (SID) enables personalization, and emotion104

recognition (ER) enhances user interaction. These105

use cases highlight the need for a compact, fixed-106

size speech embedding that generalizes well across107

diverse downstream tasks.108

In this paper, we propose a feature-based multi-109

task learning (MTL) model called wavCSE, de-110

signed to generate a fixed-size speech embedding111

that generalizes across diverse tasks. Our approach112

consists of two stages. In the first stage, we jointly113

train wavCSE on three classification tasks: KS,114

SID, and ER. These tasks are selected to ensure115

that the resulting embedding captures linguistic,116

speaker-related, and emotional information. Exper-117

imental results show that wavCSE achieves strong118

performance across all three tasks. In the sec-119

ond stage, we extract a single fixed-size embed-120

ding from the trained model and evaluate it on121

twelve downstream tasks. These include KS, SID,122

and ER applied to new datasets, as well as addi-123

tional tasks spanning both linguistic and paralin-124

guistic domains. Our unified embedding outper-125

forms strong task-specific baselines on nine out of126

twelve tasks, demonstrating its effectiveness as a127

general-purpose speech embedding.128

Beyond deriving a unified speech embedding,129

we introduce two architectural improvements as130

part of the wavCSE design that are broadly appli-131

cable to any SSL-based speech processing pipeline.132

First, we propose a recursive layer selection strat-133

egy to identify the most informative transformer134

encoder layers from the pre-trained WavLM Large135

model. Unlike prior approaches that utilize all 136

25 layers (Chen et al., 2022), our method selects 137

only 16, reducing upstream model memory usage 138

by 24% while improving downstream task perfor- 139

mance. Second, we replace the commonly used 140

weighted average pooling (wen Yang et al., 2021) 141

with learned-norm pooling to aggregate the se- 142

lected transformer encoder layer outputs in the 143

downstream model. This pooling mechanism dy- 144

namically adjusts each layer’s output contribution 145

based on its norm, enabling better capture of task- 146

relevant information. Together, these enhance- 147

ments reduce computational cost and improve accu- 148

racy, enhancing both the efficiency and scalability 149

of SSL-based speech models. 150

2 Methodology 151

We propose wavCSE, a model designed to de- 152

rive a unified speech embedding. As shown in 153

Figure 1, its architecture builds on the SUPERB 154

benchmark (wen Yang et al., 2021), which con- 155

sists of two components: an upstream model and 156

a downstream model. The upstream model is a 157

self-supervised learning (SSL) model that extracts 158

representations from raw speech signal, while the 159

downstream model performs task-specific learning 160

based on these representations. wavCSE adopts 161

this structure and employs the pre-trained WavLM 162

Large (Chen et al., 2022) as the upstream model, 163

selected for its strong performance and ability to 164

capture both linguistic and paralinguistic informa- 165

tion. In contrast to SUPERB, which optimizes for 166

task-specific outputs, wavCSE is designed to pro- 167

duce a single embedding that generalizes across 168

tasks. To this end, we introduce three key modifi- 169

cations to the original SUPERB architecture. 170

2.1 Recursive Layer Selection 171

The first architectural modification alters how trans- 172

former encoder layer outputs from the upstream 173

model are used in the downstream model. In 174

the SUPERB architecture, all transformer encoder 175

layer outputs, along with the input to the first trans- 176

former encoder layer, are used as speech repre- 177

sentations for downstream tasks. Since wavCSE 178

employs WavLM Large, which generates 25 hid- 179

den layer outputs, using all of them results in high- 180

dimensional speech representations and increases 181

computational complexity in the multi-task learn- 182

ing (MTL) setup in the downstream model. 183

To address this, wavCSE introduces a strategy 184
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Figure 1: Overview of the proposed wavCSE architecture for deriving a unified speech embedding. The process
begins by feeding input audio into the pre-trained WavLM-Large model (Chen et al., 2022), which outputs 25
frame-level hidden layer outputs. A subset of informative layer outputs from these 25 is selected using the proposed
layer selection strategy. The selected layer outputs are then concatenated along the layer axis and aggregated using
temporal pooling. The pooled output is passed through a fully connected layer, followed by layer-wise pooling, and
then another fully connected layer to produce the final unified speech embedding. During wavCSE training, the
unified embedding is optimized for three tasks: keyword spotting (KS), speaker identification (SID), and emotion
recognition (ER). After training, the resulting embedding can be used as input to any downstream task model.

called recursive layer selection, inspired by Recur-185

sive Feature Elimination (RFE) (Zhang and Liu,186

2007). We begin by applying weighted average187

pooling (WAP) (Kalantidis et al., 2016) over all188

25 layer outputs, using the learned weights to as-189

sess the relative importance of each output. The190

least informative layer output, as determined by191

its weight, is removed, and the model is retrained.192

This process continues recursively, removing one193

layer output at a time, until only a single output194

remains. Among all intermediate subsets of layer195

outputs generated during this process, we select196

the one that achieves the highest average accuracy197

across the three training tasks.198

2.2 Refined Layer-wise Pooling Strategy199

The second architectural modification addresses200

how the selected layer outputs are aggregated in201

the downstream model. While the SUPERB frame-202

work applies mean pooling over time and weighted203

average pooling across layers, wavCSE retains204

mean pooling for temporal aggregation, as the tem-205

poral structure of the outputs remains unchanged 206

after selection. However, we re-evaluate the layer- 207

wise pooling strategy to better accommodate the 208

reduced number of selected layers. Specifically, we 209

compare ten layer-wise pooling methods described 210

in SUPERB-EP (Sritharan et al., 2025) and adopt 211

the one that achieves the highest average accuracy 212

across the three training tasks as the final pooling 213

mechanism for layer-wise aggregation. 214

2.3 Feature-based Multi-task Learning 215

The third architectural modification redesigns the 216

downstream model to support the learning of a uni- 217

fied speech embedding. While SUPERB adopts 218

separate single-task models, wavCSE employs a 219

feature-based MTL framework (Zhang and Yang, 220

2022) to jointly train multiple tasks using shared 221

features. The architecture includes shared layers 222

followed by task-specific output layers, allowing 223

the model to learn generalizable features while pre- 224

serving task-specific distinctions. During training, 225

we compute individual losses for each task and 226
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Downstream Task Dataset Language
Keyword Spotting (KS) Football Keyword (Rostami et al., 2022) fa
Language Identification (SLI) VoxForge (MacLean, 2018) de, en, es, fr, it, ru
Speaker Identification (SID) Kathbath (Javed et al., 2023) bn, gu, hi, kn, ml, mr

or, pa, sa, ta, te, ur
Speaker Verification (SV) CNCeleb v1 (Fan et al., 2020) zh
Gender Recognition (SGR) TIMIT (Garofolo et al., 1993) en
Age Recognition (SAR) TIMIT (Garofolo et al., 1993) en
Dialect Recognition (SDR) TIMIT (Garofolo et al., 1993) en
Emotion Recognition (ER) AESDD (Vryzas et al., 2018) el
Valence Recognition (VR) IEMOCAP (Busso et al., 2008) en
Activation Recognition (AR) IEMOCAP (Busso et al., 2008) en
Dominance Recognition (DR) IEMOCAP (Busso et al., 2008) en
Intent Classification (IC) Fluent Speech Commands (Lugosch et al., 2019) en

Table 1: Downstream tasks, datasets, and corresponding languages used in Phase 2 experiments.

combine them using the equal-weighting loss bal-227

ancing strategy (Lin and Zhang, 2023), where all228

task losses contribute equally to the total loss. This229

approach is simple, effective, and commonly used230

in feature-based MTL models.231

3 Experimental Setup232

We conduct our experiments in two phases. Phase233

1 focuses on finalizing the wavCSE model archi-234

tecture, as detailed in Section 2. In Phase 2, we ex-235

tract a unified speech embedding from the trained236

wavCSE model and evaluate its generalizability237

across a broad range of downstream tasks. All238

datasets are used with their standard training and239

test splits in both phases to ensure fair and consis-240

tent evaluation. All experiments are implemented241

in PyTorch and executed on an NVIDIA Quadro242

RTX 6000 GPU with 30 GB of memory. For opti-243

mization,1 we employ grid search to tune the batch244

size and learning rate, and apply Bayesian opti-245

mization (Wu et al., 2019) to determine the optimal246

layer dimensions and regularization parameters.247

Multi-task learning (MTL) models are typically248

trained on datasets that are jointly annotated for all249

target tasks (Zhang and Yang, 2022). However, to250

the best of our knowledge, no single dataset exists251

that supports all the tasks addressed in this work.252

Following the approach of Tang et al. (2017), we253

construct a composite MTL dataset in Phase 1 by254

1Experimental hyperparameters are as follows. For
wavCSE, the two fully connected layers had output dimen-
sions of 512 (FC1) and 2000 (FC2). We used a batch size of
2048 during Phase 1 and 64 during Phase 2. Regularization
was applied in both phases with L1 λ = 1 × 10−7 and L2
λ = 1× 10−5.

merging task-specific datasets. Specifically, we use 255

Google Speech Commands v1.0 (Warden, 2018) 256

for KS, VoxCeleb v1 (Nagrani et al., 2017) for SID, 257

and IEMOCAP (Busso et al., 2008) for ER. As 258

all three tasks are classification problems, we train 259

wavCSE using cross-entropy loss for each task and 260

use accuracy as the evaluation metric. 261

In Phase 2, we evaluate the generalizability of 262

the learned speech embedding across 12 down- 263

stream tasks, as listed in Table 1. These include 264

seven classification tasks (KS, SLI, SID, SGR, 265

SDR, ER, and IC), four regression tasks (SAR, 266

VR, AR, and DR), and one verification task (SV). 267

Each classification task is modeled using a single- 268

layer neural network, and performance is reported 269

using accuracy. For regression, the affective dimen- 270

sions (VR, AR, DR) are jointly modeled using a 271

single-layer neural network and evaluated using the 272

Concordance Correlation Coefficient (CCC), while 273

SAR is evaluated separately using Mean Absolute 274

Error (MAE). SV is performed using Probabilistic 275

Linear Discriminant Analysis (PLDA), with perfor- 276

mance measured by Equal Error Rate (EER). 277

4 Results and Discussion 278

In the SUPERB architecture (wen Yang et al., 279

2021), all 25 hidden layer outputs from the up- 280

stream model are aggregated using weighted aver- 281

age pooling (WAP). We adopt the same approach in 282

our initial wavCSE setup and examine the distribu- 283

tion of learned importance weights across these 284

25 outputs from WavLM Large. As shown in 285

Figure 2, lower-layer outputs consistently receive 286

higher weights than upper layers. This suggests 287
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Figure 2: Layer-wise importance weights assigned by
weighted average pooling in the initial wavCSE model.
The x-axis denotes encoder layers (0 to 24) of WavLM-
Large, and the y-axis shows the learned weight for each
layer. Layer 0 represents the input to the first trans-
former encoder, while the others correspond to the out-
puts of the respective encoder layers.

that the lower layers contribute more effectively to288

downstream performance, indicating a preference289

for low-level acoustic information over the more290

abstract patterns captured in deeper layers. Mo-291

tivated by this observation, we aim to eliminate292

less informative layers. However, defining a fixed293

threshold for removal is nontrivial due to potential294

interdependencies among layers.295

To address this, we introduce a recursive layer296

selection strategy inspired by Recursive Feature297

Elimination (RFE) (Zhang and Liu, 2007). In each298

round, we remove the hidden layer output with the299

lowest learned weight, retrain the model, and repeat300

the process. The highest average accuracy across301

KS, SID, and ER is achieved in the 10th round, af-302

ter eliminating nine layers. The selected subset at303

this point includes layers 0 through 14 and layer 17.304

These results confirm our earlier observation that305

higher-layer outputs contribute less and show that306

only 16 out of the original 25 hidden layer outputs307

from WavLM Large are sufficient to support down-308

stream performance. This finding also implies that309

loading only up to the 17th transformer encoder310

layer is sufficient when using WavLM Large as the311

upstream model. This reduces the effective size of312

the pre-trained WavLM Large model from 315M to313

240M parameters and lowers memory usage from314

1.175 GB to 0.894 GB.315

We further investigated whether WAP remained316

the most effective method for aggregating the se-317

lected layer outputs or if alternative pooling strate-318

gies could offer improved performance. To this319

end, we evaluated ten pooling techniques, includ-320

Pooling KS SID ER
Weighted Average 98.32 97.08 77.58
Max 98.43 96.59 76.85
Mean 98.23 97.10 75.95
Mixed 98.62 96.91 77.94
Gated 98.55 97.44 77.03
Learned-Norm 98.81 97.59 79.39
Log-Sum-Exp 98.52 97.89 77.22
Smooth-Maximum 98.36 97.18 77.94
Auto 98.45 97.41 78.12
Self-Attention 98.55 96.99 76.13

Table 2: Comparison of different layer-wise pooling
strategies in wavCSE, with measured performance on
keyword spotting (KS), speaker identification (SID),
and emotion recognition (ER).

Model KS SID ER
Vygon et al. (2021) 98.55 – –
Hu et al. (2023) – 95.65 –
Peng et al. (2021) – – 79.10
wav2vec 2.0 Large 96.66 86.14 65.64
HuBERT Large 95.29 90.33 67.62
WavLM Large 97.86 95.49 70.62
wavCSE 98.81 97.59 79.39

Table 3: Performance comparison of the proposed
wavCSE model against task-specific models and SSL-
based baselines on keyword spotting (KS), speaker iden-
tification (SID), and emotion recognition (ER).

ing WAP, as described as layer-wise pooling meth- 321

ods in SUPERB-EP (Sritharan et al., 2025), and 322

measured accuracy on KS, SID, and ER. As shown 323

in Table 2, learned-norm pooling (LNP) achieved 324

the highest average accuracy across the three tasks, 325

outperforming all other methods on KS and ER, 326

and ranking second on SID. Unlike WAP, which 327

performs a linear combination of the selected layer 328

outputs, LNP applies a non-linear transformation 329

that adapts to their statistical distribution. These re- 330

sults suggest that wavCSE benefits from non-linear 331

pooling strategies when aggregating information 332

across layers. 333

Based on the experiments discussed thus far, we 334

finalize the wavCSE architecture and now evaluate 335

the finalized model against state-of-the-art (SOTA) 336

baselines on the three tasks used for model devel- 337

opment. These baselines include top-performing 338

individual models for KS, SID, and ER (Vygon and 339

Mikhaylovskiy, 2021; Hu et al., 2023; Peng et al., 340

2021), as well as self-supervised learning (SSL) 341
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Model KS
ResNet 95.88
EfficientNet 95.83
wavCSE 96.46

Model SLI
1D ConvNet 93.70
2D ConvNet 94.30
wavCSE 99.23

Model SID
IndicWav2Vec 79.26
Sritharan et al. 97.96
wavCSE 97.33

Model SV
i-vector 15.00
x-vector 11.99
wavCSE 16.87

Model SGR
MLP 98.00
LSTM 99.00
wavCSE 99.84

Model SAR
MLP 6.66
LSTM 5.97
wavCSE 3.79

Model SDR
MLP 16.00
LSTM 15.00
wavCSE 51.27

Model ER
data2vec 2.0 83.07
emotion2vec 84.85
wavCSE 89.26

Model VR
LSTM 0.32
CNN1D 0.35
wavCSE 0.67

Model AR
LSTM 0.67
CNN1D 0.65
wavCSE 0.68

Model DR
LSTM 0.53
CNN1D 0.53
wavCSE 0.59

Model IC
HuBERT Large 98.76
WavLM Large 99.31
wavCSE 71.00

Table 4: Comparison of unified speech embedding from wavCSE with task-specific baselines across 12 downstream
tasks. Metrics and datasets are defined in Section 3.

models such as wav2vec 2.0 (Baevski et al., 2020),342

HuBERT (Hsu et al., 2021), and WavLM (Chen343

et al., 2022). As shown in Table 3, wavCSE out-344

performs all baselines across the three tasks, sur-345

passing both task-specific models and SSL-based346

models. These results validate the effectiveness of347

the proposed modifications and confirm that the348

finalized wavCSE model is competitive with SOTA349

approaches.350

We next evaluate the unified speech embedding351

derived from the trained wavCSE model by ex-352

tracting the output of the final shared layer, fol-353

lowing Shi et al. (2020). Its effectiveness is as-354

sessed across twelve downstream tasks, each bench-355

marked against its corresponding SOTA baseline:356

KS (Rostami et al., 2022), SLU (Sarthak et al.,357

2019), SID (Sritharan and Thayasivam, 2025),358

SV (Fan et al., 2020), SGR, SAR, SDR (Wang359

and Sun, 2024), ER (Ma et al., 2024), VR, AR,360

DR (Messaoudi et al., 2024), and IC (Chen et al.,361

2022). To assess cross-lingual generalization, KS,362

SID, and ER, which were used during model devel-363

opment, are re-evaluated on non-English datasets.364

For the remaining nine tasks newly added for em-365

bedding evaluation, we select standard English366

datasets, with two exceptions: SV is evaluated on a367

Chinese dataset, and SLI on a multilingual dataset.368

Table 4 shows that wavCSE outperforms the369

SOTA baselines on nine out of twelve tasks, demon-370

strating strong generalizability across a diverse set371

of downstream settings. The largest gains are ob-372

served on SDR and VR, with absolute improve-373

ments of +36.27 (accuracy) and +0.32 (CCC) re-374

spectively, likely attributable to the diversity of ac- 375

cents and emotional expressiveness in the datasets 376

used during wavCSE development. For linguis- 377

tic tasks, wavCSE improves over the best baseline 378

by +0.58 (accuracy) on KS and +4.93 (accuracy) 379

on SLI. Among paralinguistic tasks, the model 380

achieves +0.84 (accuracy) on SGR, +1.18 (abso- 381

lute error reduction) on SAR, +4.41 (accuracy) on 382

ER, +0.01 (CCC) on AR, and +0.06 (CCC) on 383

DR. Performance gains across these classification 384

and regression tasks demonstrate wavCSE’s gen- 385

eralizability over both linguistic and paralinguistic 386

domains. 387

Among the three tasks where wavCSE does not 388

achieve the top performance, SID falls marginally 389

short, differing only in the first decimal place 390

from the SOTA model. The baseline uses an 391

upstream model trained on a multilingual cor- 392

pus that includes low-resource Indian languages, 393

while wavCSE is built on WavLM Large, pre- 394

trained solely on English data. For SV, the per- 395

formance suggests a lack of fine-grained speaker- 396

discriminative cues, despite strong results on re- 397

lated speaker profiling tasks such as SGR, SAR, 398

and SDR. This indicates that SV may rely on 399

speaker traits beyond those captured by wavCSE. 400

The largest performance gap is seen in IC, where 401

wavCSE achieves only about 70% of the SOTA 402

score. While linguistic tasks like KS and SLI are 403

handled well, IC likely demands deeper seman- 404

tic abstraction, which is not yet encoded by the 405

current embedding. This highlights the need to in- 406

corporate semantically oriented tasks into wavCSE 407
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development to improve performance on complex408

comprehension-based objectives.409

5 Conclusion and Future Work410

This paper presented wavCSE, a feature-based411

multi-task learning model built on WavLM Large,412

designed to derive a fixed-size unified speech em-413

bedding that supports both linguistic and paralin-414

guistic tasks. The model was jointly trained on415

keyword spotting, speaker identification, and emo-416

tion recognition to capture a wide range of speech417

characteristics in the embedding, achieving state-418

of-the-art performance across all three tasks. After419

training, the unified embedding was extracted and420

evaluated on twelve downstream tasks spanning421

both linguistic and paralinguistic domains, using422

datasets from twenty-one languages across high-423

resource and low-resource scenarios. The embed-424

ding outperformed strong task-specific baselines on425

nine tasks and demonstrated robust performance on426

linguistic and emotion-related evaluations. While427

performance was slightly lower on certain speaker-428

related and semantically complex tasks, the results429

confirm the effectiveness and generalizability of430

the embedding extracted from the proposed model.431

In addition to the unified embedding, we in-432

troduced two architectural enhancements applica-433

ble to self-supervised learning-based speech mod-434

els. First, we proposed a recursive layer selection435

strategy to reduce the number of transformer en-436

coder outputs used from the pre-trained WavLM437

Large model, resulting in a more compact and effi-438

cient upstream configuration. Second, we replaced439

weighted average pooling with learned-norm pool-440

ing to aggregate the selected outputs, which consis-441

tently improved task performance across training442

objectives. For future work, we plan to enhance the443

embedding’s ability to capture semantic content,444

aiming for improved results on tasks such as intent445

classification and slot filling. We also intend to446

extend its applicability beyond classification, re-447

gression, and verification to generative tasks such448

as speech synthesis and automatic speech recogni-449

tion.450

Limitations451

This work focuses on developing a unified speech452

embedding that supports classification, regression,453

and verification tasks across both linguistic and par-454

alinguistic domains. While the embedding demon-455

strates strong performance in these areas, it has456

not been extended to generative applications such 457

as speech synthesis or automatic speech recogni- 458

tion, which we leave for future work. Additionally, 459

we intentionally avoid data augmentation to ensure 460

that the model learns embeddings directly from raw 461

audio, consistent with our goal of generalizable 462

learning without task-specific heuristics. Finally, 463

we adopt WavLM Large as the upstream model, 464

which was pre-trained solely on English. Despite 465

this, our unified embedding demonstrates strong 466

performance across twenty-one languages, includ- 467

ing low-resource settings, as shown in Section 4. 468
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