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Abstract

Modern speech applications require compact
embeddings that generalize across both linguis-
tic and paralinguistic tasks. However, most
existing embeddings are task-specific and fail
to transfer effectively across domains. We
propose wavCSE, a feature-based multi-task
learning model that produces a fixed-size uni-
fied speech embedding suitable for both lin-
guistic and paralinguistic tasks. wavCSE is
jointly trained on keyword spotting, speaker
identification, and emotion recognition, achiev-
ing state-of-the-art performance on all three
tasks. The resulting unified embedding is then
evaluated on twelve downstream tasks span-
ning both linguistic and paralinguistic domains.
Experimental results show that it outperforms
strong baselines on nine of the twelve tasks,
indicating effective generalization across do-
mains. To streamline embedding generation,
we introduce a recursive layer selection strat-
egy to identify the most informative hidden
layer outputs from the upstream model and
refine how these selected outputs are aggre-
gated in the downstream model. These enhance-
ments reduce memory usage and computational
cost while improving task performance, mak-
ing them broadly applicable to self-supervised
learning-based speech processing models.

1 Introduction

Speech is a time-varying signal that conveys multi-
ple layers of information, including linguistic con-
tent, speaker identity, emotional state, and other
paralinguistic attributes (wen Yang et al., 2021).
To represent raw speech effectively, prior work
has explored two main strategies: feature engineer-
ing and representation learning (Latif et al., 2023).
Feature engineering relies on domain expertise to
manually design features such as Mel-frequency
cepstral coefficients (MFCCs), which aim to ex-
tract relevant acoustic properties from the signal.
In contrast, representation learning enables models

to automatically learn informative features from
data, which typically leads to better generalization
across a variety of speech processing tasks.

Speech representation learning has evolved
through successive methodological advances. Early
approaches relied on clustering and statisti-
cal models such as Gaussian Mixture Models
(GMMs) (Gauvain and Lee, 1994) and Hidden
Markov Models (HMMs) (Bahl et al., 1986) to
capture low-level acoustic patterns. These were fol-
lowed by supervised deep neural networks, which
enabled more expressive representations but re-
quired large amounts of labeled data. More re-
cently, self-supervised learning (SSL) has become
the dominant paradigm, with models such as
wav2vec (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), WavLM (Chen et al., 2022), and
Whisper (Radford et al., 2023) pre-trained on large-
scale unlabeled speech corpora. Representations
extracted from these SSL models have achieved
state-of-the-art (SOTA) performance on a wide
range of downstream tasks (wen Yang et al., 2021;
Chen et al., 2022), demonstrating strong general-
ization and the ability to capture diverse speech
characteristics.

The representations discussed so far are typically
variable-length sequences of vectors that scale with
the duration of the speech signal (Baevski et al.,
2020). Each vector corresponds to a short, fixed-
duration time window, commonly referred to as
a frame, and captures low-level acoustic features
specific to that frame. In contrast, a speech em-
bedding is a higher-level representation derived
by aggregating frame-level representations using
neural networks, resulting in a single fixed-size
vector that summarizes the entire speech signal,
regardless of its duration (Shi et al., 2020). This
compact format enables efficient storage on edge
devices and real-time transmission of speech of
any length. However, converting variable-length
sequences into fixed-size vectors often leads to in-



formation loss (Porjazovski et al., 2024), posing
a key challenge in designing embeddings that pre-
serve the full richness of the original speech signal.

Most existing speech embeddings are optimized
for specific tasks and do not generalize well across
different types of downstream tasks. For exam-
ple, speaker embeddings such as i-vector (Dehak
et al., 2011), d-vector (Variani et al., 2014), and
x-vector (Snyder et al., 2018) are primarily de-
signed for speaker verification (SV). Similarly, task-
specific embeddings have been proposed for lin-
guistic content (Haque et al., 2019). However, the
development of a fixed-size unified speech embed-
ding that supports both linguistic and paralinguistic
tasks remains relatively underexplored. This limita-
tion is increasingly problematic for modern speech
applications such as virtual assistants, which de-
mand models capable of performing multiple tasks
simultaneously. For instance, keyword spotting
(KS) enables wake-word detection, speaker identi-
fication (SID) enables personalization, and emotion
recognition (ER) enhances user interaction. These
use cases highlight the need for a compact, fixed-
size speech embedding that generalizes well across
diverse downstream tasks.

In this paper, we propose a feature-based multi-
task learning (MTL) model called wavCSE, de-
signed to generate a fixed-size speech embedding
that generalizes across diverse tasks. Our approach
consists of two stages. In the first stage, we jointly
train wavCSE on three classification tasks: KS,
SID, and ER. These tasks are selected to ensure
that the resulting embedding captures linguistic,
speaker-related, and emotional information. Exper-
imental results show that wavCSE achieves strong
performance across all three tasks. In the sec-
ond stage, we extract a single fixed-size embed-
ding from the trained model and evaluate it on
twelve downstream tasks. These include KS, SID,
and ER applied to new datasets, as well as addi-
tional tasks spanning both linguistic and paralin-
guistic domains. Our unified embedding outper-
forms strong task-specific baselines on nine out of
twelve tasks, demonstrating its effectiveness as a
general-purpose speech embedding.

Beyond deriving a unified speech embedding,
we introduce two architectural improvements as
part of the wavCSE design that are broadly appli-
cable to any SSL-based speech processing pipeline.
First, we propose a recursive layer selection strat-
egy to identify the most informative transformer
encoder layers from the pre-trained WavLM Large

model. Unlike prior approaches that utilize all
25 layers (Chen et al., 2022), our method selects
only 16, reducing upstream model memory usage
by 24% while improving downstream task perfor-
mance. Second, we replace the commonly used
weighted average pooling (wen Yang et al., 2021)
with learned-norm pooling to aggregate the se-
lected transformer encoder layer outputs in the
downstream model. This pooling mechanism dy-
namically adjusts each layer’s output contribution
based on its norm, enabling better capture of task-
relevant information. Together, these enhance-
ments reduce computational cost and improve accu-
racy, enhancing both the efficiency and scalability
of SSL-based speech models.

2 Methodology

We propose wavCSE, a model designed to de-
rive a unified speech embedding. As shown in
Figure 1, its architecture builds on the SUPERB
benchmark (wen Yang et al., 2021), which con-
sists of two components: an upstream model and
a downstream model. The upstream model is a
self-supervised learning (SSL) model that extracts
representations from raw speech signal, while the
downstream model performs task-specific learning
based on these representations. wavCSE adopts
this structure and employs the pre-trained WavLM
Large (Chen et al., 2022) as the upstream model,
selected for its strong performance and ability to
capture both linguistic and paralinguistic informa-
tion. In contrast to SUPERB, which optimizes for
task-specific outputs, wavCSE is designed to pro-
duce a single embedding that generalizes across
tasks. To this end, we introduce three key modifi-
cations to the original SUPERB architecture.

2.1 Recursive Layer Selection

The first architectural modification alters how trans-
former encoder layer outputs from the upstream
model are used in the downstream model. In
the SUPERB architecture, all transformer encoder
layer outputs, along with the input to the first trans-
former encoder layer, are used as speech repre-
sentations for downstream tasks. Since wavCSE
employs WavLM Large, which generates 25 hid-
den layer outputs, using all of them results in high-
dimensional speech representations and increases
computational complexity in the multi-task learn-
ing (MTL) setup in the downstream model.

To address this, wavCSE introduces a strategy
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Figure 1: Overview of the proposed wavCSE architecture for deriving a unified speech embedding. The process
begins by feeding input audio into the pre-trained WavLM-Large model (Chen et al., 2022), which outputs 25
frame-level hidden layer outputs. A subset of informative layer outputs from these 25 is selected using the proposed
layer selection strategy. The selected layer outputs are then concatenated along the layer axis and aggregated using
temporal pooling. The pooled output is passed through a fully connected layer, followed by layer-wise pooling, and
then another fully connected layer to produce the final unified speech embedding. During wavCSE training, the
unified embedding is optimized for three tasks: keyword spotting (KS), speaker identification (SID), and emotion
recognition (ER). After training, the resulting embedding can be used as input to any downstream task model.

called recursive layer selection, inspired by Recur-
sive Feature Elimination (RFE) (Zhang and Liu,
2007). We begin by applying weighted average
pooling (WAP) (Kalantidis et al., 2016) over all
25 layer outputs, using the learned weights to as-
sess the relative importance of each output. The
least informative layer output, as determined by
its weight, is removed, and the model is retrained.
This process continues recursively, removing one
layer output at a time, until only a single output
remains. Among all intermediate subsets of layer
outputs generated during this process, we select
the one that achieves the highest average accuracy
across the three training tasks.

2.2 Refined Layer-wise Pooling Strategy

The second architectural modification addresses
how the selected layer outputs are aggregated in
the downstream model. While the SUPERB frame-
work applies mean pooling over time and weighted
average pooling across layers, wavCSE retains
mean pooling for temporal aggregation, as the tem-

poral structure of the outputs remains unchanged
after selection. However, we re-evaluate the layer-
wise pooling strategy to better accommodate the
reduced number of selected layers. Specifically, we
compare ten layer-wise pooling methods described
in SUPERB-EP (Sritharan et al., 2025) and adopt
the one that achieves the highest average accuracy
across the three training tasks as the final pooling
mechanism for layer-wise aggregation.

2.3 Feature-based Multi-task Learning

The third architectural modification redesigns the
downstream model to support the learning of a uni-
fied speech embedding. While SUPERB adopts
separate single-task models, wavCSE employs a
feature-based MTL framework (Zhang and Yang,
2022) to jointly train multiple tasks using shared
features. The architecture includes shared layers
followed by task-specific output layers, allowing
the model to learn generalizable features while pre-
serving task-specific distinctions. During training,
we compute individual losses for each task and



Downstream Task

Dataset

Language

Keyword Spotting (KS)
Language Identification (SLI)
Speaker Identification (SID)

Speaker Verification (SV)
Gender Recognition (SGR)
Age Recognition (SAR)
Dialect Recognition (SDR)
Emotion Recognition (ER)
Valence Recognition (VR)
Activation Recognition (AR)
Dominance Recognition (DR)
Intent Classification (IC)

Football Keyword (Rostami et al., 2022)
VoxForge (MacLean, 2018)
Kathbath (Javed et al., 2023)

CNCeleb v1 (Fan et al., 2020)

TIMIT (Garofolo et al., 1993)

TIMIT (Garofolo et al., 1993)

TIMIT (Garofolo et al., 1993)

AESDD (Vryzas et al., 2018)
IEMOCAP (Busso et al., 2008)
IEMOCAP (Busso et al., 2008)
IEMOCAP (Busso et al., 2008)

Fluent Speech Commands (Lugosch et al., 2019)

fa

de, en, es, fr, it, ru
bn, gu, hi, kn, ml, mr

or, pa, sa, ta, te, ur

zh

en

en

en

el

en

en

en

en

Table 1: Downstream tasks, datasets, and corresponding languages used in Phase 2 experiments.

combine them using the equal-weighting loss bal-
ancing strategy (Lin and Zhang, 2023), where all
task losses contribute equally to the total loss. This
approach is simple, effective, and commonly used
in feature-based MTL models.

3 Experimental Setup

We conduct our experiments in two phases. Phase
1 focuses on finalizing the wavCSE model archi-
tecture, as detailed in Section 2. In Phase 2, we ex-
tract a unified speech embedding from the trained
wavCSE model and evaluate its generalizability
across a broad range of downstream tasks. All
datasets are used with their standard training and
test splits in both phases to ensure fair and consis-
tent evaluation. All experiments are implemented
in PyTorch and executed on an NVIDIA Quadro
RTX 6000 GPU with 30 GB of memory. For opti-
mization,! we employ grid search to tune the batch
size and learning rate, and apply Bayesian opti-
mization (Wu et al., 2019) to determine the optimal
layer dimensions and regularization parameters.
Multi-task learning (MTL) models are typically
trained on datasets that are jointly annotated for all
target tasks (Zhang and Yang, 2022). However, to
the best of our knowledge, no single dataset exists
that supports all the tasks addressed in this work.
Following the approach of Tang et al. (2017), we
construct a composite MTL dataset in Phase 1 by

"Experimental hyperparameters are as follows. For
wavCSE, the two fully connected layers had output dimen-
sions of 512 (FC1) and 2000 (FC2). We used a batch size of
2048 during Phase 1 and 64 during Phase 2. Regularization
was applied in both phases with L1 A = 1 x 10~7 and L2
A=1x10"".

merging task-specific datasets. Specifically, we use
Google Speech Commands v1.0 (Warden, 2018)
for KS, VoxCeleb v1 (Nagrani et al., 2017) for SID,
and IEMOCAP (Busso et al., 2008) for ER. As
all three tasks are classification problems, we train
wavCSE using cross-entropy loss for each task and
use accuracy as the evaluation metric.

In Phase 2, we evaluate the generalizability of
the learned speech embedding across 12 down-
stream tasks, as listed in Table 1. These include
seven classification tasks (KS, SLI, SID, SGR,
SDR, ER, and IC), four regression tasks (SAR,
VR, AR, and DR), and one verification task (SV).
Each classification task is modeled using a single-
layer neural network, and performance is reported
using accuracy. For regression, the affective dimen-
sions (VR, AR, DR) are jointly modeled using a
single-layer neural network and evaluated using the
Concordance Correlation Coefficient (CCC), while
SAR is evaluated separately using Mean Absolute
Error (MAE). SV is performed using Probabilistic
Linear Discriminant Analysis (PLDA), with perfor-
mance measured by Equal Error Rate (EER).

4 Results and Discussion

In the SUPERB architecture (wen Yang et al.,
2021), all 25 hidden layer outputs from the up-
stream model are aggregated using weighted aver-
age pooling (WAP). We adopt the same approach in
our initial wavCSE setup and examine the distribu-
tion of learned importance weights across these
25 outputs from WavLM Large. As shown in
Figure 2, lower-layer outputs consistently receive
higher weights than upper layers. This suggests
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Figure 2: Layer-wise importance weights assigned by
weighted average pooling in the initial wavCSE model.
The x-axis denotes encoder layers (0 to 24) of WavLM-
Large, and the y-axis shows the learned weight for each
layer. Layer O represents the input to the first trans-
former encoder, while the others correspond to the out-
puts of the respective encoder layers.

that the lower layers contribute more effectively to
downstream performance, indicating a preference
for low-level acoustic information over the more
abstract patterns captured in deeper layers. Mo-
tivated by this observation, we aim to eliminate
less informative layers. However, defining a fixed
threshold for removal is nontrivial due to potential
interdependencies among layers.

To address this, we introduce a recursive layer
selection strategy inspired by Recursive Feature
Elimination (RFE) (Zhang and Liu, 2007). In each
round, we remove the hidden layer output with the
lowest learned weight, retrain the model, and repeat
the process. The highest average accuracy across
KS, SID, and ER is achieved in the 10" round, af-
ter eliminating nine layers. The selected subset at
this point includes layers O through 14 and layer 17.
These results confirm our earlier observation that
higher-layer outputs contribute less and show that
only 16 out of the original 25 hidden layer outputs
from WavLM Large are sufficient to support down-
stream performance. This finding also implies that
loading only up to the 17% transformer encoder
layer is sufficient when using WavLM Large as the
upstream model. This reduces the effective size of
the pre-trained WavLM Large model from 315M to
240M parameters and lowers memory usage from
1.175 GB to 0.894 GB.

We further investigated whether WAP remained
the most effective method for aggregating the se-
lected layer outputs or if alternative pooling strate-
gies could offer improved performance. To this
end, we evaluated ten pooling techniques, includ-

Pooling KS SID ER

Weighted Average 98.32 97.08 77.58
Max 98.43 96.59 76.85
Mean 98.23 97.10 75.95
Mixed 98.62 9691 77.94
Gated 98.55 97.44 77.03
Learned-Norm 98.81 97.59 79.39
Log-Sum-Exp 98.52 97.89 77.22
Smooth-Maximum 98.36 97.18 77.94
Auto 98.45 9741 78.12
Self-Attention 98.55 96.99 76.13

Table 2: Comparison of different layer-wise pooling
strategies in wavCSE, with measured performance on
keyword spotting (KS), speaker identification (SID),
and emotion recognition (ER).

Model KS SID ER
Vygon et al. (2021) 98.55 - -

Hu et al. (2023) - 95.65 -
Peng et al. (2021) - - 79.10
wav2vec 2.0 Large  96.66 86.14 65.64
HuBERT Large 95.29 90.33 67.62
WavLM Large 97.86 9549 70.62
wavCSE 98.81 97.59 79.39

Table 3: Performance comparison of the proposed

wavCSE model against task-specific models and SSL-
based baselines on keyword spotting (KS), speaker iden-
tification (SID), and emotion recognition (ER).

ing WAP, as described as layer-wise pooling meth-
ods in SUPERB-EP (Sritharan et al., 2025), and
measured accuracy on KS, SID, and ER. As shown
in Table 2, learned-norm pooling (LNP) achieved
the highest average accuracy across the three tasks,
outperforming all other methods on KS and ER,
and ranking second on SID. Unlike WAP, which
performs a linear combination of the selected layer
outputs, LNP applies a non-linear transformation
that adapts to their statistical distribution. These re-
sults suggest that wavCSE benefits from non-linear
pooling strategies when aggregating information
across layers.

Based on the experiments discussed thus far, we
finalize the wavCSE architecture and now evaluate
the finalized model against state-of-the-art (SOTA)
baselines on the three tasks used for model devel-
opment. These baselines include top-performing
individual models for KS, SID, and ER (Vygon and
Mikhaylovskiy, 2021; Hu et al., 2023; Peng et al.,
2021), as well as self-supervised learning (SSL)



Model KS Model SLI Model SID Model SV
ResNet 95.88 1D ConvNet 93.70 IndicWav2Vec 79.26 i-vector 15.00
EfficientNet 95.83 2D ConvNet 94.30 Sritharan et al. 97.96 x-vector 11.99
wavCSE 96.46 wavCSE 99.23 wavCSE 97.33 wavCSE 16.87
Model SGR Model SAR Model SDR Model ER
MLP 98.00 MLP 6.66 MLP 16.00 data2vec 2.0 83.07
LSTM  99.00 LSTM 597 LSTM  15.00 emotion2vec 84.85
wavCSE 99.84 wavCSE 3.79 wavCSE 51.27 wavCSE 89.26
Model VR Model AR Model DR Model I1C
LSTM 0.32 LSTM 0.67 LSTM 0.53 HuBERT Large 98.76
CNNI1D 0.35 CNNI1D 0.65 CNNI1D 0.53 WavLM Large 99.31
wavCSE 0.67 wavCSE 0.68 wavCSE 0.59 wavCSE 71.00

Table 4: Comparison of unified speech embedding from wavCSE with task-specific baselines across 12 downstream

tasks. Metrics and datasets are defined in Section 3.

models such as wav2vec 2.0 (Baevski et al., 2020),
HuBERT (Hsu et al., 2021), and WavLM (Chen
et al., 2022). As shown in Table 3, wavCSE out-
performs all baselines across the three tasks, sur-
passing both task-specific models and SSL-based
models. These results validate the effectiveness of
the proposed modifications and confirm that the
finalized wavCSE model is competitive with SOTA
approaches.

We next evaluate the unified speech embedding
derived from the trained wavCSE model by ex-
tracting the output of the final shared layer, fol-
lowing Shi et al. (2020). Its effectiveness is as-
sessed across twelve downstream tasks, each bench-
marked against its corresponding SOTA baseline:
KS (Rostami et al., 2022), SLU (Sarthak et al.,
2019), SID (Sritharan and Thayasivam, 2025),
SV (Fan et al., 2020), SGR, SAR, SDR (Wang
and Sun, 2024), ER (Ma et al., 2024), VR, AR,
DR (Messaoudi et al., 2024), and IC (Chen et al.,
2022). To assess cross-lingual generalization, KS,
SID, and ER, which were used during model devel-
opment, are re-evaluated on non-English datasets.
For the remaining nine tasks newly added for em-
bedding evaluation, we select standard English
datasets, with two exceptions: SV is evaluated on a
Chinese dataset, and SLI on a multilingual dataset.

Table 4 shows that wavCSE outperforms the
SOTA baselines on nine out of twelve tasks, demon-
strating strong generalizability across a diverse set
of downstream settings. The largest gains are ob-
served on SDR and VR, with absolute improve-
ments of +36.27 (accuracy) and +0.32 (CCC) re-

spectively, likely attributable to the diversity of ac-
cents and emotional expressiveness in the datasets
used during wavCSE development. For linguis-
tic tasks, wavCSE improves over the best baseline
by +0.58 (accuracy) on KS and +4.93 (accuracy)
on SLI. Among paralinguistic tasks, the model
achieves +0.84 (accuracy) on SGR, +1.18 (abso-
lute error reduction) on SAR, +4.41 (accuracy) on
ER, +0.01 (CCC) on AR, and +0.06 (CCC) on
DR. Performance gains across these classification
and regression tasks demonstrate wavCSE’s gen-
eralizability over both linguistic and paralinguistic
domains.

Among the three tasks where wavCSE does not
achieve the top performance, SID falls marginally
short, differing only in the first decimal place
from the SOTA model. The baseline uses an
upstream model trained on a multilingual cor-
pus that includes low-resource Indian languages,
while wavCSE is built on WavLM Large, pre-
trained solely on English data. For SV, the per-
formance suggests a lack of fine-grained speaker-
discriminative cues, despite strong results on re-
lated speaker profiling tasks such as SGR, SAR,
and SDR. This indicates that SV may rely on
speaker traits beyond those captured by wavCSE.
The largest performance gap is seen in IC, where
wavCSE achieves only about 70% of the SOTA
score. While linguistic tasks like KS and SLI are
handled well, IC likely demands deeper seman-
tic abstraction, which is not yet encoded by the
current embedding. This highlights the need to in-
corporate semantically oriented tasks into wavCSE



development to improve performance on complex
comprehension-based objectives.

5 Conclusion and Future Work

This paper presented wavCSE, a feature-based
multi-task learning model built on WavLM Large,
designed to derive a fixed-size unified speech em-
bedding that supports both linguistic and paralin-
guistic tasks. The model was jointly trained on
keyword spotting, speaker identification, and emo-
tion recognition to capture a wide range of speech
characteristics in the embedding, achieving state-
of-the-art performance across all three tasks. After
training, the unified embedding was extracted and
evaluated on twelve downstream tasks spanning
both linguistic and paralinguistic domains, using
datasets from twenty-one languages across high-
resource and low-resource scenarios. The embed-
ding outperformed strong task-specific baselines on
nine tasks and demonstrated robust performance on
linguistic and emotion-related evaluations. While
performance was slightly lower on certain speaker-
related and semantically complex tasks, the results
confirm the effectiveness and generalizability of
the embedding extracted from the proposed model.

In addition to the unified embedding, we in-
troduced two architectural enhancements applica-
ble to self-supervised learning-based speech mod-
els. First, we proposed a recursive layer selection
strategy to reduce the number of transformer en-
coder outputs used from the pre-trained WavLM
Large model, resulting in a more compact and effi-
cient upstream configuration. Second, we replaced
weighted average pooling with learned-norm pool-
ing to aggregate the selected outputs, which consis-
tently improved task performance across training
objectives. For future work, we plan to enhance the
embedding’s ability to capture semantic content,
aiming for improved results on tasks such as intent
classification and slot filling. We also intend to
extend its applicability beyond classification, re-
gression, and verification to generative tasks such
as speech synthesis and automatic speech recogni-
tion.

Limitations

This work focuses on developing a unified speech
embedding that supports classification, regression,
and verification tasks across both linguistic and par-
alinguistic domains. While the embedding demon-
strates strong performance in these areas, it has

not been extended to generative applications such
as speech synthesis or automatic speech recogni-
tion, which we leave for future work. Additionally,
we intentionally avoid data augmentation to ensure
that the model learns embeddings directly from raw
audio, consistent with our goal of generalizable
learning without task-specific heuristics. Finally,
we adopt WavLM Large as the upstream model,
which was pre-trained solely on English. Despite
this, our unified embedding demonstrates strong
performance across twenty-one languages, includ-
ing low-resource settings, as shown in Section 4.
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