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ABSTRACT

Retrieval-Augmented Generation (RAG) systems mitigate factual inaccuracies in
large language models (LLMs) by integrating external knowledge, but their ef-
fectiveness often hinges on query rewriting techniques. Prompt-based rewriting
methods are frequently suboptimal, while existing reinforcement learning (RL)
approaches struggle with inefficient, unguided exploration of the vast strategy
space. To address these limitations, we propose an end-to-end RL framework
that initializes the training process with human-defined prior rewriting strategies,
enabling the model to learn from its interactions with the RAG environment and
develop its own effective posterior rewriting strategies. Furthermore, we develop a
novel RL algorithm, namely Block-wise Geometric Policy Optimization (BGPO),
which resolves the granularity mismatch in previous methods by redefining the
state-action space as blocks of tokens. This algorithm is enhanced by geomet-
ric averaging for balanced importance and a Bellman-equation-inspired credit as-
signment mechanism to reshape the reward. Extensive experiments on both local
corpus retrieval and online search datasets demonstrate that our RL framework
consistently surpasses the baselines, validating its superiority for complex RAG
tasks. Our project code can be found at this anonymous repository.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) is a well-established paradigm enabling
large language models (LLMs) to generate augmented content by retrieved external knowledge.
However, for some complex queries, simple retrieval using the original query usually cannot return
the expected information due to query complexity over embedding capability. Therefore, some
prompt-based methods (Trivedi et al., 2023; Li et al., 2025) leverage specific techniques to rewrite
the query for more effective retrieval, and some others methods based on reinforcement learning
(RL) (Jin et al., 2025; Song et al., 2025) train the model itself to learn how to rewrite.

Despite their effectiveness, these methods for RAG tasks exhibit inherent limitations. First, prompt-
based methods are often labor-intensive for sophisticated prompt design, and might be suboptimal
as the models without training only have weak rewriting capability. Second, although RL methods
can optimize the model performance through training, most current frameworks require the model
itself to find out successful rewriting strategies without any guidance during the rollout phase. This
mechanism lowers the efficiency of the rollout process because the potential rewriting space is vast
and complex, making it hard for the model to explore alone.

To address these shortcomings, we propose a novel framework in this paper that integrates human-
defined prior strategies to provide an effective starting point for RL process. In our framework, the
model practices human prior rewriting strategies to interact with the environment. Then, through
the process of RL, the model successfully learns how to correctly rewrite queries in a real RAG
environment. Therefore, the model can start from the human prior, through the training in the
RAG environment, and finally learn posterior rewriting strategies of its own. The human prior
makes the interaction with the environment more efficient, and the learning process makes the model
better understand the rewriting heuristics, the RAG environment and dataset. The overview of our
framework is displayed in Figure 1.

To train our RAG system by RL more effectively, we specifically design a new RL algorithm with
a redefined state-action granularity called Block-wise Geometric Policy Optimization (BGPO). The
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Figure 1: The overview of our Prior-Guided Reinforcement Learning framework for RAG.

state-action granularity definitions in most current RL algorithms are suboptimal for multi-turn and
conversational-like reasoning tasks. These methods typically model actions at either the token level
(e.g., the overly fine-grained GRPO (Shao et al., 2024), DAPO (Yu et al., 2025)), or the full sequence
level (e.g., the too coarse GSPO (Zheng et al., 2025)). Token-level granularity creates a noisy, high-
variance learning signal while sequence-level granularity applies a uniform learning signal that fails
to distinguish between tasks requiring complex long trajectories and those needing simple short
ones. To overcome this problem, we develop a new RL algorithm BGPO, which redefines the state
and action spaces. Specifically, our BGPO algorithm defines each conversational turn as a “block”
and the generation of such “block” as an action, which structures states and actions at a granularity
more suitable than the traditional token or sequence level.

To promote our algorithm further, we optimize the reward shaping in RL algorithms. Most of current
RL algorithms applied in RAG assign equal advantage on every token, which may not be beneficial
for RAG settings. For RAG, first-round query understanding and query rewriting may be much more
important than final generation which is often a simple summary of retrieved documents. Therefore,
we extend the discounting factor of Bellman equation (Bellman, 1957) to an emphasis factor, which
exponentially increases the advantage for the beginning stage of RAG reasoning process.

In summary, our contributions in this paper are as follows:

1. We propose an end-to-end RL framework for RAG tasks that enables a model to initialize its
policy from human-provided prior knowledge, and subsequently learn a refined posterior distribution
of rewriting strategies through environmental interaction.

2. In our framework, we develop Block-wise Geometric Policy Optimization (BGPO) algorithm,
tailored for multi-step reasoning, which introduces a block-level state-action definition to create a
more suitable granularity than traditional token- or sequence-level approaches.

3. Specifically, we further propose a novel reward-shaping technique tailored for RAG. By reversing
the logic of traditional temporal discounting, we apply an emphasis factor to prioritize and reward
the crucial, initial reasoning steps of the agent more heavily.

2 RELATED WORK

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Guu et al., 2020; Hu & Lu, 2024)
enhances language model outputs by incorporating external knowledge, improving factuality and
timeliness. Existing RAG systems often rely on fixed, heuristic-based query rewriting techniques,
such as HyDE (Gao et al., 2023) and question decomposition (Ammann et al., 2025), which cannot
adapt to specific data distributions. To address this, we propose an end-to-end RL framework that
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enables the model to autonomously learn query rewriting policies directly from interactions with the
RAG environment.

Prior RL-based methods like Search-R1 (Jin et al., 2025) and R1-Searcher (Song et al., 2025) train
RAG agents for iterative query refinement but place the full exploration burden on the base model,
which is inefficient given the vast natural language action space. We address this by incorporat-
ing pre-defined rewriting strategies as a human-informed prior. The model initially leverages these
heuristics and then refines its policy via RL on the target dataset, allowing it to combine effective pri-
ors with novel, data-driven strategies, improving both learning efficiency and overall performance.

Policy optimization for language models has progressed from Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to methods like GRPO (Shao et al., 2024), DAPO (Yu et al., 2025),
and GSPO (Zheng et al., 2025), which successively simplified architectures and improved stability.
Building on this, we propose a novel algorithm for multi-turn RAG that bridges GSPO’s coarse,
sequence-level credit assignment and PPO’s fine-grained, token-level approach. By defining “se-
mantic blocks” as action units, computing importance sampling ratios geometrically, and applying
a Bellman-inspired discount to advantage estimates, our hierarchical credit assignment enhances
stability and efficiency in complex, multi-step reasoning tasks.

3 METHODOLOGY

3.1 REINFORCEMENT LEARNING FRAMEWORK FOR RAG

In brief, our proposed framework integrates human expertise into a query rewriting process through
modeling an RAG task as a sequential decision-making problem by RL. In the framework, we con-
struct an agent with an LLM, which learns to navigate a hybrid action space to iteratively refine its
search strategy based on retrieved information.

For a given user query quser, the RL process begins with an initial state s0, which contains the
system prompt and quser. At each turn t, the agent operates within the state st that represents the
full conversational history. Inspired by the ReAct paradigm Yao et al. (2023), the agent follows an
iterative cycle consisting of three steps: reasoning, acting, and observing.

Hybrid Action Space The core of our framework is the hybrid action space A, which is com-
posed of three distinct categories of actions. The first category, Human-Prior Heuristics (AH ),
comprises a curated set of four pre-defined rewriting strategies: decomposition, keyword extraction,
synonym replacement, and HyDE (Gao et al., 2023). These strategies are introduced to the model
via concise non-prescriptive descriptions in the system prompt, to encourage learning through in-
teraction. The second category, Self-Devised Rewriting (AM ), provides a single flexible action
rewrite by myself, empowering the model to generate novel queries when the pre-defined heuristics
are insufficient. The final category, Terminal Action (AT ), contains the generation action to con-
clude the iterative process and synthesize the final answer. The complete action space is thus defined
as the union of these categories: A = AH ∪ AM ∪ AT .

Multi-Turn Reasoning and Retrieval Cycle The agent’s interaction with the environment is
structured as a multi-turn conversation. At each turn t, the cycle begins with a reasoning step
given the current state st, where the agent generates an internal monologue to analyze the gathered
information and determines the best course of action. The reasoning step yields the selection of an
action at ∈ A based on the learned policy π(at|st). Following the selection, the chosen action at is
executed. If it is a rewriting strategy (at ∈ AH ∪AM ), the model generates a new (rewritten) query
qt, leading to the final step of the cycle: observation. To provide immediate feedback, the rewritten
query qt is used to retrieve a set of documents Dt = {d1, d2, . . . , dk} from the external knowledge
corpus C. Then, these retrieved documents are appended to the conversational history, forming the
new state st+1 = st ⊕ (retrieved docs: Dt), where ⊕ denotes concatenation. This feedback loop
allows the agent to dynamically adjust its subsequent actions. The entire retrieval cycle repeats until
the agent selects the terminal action at = generation, where it synthesizes a final answer based on
the complete history of queries and retrieved documents accumulated throughout the episode.
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3.2 REINFORCEMENT LEARNING ALGORITHM OF BGPO

In this subsection, we detail our proposed BGPO algorithm. Firstly, we redefine the state and action
space in RL. In a trajectory consisting of a sequence of tokens y = (y1, y2, . . . , yT ), most of previous
methods (Schulman et al., 2017; Shao et al., 2024; Yu et al., 2025) define the state at timestep t as
the preceding token sequence st = y<t, and the action at as the next chosen token yt from the
vocabulary. However, in our multi-turn RAG reasoning setting, the semantic impact of a single
token is often minimal. Instead, a coherent “block” of thought, such as a rewritten query or a step in
a reasoning chain, is indeed the foundation that influences the trajectory’s outcome.

Formally, we define a “block” as a single, complete turn of the Assistant’s response within the multi-
turn dialogue trajectory. Unlike token-level RL, we treat the entire Assistant turn as an atomic unit.
A block explicitly comprises: (1) Internal Monologue (Chain-of-Thought reasoning), (2) Action
Decision (the selected strategy), and (3) Execution Content (the rewritten query or answer). We
apply masking to System and User nodes, targeting only these unmasked Assistant blocks for policy
optimization.

Under this definition, we partition the trajectory y into K semantic blocks, y = (b1, b2, . . . , bK).
We define the state at step k as the sequence of preceding blocks, denoted as sk = (b1, . . . , bk−1),
and the action as the generation of the entire next block, denoted as ak = bk. Then, the policy
for generating a block is the product of the probabilities of its tokens, formulated as πθ(bk|sk) =∏|bk|

t=1 πθ(yk,t|sk, yk,<t), where yk,t is the t-th token in block bk.

Recall that the PPO’s optimizing objective (Schulman et al., 2017) is defined at token level, using
a clipped importance ratio and a fine-grained advantage estimate Ât from Generalized Advantage
Estimation (GAE) as:

JPPO(θ) = Êt

[
min

(
wt(θ)Ât, clip(wt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where wt(θ) = πθ(yt|st)
πθold

(yt|st) . In order to save computational resources, GRPO (Shao et al., 2024)
replaces the value model with a group sampling estimation as follows, where the advantage is cal-
culated at the sample level and distributed uniformly across all tokens (Shao et al., 2024):

JGRPO(θ) = E x∼D,

{yi}G
i=1∼πθold

 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
wi,t(θ)Âi, clip(wi,t(θ), 1− ϵ, 1 + ϵ)Âi

) .

Here, the sample advantage Âi =
r(x,yi)−mean({r(x,yj)})

std({r(x,yj)}) is uniquely attributed to all tokens in sample
yi equivalently.

At first, we investigate the difference between the two methods: PPO’s credit assignment is quite
fine-grained (per-token), which is computationally burdensome due to the need for a value model.
Conversely, GRPO’s credit assignment is very coarse-grained (per-sample), diminishing the vary-
ing importance of different reasoning steps. For instance, initial query understanding and rewriting
steps are often more critical than later summarization steps. Therefore, inspired by the Bellman
equation (Bellman, 1957), we propose a novel reward-shaping technique. To be specific, we intro-
duce an emphasis factor γ ∈ (0, 1] to attribute credit at block level. The advantage for any token
within block bk of sample yi is reshaped as:

Âi,k = γk−1Âi.

The factor effectively shapes the reward landscape, prioritizing foundational reasoning steps with
exponentially greater weight. It provides a more nuanced credit assignment than GRPO without the
computational overhead of PPO’s value model.

Secondly, we refer to GSPO (Zheng et al., 2025) which improves GRPO by correcting the impor-
tance sampling ratio to operate at sequence level, thereby stabilizing training (Zheng et al., 2025).
The GSPO’s objective uses a sequence-level ratio si(θ) as:

JGSPO(θ) = E x∼D,

{yi}G
i=1∼πθold

[
1

G

G∑
i=1

min
(
si(θ)Âi, clip(si(θ), 1− ϵ, 1 + ϵ)Âi

)]
,
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where si(θ) =
(

πθ(yi|x)
πθold

(yi|x)

)1/|yi|
. While GSPO’s sequence-level importance ratio is a theoretical

improvement, its sample-level objective calculation assigns equal weight to each sample, regardless
of length. However, as introduced in DAPO (Yu et al., 2025), this ratio can down-weight the contri-
bution of tokens in longer and more complex reasoning chains, as this approach fails to distinguish
between complex tasks requiring long-form answers, which are crucial in RAG settings, and simple
tasks where such length constitutes an undesirable pattern of verbosity. A token-level policy gradi-
ent loss, which is normalized by the total number of tokens in a batch, is more suitable as it ensures
each token contributes equally to the gradient update.

Therefore, we adopt a token-level loss structure in our algorithm. Furthermore, we refine the impor-
tance ratio calculation for our block-wise setting. As a geometric mean over all tokens, the original
GSPO ratio implicitly weights blocks by their token length. We argue that each reasoning block
should contribute equally to measure how “off-policy” a sequence is. Thus, we propose a hierar-
chical importance ratio that first computes a geometric mean of token ratios within each block, and
then computes a geometric mean of these block-level ratios. Formally, for a sample yi composed of
Ki blocks, the ratio of block bk and the final hierarchical ratio for the entire sequence are:

si,k(θ) =

(
πθ(bk|sk)
πθold(bk|sk)

) 1
|bk|

, s′i(θ) =

(
Ki∏
k=1

si,k(θ)

) 1
Ki

.

This computation ensures each block is weighted equally. Inspired by DAPO, our Block-wise
Geometric Policy Optimization (BGPO) objective combines this hierarchical ratio with our block-
discounted advantage Âi,k within a token-level loss framework as:

JBGPO(θ) = E x∼D,

{yi}G
i=1∼πθold

 1∑G
j=1 |yj |

G∑
i=1

Ki∑
k=1

|bk|∑
t=1

min
(
s′i(θ)Âi,k, clip(s′i(θ), 1− ϵ, 1 + ϵ)Âi,k

) .

Since our proposed modifications, including block-wise advantage assignment and a hierarchical
importance ratio, are orthogonal to the other key techniques in DAPO, such as Clip-Higher and
Dynamic Sampling, our method can be directly integrated into the DAPO framework to potentially
yield further improvements.

We display the pseudo process of our BGPO algorithm in Algorithm 1.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We choose HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), MuSiQue (Trivedi
et al., 2022), NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), PopQA (Mallen et al.,
2023), Bamboogle (Press et al., 2023) as our datasets. From these datasets, we choose a filtered
group of training sets of HotpotQA, 2WikiMultihopQA and MuSiQue as our in-domain dataset and
the dev sets of all datasets as out-of-domain (OOD) datasets.

For the training set, we filter out noisy data (instances with ambiguous logic or missing evidence)
to prevent reward hacking. However, we strictly maintain data complexity: 23.95% of our retained
HotpotQA training data is labeled “hard”, and 25.35% requires reasoning across 3+ supporting
facts. Crucially, all evaluation results reported in Table 1 are based on the original, unfiltered test
sets, ensuring our model is tested on the full range of difficulty. The detailed filtering process is
introduced in Appendix A.

After training on the combined training dataset, we test the performance of the model on OOD
datasets. For NQ and TriviaQA, we use the corpus provided from Karpukhin et al. (2020). For
PopQA and Bamboogle, we directly use online search in Wikipedia instead of local corpus. Addi-
tionally, to address the complexity of real-world retrieval, we incorporate the SimpleQA benchmark
and evaluate it using a real-time internet search engine API, moving beyond static corpora. The data
statistics are listed in Table 4
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Algorithm 1 BGPO: Block-wise Geometric Policy Optimization

1: Initialize policy parameters θ;
2: for training step = 1, 2, . . . ,M do
3: θold ← θ;
4: Initialize empty buffer B;
5: Sample a batch of queries {xb}Bb=1 from the dataset D;
6: for each query x in the batch do
7: Generate a group of G responses {yi}Gi=1 using the frozen policy πθold(·|x);
8: For each response yi, parse it into blocks (b1, . . . , bKi

);
9: Compute rewards r(x, yi) and the sample-level advantage Âi;

10: Compute block-level advantages Âi,k = γk−1Âi for k = 1, . . . ,Ki;
11: Store the processed trajectories (x, yi, {Âi,k}Ki

k=1) in buffer B;
12: end for
13: for epoch = 1, 2, . . . , E do
14: for each minibatch sampled from the buffer B do
15: Compute hierarchical importance ratio s′i(θ) for each sample in the minibatch;
16: Compute the BGPO loss JBGPO(θ);
17: Update policy parameters θ using gradient ascent: θ ← θ + α∇θJBGPO(θ);
18: end for
19: end for
20: end for

We use LLM-as-Judge as our evaluation metric. The base model for evaluation is Qwen3-32B (Yang
et al., 2025) to get an accurate evaluation of the predictions. We take the probability of generating
“Yes” as the first token within the output restriction of [“Yes”, “No”] as the reward. The evaluation
prompt for evaluation is contained in the Appendix B.

4.2 EXPERIMENT SETUP

We use the Low-Resource Reinforcement Learning (LSRL) (Liang, 2025) package to implement
low-resource, high-throughput reinforcement learning using offloaded gradients. We use Qwen2.5-
7B-Instruct (Yang et al., 2024) as the backbone of our framework, and run four A800 GPUs for
approximately 2 days to complete the training process. For the retriever, we implement a hybrid
retriever that combines sparse and dense retrieval. The sparse retrieval is based on BM25 (Robertson
et al., 1994), and the dense retrieval is based on BGE-m3 (Chen et al., 2024). The weight between
sparse and dense retrieval is set to 0.5, and consider top-3 retrieved documents. All baselines and
our model use the same retriever and corpus.

Training Details For the training stage, the model is trained for a total of 3 epochs. For each data
point, we sample 8 trajectories. The policy network is then trained on these collected samples using
a learning rate of 1e − 6 and a training batch size of 8. We apply gradient accumulation over 32
steps. The KL penalty coefficient β is set to 0.001, and the upper clipping parameter is 0.28. During
the generation phase for rollouts, we use a batch size of 32, a temperature of 0.9, and cap the tokens
generated per round at 768, while the maximum model length is constrained to 5120 tokens. To
optimize memory usage, we enable gradient offloading to the CPU. We use 1 GPU for the reward
model, 1 GPU for vLLM rollouts, and 2 GPUs for data parallel (DP) training.

Baselines The Direct Answer method entails the model providing an immediate response to a
question without showing its underlying reasoning. In contrast, the Chain-of-Thought (CoT) ap-
proach requires the model to first generate a step-by-step reasoning process before delivering the
final answer. Naive RAG operates by having the model perform a single retrieval to gather relevant
documents and subsequently generate a response based on that retrieved information. The IRCoT
method (Trivedi et al., 2023) interleaves retrieval with the steps of a CoT, thereby using the reason-
ing to guide retrieval while the retrieved results concurrently improve the reasoning process. Finally,
Search-o1 (Li et al., 2025) is a technique where the model analyzes the retrieved information for rel-
evance and veracity before incorporating it into its reasoning chain. Search-R1 (Jin et al., 2025) is a

6
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Method HotpotQA∗ 2Wiki∗ MuSiQue∗ NQ† TriviaQA† Bamboogle‡ PopQA‡ Avg.

Direct Answer (7B) 0.298 0.252 0.111 0.382 0.397 0.567 0.371 0.339
CoT (7B) 0.322 0.305 0.142 0.392 0.424 0.52 0.298 0.343
NaiveRAG (7B) 0.424 0.400 0.240 0.610 0.433 0.016 0.037 0.308
IRCoT (7B) 0.540 0.705 0.484 0.660 0.488 0.416 0.208 0.500
Search-o1 (7B) 0.526 0.694 0.396 0.554 0.673 0.440 0.263 0.506
Search-R1 (14B) 0.873 0.792 0.654 0.759 0.797 0.584 0.437 0.699

RAG-BGPO (7B) 0.880 0.780 0.611 0.800 0.755 0.568 0.430 0.689

Table 1: Performance comparison of different methods on various benchmarks. The best perfor-
mance is set in bold and the second best performance is underlined. ∗/†/‡ means in-domain, out-
domain, the mixture of out of domain and online search respectively.

RL framework combining reasoning and retrieval. Note that only Search-R1 is based on 14B model
and other baselines are all based on 7B models.

4.3 RESULTS

The experimental results presented in Table 1 demonstrate the effectiveness of our proposed frame-
work, denoted as RAG-BGPO (7B). Due to the limitation of computational resources, we only train
a 7B model, but it has comparable performance with Search-R1 based on 14B model. Compared
with a range of baselines and state-of-the-art models, our approach shows strong performance across
various QA benchmarks. Its advantages are particularly notable on complex multi-hop datasets re-
quiring sophisticated reasoning. On HotpotQA, for instance, our model achieves 0.880, surpassing
all 7B models and even the 14B Search-R1. On 2Wiki, it scores 0.780, nearly matching Search-R1’s
0.792, demonstrating its robust reasoning capabilities.

In standard open-domain QA, our method also excels. On the NQ dataset, it sets a new state-of-the-
art with 0.800, significantly ahead of other models including Search-R1 (14B), indicating its versa-
tility and effectiveness in general-purpose QA. Furthermore, RAG-BGPO shows strong performance
on tasks requiring real-time online search: on Bamboogle and PopQA, it achieves 0.568 and 0.430,
respectively, outperforming other 7B models and remaining competitive with the 14B Search-R1.
Overall, with only 7B parameters, RAG-BGPO surpasses baselines of the same scale and matches
or exceeds top-tier 14B models on several benchmarks, illustrating both its efficiency and state-of-
the-art performance while reducing computational costs. Furthermore, to evaluate the architectural
generalization and robustness of our framework, we conducted additional experiments using Llama-
3.1-8B and tested on the SimpleQA benchmark. To better test the robustness in real-world web
search, we changed the retriever to a real-time Web Search API and tested on NQ, TriviaQA and
SimpleQA. Detailed results and analyses are provided in Appendix C.

Inference Efficiency and Latency. A potential concern with reasoning-heavy models is the in-
creased computational cost. Regarding inference efficiency, although BGPO encourages longer rea-
soning chains, the 7B model remains highly efficient. We compared the end-to-end latency against
the Search-R1 (14B) baseline on a single NVIDIA A100 GPU. Our 7B model requires 31% lower
end-to-end latency per query (3.29s vs 4.77s) and improves throughput by 77%, verifying that our
performance gains do not come at the cost of practical deployability. This advantage stems from the
smaller parameter size offsetting the generation of additional reasoning tokens.

4.4 TRAINING ALGORITHM ANALYSIS

We conduct an experiment to compare BGPO and DAPO, as shown in Figure 3 with all experimental
settings being the same. Figure 3a shows that the model trained with our proposed BGPO algorithm
learns to progressively increase its average output length. The smoothed trend line clearly indicates
a significant rise from an initial length of around 1,700 to a stable, higher plateau of approximately
2,200. This demonstrates that the model is learning an adaptive strategy.
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(a) Training Performance Curves (b) Training Volatility Analysis

Figure 2: Training Dynamics Comparison. (a) BGPO demonstrates faster convergence and su-
perior asymptotic performance compared to token-level (GRPO) and sequence-level (GSPO) base-
lines. (b) Stability analysis reveals that BGPO achieves the lowest volatility (Avg σ = 0.04) com-
pared to GRPO (σ = 0.12) and GSPO (σ = 0.09), confirming that block-wise granularity stabilizes
the RL training process.

(a) Length change during training for BGPO (b) Length change during training for DAPO

Figure 3: Comparison between BGPO and DAPO in model output length.

In contrast, Figure 3b illustrates that the model trained with the baseline DAPO algorithm fails
to develop this behavior. Its average output length remains relatively flat and consistently shorter
throughout the training process, hovering around 1,800 without a clear upward trend.

The increasing length seen with BGPO is indicative of the model learning a sophisticated policy to
handle the inherent challenges of RAG problems. Within the RAG framework, information retrieval
can be unstable, and initial attempts may not always be successful. By learning to generate longer
responses, the model effectively increases its number of interactive reasoning steps. This allows for
more trial-and-error, such as query reformulation and multiple retrieval attempts, which is crucial
for tackling complex problems. The performance comparison in Table 2 also supports the analysis.

Beyond the adaptive length growth, we also investigate the training stability of different granular-
ities. We compare our BGPO against token-level (GRPO) and sequence-level (GSPO) baselines.
As observed in the training curves 2b, BGPO achieves the lowest volatility (Avg σ = 0.04) com-
pared to GRPO (σ = 0.12) and GSPO (σ = 0.09), indicating significantly better training stability.
This stability suggests that block-level credit assignment effectively reduces the variance inherent in
sparse-reward RL settings.

4.5 EFFECTIVENESS OF PRIOR-GUIDED EXPLORATION

To evaluate the stability and effectiveness of the proposed method, we conducted a rollout experi-
ment comparing the model with human priors against the same model without them.

The results show a significant gap in performance. The “With Prior” model achieves a median ac-
curacy of ∼ 0.80, clearly surpassing the baseline’s ∼ 0.70. In terms of stability, the “Without Prior”
baseline exhibits high variance, with some rollout trajectories dropping to near-zero accuracy. In
contrast, the prior-guided model maintains consistent performance with a compact accuracy range.
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HotpotQA 2Wiki MuSiQue NQ TriviaQA

RAG+DAPO 0.810 0.673 0.528 0.738 0.735
RAG+BGPO 0.869 0.726 0.582 0.788 0.753

Table 2: Comparison between DAPO and BGPO algorithm. RAG+BGPO consistently outperforms
the RAG+DAPO baseline across all evaluated benchmarks.

Figure 4: Case for the model using human prior to solve a complex RAG problem.

This indicates that without priors, the agent’s exploration is inefficient and unstable. By providing
a warm start, human priors effectively constrain the large action space, preventing the model from
wasting time on ineffective paths. This confirms that integrating priors improves both the learning
efficiency and the final performance of the RL process.

In Figure 4, we present a qualitative analysis using a query about the “founder of India’s civil ser-
vices.” The retrieved documents contain conflicting information mentioning two different historical
figures, which makes direct answering difficult. Guided by the learned strategy, the agent handles
this ambiguity effectively. First, it triggers the Decomposition action to break the question into fact-
based sub-queries. This step allows it to gather specific evidence for each candidate. Then, during
the Synthesis stage, the agent combines the verified facts to correctly attribute the role to Charles
Cornwallis. This case demonstrates that the model goes beyond simple summarization; it learns to
adopt a structured reasoning workflow to solve complex, ambiguous problems.

4.6 RELIABILITY AND ERROR ANALYSIS

Human Evaluation: To address potential bias in using Qwen-based judges, we conducted a blind
human evaluation on 200 sampled instances. The judge showed substantial agreement with human
experts (Cohen’s κ = 0.688, Pearson r = 0.701), confirming the metric’s reliability.

Ablation of Components: We further validate the Prior-Guided design through the quantitative
results in Table 3. Comparing ‘Prior-Only’ (No RL) and ‘RL-Only’ (No Prior), the full framework
(Prior+RL) significantly outperforms both, with RL-Only lagging by ∼ 5% on HotpotQA. This
serves as strong evidence for the necessity of the warm-start initialization provided by priors.

Failure Analysis: An analysis of 1,080 failure cases reveals that 58.9% stem from insufficient
retrieval (e.g., failing to locate bridge entities), while 41.1% are reasoning failures on correctly

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Method HotpotQA 2Wiki MuSiQue

Prior Only (No RL) 0.778 0.691 0.467
RL Only (No Prior) 0.784 0.725 0.494

RAG-BGPO (Ours) 0.833 0.773 0.587

Table 3: Ablation study on the impact of Human Priors. The results confirm that combining priors
with RL (RAG-BGPO) yields superior performance compared to using either in isolation.

(a) Performance vs. Retrieve Top-K (b) Performance vs. Retriever Weight

Figure 5: Ablation study on retrieval parameters.

retrieved contexts. This indicates future work should focus on even more aggressive exploration in
the retrieval phase.

5 RETRIEVER OPTIMIZATION AND EFFECTIVENESS

Figure 5 presents the ablation study on retrieval parameters. Regarding the number of retrieved
documents (top-k), we observe substantial performance gains increasing k from 1 to 3, with di-
minishing returns thereafter. For the retriever weight, a hybrid approach consistently outperforms
purely sparse or dense methods. Peak accuracy is achieved with dense weights of 0.9 (HotpotQA),
0.8 (2WikiMultihopQA), and 0.6 (MuSiQue), confirming the benefit of leveraging complementary
retrieval signals.

Recall Trajectory Analysis. To further validate the quality of our learned rewriting strategies,
we evaluate the retrieval performance directly. Standard ranking metrics (e.g., NDCG) are often
unsuitable for multi-hop reasoning where evidence is interdependent. Instead, we measure the Cu-
mulative Recall of Gold Supporting Facts on HotpotQA. Compared to the static retrieval baseline
(Avg: 0.877), our method demonstrates a monotonic increase in accumulated recall across reason-
ing rounds: 0.896 (Round 1)→ 0.924 (Round 2)→ 0.925 (Round 3). This trajectory confirms that
the model’s iterative rewriting effectively resolves logical dependencies to recover missing evidence
layer by layer.

6 CONCLUSION

We introduce a prior-guided, end-to-end reinforcement learning framework to address key limi-
tations in existing RAG systems. Our primary innovations are the integration of human-defined
rewriting strategies to guide initial exploration and the development of a novel algorithm, Block-
wise Geometric Policy Optimization (BGPO), which resolves the granularity mismatch of previous
methods by defining actions as semantic “blocks” and is enhanced by a Bellman-equation-inspired
reward shaping mechanism to prioritize crucial early reasoning steps. Extensive experiments demon-
strate that our 7B parameter model, RAG-BGPO, consistently surpasses various baselines and even
outperforms a 14B parameter model on several complex benchmarks, validating that our approach
significantly enhances the efficiency and effectiveness of solving complex RAG tasks.
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Set Dataset # Samples

Train Set
HotpotQA 2,075
2WikiMultihopQA 1,731
MuSiQue 1,325

Test Set

HotpotQA 7,405
2WikiMultihopQA 12,576
MuSiQue 2,417
NQ 6,515
TriviaQA 8,837
PopQA 3,567
Bamboogle 125

Table 4: Statistics of the datasets used for training and evaluation.

APPENDIX

A DATASET

To filter out the training dataset, we first merged all training datasets in HotpotQA, 2WikiMulti-
hopQA and MuSiQue. Then we used Qwen2.5-7B-Instruct as the base model to rollout for 5 times;
if the problem can be solved within the 5 tries, it means that during the training, it can possibly
generate a meaningful signal for models to learn. We also made a shrink in the number of training
set to make the training process efficient. The data statistics are listed in Table 4.

B PROMPTS

Prompt for evaluating the answer

You are a strict AI evaluator. Your sole task is to compare two answers and determine if they agree.
- First, analyze the core meaning of Answer A.
- Next, analyze the core meaning of Answer B.
- Finally, decide if their fundamental conclusions are the same.
- Focus on pure factual agreement, ignoring any stylistic or minor differences.
You MUST conclude your final response with ONLY ONE WORD on a new line: ’Yes’ or ’No’. Do
not provide any other text or explanation.
# Question: question
# Answer A: ground truth
# Answer B: model answer

Here is an example:
You are a strict AI evaluator. Your sole task is to compare two answers and determine if they agree.
- First, analyze the core meaning of Answer A.
- Next, analyze the core meaning of Answer B.
- Finally, decide if their fundamental conclusions are the same.
- Focus on pure factual agreement, ignoring any stylistic or minor differences.
You MUST conclude your final response with ONLY ONE WORD on a new line: ’Yes’ or ’No’. Do
not provide any other text or explanation.
# Question: Were Scott Derrickson and Ed Wood of the same nationality?
# Answer A: yes
# Answer B: Scott Derrickson is American, and Ed Wood is also American. Therefore, Scott Derrick-
son and Ed Wood were of the same nationality.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Method HotpotQA 2Wiki MuSiQue Avg.

NaiveRAG 0.812 0.584 0.474 0.623
IRCoT 0.847 0.720 0.524 0.697
Llama-3.1-8B (Ours) 0.853 0.758 0.561 0.724

Table 5: Performance comparison using Llama-3.1-8B-Instruct as the backbone.

System prompt for RAG system

- Your Role: You are a search strategist for a Retrieval-Augmented Generation (RAG) system. Your
ONLY job is to decide the best way to search for information in an external knowledge base.
- CRITICAL RULE: You MUST NOT use your own internal knowledge to answer the question.
Assume you know nothing. Your entire reasoning process must be about how to find the information,
not what the information is. Even if you know the answer, your task is to formulate search queries to
find supporting documents.
- The Goal: To intelligently select or create search queries (rewrite strategies) in a step-by-step process
to gather all necessary facts from the knowledge base to answer the user’s query.
- User’s Query: "query"
- Available Strategies: You can use the following strategies to formulate the next search query.
Rewrite strategies:
1. decomposition: Break down the original query into several simpler sub-queries for better retrieval.;
2. keyword extraction: Extract key terms from the query to search in order to focus the retrieval on
some specific terms.;
3. synonym replacement: Replace some words in the query with their synonyms to enable the retrieval
to search beyond the original terms.
4. HyDE: Generate hypothetical answers as query to bridge the gap between the expression of query
and the expression of docs in the knowledge base.;
5. rewrite by myself: Rewrite the query adaptively based on the previous context and your own un-
derstanding of the query.
- When to Stop: Only choose to ”generate the final answer” when you believe the information that
would be hypothetically retrieved using your sequence of queries is sufficient to answer the user’s
question. Your decision to stop must be based on the completeness of your search plan, not on your
internal knowledge of the answer.

C ADDITIONAL EXPERIMENTS ON GENERALIZATION AND ROBUSTNESS

To address concerns regarding the architectural dependency and factual robustness of our frame-
work, we conducted two sets of additional experiments.

C.1 ARCHITECTURAL GENERALIZATION (LLAMA-3.1)

To demonstrate that RAG-BGPO is not specific to the Qwen family, we applied our framework
to Llama-3.1-8B-Instruct. We compared it against Naive RAG and the strong baseline IRCoT.
As shown in Table 5, our method consistently outperforms baselines, achieving the highest aver-
age score (0.724). This confirms that the posterior rewriting strategies learned via BGPO transfer
effectively across different model architectures.

C.2 ROBUSTNESS IN REAL-WORLD WEB SEARCH

To validate the practical applicability of our framework in a realistic, noisy environment, we in-
tegrated a real-time internet search engine API. We evaluated the model on the SimpleQA (Wei
et al., 2024) benchmark (measuring short-form factuality) as well as the online versions of NQ and
TriviaQA.

As shown in Table 6, RAG-BGPO significantly outperforms NaiveRAG even when dealing with
the complexity of live web search results. Notably, on SimpleQA, our method achieves a 79.5%
relative improvement (0.386 vs 0.215). This demonstrates that our iterative rewriting strategies
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Method NQ (Online) TriviaQA (Online) SimpleQA

NaiveRAG 0.599 0.698 0.215
RAG-BGPO 0.692 0.737 0.386

Table 6: Performance comparison using a real-time Web Search API. RAG-BGPO demonstrates
superior robustness in handling noisy, open-web retrieval results.

effectively filter the noise of the open web and generalize well to short-form factual queries, without
overfitting to the long-context offline datasets used during training.
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