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Abstract
Current pre-trained models applied for sum-001
marization are prone to factual inconsistencies002
that misrepresent the source text. Evaluating003
the factual consistency of summaries is thus004
necessary to develop better models. However,005
the human evaluation setup for evaluating fac-006
tual consistency has not been standardized. To007
determine the factors that affect the reliabil-008
ity of the human evaluation, we crowdsource009
evaluations for factual consistency across state-010
of-the-art models on two news summarization011
datasets using the rating-based Likert Scale and012
ranking-based Best-Worst Scaling. Our analy-013
sis reveals that the ranking-based Best-Worst014
Scaling offers a more reliable measure of sum-015
mary quality across datasets and that the reli-016
ability of Likert ratings highly depends on the017
target dataset and the evaluation design. To im-018
prove crowdsourcing reliability, we extend the019
scale of the Likert rating and present a scoring020
algorithm for Best-Worst Scaling that we call021
value learning. Our crowdsourcing guidelines022
will be publicly available to facilitate future023
work on factual consistency in summarization.024

1 Introduction025

Pre-trained language models have achieved026

promising results in abstractive text summariza-027

tion (Edunov et al., 2019; Dong et al., 2019; Song028

et al., 2019; Zhang et al., 2019, 2020). A serious029

limitation of these models, however, is their ten-030

dency to produce text that is factually inconsistent031

with the input. Thus, evaluating the factual consis-032

tency of the generated summaries with respect to033

the source is an important task (Falke et al., 2019;034

Cao et al., 2020; Gabriel et al., 2021; Durmus et al.,035

2020; Huang et al., 2021; Pagnoni et al., 2021).036

Recently, metrics have been proposed for evalu-037

ating factual consistency, including applying natu-038

ral language inference (Falke et al., 2019; Kryscin-039

ski et al., 2020) and question-answering mod-040

els (Eyal et al., 2019; Scialom et al., 2019; Dur-041

mus et al., 2020; Wang et al., 2020). However,042

current metrics still do not correlate highly with 043

human judgments on factual consistency (Koto 044

et al., 2020; Pagnoni et al., 2021). To overcome 045

the inherent limitation of automatic metrics, re- 046

searchers typically crowdsource human evaluations 047

using platforms such as Amazon’s Mechanical 048

Turk (MTurk) (Gillick and Liu, 2010; Sabou et al., 049

2012; Lloret et al., 2013). However, papers often 050

differ in their preferred evaluation protocols (Louis 051

and Nenkova, 2013; Hardy et al., 2019). These 052

differences in the evaluation task design affect the 053

quality of the resulting human judgments and sys- 054

tem comparisons (Santhanam and Shaikh, 2019). 055

Two of the primary paradigms of crowdsourced 056

evaluations are ranking-based and rating-based. 057

Best-Worst Scaling (Louviere and Woodworth, 058

1991) is a ranking-based method by which the an- 059

notator selects the best and worst example out of 060

a set of examples. Prior research has claimed that 061

Best-Worst Scaling produces higher-quality evalua- 062

tions than rating scales such as the Likert Scale for 063

tasks such as sentiment analysis (Kiritchenko and 064

Mohammad, 2017). In the context of summariza- 065

tion, Steen and Markert (2021) find that, compared 066

to the Likert Scale, ranking-based protocols are 067

more reliable for measuring summary coherence 068

but less so for repetition. However, previous stud- 069

ies have not analyzed annotation reliability in the 070

context of factual consistency for summarization. 071

Our contributions are the following: 1) We are, 072

to the best of our knowledge, the first to study the 073

reliability of human evaluation for summarization 074

factual consistency. 2) We study rating and ranking- 075

based protocols across two summarization datasets 076

and four state-of-the-art abstractive models. We de- 077

termine the factors affecting human evaluation reli- 078

ability and present a novel ranking-based protocol 079

with the highest reliability. 3) We will release our 080

evaluation guidelines and annotations to promote 081

future work on factual consistency evaluation. 082
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CNN/DM XSumModels
R-1 R-2 R-L R-1 R-2 R-L

PEGASUS 44.191 21.451 41.081 46.841 24.521 39.101

ProphetNet 42.453 19.903 39.313 43.233 19.963 35.163

BART 44.072 21.132 40.892 44.152 21.282 35.942

BERTSUM 41.824 19.394 38.674 38.214 16.114 30.834

Table 1: ROUGE-1/2/L scores for model reproduction
on CNN/DM and XSum datasets. We apply models
directly when they are already fine-tuned and otherwise
re-trained them. Pegasus and BART generally obtain the
highest ROUGE scores, with ProphetNet comparable in
both cases and BERTSUM notably worse on XSum.

2 Study Design083

Each study consists of 100 input documents ran-084

domly sampled from each dataset, and four associ-085

ated model-generated summaries.086

2.1 Datasets and Models087

Datasets: We conduct our study on two bench-088

mark summarization datasets. CNN/DailyMail089

(Hermann et al., 2015; Nallapati et al., 2016)090

consists of 311,672 pairs of online articles and091

bullet-point summaries, typically three sentences.092

XSum (Narayan et al., 2018) consists of 227K on-093

line articles and single-sentence summaries.094

Models: The following abstractive summarization095

models are chosen due to their strong cross-dataset096

performance: BART (Lewis et al., 2020), a de-097

noising autoencoder for pretraining sequence to se-098

quence and natural language understanding tasks;099

ProphetNet (Qi et al., 2020), a pre-trained encoder-100

decoder model that performs n-gram language mod-101

eling; PEGASUS (Zhang et al., 2020), a model102

pre-trained with a summarization-specific objec-103

tive function; and BERTSUM (Liu and Lapata,104

2019), a two-stage fine-tuning approach. Table 1105

shows the models’ ROUGE scores (Lin, 2004).106

2.2 Reliability107

We follow Steen and Markert (2021) and report108

Krippendorff’s alpha and Split-Half Reliability as109

measures of the reliability of crowdsourced anno-110

tations. Krippendorff’s alpha (α) is a reliability111

coefficient developed to measure the agreement112

among multiple annotators (Krippendorff, 2011).113

This measures instance-level reliability, especially114

how reliable judgments are over individual sum-115

mary instances. For system-level rankings, to mea-116

sure the reliability of the rankings of summarization117

models, we compute Split-Half Reliability (SHR).118

To compute SHR, annotations are split into two119

CNN/DM XSum
Models

LS LS10 LS LS10

PEGASUS 3.8872 7.4103 3.3501 6.2472

ProphetNet 3.8604 7.2504 3.2933 6.4272

BART 4.0171 7.7271 3.4332 6.9371

BERTSUM 3.8633 7.4532 2.7904 5.1634

Table 2: Average model rank and average rating scores
across LS (5-point scale) and LS10 (10-point scale).

independent groups, and Pearson correlations are 120

calculated between the groups. 121

We follow a similar block-design described in 122

Steen and Markert (2021). We note that we include 123

the input document as the context of the summaries 124

as opposed to the coherence and repetition dimen- 125

sions studied in that work, which do not require 126

reading the input article. We divided our corpus 127

into 20 blocks of 5 documents. We include all 128

4 generated summaries for each document in the 129

same block, resulting in 5 × 4 = 20 summaries 130

per block. We require 3 annotators per block as 131

in Steen and Markert (2021), and each annotator 132

is limited to annotating at most two blocks total 133

across all tasks. A further study of the effect of 134

the number of annotators or block design is left for 135

future work. Crowdsourcing is done via MTurk. 136

2.3 Protocols 137

The Likert Scale (LS) is a common rating-based 138

evaluation protocol (Asghar et al., 2018). Likert 139

Scales applied to summarization typically range 140

from 1-5 (Steen and Markert, 2021). Best-Worst 141

Scaling (BWS) is a type of ranking-oriented evalua- 142

tion that requires annotators to specify only the best 143

and the worst example in a set of summaries (Hollis 144

and Westbury, 2018; Kiritchenko and Mohammad, 145

2017). For BWS, the annotator labels the most 146

factually consistent summary and the least factu- 147

ally consistent summary. Another type of ranking- 148

based protocol is pairwise comparison, where each 149

example is compared to every other example. How- 150

ever, this protocol is very expensive; given N items 151

to annotate, N2 total annotations must be collected 152

as opposed to BWS which requires a constant fac- 153

tor of N total annotators. Due to this exorbitant 154

cost as any reasonable scale, we restrict our study 155

of ranking-based protocols to BWS, and we refer 156

the reader to Kiritchenko and Mohammad (2017) 157

for an in-depth discussion of the cost comparison 158

for the task of sentiment analysis. 159
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CNN/DM XSumScale
α SHR α SHR

Protocols
LS 4.43 45.61 22.02 92.77

BWS 15.82 87.65 24.77 90.31

Ours
LS10 12.87 51.36 29.51 94.85

BWSvalue 29.31 92.48 30.62 92.98

Table 3: Instance and system-level reliability computed
by Krippendorff’s alpha (α) and split-half reliability
(SHR) on the CNN/DM and XSum datasets.

2.4 Research Questions160

We study three three main research questions (RQ):161

RQ1: Ranking (BWS) vs. LS? We aim to deter-162

mine the more reliable evaluation protocol.163

RQ2: What affects reliability? We aim to de-164

termine the factors that affect the reliability of the165

human evaluation.166

RQ3: What are the protocols’ limitations and167

how to improve them? Based on the analysis,168

we propose two protocols to improve the reliability.169

170

3 Analysis171

We show the average ratings across LS scales, in-172

cluding a modified LS scale we will later introduce,173

in Table 2. Despite the consistently higher ROUGE174

scores, Pegasus was not always ranked highest,175

which aligns with previous work suggesting that176

ROUGE score does not correlate with factual con-177

sistency (Durmus et al., 2020). The primary results178

for reliability evaluation are found in Table 3.179

RQ1: BWS outperforms LS on CNN/DM. We180

see on the left-hand side of the first two rows of181

Table 3 that BWS outperforms LS by a large mar-182

gin on both instance-level (α) and system-level183

(SHR) reliability. As seen in the distribution of the184

LS ratings in Figures 1, many models are rated as185

factually consistent with scores of 4 or 5. This co-186

incides with previous investigations on CNN/DM187

which conclude that recent summarization systems188

produce fluent texts with relatively few factual er-189

rors (Fabbri et al., 2021). We hypothesize that190

the greater reliability of BWS on CNN/DM data191

may result from the ranking task forcing the anno-192

tator to choose the best summary and distinguish193

these close summaries rather than allowing e.g. the194

Figure 1: Score distribution of LS with a 5-point scale
across CNN/DM and XSum. Each data point shows the
number of times a score was assigned to each system.

annotator to give both a score of 5. This result 195

suggests that BWS is preferable in cases where the 196

summaries analyzed have similar factual consis- 197

tency, such as CNN/DM. 198

Though agreement on individual summaries (α) 199

is relatively low for all annotation methods, these 200

numbers are comparable to those obtained in (Steen 201

and Markert, 2021). Furthermore, we look at the 202

relative difference between (α) of BWS and LS, 203

and we find that studies still arrive at consistent 204

system scores as demonstrated by the SHR. This 205

reflects similar observations made by Gillick and 206

Liu (2010). System-level ranks such as SHR, are 207

also more important for evaluation purposes as the 208

goal is generally to rank models to determine the 209

best performing (or most factually consistent) sys- 210

tem as opposed to examining individual examples 211

as Krippendorff’s alpha measures. 212

RQ2: Dataset Characteristics Affect Reliability. 213

We extend our experiments to the XSum dataset to 214

see whether the reliability of the protocols changes 215

as the characteristics of the dataset change. XSum- 216

trained models are known to suffer from factual 217

inconsistencies because of the high compression 218

ratio and high level of abstraction of the reference 219

summaries (Maynez et al., 2020). As seen on the 220

right-hand side of the first two rows of Table 3, 221

BWS and LS both perform well, with LS slightly 222

outperforming BWS according to SHR. As seen in 223

Figure 1, the model scores are more spread out 224

along the scale. This coincides with the large range 225

of ROUGE scores and larger differences between 226

models, as seen in Table 1, which likely explains 227

why annotators can differentiate the model outputs 228

better. Thus, we believe that LS is a viable op- 229

tion when the corpus contains a diverse quality of 230

summaries, like XSum. 231
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Figure 2: Score distribution of LS10 across CNN/DM
and XSum. Each data point shows the number of times
a score was assigned to each system.

RQ3: Improvements and Current Limitations.232

We propose two modified protocols to improve re-233

liability and then study the presence of common234

limitations for evaluation protocols. Prior work has235

noted the effect of scale granularity (Kiritchenko236

and Mohammad, 2017), so for LS, we extend the237

scale from for 5 to 10 and call it LS-10. Table 3238

shows that that LS-10 is more reliable than LS A239

finer-grained scale may capture more nuanced dif-240

ferences in data points with more choices. Scores241

tend to move towards the extremes when we use242

a finer-grained scale (10 vs 5), as seen in the dif-243

ference in distributions in Figures 1 and 2. Thus,244

for LS-10, a larger range and being less biased to-245

wards a specific region, promoting better reliability.246

Previous work suggests that Best-Worst Scaling247

fails to yield an unbiased estimate of the true qual-248

ity value (Hollis, 2018). Thus, for BWS, we incor-249

porate information about the quality of competing250

examples or value learning into a BWSvalue proto-251

col. The annotator is asked to give a score (3-point252

scale) for the difference between the best and the253

worst summary. The final ranking uses a weighted254

sum. The results at the bottom of Table 3 also255

confirm the effectiveness of this protocol.256

To verify the limitations of evaluation protocols257

noted by Kiritchenko and Mohammad (2017), we258

conduct the following studies. We first analyze (a)259

the inconsistencies in annotations by different260

annotators, measured by the percentage of sum-261

maries that receive different ratings or rankings262

from different annotators, which we call change263

rate. As shown in Table 4, annotators are more264

likely to agree on the same ranking in BWS as op-265

posed to the same rating for LS. We further test (b)266

inconsistencies by the same annotator, in partic-267

ular whether annotations done by the same worker268

are consistent over time. We ask workers who have269

previously annotated XSum and CNN/DM sam-270

ples to re-do their annotations one week after their271

CNN/DM XSum
BWS LS LS10 BWS LS LS10

Change Rate (%) 74.71 87.75 96.00 70.25 92.25 96.25
Scale Overlap - 0.67 0.61 - 0.88 0.82

Table 4: Change Rate, or percentage of summaries given
different ranks or ratings by different annotators (lower
is better). Scale Overlap, or average overlap of the range
of rating scores between annotators (higher is better).

initial annotations. We notified the workers to re- 272

annotate only one week after they finished, instead 273

of at the beginning, as we do not want to introduce 274

design bias. In total, 43 workers redid 860 anno- 275

tations. For LS, the average change in the rating 276

of the two annotations one week apart by the same 277

worker was 0.92. 278

Additionally, we examine whether LS suffers 279

from (c) scale region bias, where different anno- 280

tators are often biased towards different parts of 281

the rating scale. For a given block and two anno- 282

tators, we calculate the rating range given by each 283

annotator. We then calculate the overlap length 284

between those two ranges divided by the length of 285

the overall range from both annotators. We call 286

this the percentage scale overlap and average over 287

all pairs of annotators and blocks. For LS, the per- 288

centage scale overlap is (0.67, 0.88) for (CNN/DM, 289

XSum), respectively, and (0.61, 0.82) for LS-10. 290

The difference in scale region bias between LS and 291

LS-10 is small, but the bias difference between 292

CNN/DM and XSum is notable. Greater diver- 293

sity in summary quality as in XSum may force the 294

annotators to expand their use of the scale and mit- 295

igate region bias, which may explain why LS is 296

better than BWS on XSum as opposed to CNN/DM. 297

Future work may investigate further what exactly 298

constitutes too wide of a scaling range. 299

4 Conclusion 300

In this paper, we conduct studies to understand and 301

improve the reliability of ranking and rating-based 302

human evaluations of summarization factual con- 303

sistency. We find that Best-Worst Scaling is largely 304

reliable, and the Likert scale also has merits, but 305

the proper scaling and dataset characteristics must 306

be carefully studied to ensure its reliability. We im- 307

prove these two protocols based on our findings and 308

believe that our studies advance the understanding 309

of both models and metrics as we aim to facilitate 310

factually consistent text generation. 311
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5 Ethical Considerations312

Intellectual Properties and Privacy Rights All313

of the datasets (CNN/DM and XSum) used in our314

study are publicly available. Regarding privacy315

rights, the authors of the paper completed IRB hu-316

man subject protection training for conducting this317

study. We will release the annotations, but rather318

than releasing the MTurk ID of the worker, we will319

completely anonymize this ID.320

Compensation for Annotators Workers were321

compensated $5 per block, calibrated to equal a322

$15/hour payrate. We first annotated examples in-323

house to determine the required annotation speed.324

A summary block usually takes around 20 minutes.325

Steps Taken to Avoid Potential Problems An-326

notations were completed in the form of a survey327

on a Google Form. We provided space for the Turk-328

ers to provide feedback. We manually uploaded the329

data points (articles and summaries) used in this330

study to avoid any offensive content.331

The Number of Examples We sampled 100 ex-332

amples from each dataset that did not contain ex-333

actly matching summaries. Both Likert and BWS334

follow the same block design, which includes the335

same number of examples per block. With the ex-336

ception that the BWS annotation asks for the most337

and least factually consistent summary and the Lik-338

ert asks for ratings for each individual summary.339

Due to space requirements, we included further de-340

tails, images of the interface, in the supplementary341

material. We pay the same amount per block of342

annotations.343

Qualifications of MTurk workers We use the344

following qualifications to recruit in total 350345

MTurk workers with good track records: HIT ap-346

proval rate greater than or equal to 98%, num-347

ber of HITs approved greater than or equal to348

500, and located in one of the following English349

native-speaking countries: Australia, Canada, New350

Zealand, United Kingdom, United States.351
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A Appendix589

Besides the average model rank and average rating590

scores across BWS, LS-5, and LS-10 evaluations,591

we also provide standard deviations in Table 5.592

To demonstrate our annotation template and fa-593

cilitate future research, we show the interface for594

BWS annotations in Figures 3 and 4 and the inter-595

face for Likert annotations in Figures 5 and 6. We596

made use of the survey feature in Amazon Mechan-597

ical Turk (MTurk) to link to these Google Forms in598

Figure 7.599
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CNN/DM XSumModels
BWS LS LS-10 BWS LS LS10

PEGASUS 3.2302/1.150 3.8872/1.051 7.4103/2.160 3.2473/0.936 3.3501/1.334 6.2472/2.978
ProphetNet 3.1003/1.026 3.8604/0.992 7.2504/2.252 3.3602/1.102 3.2933/1.359 6.4272/3.038

BART 3.5931/1.113 4.0171/0.973 7.7271/2.090 3.5701/1.179 3.4332/1.338 6.9371/2.889
BERTSUM 3.0874/0.984 3.8633/1.037 7.4532/2.309 2.8274/0.993 2.7904/1.390 5.1634/3.202

Table 5: Average model rank, rating, and standard deviation across BWS, LS and LS10 evaluations.

Figure 3: Screenshot of the instruction page for BWS annotation.
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Figure 4: Screenshot of the evaluation page for BWS annotation.
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Figure 5: Screenshot of the instruction page we used for Likert Scale annotation.
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Figure 6: Screenshot of the evaluation page for Likert Scale annotation.
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Figure 7: This is how our task will look to Mechanical Turk Workers.
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