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Abstract

In recent work on AI planning, Large Lan-001
guage Models (LLMs) are either used as plan-002
ners to generate executable plans, or as for-003
malizers to represent the planning domain and004
problem in formal language that can derive005
plans deterministically. However, both lines006
of work rely on standard benchmarks that only007
include generic and simplistic environmental008
specifications, leaving the robustness of LLMs’009
planning ability understudied. We bridge this010
gap by augmenting widely used planning do-011
mains with manually annotated, fine-grained,012
and rich natural language constraints spanning013
five distinct categories. Our experiments show014
that introducing constraints significantly de-015
creases performance across all methods, and016
that the two methodologies each excel on dif-017
ferent types of constraints. 1018

1 Introduction019

Large Language Models (LLMs) have garnered020

attention in recent years for their capabilities in021

planning domains. An intuitive line of work is hav-022

ing them output a plan directly (LLM-as-Planner).023

With the emergence of reasoning models, formal024

planning tasks that models originally have strug-025

gled on (Valmeekam et al., 2024a; Kambhampati026

et al., 2024) now have improved performance in027

accuracy (Valmeekam et al., 2024b; Huang and028

Zhang, 2025). Another line of work instead has029

LLMs formalize the problem in some formal lan-030

guage (LLM-as-Formalizer), such as Planning Def-031

inition Language (PDDL) (Xie et al., 2023; Liu032

et al., 2023a; Zhang et al., 2024a,b; Zhu et al., 2024)033

or a Satisfiability Modulo Theories (SMT) solver,034

such as Z3 (Hao et al., 2025). This formal repre-035

sentation can then be passed into a solver, which036

then outputs a plan deterministically. This method-037

ology is more interpretable and trustworthy while038

showing promising performance.039

1Our code and data are attached with the submission.

Domain Description:
I have a table with blocks on it. I can
move the blocks by unstacking the
tower and putting the block on the
table.
Problem Description:
I have a tower with a red block on
the table and a blue block on the red
block. My goal is to have both blocks
on the table.

Constraint: Do not touch the blue
block

PDDL:
Domain File
Problem File

SMT:
Z3 Coder

Plan does
not exists

LLM-as-
Formalizer

LLM-as-
Planner

Figure 1: We explore the performance of both LLM-as-
Planner and LLM-as-Formalizer when a new constraint
is introduced. We also allow problems where the plan
does not exists after introducing the constraint.

However, most previous work relies on standard 040

planning benchmarks where environments are de- 041

scribed in a generic and simplistic manner (Fig- 042

ure 1 exemplifies the classic BlocksWorld domain 043

(IPC, 1998)). This creates two concerns. First, 044

LLMs may have memorized the specification of 045

these well-established domains, leading to overesti- 046

mation of their planning or formalizing ability and 047

robustness. Second, real-life planning is filled with 048

various constraints, disregarding which will lead 049

to safety concerns. However, only a few previous 050

works recognized these risks. Yang et al. (2023) 051

translates natural language constraints into Linear 052

Temporal Logic to monitor LLM-as-Planner but 053

does not support general planning per se. Guo et al. 054

(2024) encodes constraints with SMT and com- 055

bines with PDDL for Task and Motion Planning 056

though without any public data or code. More- 057

over, they simplify the task by assuming part of the 058

PDDL which is often not realistic, and their catego- 059

rization of constraints is too coarse-grained. Both 060

works focus on leveraging formal representations 061

for specific robotic tasks, but lack benchmark eval- 062

uations and insights from a language perspective. 063

To bridge this gap, we systematically evalu- 064

ate both LLM-as-planner and LLM-as-formalizer 065

on planning with constraints. We introduce five 066

fine-grained categories, and manually annotate 067
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rich natural language constraints on the widely068

used BlocksWorld domain across three distinctive069

datasets. Using this new benchmark, we find that070

planning with constraints remains a challenging071

task, and while using reasoning models in LLM-as-072

Planner has recently surpassed the performance of073

LLM-as-Formalizer, LLM-as-Formalizer remains074

a competitive method and can outperform LLM-as-075

Planner depending on the constraint type.076

2 Task077

We consider formal planning tasks where the model078

is given a textual description description of the079

domain (DD) and the problem (PD) to output a080

plan consisting of an sequence of symbolic actions.081

Each domain and problem can be described via082

formal languages. While there are many formal083

languages for this task, we will be focusing on084

PDDL in this work. Experiments involving Z3 are085

discussed in Appendix, Section F, due to incom-086

plete and unpromising results. In PDDL, which087

is native and designed for this purpose, a domain088

file (DF) describes all the actions and properties089

that hold true across problems, while a problem090

file (PF) describes specific configurations of each091

problem instance.092

In addition to the DD and PD, we also supply093

the model with a natural language description of a094

constraint (C). For LLM-as-Planner, the model is095

asked to output the plan. For LLM-as-Formalizer,096

the model is asked to formalize the domain, prob-097

lem and constraint in PDDL which is then passed098

into a solver to output a plan. To evaluate both099

approaches above, we work with fully-observable100

textual environments, where the provided DD and101

PD contain all necessary information for the model102

to make a complete plan.103

3 Data104

We consider two widely used planning domains:105

BlocksWorld (IPC, 1998) is a domain to rearrange106

stacks of blocks on a table using a robotic arm.107

Mystery BlocksWorld (Valmeekam et al., 2024a)108

obfuscates the original BlocksWorld domain by109

replacing all the names of the types, predicates,110

actions, and objects with nonsensical words, akin111

to a wug test (Berko, 1958). As a control group,112

it evaluates whether models create plans via lex-113

ical pattern-matching and memorization. For114

both domains, we use the BlocksWorld-100 and115

MysteryBlocksWorld-100 benchmarks Huang116

and Zhang (2025). Each has 100 instances that 117

consist of DD and PD, which are input to models, 118

and ground-truth DF and PF, which are used to 119

evaluate a predicted plan. Since these problems 120

only involve less than 15 blocks, we create another 121

dataset of the same size, BlocksWorld-XL–100, 122

where each problem contains 50 blocks to evaluate 123

robustness over complexity. 124

Next, we manually annotate 100 natural lan- 125

guage constraints C across five categories, which 126

expands the categories from Guo et al. (2024). 127

Numerical constraints involve numbers and numer- 128

ical relations. E.g., “The higher number the block, 129

the heavier it is. Once you start moving blocks, do 130

not stack lighter blocks on heavier blocks.” 131

Sequential constraints enforce a specific temporal 132

pattern of actions. E.g., “If you move block1, you 133

must move block2 after.” 134

State-Based constraints involve the states and at- 135

tributes of entities. E.g., “Block 5 is fragile and no 136

other block can be placed on top of it.”. 137

Initial constraints must hold at the beginning. 138

These constraints will override the original initial 139

states in the problem descriptions. 140

Goal constraints must hold at the end. These con- 141

straints will override the original goal found in the 142

problem descriptions. 143

Each category includes 20 constraints that are 144

paired with a BlocksWorld problem. Then, we 145

modify the ground-truth PDDL to satisfy the con- 146

straint. In total, for each dataset, we have 100 147

instances with unique DD, PD, C, DF, and PF 148

tuples. For the Mystery BlocksWorld domain, we 149

obfuscate the keywords in both the constraint C and 150

descriptions DD and PD with meaningless place- 151

holders to keep the constraints consistent across 152

both datasets. Examples are shown in Appendix A. 153

4 Experimental Setup 154

Given the DD, PD and C, we prompt the LLM 155

to produce two different outputs: a Plan directly, 156

the PDDL DF and PF, we ask the model to either 157

generate the entire PDDL in a zero-shot setting, 158

or to output PDDL without the constraint before 159

suggesting an edit to that PDDL to satisfy the given 160

constraint. Both methods also included a revision 161

step where if the generated PDDL leads to an error 162

when solved, the model is given three chances to 163

fix the error by re-generating the PDDL or the edit. 164

Following past work (Guan et al., 2023; Zhu 165

et al., 2024), the plan produced from LLM-as- 166
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Figure 2: Performance of LLM-as-Planner, LLM-as-Formalizer (PDDL) on BlocksWorld-100,
BlocksWorld-XL–100 and MysteryBlocksWorld-100 data. When constraints are introduced to the task,
performance degrades dramatically. Revision is not included in this result to demonstrate that without extra help,
this task is difficult. For all results, see Appendix, Section D.

Planner is validated against the ground-truth DFs167

and PFs provided above, instead of being com-168

pared against “ground-truth” plans (Lyu et al.,169

2023; Liu et al., 2023b; Pan et al., 2023) since there170

could be multiple correct plans. Similarly, the pre-171

dicted DF and PF for the LLM-as-formalizer ap-172

proach are not compared against the ground-truth,173

as only the eventual plan is validated because there174

might be more than one way to formalize. We eval-175

uate the predicted plans using correctness which176

indicates the percentage of generated PDDL that177

passes the solver and leads to correctly validated178

plans. We use dual-bfws-ffparser planner imple-179

mented by Muise (2016) as the solver and VAL180

(Howey et al., 2004) as the validator. See more181

details in Appendix C.182

For both of the LLM-as-planner and LLM-as-183

formalizer approaches, we consider Deepseek-184

R1, Deepseek-V3 (Guo et al., 2025), Qwen3-32B185

(Team, 2025), and Qwen2.5-Coder-32B-Instruct186

(Hui et al., 2024). We query these models us-187

ing KANI (Zhu et al., 2023) with default hyper-188

parameters on 4 H100 GPUs.189

5 Results 190

Figure 2 displays the performance of LLM-as- 191

Planner and LLM-as-Formalizer with the gener- 192

ate and edit setting (without revision) on the con- 193

strained and non-constrained data. Almost all 194

models paired with both methods struggle when 195

constraints are added. On BlocksWorld-100, 196

DeepSeek-R1, -V3, and Qwen3-32B excel as plan- 197

ners, but their performance falls by almost half 198

when given constraints. On BlocksWorld-XL–100, 199

which is much more challenging for all settings 200

as expected, a similar trend can be observed. As 201

formalizers, models see a similar degradation, no- 202

tably on MysteryBlocksWorld-100 where all per- 203

formance decreases by about 80%. 204

Figure 3 displays the performance by constraint 205

categories of LLM-as-Planner and all settings of 206

LLM-as-Formalizer. The two methodologies pre- 207

fer and struggle on different constraints. LLM- 208

as-Planner performs well on sequential, state-based 209

and goal constraints, while LLM-as-Formalizer ex- 210

cels on state-based constraints. A possible explana- 211

tion could be as the state-based constraints impact 212

the predicates and states in PDDL, which makes the 213
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Figure 3: Performance of LLM-as-Planner and LLM-
as-Formalizer (PDDL) by constraint categories on
BlocksWorld-100. Each category contains 20 in-
stances. The arrows represent the performance increase
in the correctness once revision was included.

modification easy to generate. Meanwhile, numeri-214

cal and sequential constraints are harder to encode215

in PDDL, leading to the lower correctness.216

Figure 3 also displays that generating the entire217

PDDL excels on different constraints that editing218

the non-constrained PDDL. The performance on219

adding State-based constraints benefits from the220

generation task, while initial and goal constraints221

benefit from the editing task. This makes sense as222

the initial and goal constraints override the origi-223

nal problem setup which is easier to edit than to224

generate the entire PDDL based on two different225

problem setups.226

We explore qualitative examples of where both227

methodologies succeed or fail. For full examples228

see Appendix, Section E. LLM-as-Planner tends to229

fail when the model outputs a plan that does not230

satisfy the newly added constraints. For example,231

for the constraint “Once you unstack a block, you232

cannot put it down on the table.”, Deepseek-R1233

returned a plan that did not satisfy the newly-added234

constraint (it unstacks block6 before putting it on235

the table) but it also does not follow PDDL rules236

(it attempts to pick up block5 even though block5237

has block3 on top of it).238

Whereas for LLM-as-Formalizer (Generate) on239

the same problem, Deepseek-R1 correctly intro-240

duces a new predicate that satisfies the constraint,241

which is added to the unstack and putdown action,242

and when passed through a solver, it correctly de- 243

termines that with the added constraint, a plan does 244

not exist. 245

However, LLM-as-Formalizer tends to struggle 246

with semantic errors, such as missing needed pred- 247

icates to satisfy constraints. For example, on the 248

constraint “If you move block1, you must move 249

block2 after.”, LLM-as-Formalizer (Generate) us- 250

ing Deepseek-R1 returned a DF Which not only 251

forgets predicates found in the non-constrained ver- 252

sion of the problem, but also does not include any 253

predicates that would satisfy the constraint. When 254

passed into the solver, it output a plan that did 255

not satisfy the constraint. In contrast, for LLM- 256

as-Planner, Deepseek-R1 returned a plan which 257

satisfies the added constraint by moving block2 258

once block1 has been moved. 259

6 Conclusion 260

We study the robustness of two types of LLM 261

planning frameworks—LLM-as-Planner and LLM- 262

as-Formalizer—by introducing rich, fine-grained 263

constraints into planning problems. To enable a 264

thorough comparison, we develop a benchmark 265

by integrating and extending existing datasets and 266

manually annotating constraints with natural lan- 267

guage descriptions. Additionally, we implement 268

two LLM-as-Formalizer strategies, generate and 269

edit, and evaluate them alongside LLM-as-Planner 270

across four models on our benchmark. The ex- 271

perimental results show that (1) planning under 272

constraints remains a significant challenge for both 273

frameworks, and (2) neither framework is univer- 274

sally better—performance depends on the type of 275

constraint, with LLM-as-Formalizer outperforming 276

on some categories. We further analyze and charac- 277

terize common failure modes of both frameworks 278

(Section 5). We hope our implementation of LLM- 279

as-Formalizer and the proposed benchmark provide 280

a foundation for future research in constraint-aware 281

planning with language models. 282

7 Limitation 283

Our categorization of constraints is not the only 284

way to categorize constraints, and many constraints 285

can fall into more than one category. For example 286

“Do not stack block 1 on block 2” can be considered 287

a state-based constraint, as well as a sequential con- 288

straint, as it impacts the sequence of actions needed 289

to perform the task. Nevertheless, we believe this 290

categorization of constraints is rich and is a good 291
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way to see what types of constraints different lan-292

guages perform well on.293

Our evaluation metric is counting the number of294

correct plans both from using the LLM as a planner,295

as well as using a solver after generating PDDL or296

Z3. However, there is a chance that false positives297

will occur as the plan may be correct, but the gen-298

erated code does not actually satisfy the constraint.299

While there has been previous work, like Zuo et al.300

(2024) that evaluated generated PDDL using graph301

isomorphism to make sure that the generated prob-302

lem file is equivalent to a ground-truth problem file,303

such strategy does not exist for evaluating domain304

files. Therefore, we feel this is the best method to305

evaluate generating entire PDDL despite the chance306

of false positives.307

Since this work uses only the BlocksWorld and308

Mystery BlocksWorld, it is a small toy example309

to the usage of LLMs as formalizers and are not310

representative to problems in the real world, which311

would be much more challenging. This may pose a312

risk to users using this code on real world problems.313

The datasets we use and we propose are all under314

the MIT License.315

References316

Jean Berko. 1958. The child’s learning of english mor-317
phology. Word, 14(2-3):150–177.318

Lin Guan, Karthik Valmeekam, Sarath Sreedharan,319
and Subbarao Kambhampati. 2023. Leveraging pre-320
trained large language models to construct and utilize321
world models for model-based task planning. Ad-322
vances in Neural Information Processing Systems,323
36:79081–79094.324

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,325
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,326
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-327
centivizing reasoning capability in llms via reinforce-328
ment learning. arXiv preprint arXiv:2501.12948.329

Weihang Guo, Zachary Kingston, and Lydia E. Kavraki.330
2024. Castl: Constraints as specifications through331
llm translation for long-horizon task and motion plan-332
ning. Preprint, arXiv:2410.22225.333

Yilun Hao, Yang Zhang, and Chuchu Fan. 2025. Plan-334
ning anything with rigor: General-purpose zero-shot335
planning with LLM-based formalized programming.336
In The Thirteenth International Conference on Learn-337
ing Representations.338

R. Howey, D. Long, and M. Fox. 2004. Val: auto-339
matic plan validation, continuous effects and mixed340
initiative planning using pddl. In 16th IEEE Inter-341
national Conference on Tools with Artificial Intelli-342
gence, pages 294–301.343

Cassie Huang and Li Zhang. 2025. On the limit of 344
language models as planning formalizers. Preprint, 345
arXiv:2412.09879. 346

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 347
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 348
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder 349
technical report. arXiv preprint arXiv:2409.12186. 350

IPC. 1998. International planning competition. https: 351
//www.icaps-conference.org/competitions. 352

Subbarao Kambhampati, Karthik Valmeekam, Lin 353
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham- 354
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t 355
plan, but can help planning in llm-modulo frame- 356
works. arXiv preprint arXiv:2402.01817. 357

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, 358
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 359
2023a. Llm+ p: Empowering large language models 360
with optimal planning proficiency. arXiv preprint 361
arXiv:2304.11477. 362

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji 363
Zhou, and Yue Zhang. 2023b. Evaluating the logical 364
reasoning ability of chatgpt and gpt-4. arXiv preprint 365
arXiv:2304.03439. 366

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, 367
Delip Rao, Eric Wong, Marianna Apidianaki, and 368
Chris Callison-Burch. 2023. Faithful chain-of- 369
thought reasoning. In Proceedings of the 13th In- 370
ternational Joint Conference on Natural Language 371
Processing and the 3rd Conference of the Asia-Pacific 372
Chapter of the Association for Computational Lin- 373
guistics (Volume 1: Long Papers), pages 305–329, 374
Nusa Dua, Bali. Association for Computational Lin- 375
guistics. 376

Christian Muise. 2016. Planning.Domains. In The 377
26th International Conference on Automated Plan- 378
ning and Scheduling - Demonstrations. 379

Liangming Pan, Alon Albalak, Xinyi Wang, and 380
William Wang. 2023. Logic-LM: Empowering large 381
language models with symbolic solvers for faithful 382
logical reasoning. In Findings of the Association 383
for Computational Linguistics: EMNLP 2023, pages 384
3806–3824, Singapore. Association for Computa- 385
tional Linguistics. 386

Qwen Team. 2025. Qwen3 technical report. Preprint, 387
arXiv:2505.09388. 388

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, 389
Sarath Sreedharan, and Subbarao Kambhampati. 390
2024a. Planbench: An extensible benchmark for 391
evaluating large language models on planning and 392
reasoning about change. Advances in Neural Infor- 393
mation Processing Systems, 36. 394

Karthik Valmeekam, Kaya Stechly, and Subbarao Kamb- 395
hampati. 2024b. Llms still can’t plan; can lrms? a 396
preliminary evaluation of openai’s o1 on planbench. 397
Preprint, arXiv:2409.13373. 398

5

https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://arxiv.org/abs/2410.22225
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://arxiv.org/abs/2412.09879
https://arxiv.org/abs/2412.09879
https://arxiv.org/abs/2412.09879
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2409.13373


Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,399
and Harold Soh. 2023. Translating natural language400
to planning goals with large-language models. arXiv401
preprint arXiv:2302.05128.402

Ziyi Yang, Shreyas S. Raman, Ankit Shah, and Stefanie403
Tellex. 2023. Plug in the safety chip: Enforcing404
constraints for llm-driven robot agents. Preprint,405
arXiv:2309.09919.406

Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark,407
Chris Callison-Burch, and Niket Tandon. 2024a.408
PDDLEGO: Iterative planning in textual environ-409
ments. In Proceedings of the 13th Joint Conference410
on Lexical and Computational Semantics (*SEM411
2024), pages 212–221, Mexico City, Mexico. As-412
sociation for Computational Linguistics.413

Tianyi Zhang, Li Zhang, Zhaoyi Hou, Ziyu Wang, Yul-414
ing Gu, Peter Clark, Chris Callison-Burch, and Niket415
Tandon. 2024b. PROC2PDDL: Open-domain plan-416
ning representations from texts. In Proceedings of417
the 2nd Workshop on Natural Language Reasoning418
and Structured Explanations (@ACL 2024), pages419
13–24, Bangkok, Thailand. Association for Compu-420
tational Linguistics.421

Andrew Zhu, Liam Dugan, Alyssa Hwang, and Chris422
Callison-Burch. 2023. Kani: A lightweight and423
highly hackable framework for building language424
model applications. In Proceedings of the 3rd Work-425
shop for Natural Language Processing Open Source426
Software (NLP-OSS 2023), pages 65–77, Singapore.427
Association for Computational Linguistics.428

Wang Zhu, Ishika Singh, Robin Jia, and Jesse Thoma-429
son. 2024. Language models can infer action seman-430
tics for classical planners from environment feedback.431
arXiv preprint arXiv:2406.02791.432

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li,433
Michael L Littman, and Stephen H Bach. 2024. Plan-434
etarium: A rigorous benchmark for translating text435
to structured planning languages. arXiv preprint436
arXiv:2407.03321.437

A Data Examples438

We augment constraint descriptions to a ground-439

truth domain and problem file and create new440

ground-truth PDDL files that now encode the441

ground-truth. Here we include an example con-442

straint description and the ground-truth PDDL files443

for the constraint + problem pair. Listings 1, 2444

and 3 display an example constraint description445

and the annotated ground-truth DF and PF for a446

paired BlocksWorld problem. Listing 4 shows an447

example ground-truth PF for the XL dataset, the448

DF remains the same. Listings 5, 6 and 7 display449

the corresponding constraint description, DF and450

PF that have now been obfuscated.451

B Prompts 452

Listings 8, 9, 10, 11 and 12 displays the prompts for 453

all experiment settings given to all models. When- 454

ever possible, we asked the model to return the 455

output in a JSON object for easier parsing. 456

C Experimental Setup Details 457

C.1 Planner 458

We use a dual-bfws-ffparser planner to find 459

plans from the generated PDDL. This is a best 460

first width search planner used with a fast forward 461

planner. 462

C.2 VAL 463

The VAL library takes in a ground-truth PDDL DF, 464

PF and a plan and tries to execute the plan in the 465

environment by checking whether each action in 466

the found plan can be executed based on the precon- 467

ditions written in the ground-truth files. If the plan 468

is executable, VAL then checks whether the final 469

state after executing the plan matches the goal state 470

found in the ground-truth PF. If either the plan is 471

not executable or the final state does not match the 472

goal state, VAL will return an error, therefore the 473

plan found by the planner is not correct. 474

D Full PDDL Results 475

Beyond the visualizations above, we show the de- 476

tailed results of all models on all datasets. 477

Figures 6-32 display all results. 478

E Example Model Outputs 479

Listings 13, 14, 15 and 16 display example full 480

model outputs for LLM-as-Planner and LLM-as- 481

Formalizer (Generate) using Deepseek-R1 once 482

constraints are introduced. 483

F Z3 Results 484

For SMT, which is designed for constraint satisfac- 485

tion, the planning domain and problem are encoded 486

directly as logical constraints, while the plan is an 487

array of assignable variables that satisfies all de- 488

fined constraints over a fixed number of steps. 489

We evaluate the model’s ability to output SMT 490

code implemented through the Z3 Python Library. 491

We ask the model to generate the entire Z3 code in 492

a zero-shot setting. We also include a revision step 493

where if the generated Z3 code leads to an error 494

when solved, the model is given 2 chances to fix 495

the error. 496

6

https://arxiv.org/abs/2309.09919
https://arxiv.org/abs/2309.09919
https://arxiv.org/abs/2309.09919
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://aclanthology.org/2024.nlrse-1.2
https://aclanthology.org/2024.nlrse-1.2
https://aclanthology.org/2024.nlrse-1.2
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8


DeepSeek-R1

DeepSeek-V30

20

40

60

80

100
Bl

oc
ks

W
or

ld
Co

rre
ct

ne
ss

-3

-10

LLM-as-Formalizer (Generate)
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Figure 4 displays that performance drops497

for Deepseek-R1 and Deepseek-V3 once con-498

straints are added, before any revision steps are499

taken. Qwen3-32B and Qwen2.5-Coder-32B-500

Instruct both achieve 0% for both non-constrained501

and constrained data. This pattern aligns with what502

we observed across our Z3 experiments, where plan503

generation through Z3 remained largely unreliable.504

This appears to stem from Z3’s logic-heavy format,505

which demands a level of syntactic and semantic506

precision that LLMs do not easily handle in situa-507

tions with constraints. 508

From Figure 5, revision improves the perfor- 509

mance for Z3 Generation, however results are 510

still much worse than PDDL generation, signify- 511

ing the difficulty of this task for Z3. This figure 512

shows how plan correctness improves after revision 513

across constraint types. DeepSeek-V3 outperforms 514

DeepSeek-R1 in the numerical and sequential cate- 515

gories. Both models show gains in each category, 516

suggesting that some constraints, such as those with 517

clear step-by-step logic, are easier for Z3 to work 518

with. Others, like goal and initial, appear more 519

difficult, likely because they require more implicit 520

reasoning that is harder for the LLMs to express in 521

Z3’s formal logic. 522
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Listing 1: Example constraint description for a state-based constraint
523

Do not stack block1 on top of block2524525

Listing 2: Annotated ground-truth Domain File for BlocksWorld-100 with state-based constraint description
526

(define (domain blocksworld)527
;; CONSTRAINT Do not stack block1 on top of block2.528
(:requirements :strips)529

(:predicates (clear ?x)530
(on-table ?x)531
(arm-empty)532
(holding ?x)533
(on ?x ?y)534

;; BEGIN ADD535
(do-not-stack ?x ?y)536

;; END ADD537
)538

539
(:action pickup540
:parameters (?ob)541
:precondition (and (clear ?ob) (on-table ?ob) (arm-empty))542
:effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))543

(not (arm-empty))))544
545

(:action putdown546
:parameters (?ob)547
:precondition (holding ?ob)548
:effect (and (clear ?ob) (arm-empty) (on-table ?ob)549

(not (holding ?ob))))550
551

(:action stack552
:parameters (?ob ?underob)553
:precondition (and (clear ?underob) (holding ?ob)554

;; BEGIN ADD555
(not (do-not-stack ?ob ?underob))556

;; END ADD557
)558

:effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)559
(not (clear ?underob)) (not (holding ?ob))))560

561
(:action unstack562
:parameters (?ob ?underob)563
:precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))564
:effect (and (holding ?ob) (clear ?underob)565

(not (on ?ob ?underob)) (not (clear ?ob)) (not (arm-empty)))))566567

Listing 3: Annotated ground-truth Problem File for BlocksWorld-100 with state-based constraint description
568

(define (problem blocksworld-p50)569
;; CONSTRAINT Do not stack block1 on top of block2.570
(:domain blocksworld)571
(:objects block1 block2 block3 block4 block5 block6 block7 )572
(:init573
(on-table block3)574
(clear block3)575
(on-table block5)576
(clear block5)577
(on-table block7)578
(on block1 block7)579
(clear block1)580
(on-table block2)581
(clear block2)582
(on-table block6)583
(clear block6)584
(on-table block4)585
(clear block4)586
(arm-empty)587

8



;; BEGIN ADD 588
(do-not-stack block1 block2) 589

;; END ADD 590
) 591
(:goal (and 592
(on-table block5) 593
(on block2 block5) 594
(on-table block4) 595
(on block7 block4) 596
(on block6 block7) 597
(on block1 block6) 598
(on-table block3) 599

)) 600
) 601602

Listing 4: Annotated ground-truth Problem File for the XL BlocksWorld-100 problems with state-based constraint
description

603
(define (problem blocksworld-p50) 604
;; CONSTRAINT Do not stack block1 on top of block2. 605
(:domain blocksworld) 606
(:objects block1 block2 block3 block4 block5 block6 block7 block8 block9 block10 block11 block12 607

block13 block14 block15 block16 block17 block18 block19 block20 block21 block22 block23 608
block24 block25 block26 block27 block28 block29 block30 block31 block32 block33 block34 609
block35 block36 block37 block38 block39 block40 block41 block42 block43 block44 block45 610
block46 block47 block48 block49 block50 ) 611

(:init 612
(on-table block10) 613
(on block41 block10) 614
(on block50 block41) 615
(on block29 block50) 616
(on block46 block29) 617
(on block43 block46) 618
(on block5 block43) 619
(on block38 block5) 620
(on block48 block38) 621
(on block8 block48) 622
(on block11 block8) 623
(on block22 block11) 624
(on block13 block22) 625
(on block35 block13) 626
(on block49 block35) 627
(on block20 block49) 628
(on block31 block20) 629
(on block34 block31) 630
(on block17 block34) 631
(on block28 block17) 632
(on block14 block28) 633
(on block47 block14) 634
(on block26 block47) 635
(on block6 block26) 636
(on block4 block6) 637
(on block25 block4) 638
(on block9 block25) 639
(on block23 block9) 640
(on block15 block23) 641
(on block21 block15) 642
(on block18 block21) 643
(on block39 block18) 644
(on block33 block39) 645
(on block1 block33) 646
(on block3 block1) 647
(on block2 block3) 648
(on block44 block2) 649
(on block16 block44) 650
(on block45 block16) 651
(on block7 block45) 652
(on block40 block7) 653
(on block24 block40) 654
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(on block27 block24)655
(on block36 block27)656
(on block19 block36)657
(clear block19)658
(on-table block32)659
(clear block32)660
(on-table block42)661
(on block37 block42)662
(on block30 block37)663
(on block12 block30)664
(clear block12)665
(arm-empty)666

;; BEGIN ADD667
(do-not-stack block1 block2)668

;; END ADD669
)670
(:goal (and671
(on-table block46)672
(on block45 block46)673
(on block37 block45)674
(on-table block30)675
(on block39 block30)676
(on-table block34)677
(on-table block49)678
(on-table block19)679
(on-table block38)680
(on-table block16)681
(on-table block25)682
(on-table block18)683
(on block5 block18)684
(on block17 block5)685
(on-table block42)686
(on-table block3)687
(on block32 block3)688
(on block35 block32)689
(on block26 block35)690
(on-table block12)691
(on-table block33)692
(on-table block14)693
(on-table block2)694
(on-table block23)695
(on block1 block23)696
(on block6 block1)697
(on-table block4)698
(on block20 block4)699
(on-table block48)700
(on-table block27)701
(on-table block31)702
(on-table block44)703
(on block47 block44)704
(on-table block43)705
(on-table block36)706
(on-table block7)707
(on-table block22)708
(on-table block28)709
(on-table block9)710
(on-table block11)711
(on-table block50)712
(on-table block24)713
(on-table block41)714
(on-table block8)715
(on-table block21)716
(on-table block40)717
(on-table block13)718
(on-table block15)719
(on-table block29)720
(on-table block10)721

))722
)723724
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Listing 5: Example constraint description for a state-based constraint for Mystery BlocksWorld
725

Do not perform action3 with object1 and object2. 726727

Listing 6: Annotated ground-truth Domain File for Mystery BlocksWorld-100 with state-based constraint description
728

(define (domain mystery_blocksworld) 729
;; CONSTRAINT Do not perform action3 with object1 and object2. 730
(:requirements :strips) 731

(:predicates (predicate1 ?x) 732
(predicate2 ?x) 733
(predicate3) 734
(predicate4 ?x) 735
(predicate5 ?x ?y) 736

;; BEGIN ADD 737
(not-allowed ?x ?y) 738

;; END ADD 739
) 740

741
(:action action1 742
:parameters (?object1) 743
:precondition (and (predicate1 ?object1) (predicate2 ?object1) (predicate3)) 744
:effect (and (predicate4 ?object1) (not (predicate1 ?object1)) (not (predicate2 ?object1)) 745

(not (predicate3)))) 746
747

(:action action2 748
:parameters (?object1) 749
:precondition (predicate4 ?object1) 750
:effect (and (predicate1 ?object1) (predicate3) (predicate2 ?object1) 751

(not (predicate4 ?object1)))) 752
753

(:action action3 754
:parameters (?object1 ?object2) 755
:precondition (and (predicate1 ?object2) (predicate4 ?object1) 756

;; BEGIN ADD 757
(not (not-allowed ?object1 ?object2)) 758

;; END ADD 759
) 760

:effect (and (predicate3) (predicate1 ?object1) (predicate5 ?object1 ?object2) 761
(not (predicate1 ?object2)) (not (predicate4 ?object1)))) 762

763
(:action action4 764
:parameters (?object1 ?object2) 765
:precondition (and (predicate5 ?object1 ?object2) (predicate1 ?object1) (predicate3)) 766
:effect (and (predicate4 ?object1) (predicate1 ?object2) 767

(not (predicate5 ?object1 ?object2)) (not (predicate1 ?object1)) (not (predicate3))))) 768769

Listing 7: Annotated ground-truth Problem File for Mystery BlocksWorld-100 with state-based constraint description
770

(define (problem mystery_blocksworld-p50) 771
;; CONSTRAINT Do not perform action3 with object1 and object2. 772
(:domain mystery_blocksworld) 773
(:objects object1 object2 object3 object4 object5 object6 object7 ) 774
(:init 775
(predicate2 object3) 776
(predicate1 object3) 777
(predicate2 object5) 778
(predicate1 object5) 779
(predicate2 object7) 780
(predicate5 object1 object7) 781
(predicate1 object1) 782
(predicate2 object2) 783
(predicate1 object2) 784
(predicate2 object6) 785
(predicate1 object6) 786
(predicate2 object4) 787
(predicate1 object4) 788
(predicate3) 789

11



;; BEGIN ADD790
(not-allowed object1 object2)791

;; END ADD792
)793
(:goal (and794
(predicate2 object5)795
(predicate5 object2 object5)796
(predicate2 object4)797
(predicate5 object7 object4)798
(predicate5 object6 object7)799
(predicate5 object1 object6)800
(predicate2 object3)801

))802
)803804

Listing 8: Prompt for LLM-as-Planner
805

You are a PDDL expert. Here is a game we are playing.806
{domain_description}807
{problem_description}808
{constraint_description}809

810
Write the plan that would solve this problem.811

812
These are the available actions:813
{available_actions}814

815
Here is what the output should look like:816
{example_answer}817818

Listing 9: Prompt for LLM-as-Formalizer, while generating the entire code
819

You are a PDDL expert. Here is a game we are playing.820
{domain_description}821
{problem_description}822
{constraint_description}823

824
Write the domain and problem files in minimal PDDL.825

826
These are the available actions:827
{available_actions}828829

Listing 10: Prompt for LLM-as-Formalizer, while first generating the non-constrained PDDL for the Edit setting
830

You are a PDDL expert. Here is a game we are playing.831
{domain_description}832
{problem_description}833
Write the domain and problem files in minimal PDDL.834

835
These are the available actions:836
{available_actions}837838

Listing 11: Prompt for LLM-as-Formalizer, while modifying the non-constrained PDDL for the Edit setting
839

You are a PDDL expert. Here is a PDDL domain and problem file.840
{original_domain_file}841
{original_problem_file}842

843
Modify the PDDL files so that it satisfies the following constraint: {constraint_description}844
These are the available actions:845
{available_actions}846847

Listing 12: Prompt for LLM-as-Formalizer, including revision
848
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You are a PDDL expert. The following domain and problem files have the error: {error} 849
850

{domain_file} 851
{problem_file} 852

853
Revise the PDDL to remove the error. 854855

Listing 13: Example Deepseek-R1 LLM-as-Planner output for State-based constraint: “Once you unstack a block,
you cannot put it down on the table.” Text in red represents actions that do not satisfy the newly added constraint
and actions that do not satisfy BlocksWorld PDDL rules.

856
(unstack block1 block3) 857
(stack block1 block4) 858
(unstack block3 block6) 859
(stack block3 block5) 860
(unstack block6 block9) 861
(putdown block6) 862
(pickup block9) 863
(stack block9 block6) 864
(unstack block1 block4) 865
(stack block1 block9) 866
(unstack block2 block8) 867
(stack block2 block1) 868
(pickup block5) 869
(stack block5 block2) 870
(pickup block8) 871
(stack block8 block5) 872
(unstack block3 block5) 873
(stack block3 block8) 874
(pickup block4) 875
(stack block4 block3) 876
(pickup block7) 877
(stack block7 block4) 878879

Listing 14: Example Deepseek-R1 LLM-as-Formalizer DF output for State-based constraint: “Once you unstack a
block, you cannot put it down on the table.” Text in green represents PDDL syntax that correctly encodes the new
constraint.

880
(define (domain blocksworld) 881
(:requirements :strips) 882
(:predicates 883
(ontable ?x) 884
(on ?x ?y) 885
(clear ?x) 886
(handempty) 887
(holding ?x) 888
(unstacked ?x) 889

) 890
(:action pickup 891
:parameters (?b) 892
:precondition (and (ontable ?b) (clear ?b) (handempty)) 893
:effect (and (not (ontable ?b)) (not (clear ?b)) (not (handempty)) (holding ?b)) 894

) 895
(:action putdown 896
:parameters (?b) 897
:precondition (and (holding ?b) (not (unstacked ?b))) 898
:effect (and (ontable ?b) (clear ?b) (handempty) (not (holding ?b)))) 899

(:action stack 900
:parameters (?b1 ?b2) 901
:precondition (and (holding ?b1) (clear ?b2)) 902
:effect (and (on ?b1 ?b2) (not (clear ?b2)) (clear ?b1) (handempty) (not (holding ?b1))) 903

) 904
(:action unstack 905
:parameters (?b1 ?b2) 906
:precondition (and (on ?b1 ?b2) (clear ?b1) (handempty)) 907
:effect (and (holding ?b1) (clear ?b2) (not (on ?b1 ?b2)) (not (clear ?b1)) (not (handempty)) 908
(unstacked ?b1))))) 909910
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Listing 15: Example Deepseek-R1 LLM-as-Formalizer DF output for Sequential constraint: “If you move block1,
you must move block2 after.” Text in red represents PDDL syntax that incorrectly encodes the new constraint as
well as BlocksWorld PDDL rules.

911
(define (domain blocksworld)912
(:requirements :strips :equality)913
(:predicates914
(on ?x ?y) (clear ?x) (holding ?x) (armempty))915

(:action pickup916
:parameters (?b)917
:precondition (and (on ?b table) (clear ?b) (armempty))918
:effect (and (holding ?b) (not (on ?b table)) (not (clear ?b)) (not (armempty)))919

)920
(:action putdown921
:parameters (?b)922
:precondition (holding ?b)923
:effect (and (on ?b table) (clear ?b) (armempty) (not (holding ?b)))924

)925
(:action stack926
:parameters (?b ?under)927
:precondition (and (holding ?b) (clear ?under))928
:effect (and (on ?b ?under) (clear ?b) (armempty) (not (holding ?b)) (not (clear ?under)))929

)930
(:action unstack931
:parameters (?b ?under)932
:precondition (and (on ?b ?under) (clear ?b) (armempty) (not (= ?under table)))933
:effect (and (holding ?b) (clear ?under) (not (on ?b ?under)) (not (clear ?b)) (not (armempty)))934

)935
)936937

Listing 16: Example Deepseek-R1 LLM-as-Planner output for Sequential constraint: “If you move block1, you
must move block2 after.” Text in green represents actions that satisfy the newly added constraints. The entire is
satisfies BlocksWorld PDDL rules.

938
(pickup block3)939
(stack block3 block6)940
(pickup block9)941
(stack block9 block3)942
(pickup block12)943
(stack block12 block10)944
(pickup block4)945
(stack block4 block12)946
(pickup block8)947
(stack block8 block15)948
(pickup block7)949
(stack block7 block11)950
(pickup block13)951
(stack block13 block7)952
(pickup block1)953
(stack block1 block13)954
(pickup block2)955
(stack block2 block8)956
(pickup block5)957
(stack block5 block1)958
(pickup block14)959
(stack block14 block5)960961
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Figure 32: Mystery BlocksWorld

18


	Introduction
	Task
	Data
	Experimental Setup
	Results
	Conclusion
	Limitation
	Data Examples
	Prompts
	Experimental Setup Details
	Planner
	VAL

	Full PDDL Results
	Example Model Outputs
	Z3 Results

