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Abstract

In recent work on AI planning, Large Lan-
guage Models (LLMs) are either used as plan-
ners to generate executable plans, or as for-
malizers to represent the planning domain and
problem in formal language that can derive
plans deterministically. However, both lines
of work rely on standard benchmarks that only
include generic and simplistic environmental
specifications, leaving the robustness of LLMs’
planning ability understudied. We bridge this
gap by augmenting widely used planning do-
mains with manually annotated, fine-grained,
and rich natural language constraints spanning
five distinct categories. Our experiments show
that introducing constraints significantly de-
creases performance across all methods, and
that the two methodologies each excel on dif-
ferent types of constraints. !

1 Introduction

Large Language Models (LLMs) have garnered
attention in recent years for their capabilities in
planning domains. An intuitive line of work is hav-
ing them output a plan directly (LLM-as-Planner).
With the emergence of reasoning models, formal
planning tasks that models originally have strug-
gled on (Valmeekam et al., 2024a; Kambhampati
et al., 2024) now have improved performance in
accuracy (Valmeekam et al., 2024b; Huang and
Zhang, 2025). Another line of work instead has
LLMs formalize the problem in some formal lan-
guage (LLM-as-Formalizer), such as Planning Def-
inition Language (PDDL) (Xie et al., 2023; Liu
etal., 2023a; Zhang et al., 2024a,b; Zhu et al., 2024)
or a Satisfiability Modulo Theories (SMT) solver,
such as Z3 (Hao et al., 2025). This formal repre-
sentation can then be passed into a solver, which
then outputs a plan deterministically. This method-
ology is more interpretable and trustworthy while
showing promising performance.

'Our code and data are attached with the submission.
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Figure 1: We explore the performance of both LLM-as-
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However, most previous work relies on standard
planning benchmarks where environments are de-
scribed in a generic and simplistic manner (Fig-
ure 1 exemplifies the classic BlocksWorld domain
(IPC, 1998)). This creates two concerns. First,
LLMs may have memorized the specification of
these well-established domains, leading to overesti-
mation of their planning or formalizing ability and
robustness. Second, real-life planning is filled with
various constraints, disregarding which will lead
to safety concerns. However, only a few previous
works recognized these risks. Yang et al. (2023)
translates natural language constraints into Linear
Temporal Logic to monitor LLM-as-Planner but
does not support general planning per se. Guo et al.
(2024) encodes constraints with SMT and com-
bines with PDDL for Task and Motion Planning
though without any public data or code. More-
over, they simplify the task by assuming part of the
PDDL which is often not realistic, and their catego-
rization of constraints is too coarse-grained. Both
works focus on leveraging formal representations
for specific robotic tasks, but lack benchmark eval-
uations and insights from a language perspective.

To bridge this gap, we systematically evalu-
ate both LLM-as-planner and LLM-as-formalizer
on planning with constraints. We introduce five
fine-grained categories, and manually annotate



rich natural language constraints on the widely
used BlocksWorld domain across three distinctive
datasets. Using this new benchmark, we find that
planning with constraints remains a challenging
task, and while using reasoning models in LLM-as-
Planner has recently surpassed the performance of
LLM-as-Formalizer, LLM-as-Formalizer remains
a competitive method and can outperform LLLM-as-
Planner depending on the constraint type.

2 Task

We consider formal planning tasks where the model
is given a textual description description of the
domain (DD) and the problem (PD) to output a
plan consisting of an sequence of symbolic actions.
Each domain and problem can be described via
formal languages. While there are many formal
languages for this task, we will be focusing on
PDDL in this work. Experiments involving Z3 are
discussed in Appendix, Section F, due to incom-
plete and unpromising results. In PDDL, which
is native and designed for this purpose, a domain
file (DIF) describes all the actions and properties
that hold true across problems, while a problem
file (IPTF) describes specific configurations of each
problem instance.

In addition to the DD and PD, we also supply
the model with a natural language description of a
constraint (C). For LLM-as-Planner, the model is
asked to output the plan. For LLM-as-Formalizer,
the model is asked to formalize the domain, prob-
lem and constraint in PDDL which is then passed
into a solver to output a plan. To evaluate both
approaches above, we work with fully-observable
textual environments, where the provided DD and
PD contain all necessary information for the model
to make a complete plan.

3 Data

We consider two widely used planning domains:
BlocksWorld (IPC, 1998) is a domain to rearrange
stacks of blocks on a table using a robotic arm.
Mystery BlocksWorld (Valmeekam et al., 2024a)
obfuscates the original BlocksWorld domain by
replacing all the names of the types, predicates,
actions, and objects with nonsensical words, akin
to a wug test (Berko, 1958). As a control group,
it evaluates whether models create plans via lex-
ical pattern-matching and memorization. For
both domains, we use the BlocksWorld-100 and
MysteryBlocksWorld-10@ benchmarks Huang

and Zhang (2025). Each has 100 instances that
consist of DID and PD, which are input to models,
and ground-truth DF and PF, which are used to
evaluate a predicted plan. Since these problems
only involve less than 15 blocks, we create another
dataset of the same size, BlocksWorld-XL-109,
where each problem contains 50 blocks to evaluate
robustness over complexity.

Next, we manually annotate 100 natural lan-
guage constraints C across five categories, which
expands the categories from Guo et al. (2024).
Numerical constraints involve numbers and numer-
ical relations. E.g., “The higher number the block,
the heavier it is. Once you start moving blocks, do
not stack lighter blocks on heavier blocks.”
Sequential constraints enforce a specific temporal
pattern of actions. E.g., “If you move block1, you
must move block?2 after.”

State-Based constraints involve the states and at-
tributes of entities. E.g., “Block 5 is fragile and no
other block can be placed on top of it.”.

Initial constraints must hold at the beginning.
These constraints will override the original initial
states in the problem descriptions.

Goal constraints must hold at the end. These con-
straints will override the original goal found in the
problem descriptions.

Each category includes 20 constraints that are
paired with a BlocksWorld problem. Then, we
modify the ground-truth PDDL to satisfy the con-
straint. In total, for each dataset, we have 100
instances with unique DD, PD, C, DF, and PF
tuples. For the Mystery BlocksWorld domain, we
obfuscate the keywords in both the constraint C and
descriptions DD and PID with meaningless place-
holders to keep the constraints consistent across
both datasets. Examples are shown in Appendix A.

4 Experimental Setup

Given the DD, PD and C, we prompt the LLM
to produce two different outputs: a Plan directly,
the PDDL DF and PF, we ask the model to either
generate the entire PDDL in a zero-shot setting,
or to output PDDL without the constraint before
suggesting an edit to that PDDL to satisfy the given
constraint. Both methods also included a revision
step where if the generated PDDL leads to an error
when solved, the model is given three chances to
fix the error by re-generating the PDDL or the edit.

Following past work (Guan et al., 2023; Zhu
et al., 2024), the plan produced from LLM-as-
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Figure 2: Performance of LILM-as-Planner,

LLM-as-Formalizer
BlocksWorld-XL-100 and MysteryBlocksWorld-100 data.

(PDDL) on BlocksWorld-100,
When constraints are introduced to the task,

performance degrades dramatically. Revision is not included in this result to demonstrate that without extra help,
this task is difficult. For all results, see Appendix, Section D.

Planner is validated against the ground-truth DFFs
and PFs provided above, instead of being com-
pared against “ground-truth” plans (Lyu et al.,
2023; Liu et al., 2023b; Pan et al., 2023) since there
could be multiple correct plans. Similarly, the pre-
dicted DF and PF for the LLLM-as-formalizer ap-
proach are not compared against the ground-truth,
as only the eventual plan is validated because there
might be more than one way to formalize. We eval-
uate the predicted plans using correctness which
indicates the percentage of generated PDDL that
passes the solver and leads to correctly validated
plans. We use dual-bfws-ffparser planner imple-
mented by Muise (2016) as the solver and VAL
(Howey et al., 2004) as the validator. See more
details in Appendix C.

For both of the LLLM-as-planner and LLM-as-
formalizer approaches, we consider Deepseek-
R1, Deepseek-V3 (Guo et al., 2025), Qwen3-32B
(Team, 2025), and Qwen2.5-Coder-32B-Instruct
(Hui et al., 2024). We query these models us-
ing KANI (Zhu et al., 2023) with default hyper-
parameters on 4 H100 GPUs.

5 Results

Figure 2 displays the performance of LLM-as-
Planner and LLM-as-Formalizer with the gener-
ate and edit setting (without revision) on the con-
strained and non-constrained data. Almost all
models paired with both methods struggle when
constraints are added. On BlocksWorld-109,
DeepSeek-R1, -V3, and Qwen3-32B excel as plan-
ners, but their performance falls by almost half
when given constraints. On BlocksWorld-XL-1080,
which is much more challenging for all settings
as expected, a similar trend can be observed. As
formalizers, models see a similar degradation, no-
tably on MysteryBlocksWorld-100 where all per-
formance decreases by about 80%.

Figure 3 displays the performance by constraint
categories of LLM-as-Planner and all settings of
LLM-as-Formalizer. The two methodologies pre-
fer and struggle on different constraints. LLM-
as-Planner performs well on sequential, state-based
and goal constraints, while LLM-as-Formalizer ex-
cels on state-based constraints. A possible explana-
tion could be as the state-based constraints impact
the predicates and states in PDDL, which makes the
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Figure 3: Performance of LLM-as-Planner and LLM-
as-Formalizer (PDDL) by constraint categories on
BlocksWorld-100. Each category contains 20 in-
stances. The arrows represent the performance increase
in the correctness once revision was included.

modification easy to generate. Meanwhile, numeri-
cal and sequential constraints are harder to encode
in PDDL, leading to the lower correctness.

Figure 3 also displays that generating the entire
PDDL excels on different constraints that editing
the non-constrained PDDL. The performance on
adding State-based constraints benefits from the
generation task, while initial and goal constraints
benefit from the editing task. This makes sense as
the initial and goal constraints override the origi-
nal problem setup which is easier to edit than to
generate the entire PDDL based on two different
problem setups.

We explore qualitative examples of where both
methodologies succeed or fail. For full examples
see Appendix, Section E. LLM-as-Planner tends to
fail when the model outputs a plan that does not
satisfy the newly added constraints. For example,
for the constraint “Once you unstack a block, you
cannot put it down on the table.”, Deepseek-R1
returned a plan that did not satisfy the newly-added
constraint (it unstacks block6 before putting it on
the table) but it also does not follow PDDL rules
(it attempts to pick up block5 even though block5
has block3 on top of it).

Whereas for LLM-as-Formalizer (Generate) on
the same problem, Deepseek-R1 correctly intro-
duces a new predicate that satisfies the constraint,
which is added to the unstack and putdown action,

and when passed through a solver, it correctly de-
termines that with the added constraint, a plan does
not exist.

However, LLM-as-Formalizer tends to struggle
with semantic errors, such as missing needed pred-
icates to satisfy constraints. For example, on the
constraint “If you move blockl, you must move
block?2 after.”, LLM-as-Formalizer (Generate) us-
ing Deepseek-R1 returned a DF Which not only
forgets predicates found in the non-constrained ver-
sion of the problem, but also does not include any
predicates that would satisfy the constraint. When
passed into the solver, it output a plan that did
not satisfy the constraint. In contrast, for LLM-
as-Planner, Deepseek-R1 returned a plan which
satisfies the added constraint by moving block2
once blockl1 has been moved.

6 Conclusion

We study the robustness of two types of LLM
planning frameworks—ILILM-as-Planner and LLM-
as-Formalizer—by introducing rich, fine-grained
constraints into planning problems. To enable a
thorough comparison, we develop a benchmark
by integrating and extending existing datasets and
manually annotating constraints with natural lan-
guage descriptions. Additionally, we implement
two LLM-as-Formalizer strategies, generate and
edit, and evaluate them alongside LLM-as-Planner
across four models on our benchmark. The ex-
perimental results show that (1) planning under
constraints remains a significant challenge for both
frameworks, and (2) neither framework is univer-
sally better—performance depends on the type of
constraint, with LLM-as-Formalizer outperforming
on some categories. We further analyze and charac-
terize common failure modes of both frameworks
(Section 5). We hope our implementation of LLM-
as-Formalizer and the proposed benchmark provide
a foundation for future research in constraint-aware
planning with language models.

7 Limitation

Our categorization of constraints is not the only
way to categorize constraints, and many constraints
can fall into more than one category. For example
“Do not stack block 1 on block 2” can be considered
a state-based constraint, as well as a sequential con-
straint, as it impacts the sequence of actions needed
to perform the task. Nevertheless, we believe this
categorization of constraints is rich and is a good



way to see what types of constraints different lan-
guages perform well on.

Our evaluation metric is counting the number of
correct plans both from using the LLM as a planner,
as well as using a solver after generating PDDL or
73. However, there is a chance that false positives
will occur as the plan may be correct, but the gen-
erated code does not actually satisfy the constraint.
While there has been previous work, like Zuo et al.
(2024) that evaluated generated PDDL using graph
isomorphism to make sure that the generated prob-
lem file is equivalent to a ground-truth problem file,
such strategy does not exist for evaluating domain
files. Therefore, we feel this is the best method to
evaluate generating entire PDDL despite the chance
of false positives.

Since this work uses only the BlocksWorld and
Mystery BlocksWorld, it is a small toy example
to the usage of LLMs as formalizers and are not
representative to problems in the real world, which
would be much more challenging. This may pose a
risk to users using this code on real world problems.

The datasets we use and we propose are all under
the MIT License.
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A Data Examples

We augment constraint descriptions to a ground-
truth domain and problem file and create new
ground-truth PDDL files that now encode the
ground-truth. Here we include an example con-
straint description and the ground-truth PDDL files
for the constraint + problem pair. Listings 1, 2
and 3 display an example constraint description
and the annotated ground-truth DF and PF for a
paired BlocksWorld problem. Listing 4 shows an
example ground-truth PF for the XL dataset, the
DF remains the same. Listings 5, 6 and 7 display
the corresponding constraint description, DF and
PTF that have now been obfuscated.

B Prompts

Listings 8, 9, 10, 11 and 12 displays the prompts for
all experiment settings given to all models. When-
ever possible, we asked the model to return the
output in a JSON object for easier parsing.

C Experimental Setup Details
C.1 Planner

We use a dual-bfws-ffparser planner to find
plans from the generated PDDL. This is a best
first width search planner used with a fast forward
planner.

C.2 VAL

The VAL library takes in a ground-truth PDDL DT,
PF and a plan and tries to execute the plan in the
environment by checking whether each action in
the found plan can be executed based on the precon-
ditions written in the ground-truth files. If the plan
is executable, VAL then checks whether the final
state after executing the plan matches the goal state
found in the ground-truth PF. If either the plan is
not executable or the final state does not match the
goal state, VAL will return an error, therefore the
plan found by the planner is not correct.

D Full PDDL Results

Beyond the visualizations above, we show the de-
tailed results of all models on all datasets.
Figures 6-32 display all results.

E Example Model Outputs

Listings 13, 14, 15 and 16 display example full
model outputs for LLM-as-Planner and LLM-as-
Formalizer (Generate) using Deepseek-R1 once
constraints are introduced.

F Z3 Results

For SMT, which is designed for constraint satisfac-
tion, the planning domain and problem are encoded
directly as logical constraints, while the plan is an
array of assignable variables that satisfies all de-
fined constraints over a fixed number of steps.

We evaluate the model’s ability to output SMT
code implemented through the Z3 Python Library.
We ask the model to generate the entire Z3 code in
a zero-shot setting. We also include a revision step
where if the generated Z3 code leads to an error
when solved, the model is given 2 chances to fix
the error.
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Figure 4: Performance of LLM-as-Formalizer (SMT)
on BlocksWorld-100 data. When constraints are intro-
duced to the task, performance degrades. Revision is
not included in this result to demonstrate that without
extra help, this task is difficult.
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Figure 4 displays that performance drops
for Deepseek-R1 and Deepseek-V3 once con-
straints are added, before any revision steps are
taken. Qwen3-32B and Qwen2.5-Coder-32B-
Instruct both achieve 0% for both non-constrained
and constrained data. This pattern aligns with what
we observed across our Z3 experiments, where plan
generation through Z3 remained largely unreliable.
This appears to stem from Z3’s logic-heavy format,
which demands a level of syntactic and semantic
precision that LLMs do not easily handle in situa-

tions with constraints.

From Figure 5, revision improves the perfor-
mance for Z3 Generation, however results are
still much worse than PDDL generation, signify-
ing the difficulty of this task for Z3. This figure
shows how plan correctness improves after revision
across constraint types. DeepSeek-V3 outperforms
DeepSeek-R1 in the numerical and sequential cate-
gories. Both models show gains in each category,
suggesting that some constraints, such as those with
clear step-by-step logic, are easier for Z3 to work
with. Others, like goal and initial, appear more
difficult, likely because they require more implicit
reasoning that is harder for the LLMs to express in
7.3’s formal logic.



Listing 1: Example constraint description for a state-based constraint

Do not stack blockl on top of block2

Listing 2: Annotated ground-truth Domain File for BlocksWorld-100 with state-based constraint description

(define (domain blocksworld)
;5 CONSTRAINT Do not stack blockl on top of block2.
(:requirements :strips)
(:predicates (clear ?x)
(on-table ?x)
(arm-empty)
(holding ?x)
(on ?x ?y)
:; BEGIN ADD
(do-not-stack ?x ?y)
END ADD
)

’

(:action pickup
:parameters (?0b)
:precondition (and (clear ?0b) (on-table ?0b) (arm-empty))
:effect (and (holding ?0b) (not (clear ?ob)) (not (on-table ?0b))
(not (arm-empty))))

(:action putdown
:parameters (?0b)
:precondition (holding ?ob)
:effect (and (clear ?0b) (arm-empty) (on-table ?ob)
(not (holding ?0b))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob)
:; BEGIN ADD
(not (do-not-stack ?ob ?underob))
;; END ADD
:effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)
(not (clear ?underob)) (not (holding ?0b))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))
:effect (and (holding ?ob) (clear ?underob)
(not (on ?ob ?underob)) (not (clear ?0b)) (not (arm-empty)))))

Listing 3: Annotated ground-truth Problem File for BlocksWorld-100 with state-based constraint description

(define (problem blocksworld-p50)
;5 CONSTRAINT Do not stack blockl on top of block2.
(:domain blocksworld)
(:objects blockl block2 block3 block4 block5 blocké block7 )
(:init
(on-table block3)
(clear block3)
(on-table block5)
(clear block5)
(on-table block7)
(on blockl block7)
(clear blockl)
(on-table block?2)
(clear block2)
(on-table block6)
(clear blocké6)
(on-table block4)
(clear block4)
(arm-empty)




BEGIN ADD
(do-not-stack blockl block2)
END ADD

’

)

(:goal (and
(on-table block5)
(on block2 block5)
(on-table block4)
(on block7 block4)
(on block6 block7)
(on blockl blocké6)
(on-table block3)

))

Listing 4: Annotated ground-truth Problem File for the XL BlocksWorld-100 problems with state-based constraint
description

(define (problem blocksworld-p50)
;5 CONSTRAINT Do not stack blockl on top of block2.

(:domain blocksworld)

(:objects blockl block2 block3 block4 block5 block6 block7 block8 block9 block1@ block11l block12
block13 block14 block15 block16 block17 block18 block19 block20@ block21 block22 block23
block24 block25 block26 block27 block28 block29 block3@ block31 block32 block33 block34
block35 block36 block37 block38 block39 block4@ block41 block42 block43 block44 block45
block46 block47 block48 block49 block50 )

(:init

(on-table block10)

(on block41 block10)
(on block50 block41)
(on block29 block50)
(on block46 block29)
(on block43 block46)
(on block5 block43)
(on block38 block5)
(on block48 block38)
(on block8 block48)
(on block11 block8)
(on block22 block11)
(on block13 block22)
(on block35 block13)
(on block49 block35)
(on block20 block49)
(on block31 block20)
(on block34 block31)
(on block17 block34)
(on block28 block17)
(on block14 block28)
(on block47 block14)
(on block26 block47)
(on block6 block26)
(on block4 block6)

(on block25 block4)
(on block9 block25)
(on block23 block9)
(on block15 block23)
(on block21 block15)
(on block18 block21)
(on block39 block18)
(on block33 block39)
(on blockl block33)
(on block3 blockl)

(on block2 block3)

(on block44 block2)
(on block16 block44)
(on block45 block16)
(on block7 block45)
(on block4@ block7)
(on block24 block40)




(on block27 block24)
(on block36 block27)
(on block19 block36)
(clear block19)
(on-table block32)
(clear block32)
(on-table block42)
(on block37 block42)
(on block3@ block37)
(on block12 block30)
(clear block12)
(arm-empty)

BEGIN ADD
(do-not-stack blockl block2)
END ADD

’

)

(:goal (and
(on-table block46)
(on block45 block46)
(on block37 block45)
(on-table block30)
(on block39 block30)
(on-table block34)
(on-table block49)
(on-table block19)
(on-table block38)
(on-table block16)
(on-table block25)
(on-table block18)
(on block5 block18)
(on block17 block5)
(on-table block42)
(on-table block3)
(on block32 block3)
(on block35 block32)
(on block26 block35)
(on-table block12)
(on-table block33)
(on-table block14)
(on-table block2)
(on-table block23)
(on blockl block23)
(on block6 block1)
(on-table block4)
(on block20@ block4)
(on-table block48)
(on-table block27)
(on-table block31)
(on-table block44)
(on block47 block44)
(on-table block43)
(on-table block36)
(on-table block7)
(on-table block22)
(on-table block28)
(on-table block9)
(on-table block11)
(on-table block50)
(on-table block24)
(on-table block41)
(on-table block8)
(on-table block21)
(on-table block4@)
(on-table block13)
(on-table block15)
(on-table block29)
(on-table block1@)

)
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Listing 5: Example constraint description for a state-based constraint for Mystery BlocksWorld

Do not perform action3 with objectl and object2.

Listing 6: Annotated ground-truth Domain File for Mystery BlocksWorld-100 with state-based constraint description

(define (domain mystery_blocksworld)
;5 CONSTRAINT Do not perform action3 with objectl and object2.
(:requirements :strips)
(:predicates (predicatel ?x)
(predicate2 ?x)
(predicate3)
(predicate4 ?x)
(predicate5 ?x ?y)
:; BEGIN ADD
(not-allowed ?x ?y)
;; END ADD

)

(:action actioni
:parameters (?object1l)
:precondition (and (predicatel ?object1) (predicate2 ?objectl) (predicate3))
:effect (and (predicate4 ?object1) (not (predicatel ?objectl)) (not (predicate2 ?objectl))
(not (predicate3))))

(:action action2
:parameters (?objectl)
:precondition (predicate4 ?object1)
:effect (and (predicatel ?object1) (predicate3) (predicate2 ?objectl)
(not (predicate4 ?objectl))))

(:action action3

:parameters (?objectl ?object2)

:precondition (and (predicatel ?object2) (predicate4 ?object1)
:; BEGIN ADD

(not (not-allowed ?objectl ?object2))
;; END ADD
:effect (and (predicate3) (predicatel ?objectl) (predicate5 ?objectl ?object2)
(not (predicatel ?object2)) (not (predicate4 ?objectl))))

(:action action4
:parameters (?objectl ?object2)
:precondition (and (predicate5 ?objectl ?object2) (predicatel ?objectl) (predicate3l))
:effect (and (predicate4 ?objectl) (predicatel ?object2)
(not (predicate5 ?objectl ?object2)) (not (predicatel ?objectl)) (not (predicate3)))))

Listing 7: Annotated ground-truth Problem File for Mystery BlocksWorld-100 with state-based constraint description

(define (problem mystery_blocksworld-p50)
;5 CONSTRAINT Do not perform action3 with objectl and object2.
(:domain mystery_blocksworld)
(:objects objectl object2 object3 object4 object5 object6 object7 )
(:init
(predicate2 object3)
(predicatel object3)
(predicate2 object5)
(predicatel object5)
(predicate2 object7)
(predicate5 objectl object7)
(predicatel object1)
(predicate2 object2)
(predicatel object2)
(predicate2 object6)
(predicatel object6)
(predicate2 object4)
(predicatel object4)
(predicate3)

11




;; BEGIN ADD
(not-allowed objectl object2)
;; END ADD
)
(:goal (and
(predicate2 object5)
(predicate5 object2 object5)
(predicate2 object4)
(predicate5 object7 object4)
(predicate5 object6 object7)
(predicate5 objectl object6)
(predicate2 object3)
))

Listing 8: Prompt for LLM-as-Planner

You are a PDDL expert. Here is a game we are playing.
{domain_description}

{problem_description}

{constraint_description}

Write the plan that would solve this problem.

These are the available actions:
{available_actions}

Here is what the output should look like:
{example_answer}

Listing 9: Prompt for LLM-as-Formalizer, while generating the entire code

You are a PDDL expert. Here is a game we are playing.
{domain_description}

{problem_description}

{constraint_description}

Write the domain and problem files in minimal PDDL.

These are the available actions:
{available_actions}

Listing 10: Prompt for LLM-as-Formalizer, while first generating the non-constrained PDDL for the Edit setting

You are a PDDL expert. Here is a game we are playing.
{domain_description}

{problem_description}

Write the domain and problem files in minimal PDDL.

These are the available actions:
{available_actions}

Listing 11: Prompt for LLM-as-Formalizer, while modifying the non-constrained PDDL for the Edit setting

You are a PDDL expert. Here is a PDDL domain and problem file.
{original_domain_file}
{original_problem_file}

Modify the PDDL files so that it satisfies the following constraint: {constraint_description}
These are the available actions:
{available_actions}

Listing 12: Prompt for LLM-as-Formalizer, including revision
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You are a PDDL expert. The following domain and problem files have the error: {error}

{domain_file}
{problem_file}

Revise the PDDL to remove the error.

Listing 13: Example Deepseek-R1 LLM-as-Planner output for State-based constraint: “Once you unstack a block,
you cannot put it down on the table.” Text in red represents actions that do not satisfy the newly added constraint
and actions that do not satisfy BlocksWorld PDDL rules.

(unstack blockl block3)
(stack blockl block4)
(unstack block3 block6)
(stack block3 block5)
(unstack block6 block9)
(putdown block6)
(pickup block9)

(stack block9 block6)
(unstack blockl block4)
(stack blockl block9)
(unstack block2 block8)
(stack block2 block1)
(pickup block5)

(stack block5 block2)
(pickup block8)

(stack block8 block5)
(unstack block3 block5)
(stack block3 block8)
(pickup block4)

(stack block4 block3)
(pickup block?7)

(stack block7 block4)

Listing 14: Example Deepseek-R1 LLM-as-Formalizer DF output for State-based constraint: “Once you unstack a
block, you cannot put it down on the table.” Text in green represents PDDL syntax that correctly encodes the new
constraint.

(define (domain blocksworld)
(:requirements :strips)
(:predicates

(ontable ?x)
(on ?x ?y)
(clear ?x)
(handempty)
(holding ?x)
(unstacked ?x)

(:action pickup
:parameters (?b)
:precondition (and (ontable ?b) (clear ?b) (handempty))
:effect (and (not (ontable ?b)) (not (clear ?b)) (not (handempty)) (holding ?b))

(:action putdown
:parameters (?b)
:precondition (and (holding ?b) (not (unstacked ?b)))
:effect (and (ontable ?b) (clear ?b) (handempty) (not (holding ?b))))
(:action stack
:parameters (?b1 ?b2)
:precondition (and (holding ?b1) (clear ?b2))
:effect (and (on ?b1 ?b2) (not (clear ?b2)) (clear ?b1) (handempty) (not (holding ?b1)))

(:action unstack
:parameters (?b1 ?b2)
:precondition (and (on ?b1 ?b2) (clear ?b1) (handempty))
:effect (and (holding ?b1) (clear ?b2) (not (on ?b1 ?b2)) (not (clear ?b1)) (not (handempty))
(unstacked ?b1)))))
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Listing 15: Example Deepseek-R1 LLM-as-Formalizer DIF output for Sequential constraint: “If you move block1,
you must move block?2 after.” Text in red represents PDDL syntax that incorrectly encodes the new constraint as
well as BlocksWorld PDDL rules.

(define (domain blocksworld)
(:requirements :strips :equality)
(:predicates
(on ?x ?y) (clear ?x) (holding ?x) (armempty))
(:action pickup
:parameters (?b)
:precondition (and (on ?b table) (clear ?b) (armempty))
:effect (and (holding ?b) (not (on ?b table)) (not (clear ?b)) (not (armempty)))
)
(:action putdown
:parameters (?b)
:precondition (holding ?b)
:effect (and (on ?b table) (clear ?b) (armempty) (not (holding ?b)))
)
(:action stack
:parameters (?b ?under)
:precondition (and (holding ?b) (clear ?under))
:effect (and (on ?b ?under) (clear ?b) (armempty) (not (holding ?b)) (not (clear ?under)))
)
(:action unstack
:parameters (?b ?under)
:precondition (and (on ?b ?under) (clear ?b) (armempty) (not (= ?under table)))
:effect (and (holding ?b) (clear ?under) (not (on ?b ?under)) (not (clear ?b)) (not (armempty)))
)
)

Listing 16: Example Deepseek-R1 LLM-as-Planner output for Sequential constraint: “If you move blockl, you
must move block?2 after.” Text in green represents actions that satisfy the newly added constraints. The entire is
satisfies BlocksWorld PDDL rules.

(pickup block3)

(stack block3 blocké6)
(pickup block9)

(stack block9 block3)
(pickup block12)
(stack block12 block1@)
(pickup block4)

(stack block4 block12)
(pickup block8)

(stack block8 block15)
(pickup block?7)

(stack block7 block11)
(pickup block13)
(stack block13 block7)
(pickup block1)

(stack blockl block13)
(pickup block2)

(stack block2 block8)
(pickup block5)

(stack block5 block1)
(pickup block14)
(stack block14 block5)
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Figure 24: Mystery BlocksWorld
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Figure 27: Mystery BlocksWorld
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Figure 28: Mystery BlocksWorld
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Figure 31: Mystery BlocksWorld
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Figure 32: Mystery BlocksWorld
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