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ABSTRACT

Recovering human trajectories from incomplete or missing data is crucial for
many mobility-based urban applications, e.g., urban planning, transportation, and
location-based services. Existing methods mainly rely on recurrent neural networks
or attention mechanisms. Though promising, they encounter limitations in captur-
ing complex spatial-temporal dependencies in low-sampling trajectories. Recently,
diffusion models show potential in content generation. However, most of proposed
methods are used to generate contents in continuous numerical representations,
which cannot be directly adapted to the human location trajectory recovery. In
this paper, we introduce a conditional diffusion-based trajectory recovery method,
namely, DiffMove. It first transforms locations in trajectories into the embedding
space, in which the embedding denoising is performed, and then missing locations
are recovered by an embedding decoder. DiffMove not only improves accuracy
by introducing high-quality generative methods in the trajectory recovery, but
also carefully models the transition, periodicity, and temporal patterns in human
mobility. Extensive experiments based on two representative real-world mobility
datasets are conducted, and the results show significant improvements (an average
of 11% in recall) over the best baselines.

1 INTRODUCTION

Mobility data plays a prominent role in many urban applications, e.g, next location recommenda-
tions (Feng et al., 2018), epidemic prevention (Tang et al., 2023) and urban planning (Yuan et al.,
2014). However, due to privacy concerns or device malfunctions, users may not report their locations
to the service provider continuously, which makes human trajectories sparsely distributed in space
and unevenly observed in time, and thus affects the effectiveness of downstream applications. For
this reason, human trajectory recovery, which infers human trajectories at a fine-grained level, raised
more and more attention recently.

Existing human trajectory recovery work leverages Recurrent Neural Network (Liu et al., 2016;
Wang et al., 2019) or attention mechanism (Xia et al., 2021) for capturing the spatial-temporal
dependencies and resort irregular time interval encoding modules for handling unevenly observed
trajectory records. Recent studies (Xia et al., 2021; Sun et al., 2021; Deng et al., 2023) further found
that explicitly utilizing historical trajectory can enhance the performance due to the strong periodicity
nature of the human trajectories. However, these approaches face significant limitations in handling
key characteristics of human mobility. First, they struggle to capture intricate spatial-temporal
dependencies - the interplay between spatial relationships (proximity and spatial transitions between
locations) and temporal patterns (sequential dependencies or periodicity of behaviors in historical
trajectory). Second, existing methods lack systematic mechanisms for handling data sparsity and
irregular sampling from incomplete check-ins. Third, their deterministic nature cannot adequately
capture the inherent uncertainty in human movement.

Though appealing performance is achieved, these approaches all made the traditional predictive
recovery, which has above limitations in complex sparse, irregular, and uncertain scenarios inherently
in human mobility. Consequently, the recovery accuracy and scenarios of downstream applications are
limited. For instance, a person may follow some routines from home to office daily but occasionally
he/she may follow different routes or change his/her preference. In such scenarios, traditional methods
typically provide a biased deterministic imputed trajectory. However, with a generative approach
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to inference, a set of imputed trajectory locations can be generated through sampling or various
averaging techniques on imputation samples.

To address these fundamental limitations, we leverage diffusion models, which have shown superior
performance in many tasks against other generative models, e.g., image generation (Ho et al., 2020)
and audio synthesis (Kong et al., 2021). Furthermore, conditional diffusion models are recently
developed for the time-series imputation (Tashiro et al., 2021) given observed entries as input, which
inspires us to design a trajectory recovery model in the conditional diffusion manner.

However, it is non-trivial to apply the conditional diffusion model to solve the trajectory recovery
problem due to two issues. Firstly, the imputation targets of conventional diffusion models are
continuous numerical values, which can be directly obtained via the denoising process, while
those in trajectory recovery are discrete ID-represented locations - in this case, the transition and
periodicity patterns of human trajectories are required to be fully exploited. Secondly, the model
must simultaneously consider those abovementioned limitations in handling key characteristics of
human mobility - both temporal dependencies and the complex spatial relationships between current
and historical trajectories during the denoising process.

To tackle these issues, we propose a novel conditional diffusion model for human trajectory recovery,
namely, DiffMove. Our model incorporates these specialized components: 1) a novel embedding-
based (with encoding and decoding) conditional diffusion framework that handles discrete locations
while preserving spatial relationships, 2) a Spatial Conditional Block equipped with diffusion-oriented
graph neural network and attention mechanism, which captures the sparse spatial transition patterns
and periodicity temporal patterns from the current trajectories and historical trajectories. 3) a Target
Conditional Block that effectively utilizes historical information despite irregular sampling. 4) a
Denoising Network Block to handle uncertainty. Our contributions are three-fold:

• We propose a trajectory recovery framework DiffMove, which provides a solution to impute discrete
locations leveraging diffusion models by performing the denoising process in embedding space and
decoding the inferred embeddings back to discrete locations. To the authors’ knowledge, we are
the first to design spatial temporal conditional diffusion models for human trajectory recovery task.

• We design Spatial Conditional Block, Target Conditional Block and Denoising Network Block to
fully fuse the knowledge of the current trajectories and historical trajectories during the conditional
diffusion process and tackle the above challenges.

• Extensive experiments on two real-world mobility datasets demonstrate that DiffMove significantly
outperforms state-of-the-art baselines, achieving an average improvement of 11% in Recall.

2 RELATED WORKS

Human Trajectory Recovery: The human trajectory recovery problem we address focuses on free-
space settings, unlike MTrajRec (Ren et al., 2021) and RNTrajRec (Chen et al., 2023b), which focus
on vehicles’ trajectories constrained by road networks (road segments). Human trajectory recovery
can be categorized into two types: the former treats missing locations in trajectories as continuous
two dimensional values, i.e., latitude and longitude, to be imputed (Alwan & Roberts, 1988; Moritz &
Bartz-Beielstein, 2017; Wang et al., 2019), while the latter infers locations from a discrete candidate
location pool (Liu et al., 2016; Xia et al., 2021). The former is suitable to recover trajectories with
high sampling frequency, e.g., vehicle trajectories, where the local context plays a more important
role for the imputation, while the latter is more feasible for highly sparse trajectories, e.g., human
trajectories, where the transition and periodicity dependency modeling are the main focus. In human
trajectory recovery, the de-facto approach is to explicitly utilize historical trajectory when imputating
the current trajectory. For example, AttnMove (Xia et al., 2021) utilizes a multi-stage attention
mechanism to recover missing locations. PeriodicMove (Sun et al., 2021) constructs day-level graphs
to model complex transition patterns among locations. TRILL (Deng et al., 2023) is a trajectory
recovery model utilizing graph convolutional networks, combining global and local mobility patterns.
(Chen et al., 2023a) proposes a framework called TERI, to tackle trajectory recovery in a two-stage
process, with a different problem setting focusing on addressing the special cases of irregular time
interval. Ours is more addressing on the generative manner using diffusion model to solve the regular
trajectory recovery problem. Existing human trajectory recovery work imputes missing locations
in a deterministic manner, which omits the uncertain nature of trajectories and thus constrains the
recovery accuracy and scenarios of downstream applications. In addition, the relationship between
locations to be imputed and historical trajectories are not well-modeled.
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Diffusion Model for Temporal and Spatio-temporal Data: Diffusion models have found extensive
applications in tasks related to time series and spatio-temporal data generation, imputation, and
forecasting due to their competence in modeling high-dimensional data distributions. Diffusion
models have been applied to many time series generation tasks, such as the synthesis of electronic
health records (EHR) (Alcaraz & Strodthoff, 2023; He et al., 2023; Yuan et al., 2023). Many of
these studies adopt the denoising network architecture initially proposed in DiffWave (Kong et al.,
2021), which utilizes bidirectional dilated convolution to capture correlations between different
time steps. CSDI (Tashiro et al., 2021) leverages diffusion models for probabilistic time series
imputation, i.e., generating missing values conditioned on observed data points. DiffTraj (Zhu et al.,
2024) represents the first attempt to generate GPS trajectories using an unconditioned diffusion
probabilistic model. However, it focuses on generating task of raw GPS data in continuous space
instead of discrete sparse locations that human trajectories always involve. TrajGDM (Chu et al.,
2023) employs a diffusion model to capture universal mobility patterns, for trajectory generation, but
it focuses on simulating synthetic human mobility instead of recovery task on current trajectory. A
recent work DiffSTG (Wen et al., 2023) studied the spatial-temporal graph forecasting problem and
introduced a denoising network UGnet, which is capable of capturing spatial-temporal dependencies
among various geographical locations. However, DiffSTG focuses on predicting numerical readings
of geographical sensors in different locations across different time, while we focus on recovering
discrete locations in human trajectories.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

Definition 1 (Trajectory). The trajectory is a chronological sequence of a user’s locations within a
single day. Let T j

u : lj,1u → lj,2u ... → lj,ku ... → lj,Ku represent the trajectory of user u on the j-th day,
where lj,ku denotes the visited location during the k-th time slot within a specified time interval. If the
location for the k-th time slot is not observed, lj,ku is marked as null, i.e., lj,ku is missing.
Definition 2 (Current and Historical Trajectory). For a given targeted day J and user u’s trajectory
T J
u , we define T J

u as the user’s current trajectory, while the historical trajectories comprise u’s
trajectories in the past (J − 1) days, denoted as {T 1

u , T 2
u , ..., T J−1

u }.

We follow (Xia et al., 2021) to formulate the human trajectory recovery problem as follows:
Problem Definition. Given user u’s trajectory T J

u along with historical trajectories
T 1
u , T 2

u , ..., T J−1
u , the task is to recover the missing locations, i.e., ∀ null in T J

u , thereby recon-
structing the complete trajectory for the current day.

3.2 DENOISING DIFFUSION PROBABILISTIC MODEL

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) are deep generative models,
which map data from the normal distribution to another distribution via a learnable denoising network
step by step so that we can easily generate a data sample following the similar distribution of q(x0) by
sampling a random Gaussian noise. DDPM is composed of a forward process and a reverse process.

In the forward process, Gaussian noise is gradually added to the data sample x0 ∼ q(x0) by a
Markov chain. A closed form exists to transform the initial data sample x0 to the data sample xt at
arbitrary time step t by the reparameterization trick: xt =

√
ᾱtx0 +

√
1− ᾱtϵ(1)

where ᾱt = α1α2 . . . αt, αt = 1− βt, βt ∈ (0, 1) denotes the noise level and ϵ is sampled from a
Gaussian noise N (0, I).

The reverse process iteratively denoises a pure Gaussian noise xT ∼ N (0, I) to generate the data
sample x0 following the similar distribution of q(x0). The transformation between data of two
consecutive steps can be formulated as follows: pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)I)(2)

where θ is shared among different denoising time steps. The parameters of pθ(xt−1|xt) are calculated
as follows: µθ(xt, t) =

1
ᾱt
(xt − βt√

1−ᾱt
ϵθ(xt, t)), σ

2
θ(xt, t) =

1−ᾱt−1

1−ᾱt
βt(3)

where ϵθ is the denoising network, which takes the noise-added data xt and the time step t as inputs
and produces the predicted noise. By iteratively sampling according to Eq. (2), the generated data x̂0

is finally obtained. During the training stage, the denoising network parameters θ can be learned by
minimizing L(θ) = E||ϵ− ϵθ (xt, t) ||22, where xt can be obtained given x0 based on Eq. (1).
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4 METHODOLOGY

The main idea of diffusion-based trajectory recovery is to first transform discrete locations in
trajectories into the dense embedding space, then generate the recovered location embeddings via a
diffusion model, and finally rebuild the missing locations by an embedding matching process.
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Figure 1: Overview of training stage of DiffMove.
To generate satisfactory location embeddings, the true conditional data distribution q(eta0 |
T J
u , {T 1

u , T 2
u , ..., T J−1

u }) in the embedding space should be estimated well, where eta0 are em-
beddings of missing locations. Incorporating those conditions, based on the idea of the diffusion
model, we need to learn the conditional transformation between consecutive steps (from t to t− 1):

pθ(e
ta
t−1 | etat , T J

u , {T 1
u , T 2

u , ..., T J−1
u }) =N (etat−1;µθ(e

ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }),

σθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u })I)

(4)

Specifically, the parameterization of DDPM in Eq. (3) is also extended to the conditional case:

µθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }) = µDDPM(etat , t, ϵθ(e

ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u })),

σθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }) = σDDPM(etat , t)

(5)

where µθ(xt, t) and σθ(xt, t) in Eq. (3) are denoted as µDDPM(et, t, ϵθ(et, t)) and σDDPM(et, t) here
respectively, and general variable x is replaced by the embedding of missing location e.

As can be observed, it essentially requires our denoising network ϵθ to incorporate observations in the
current trajectory and historical trajectories. To well encode those conditions and realize the diffusion-
based trajectory recovery, we present DiffMove, the training stage of which is shown in Figure 1.
As the existing imputation work (Xia et al., 2021) did, DiffMove is trained in a self-supervised
manner, which randomly masks some observed locations in the current trajectory and treats them as
supervision signals, i.e., missing locations. To facilitate the description DiffMove, we decompose the
whole process into three components: Trajectory Location Encoder (TLE), Conditional Embedding
Denoiser (CED) and Missing Location Decoder (MLD).

4.1 TRAJECTORY LOCATION ENCODER (TLE)

Trajectory Location Encoder (TLE) takes the current trajectory and historical trajectories of J − 1
days as inputs, and gives the embeddings of observed locations eob0 and missing locations etat in
the current trajectory, and historical trajectories ehist, which is shown in the left part of Figure 1.
During the training stage, etat is obtained by adding random Gaussian noise to embeddings of masked
locations, while during the inference stage, etat is directly sampled from the Gaussian distribution.
We now elaborate on its training stage in detail as follows.

As shown in Figure 1, the blue and white location icons in trajectories represent observed and
missing locations respectively. During the training stage, we first randomly mask some observed
locations in the raw current trajectory as imputation targets, and thus separate it into the current
trajectory (which is the actual input during the inference stage) and pseudo missing locations (icons
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in orange), i.e., masked locations lta. Locations in trajectories l ∈ L are represented by discrete
IDs, and we also assign a special ID to the missing location, i.e., “null”. After that, we feed the
current trajectory, masked locations and historical trajectories into a location embedding layer, where
each location l would be transformed into a dense representation el ∈ Rd by an embedding layer:
el = EmbeddingL(l) (note: other embedding methods are also welcome). The imputation target
embeddings eta0 are added with a Gaussian noise by Eq. (1) to form noisy target embeddings etat .

Finally, historical location embeddings ehist, observed location embeddings eob0 and noisy target
embeddings etat would be fed into Conditional Embedding Denoiser for the noise estimation. The
learned embedding table, i.e., El ∈ R(|L|+1)×d would also be used to perform matching to recover
missing locations, which would be introduced later in Section 4.3.

4.2 CONDITIONAL EMBEDDING DENOISER (CED)

Conditional Embedding Denoiser (CED) takes diffusion time step t, noisy target embeddings etat
and conditions (i.e., historical location embeddings ehist, observed location embeddings eob0 ), and
estimates the noise added to the target embeddings etat−1 at the time step, which is shown in the top
right part of Figure 1. To fully exploit the power of conditions, Spatial Conditional Block is devised
to model the transition and periodicity patterns, Target Conditional Block is designed to capture the
relationship between the missing locations and historical trajectories, and Denoising Network Block
is developed to capture the local context and produce the noise estimation. The design of each block
is elaborated as follows.

Spatial Conditional Block. Spatial Conditional Block takes eob0 , ehist and diffusion step t, and
gives the spatial condition espa, which captures the transition and periodicity patterns from historical
trajectories. In addition to espa, an intermediate result, i.e., the diffusion time step embedding eT , is
also passed to Denoising Network Block, and a historical trajectory embedding ehistG is also obtained
to better capture the relationship between the missing locations and historical trajectories in Target
Conditional Block.

Since graph neural network (GNN) has demonstrated its capability to capture the consecutive
relationship between different entities (Xu et al., 2019; Wu et al., 2019) and attention mechanism is
good at capturing the periodicity information (Liang et al., 2018), we propose to use GNN to learn
the transition pattern and attention mechanism to learn the periodicity pattern. Since the degree of
noise among different diffusion time steps is different, the importance of spatial conditions may also
vary, we further incorporate the diffusion time step into the spatial condition learning. Considering
above insights, we give the detailed structure of Spatial Conditional Block in Figure 2B.

Firstly, we construct location transition graphs for both historical and current trajectories. For each
trajectory, we construct an incoming and an outgoing transition graph, where all unique locations
appearing in it serve as graph nodes, embeddings of locations from TLE serve as node embedding,
and consecutive locations together form two adjacency matrices, i.e., AI and AO, similar to (Xu
et al., 2019).

Secondly, a Diffusion Step T Gated Graph Neural Network (TGGNN) is proposed to make diffusion-
time-step-aware spatial pattern learning. Two TGGNN are introduced to learn patterns from current
trajectory and historical trajectories, separately. We first transform the diffusion time step into a
dense representation estep by sinusoidal functions DiffEmbedT (t) (Kong et al., 2021; Tashiro et al.,
2021), following by a fully connected layer: eT = DiffEmbedT (t)W

T + bT . Then, embeddings of
current and historical trajectories would be passed into TGGNN for several times. In the s-th layer of
TGGNN, (1) the information propagation from neighborhood is performed based on node embeddings
of s-th layer

[
e1s, . . . , e

N
s

]
and two adjacency matrices, i.e., AI and AO to obtain incoming/outgoing

aggregated node embedding eI,s/eO,s, respectively; (2) an intermediate representations as+1 is
created by concatenating those aggregated node embeddings with embedded diffusion time step eT
to enhance the representations; (3) a gating mechanism (Li et al., 2016) is used to fuse the node
embeddings of the s-th layer and (s+1)-th layer:

eI,s =
(
AI

i

([
e1s, . . . , e

N
s

]
WI + bI

))
eO,s =

(
AO

i

([
e1s, . . . , e

N
s

]
WO + bO

))
as+1 = eI,s ∥ eO,s ∥ eT, els+1 = Gates(as+1, es)

(6)
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Figure 2: The Architecture for Conditional Embedding Denoiser

where ∥ is the concatenation, WI , WO, WT ∈ Rd×d are learnable parameters, and bI , bO,
bT ∈ Rd are bias vectors, N is the number of unique locations in the trajectory, and Gates denotes
several gates (Li et al., 2016), i.e., update gate, reset gate, to fuse node embeddings in consecutive
layers. We denote the final node embedding of TGGNN as el for simplicity. By pooling final node
embeddings from the historical branch, the historical trajectory embedding ehistG is derived.

Thirdly, we employ CrossAttention (Xia et al., 2021) to capture the periodicity among the current
trajectory and historical trajectories. For each user u, the headh calculate the cross attention between
the i-th time slot of the current trajectory embedding (eJ,iu ) and the k-th time slot of the j-th historical
trajectory embedding (ej,ku ). The final spatial condition espa is generated by a linear projection of the
concatenation of H number of heads as shown in Eq. (7).

headh = CrossAttention(eJ,iu , ej,ku )

espa = ReLU(W(head1 ∥ . . . ∥ headH) + eJ,iu ) (7)

Target Conditional Block. Target Conditional Block takes target ID mask, temporal length k and
historical trajectory embedding ehistG , and gives eind, which captures the correlations between the
missing locations and historical trajectories to help the inference. The target ID mask representations
are in one-hot form: non-target locations are represented with all zeros, while target locations are
represented with ones. This method creates a placeholder embedding that signifies the absence of
data at specific positions. This embedding is then concatenated with ehistG and will be fused with
the output of the Temporal Length Embedding layer. We incorporate temporal length embedding
k = {k1:K} as auxiliary information. We adopt a 128-dimensional temporal embedding, consistent
with prior research (Vaswani et al., 2017; Zuo et al., 2020):

kembedding(kl) =

(
sin(kl/τ

0/64), . . . , sin(kl/τ
63/64), cos(kl/τ

0/64), . . . , cos(kl/τ
63/64)

)
(8)

Here, τ = 10000. This temporal length embedding enriches the model with sequential information,
enhancing its ability to recover trajectories. Finally, the concatenated representation forms eind.

Denoising Network Block. This block is the function of DiffMove to model ϵθ in Eq. (5). It receives
the inputs from TLE together with eT , espa, and eind. The concatenation of eob0 and etat from TLE
as well as espa are passed through a 1D convolution layer and a ReLU, and the results of both would
be added to eT to form the the total input of a temporal transformer (Tashiro et al., 2021) (with
multi-head self-attentions) to learn the temporal sequence features. Then it will be passed through a
1D convolution layer and added with the 1D convoluted result of eind. Following a gated activation
unit (Ramachandran et al., 2017), part of outputs is directed to the next residual layer as input,
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whereas the remainder is incorporated into the final output via a skip connection. The Conv1 × 1
blocks in the network facilitate the mapping of data to suitable dimensions. Ultimately, the output ϵ̂
is the culmination of data passed through skip-connections from each residual layer.

4.3 MISSING LOCATION DECODER (MLD)
Missing Location Decoder (MLD) leverages CED to recover locations. It consists of two steps:
Embedding Imputation, which transforms noises into meaningful location embeddings based on
the estimated noise from CED, and Embedding Decoding, which decodes the estimated target
embeddings to locations to recover the trajectory.

Embedding Imputation. Embedding Imputation is to obtain robust estimated target embeddings, we
perform target embeddings generation for M times, and the means of target embeddings ¯̂eta0 are used
for the location decoding. For each time of generation, a random noise etaT is sampled from N (0, I),
then we perform the reverse process of diffusion from step T to 1 gradually according to Eq. (4) and
Eq. (5) to obtain one estimated target embedding êta0 .

Embedding Decoding. After the mean imputed target embeddings ¯̂eta0 are obtained, we calculate the
inner product between ¯̂eta0 and location embeddings in embedding table E

′

l ∈ R|L|, which is from El

in TLE after excluding the embedding of “null” item. For each imputed target embedding ¯̂eta,i0 , its
similarities to different locations ẑtai ∈ R|L| are calculated as follows: ẑtai = ¯̂eta,i0 E

′⊤
l

Subsequently, we apply a softmax function to obtain the location likelihood vector ŷi for each
imputation target: ŷi = softmax (ẑtai ). During the inference stage, the location with the highest
probability would be used to recover the trajectory.

4.4 MODEL TRAINING

Since trajectory recovery results are discrete, which cannot be easily obtained by the denoising
network, multiple losses are introduced as shown in Figure 1 when we train DiffMove.

The first loss is diffusion loss Ldiffu, which calculates noise estimation accuracy. We sample a noise ϵ
and obtain the noisy target embeddings etat at the diffusion time step t by Eq. (1). Then, DiffMove
estimates the added noise conditioned on observed locations in the current trajectory and the historical
trajectories. The expectation of the mean squared error between the actual noise and the estimated
noise is served as Ldiffu, which is defined as follows:

Ldiffu(θ) =Eeta
0 ∼q(eta

0 ),ϵ∼N (0,I),t||(ϵ− ϵθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }))||22 (9)

The second loss characterizes the location recovery accuracy, which is the cross entropy loss. Given
the one-hot representations of masked locations in the raw current trajectory Y = {y1,y2, ...,yKta}
and the predicted likelihood of the imputed locations Ŷj = {ŷ1, ŷ2, ..., ŷKta} (Kta is the number
of masked locations in the raw current trajectory), LCE is defined as

LCE(Y, Ŷ) = −
Kta∑
j=1

|L|∑
i=1

yji log(ŷ
j
i ) (10)

The third loss is an L2 loss for regularization, which is suggested in (Gong et al., 2022). It regularizes
the learning of the location embeddings of the raw current trajectory, i.e.,

LL2(e
ta
0 , eob0 ) =

1

Kd
(

Kta∑
i=1

||eta,i0 ||2 +
K−Kta∑
j=1

||eob,j0 ||)2 (11)

Consequently, DiffMove is trained end to end by jointly optimizing the above three types of losses:
LE2E = Ldiffu + λ1LCE + λ2LL2, where λ1 and λ2 are multi-task learning weights.

5 EXPERIMENTS

5.1 DATASETS

• Foursquare1: This dataset (Yang et al., 2014) was obtained from the Foursquare API, covering the
period from April 2012 to February 2013. Each record in the dataset includes user ID, timestamp,

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset/
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GPS location, and POI ID. We standardize the timestamps to a one-week format while preserving
the original trajectory order.

• Geolife2: This publicly available dataset is sourced from the Microsoft Research Asia Geolife
project (Zheng et al., 2010), involving 182 users and spanning from April 2007 to August 2012
globally. Each trajectory is represented by a sequence of time-stamped points, providing longitude
and altitude information (Zheng et al., 2010).

Table 1: Overall performance comparison in terms of Recall@K, Distance@K, and MAP.
Dataset Methods Recall@K Distance@K MAP

Recall@1 Recall@5 Recall@10 Distance@1 Distance@5 Distance@10

Geolife Top 0.1148 0.2451 0.3166 7863 6259 5176 0.1812
Markov 0.1417 0.3263 0.3974 6909 4974 4259 0.2304
PMF 0.1941 0.3436 0.4059 6506 4389 3555 0.2752
LSTM 0.2086 0.3917 0.4720 6318 3928 3068 0.2965
BiLSTM 0.2285 0.4538 0.5773 6209 3620 2255 0.3298
DeepMove 0.3045 0.5380 0.6371 5370 2052 1358 0.4131
AttnMove 0.3920 0.6696 0.7213 5342 2007 975 0.5046
PeriodicMove 0.4199 0.6893 0.7681 4209 1443 863 0.5385
TRILL 0.4721 0.7563 0.8364 3484 1112 603 0.5985
DiffMove w/ single gen-sample 0.4988 0.7701 0.8350 2905 973 601 0.6180
DiffMove 0.5173 0.7987 0.8578 2799 708 444 0.6407
%Improv. 9.57% 5.61% 2.56% 19.66% 36.33% 26.37% 7.05%

Foursquare Top 0.0865 0.1673 0.2268 8427 4919 3483 0.1347
Markov 0.1090 0.2010 0.2575 8345 4402 3125 0.1792
PMF 0.1215 0.2468 0.2887 8116 3971 3229 0.2358
LSTM 0.1393 0.2540 0.3143 7913 3804 2801 0.2519
BiLSTM 0.2323 0.3968 0.4703 6206 2745 1849 0.3154
DeepMove 0.2612 0.4631 0.5337 5189 2648 1649 0.3789
AttnMove 0.2975 0.5172 0.5746 4942 2396 1482 0.4078
PeriodicMove 0.3125 0.5534 0.6264 4704 1758 1197 0.4245
TRILL 0.3227 0.5636 0.6372 4639 1650 1074 0.4341
DiffMove w/ single gen-sample 0.3430 0.4614 0.5009 5206 1964 1339 0.4035
DiffMove 0.3600 0.6090 0.6876 4271 1548 989 0.4756
%Improv. 11.56% 8.06% 7.91% 7.93% 6.18% 7.91% 9.56%

5.2 BASELINES

We evaluate the proposed approach against baseline methods, including both traditional approaches
grounded in our understanding of human mobility and advanced deep learning models capable of
capturing intricate mobility patterns. We evaluate the proposed approach against below baselines:
Rule-based methods: 1): Top, 2) Markov (Gambs et al., 2012), 3) PMF (Mnih & Salakhutdinov,
2007). Deep learning based methods: 4) LSTM (Liu et al., 2016), 5) BiLSTM (Zhao et al., 2018), 6)
DeepMove (Feng et al., 2018), 7) AttnMove (Xia et al., 2021), 8) PeriodicMove (Sun et al., 2021), 9)
TRILL (Deng et al., 2023). Selections are to ensure fair comparisons in the same setting of free-space
human trajectory recovery. More details about baselines will be provided in the Appendices.

5.3 EXPERIMENTAL SETTINGS

Following (Deng et al., 2023), we mask randomly 10 time slots per day for both the Geolife and
Foursquare dataset. The trajectories are split chronologically into training (60%), validation (20%)
and test (20%) sets. We utilize the widely adopted metrics Recall@K and Mean Average Precision
(MAP) (Wang et al., 2019). Recall@K measures whether the ground truth is present in the top K
predictions, averaged over all test cases. MAP evaluates the overall ranking quality by considering
the entire prediction list. Larger values for both metrics indicate better performance. Additionally, we
use Distance@K, which computes the smallest geographical distance between the centers of locations
in the top-K ranked list and the ground truth, averaged across test cases. Lower Distance@K signifies
better performance. We report experimental results for Recall@K and Distance@K at K = 1, 5 and
10. This allows a comprehensive assessment of our model’s ability to rank ground truth locations.

5.4 EXPERIMENT RESULTS

As shown in Table 1, firstly, rule-based methods fail to achieve high accuracy, exhibiting the worst
performance for all evaluation metrics on both datasets. Secondly, RNN-based methods perform

2https://www.microsoft.com/en-us/research/project/geolife-building-social-networks-using-human-
location-history/
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better than rule-based methods as they can model simple sequential patterns among locations.
Bidirectional RNNs perform better than unidirectional ones, indicating the importance of spatial-
temporal constraints for human mobility recovery. State-of-the-art deep learning methods, including
AttnMove, PeriodicMove and TRILL achieve satisfactory performance by capturing sequential
patterns and simple periodicity of human mobility. However, DiffMove outperforms all the baselines
for all evaluation metrics on both datasets. Specifically, for Recall, DiffMove outperforms the
best baseline, TRILL, by 9.57% on Geolife dataset and by 11.56% on Foursquare dataset. For
Distance, DiffMove outperforms the best baseline, TRILL, by 19.66% on Geolife dataset and by
7.93% on Foursquare dataset. For MAP, DiffMove outperforms the best baseline, TRILL, by 7.05%
on Geolife dataset and by 9.56% on Foursquare dataset. These significant improvements indicate
that our proposed DiffMove can better learn spatial temporal patterns of both current and historical
trajectories and recover the details of human mobility. We also change the number of generated
samples M (in Section 4.3) from 4 to 1, which simulates the normal single prediction method. We
observe the reduced performances in Table 1 (-1.85% Recall@1 on Geolife and -1.7% Recall@1 on
Foursquare) due to lacking probabilistic generation and sampling, which highlights the significance
of the probabilistic generation instead of deterministic single imputed embedding.

5.5 ABLATION ANALYSIS

We conduct ablations by systematically removing individual components. The results of Foursquare
dataset are presented in Table 2. The recall, distance and MAP performance of the first ablation
with unconditional diffusion (No observed location, no spatial, and target condition involved) drops
significantly to almost nonfunctional status. This emphasizes the inadequacy of relying solely on the
default diffusion probabilistic model for the trajectory recovery task in latent space and underscores
the importance of integrating multiple spatial and temporal related specific conditional modules for
effective learning and training. The removal of the Temporal Transformer or Spatial Conditional Block
significantly impacts performance, emphasizing their critical roles in reinforcing spatial and temporal
constraints for missing locations, resulting in substantial improvement when leveraging historical
information. The removal of the Target Conditional Block leads to decreased model performance,
highlighting the role of the target condition in guiding the model to reconstruct specific embeddings
in the locations through the diffusion process. Additionally, the Missing Location Decoder is also
identified as a crucial component. It can not be compared in the table since its removal renders the
model nonfunctional, as this module plays a vital role in converting the reconstructed embeddings of
missing locations into a decoded discrete ID space.

Table 2: Impact of components on Foursquare dataset, where δ denoted the performance decline.

Ablation Recall(∆) Dis.(∆) MAP(∆)(m)

Unconditional 0.0416 (-88.44%) 7913 (-85.27%) 0.0944 (-80.15%)
Spatial Conditional Block 0.3382 (-6.06%) 4591 (-7.49%) 0.4496 (-5.47%)
Target Conditional Block 0.3493 (-2.97%) 4377 (-2.48%) 0.4632 (-2.61%)
Temporal Transformer 0.3023 (-16.03%) 4783 (-11.99%) 0.4166 (-12.41%)

5.6 ROBUSTNESS STUDY

As shown in Table 3, our proposed model, DiffMove, consistently outperforms the baseline models,
AttnMove, PeriodicMove and TRILL across various missing ratios. The second best results are
underlined and the improvements are listed in the brackets. Notably, as the percentage of missing
locations in historical trajectories increases from 20% to 80%, DiffMove exhibits superior perfor-
mance, achieving higher Recall@10, lower Dist@10, and improved MAP scores compared to the
baselines. This suggests that DiffMove is more robust in scenarios with higher missing percentages
of historical trajectories and sparser locations. The significant reduction in Dist@10 for DiffMove
indicates its effectiveness in accurately recovering missing locations. Remarkably, the Distance
metric performance of our DiffMove with 80% missing ratio even outperforms TRILL with 40%
missing rate and surpasses both PeriodicMove and Attnmove, even when they have lower missing
rates 20%. This serves as one aspect of scalability and further reinforces the efficacy and good
potential of DiffMove in handling larger datasets since it shows better performance even when the
model is utilizing a smaller portion of the same existing data (larger missing ratio than those of
baselines), which provides insights into its applicability across various scalability of missing ratio

9
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scenarios. These results underscore the robust, scalable and superior performance of DiffMove in
more challenging task of trajectory recovery, making it a promising model for real-world applications.

Table 3: Performance w.r.t. Missing Ratios on Geolife
Methods Metrics Missing Rate

20% 40% 60% 80%
AttnMove Recall@10 0.7117 0.6985 0.6785 0.6160

Dist@10 987 1037 1174 1371
MAP 0.4815 0.4657 0.4226 0.4112

PeriodicMove Recall@10 0.7451 0.7392 0.7186 0.6857
Dist@10 884 954 1059 1176
MAP 0.5175 0.4750 0.4413 0.4076

TRILL Recall@10 0.8216 0.8038 0.7627 0.7436
Dist@10 682 720 915 1089
MAP 0.5760 0.5534 0.5111 0.5044

DiffMove Recall@10 0.8344 0.8163 0.7931 0.7863
Dist@10 507 617 681 695
MAP 0.6107 0.5730 0.5495 0.5099

5.7 PARAMETER STUDY

We also conduct some experiments to provide insights into the performance of our model (DiffMove)
across different values of βT and embedding size.

Beta_end βT : Figure 3 and 4 illustrate the interplay between Recall@K, MAP, and Distance@K
across different values of βT . We vary the βT to change the noise schedule, the Recall@1 and
Distance@1 performance are more important and seem to have increasing trends but drop when βT

is too large although there are some fluctuations for Recall@5 and Recall@10. We try to choose
the optimal value at 0.6 after consideration of all tradeoffs. The relationship between βT and spatial
Distance@1 accuracy reveals specific βT values that result in optimal spatial alignment, indicating
the importance of βT in shaping spatial aspects of trajectory recovery performance.

Embedding Size: In addition to βT , Figure 5 and 6 illustrate the variation in all metrics across
different embedding sizes. As expected, the initial increase of the embedding size contributes to the
increase of Recall@1 and Distance@1 since more information is recorded by embedded vectors.
However, too large embedding could also bring some uncertain information and lead to saturation of
prediction accuracy. As a result, we choose the optimal value at 128.
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6 CONCLUSION

In conclusion, this research addresses the problem of trajectory recovery from sparse human mobility
data by introducing a novel model, DiffMove. Leveraging a conditional diffusion framework, it
excels in trajectory recovery by constructing and utilizing conditional information with trajectory
spatial patterns, inter-trajectory dependencies, temporal and target location patterns. The model is
innovatively designed and integrated with multiple conditional feature extraction modules, tackling
the complexity of spatial temporal dependencies in a principled manner. Our extensive experiments
demonstrate that DiffMove outperforms all state-of-the-art baselines, showcasing its effectiveness in
recovering missing locations.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 MORE DETAILS ON TRANSITION GRAPH CONSTRUCTION OF SPATIAL CONDITIONAL
BLOCK

The prior investigations (Xu et al., 2019; Wu et al., 2019; Sun et al., 2021) have demonstrated that a
gated graph neural network (GGNN) is adept at capturing intricate transition patterns among nodes.
This characteristic renders the gated GNN well-suited for addressing our specific problem. In the
graph neural network layer, we handle each trajectory independently to unveil the complex transition
patterns concealed within each trajectory. To elaborate, we initiate the process by establishing a
directed graph for each trajectory. Subsequently, the gated GNN is employed on each of these directed
graphs to refine the location embeddings, thereby capturing the transition patterns into the model.
Besides this, we manage to conduct data fusion of diffusion step embedding into the gated GNN to
make the transition pattern learning adaptive to the diffusion time step.

Trajectory Graph Construction: The initial step of the graph neural network layer involves
constructing a transition graph representation for each historical and current trajectory in the context
of trajectory recovery. Similar to session recommendation, given a location IDs’ trajectory T : l1 →
l2 . . . → lK , we consider each location li as a node and (li−1, li) as an edge, representing the user’s
movement from li−1 to li in the trajectory T . Consequently, each trajectory can be conceptualized
as a directed graph. The graph structure is learned by facilitating communication among distinct
nodes. Specifically, let AI,AO denote the weighted transitions of incoming and outgoing edges in
the trajectory graph, respectively. To address the possibility of repeated occurrences of locations in a
trajectory, we assign each edge a normalized weight, calculated as the edge’s occurrence divided by
the outdegree of the start node of that edge. Consider transitions in a trajectory [l1, l2, l3, l2, l4], the
corresponding graph, the incoming matrix AI and the outgoing matrix AO are shown in Figure 7.

Figure 7: A example of a trajectory transition graph and the incoming and outgoing matrix A

A.2 DETAILS ON DIFFUSION STEP EMBEDDING

estep is the 128-dimension diffusion step embedding obtained from a special embedding layer
DiffEmbedT (t) by sinusoidal functions following previous works (Kong et al., 2021; Tashiro et al.,
2021):

DiffEmbedT (t) =

(
sin(100·4/63t), . . . ,

sin(1063·4/63t), cos(100·4/63t), . . . , cos(1063·4/63t)

)
(12)

and it is further processed through a fully connected layer to obtain eT .

A.3 DETAILS OF CROSS ATTENTION IN SPATIAL CONDITIONAL BLOCK

Further details of Eq. (7) are elucidated in Eq. (13).
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α
(h)
i,k =

exp(ϕ(h)(eJ,iu , ej,ku ))∑K
g=1 exp(ϕ

(h)(eJ,iu , ej,gu ))
,

ϕ(h)(eJ,iu , ej,ku ) = ⟨W (h)
Q eJ,iu ,W

(h)
K ej,ku ⟩,

ẽj,i(h)u =

K∑
k=1

α
(h)
i,k (W

(h)
V ej,ku ),

ẽj,iu = ẽj,i(1)u ∥ ẽj,i(2)u ∥ · · · ∥ ẽj,i(H)
u ,

espa = ReLU(Wẽj,iu + eJ,iu ),

(13)

where W
(h)
Q ,W

(h)
K ,W

(h)
V ∈ Rd′×d are transformation matrices, and ⟨, ⟩ denotes the inner product

function. Next, we compute the representation of time slot i for each head by aggregating information
from all locations in other time slots based on the coefficients α

(h)
i,k . The symbol ∥ denotes the

concatenation operator, and H represents the total number of heads.

A.4 IMPUTATION (SAMPLING) ALGORITHM WITH DIFFMOVE

Algorithm 1 Imputation (Sampling) with DiffMove
1: Input: a Location Embedding sample e0, No. of generated samples M , trained denoising

function ϵθ
2: Output: Imputed missing value ¯̂eta0
3: Construct observation condition of e0 as eob0
4: for m = 1 to M do
5: etaT ∼ N (0, I) where the dimension of etaT corresponds to the missing indices of e0
6: for t = T to 1 do
7: Sample êtat−1 using Eq. (4) and Eq. (5)
8: end for
9: Record êta0

10: end for
11: Calculate mean value ¯̂eta0 by mean(êta0 )

multirow

A.5 STUDY OF NUMBER OF GENERATED SAMPLES M

We change the number of generated samples M from 4 to 1 (meaning only predict one single
embedding and use it directly), which simulates the normal deterministic way as an ablation study
to some extent. We observe the Table 4 results of reduced performances of the original DiffMove
(-1.85% Recall@1 on Geolife and -1.7% Recall@1 on Foursquare) due to lack of considering effects
of probabilistic generation and sampling , which highlights the significance of the probabilistic
generation instead of deterministic single imputed embedding.

A.6 IMPLEMENTATION DETAILS FOR REPRODUCIBILITY

DiffMove is trained using batch gradient descent with the Adam optimizer (Kingma & Ba, 2014),
implemented in Python and PyTorch (Paszke et al., 2019), on a Linux server equipped with an
NVIDIA RTX A5000. We set random seed as 2021. Multi-task learning weights λ1 and λ2 are set as
1 after experimental study. We employed a learning rate of 0.001 with a weight decay of 1e-6. We

Dataset Methods Recall@1 Recall@5 Recall@10 Distance@1 Distance@5 Distance@10 MAP

Geolife DiffMove w/ single gen-sample 0.4988 0.7701 0.8350 2905 973 601 0.6180
DiffMove 0.5173 0.7987 0.8578 2799 708 444 0.6407

Foursquare DiffMove w/ single gen-sample 0.3430 0.4614 0.5009 5206 1964 1339 0.4035
DiffMove 0.3600 0.6090 0.6876 4271 1548 989 0.4756

Table 4: Performance comparison between DiffMove variants
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set the location embedding size as 128, the steps (loops) of TGGNN as 2, the number of heads for
cross attention as 4, diffusion step embedding dimension and temporal length embedding dimension
are 128. We set the number of residual layers as 4, residual channels as 128, and attention heads
for the temporal transformer as 8. We set the number of the diffusion step T = 50, the minimum
noise level β1 = 0.0001, and the maximum noise level βT = 0.6. We tuned hyperparameters
for each dataset to achieve optimal results. Following recent studies (Song et al., 2021; Nichol
& Dhariwal, 2021), a quadratic schedule was adopted for decay of αt to enhance sample quality:

βt =
(

T−t
T−1

√
β1 +

t−1
T−1

√
βT

)2

.

A.7 DETAILS OF BASELINES

We evaluate the proposed approach against several baseline methods, including both traditional
approaches grounded in our understanding of human mobility and advanced deep learning models
capable of capturing intricate mobility patterns:

• Top: A straightforward counting-based method that selects the most frequently visited
location in the training set as the recovery for each user.

• Markov (Gambs et al., 2012): A commonly used method treating visited locations as states
and constructing a transition matrix to capture first-order transition probabilities.

• PMF (Mnih & Salakhutdinov, 2007): An advanced model rooted in conventional collabora-
tive filtering, based on the user location matrix.

• LSTM (Liu et al., 2016): A deep learning model that captures sequential patterns through
recurrent neural networks, using the predicted next time slot as recovery.

• BiLSTM (Zhao et al., 2018): An extension of LSTM with bidirectional recurrent neural
networks, incorporating spatial-temporal constraints from all observed locations.

• DeepMove (Feng et al., 2018): A model that jointly considers user preferences and sequential
dependencies for predicting the next location used for recovery.

• AttnMove (Xia et al., 2021): A method leveraging various attention mechanisms to capture
the regularity and patterns in a user’s mobility.

• PeriodicMove (Sun et al., 2021):A recent model that considers factors such as transition
patterns among locations and periodicity in human mobility.

• TRILL (Deng et al., 2023): The latest state-of-the-art model which is capturing global
mobility patterns leveraging graph convolutional networks for mobility patterns.

Table 5: Basic statistics of mobility datasets.

Dataset City #Historical #Current #Distinctive Total #IDs Processed
Trajs Trajs Locations in Training (approx.)

Foursquare Tokyo 11,430 2,286 1,411 404.9K
Geolife Beijing 15,648 3,912 1,124 563.3K

A.8 PRE-PROCESSING

For our location representation, We collect the cities’ street map data of Tokyo and Beijing from an
online map source and partition the region into distinct blocks. Each of these blocks is considered as
an individual location, with an average area size of approximately 0.25 km2 (500m x 500m for both
datasets). Other pre-processings are the same as (Deng et al., 2023). As per (Chen et al., 2019), a
30-minute time interval is employed for both datasets. Further details and statistics are presented
in Table 5. Our framework is not inherently tied to the 30-minute interval and can easily adapt to
other interval lengths, such as 10 minutes or even finer resolutions, provided the data supports such
granularity. We can always treat the time interval as a parameter to tune on the data side. This
flexibility makes our method broadly applicable, as it caters to human mobility patterns by modeling
discrete location transitions effectively. Human mobility typically involves meaningful transitions at
specific timeframes (e.g., work, shopping, dining), which align naturally with discrete intervals.
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Figure 9: Distance vs Sample%

A.9 SCALABILITY STUDY

Based on the experimental results shown in Figures 8 and 9, we conducted a scalability study
comparing the performance of the DiffMove and best baseline model TRILL across different scaling
ratios ranging from 20% to 100% to vary the scale of the whole training dataset. Regarding recall
performance, as depicted in Figure 8, DiffMove consistently outperforms TRILL across all scaling
ratios. In terms of distance performance, illustrated in Figure 9, both models display an increasing
trend with higher scaling ratios. Notably, DiffMove maintains a lower distance value (more accurate)
compared to TRILL across all scaling ratios, indicating superior trajectory recovery accuracy. During
the experiments, we also found that the average training time per epoch ranges from 4.2s to 22.4s
(scaling from 20% to 100% of full training data) which is still comparable with the best baseline.
The training time can satisfy the common requirement in company services since this model is only
for offline applications of trajectory recovery. These findings suggest that DiffMove exhibits better
scalability and accuracy to variations in different data scales, making it a promising solution for
trajectory recovery tasks across diverse datasets and scaling scenarios.

A.10 RUNNING TIME STUDY

Additional details of average time experiments are added in the attached Table 6 for reference. The
baselines have an average training time ranging from 7s to 10s with an inference time of 1s to 2s per
epoch. Other designed sub-modules are not resource consuming. GPU server we use is also listed in
Appendix A.6 (just one NVIDIA RTX A5000 should be enough). Given that trajectory recovery is
often an offline application, these time scales are still acceptable.

Table 6: Training and Inference Time per Epoch
Methods Avg Total No. of Epochs Average Time per Epoch

Training (s) Inference (s)
AttnMove 212 9.2 2.1
PeriodicMove 163 7.8 1.4
TRILL 151 8.2 1.6
DiffMove 69 18.9 230.2
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