
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFMOVE: HUMAN TRAJECTORY RECOVERY VIA
CONDITIONAL DIFFUSION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recovering human trajectories from incomplete or missing data is crucial for
many mobility-based urban applications, e.g., urban planning, transportation, and
location-based services. Existing methods mainly rely on recurrent neural networks
or attention mechanisms. Though promising, they encounter limitations in captur-
ing complex spatial-temporal dependencies in low-sampling trajectories. Recently,
diffusion models show potential in content generation. However, most of proposed
methods are used to generate contents in continuous numerical representations,
which cannot be directly adapted to the human location trajectory recovery. In
this paper, we introduce a conditional diffusion-based trajectory recovery method,
namely, DiffMove. It first transforms locations in trajectories into the embedding
space, in which the embedding denoising is performed, and then missing locations
are recovered by an embedding decoder. DiffMove not only improves accuracy
by introducing high-quality generative methods in the trajectory recovery, but
also carefully models the transition, periodicity, and temporal patterns in human
mobility. Extensive experiments based on two representative real-world mobility
datasets are conducted, and the results show significant improvements (an average
of 11% in recall) over the best baselines.

1 INTRODUCTION

Mobility data plays a prominent role in many urban applications, e.g, next location recommenda-
tions (Feng et al., 2018), epidemic prevention (Tang et al., 2023) and urban planning (Yuan et al.,
2014). However, due to privacy concerns or device malfunctions, users may not report their locations
to the service provider continuously, which makes human trajectories sparsely distributed in space
and unevenly observed in time, and thus affects the effectiveness of downstream applications. For
this reason, human trajectory recovery, which infers human trajectories at a fine-grained level, raised
more and more attention recently.

Existing human trajectory recovery work leverages Recurrent Neural Network (Liu et al., 2016;
Wang et al., 2019) or attention mechanism (Xia et al., 2021) for capturing the spatial-temporal
dependencies and resort irregular time interval encoding modules for handling unevenly observed
trajectory records. Recent studies (Xia et al., 2021; Sun et al., 2021; Deng et al., 2023) further found
that explicitly utilizing historical trajectory can enhance the performance due to the strong periodicity
nature of the human trajectories. However, these approaches face significant limitations in handling
key characteristics of human mobility. First, they struggle to capture intricate spatial-temporal
dependencies - the interplay between spatial relationships (proximity and spatial transitions between
locations) and temporal patterns (sequential dependencies or periodicity of behaviors in historical
trajectory). Second, existing methods lack systematic mechanisms for handling data sparsity and
irregular sampling from incomplete check-ins. Third, their deterministic nature cannot adequately
capture the inherent uncertainty in human movement.

Though appealing performance is achieved, these approaches all made the traditional predictive
recovery, which has above limitations in complex sparse, irregular, and uncertain scenarios inherently
in human mobility. Consequently, the recovery accuracy and scenarios of downstream applications are
limited. For instance, a person may follow some routines from home to office daily but occasionally
he/she may follow different routes or change his/her preference. In such scenarios, traditional methods
typically provide a biased deterministic imputed trajectory. However, with a generative approach

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to inference, a set of imputed trajectory locations can be generated through sampling or various
averaging techniques on imputation samples.

To address these fundamental limitations, we leverage diffusion models, which have shown superior
performance in many tasks against other generative models, e.g., image generation (Ho et al., 2020)
and audio synthesis (Kong et al., 2021). Furthermore, conditional diffusion models are recently
developed for the time-series imputation (Tashiro et al., 2021) given observed entries as input, which
inspires us to design a trajectory recovery model in the conditional diffusion manner.

However, it is non-trivial to apply the conditional diffusion model to solve the trajectory recovery
problem due to two issues. Firstly, the imputation targets of conventional diffusion models are
continuous numerical values, which can be directly obtained via the denoising process, while
those in trajectory recovery are discrete ID-represented locations - in this case, the transition and
periodicity patterns of human trajectories are required to be fully exploited. Secondly, the model
must simultaneously consider those abovementioned limitations in handling key characteristics of
human mobility - both temporal dependencies and the complex spatial relationships between current
and historical trajectories during the denoising process.

To tackle these issues, we propose a novel conditional diffusion model for human trajectory recovery,
namely, DiffMove. Our model incorporates these specialized components: 1) a novel embedding-
based (with encoding and decoding) conditional diffusion framework that handles discrete locations
while preserving spatial relationships, 2) a Spatial Conditional Block equipped with diffusion-oriented
graph neural network and attention mechanism, which captures the sparse spatial transition patterns
and periodicity temporal patterns from the current trajectories and historical trajectories. 3) a Target
Conditional Block that effectively utilizes historical information despite irregular sampling. 4) a
Denoising Network Block to handle uncertainty. Our contributions are three-fold:

• We propose a trajectory recovery framework DiffMove, which provides a solution to impute discrete
locations leveraging diffusion models by performing the denoising process in embedding space and
decoding the inferred embeddings back to discrete locations. To the authors’ knowledge, we are
the first to design spatial temporal conditional diffusion models for human trajectory recovery task.

• We design Spatial Conditional Block, Target Conditional Block and Denoising Network Block to
fully fuse the knowledge of the current trajectories and historical trajectories during the conditional
diffusion process and tackle the above challenges.

• Extensive experiments on two real-world mobility datasets demonstrate that DiffMove significantly
outperforms state-of-the-art baselines, achieving an average improvement of 11% in Recall.

2 RELATED WORKS

Human Trajectory Recovery: The human trajectory recovery problem we address focuses on free-
space settings, unlike MTrajRec (Ren et al., 2021) and RNTrajRec (Chen et al., 2023b), which focus
on vehicles’ trajectories constrained by road networks (road segments). Human trajectory recovery
can be categorized into two types: the former treats missing locations in trajectories as continuous
two dimensional values, i.e., latitude and longitude, to be imputed (Alwan & Roberts, 1988; Moritz &
Bartz-Beielstein, 2017; Wang et al., 2019), while the latter infers locations from a discrete candidate
location pool (Liu et al., 2016; Xia et al., 2021). The former is suitable to recover trajectories with
high sampling frequency, e.g., vehicle trajectories, where the local context plays a more important
role for the imputation, while the latter is more feasible for highly sparse trajectories, e.g., human
trajectories, where the transition and periodicity dependency modeling are the main focus. In human
trajectory recovery, the de-facto approach is to explicitly utilize historical trajectory when imputating
the current trajectory. For example, AttnMove (Xia et al., 2021) utilizes a multi-stage attention
mechanism to recover missing locations. PeriodicMove (Sun et al., 2021) constructs day-level graphs
to model complex transition patterns among locations. TRILL (Deng et al., 2023) is a trajectory
recovery model utilizing graph convolutional networks, combining global and local mobility patterns.
(Chen et al., 2023a) proposes a framework called TERI, to tackle trajectory recovery in a two-stage
process, with a different problem setting focusing on addressing the special cases of irregular time
interval. Ours is more addressing on the generative manner using diffusion model to solve the regular
trajectory recovery problem. Existing human trajectory recovery work imputes missing locations
in a deterministic manner, which omits the uncertain nature of trajectories and thus constrains the
recovery accuracy and scenarios of downstream applications. In addition, the relationship between
locations to be imputed and historical trajectories are not well-modeled.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Diffusion Model for Temporal and Spatio-temporal Data: Diffusion models have found extensive
applications in tasks related to time series and spatio-temporal data generation, imputation, and
forecasting due to their competence in modeling high-dimensional data distributions. Diffusion
models have been applied to many time series generation tasks, such as the synthesis of electronic
health records (EHR) (Alcaraz & Strodthoff, 2023; He et al., 2023; Yuan et al., 2023). Many of
these studies adopt the denoising network architecture initially proposed in DiffWave (Kong et al.,
2021), which utilizes bidirectional dilated convolution to capture correlations between different
time steps. CSDI (Tashiro et al., 2021) leverages diffusion models for probabilistic time series
imputation, i.e., generating missing values conditioned on observed data points. DiffTraj (Zhu et al.,
2024) represents the first attempt to generate GPS trajectories using an unconditioned diffusion
probabilistic model. However, it focuses on generating task of raw GPS data in continuous space
instead of discrete sparse locations that human trajectories always involve. TrajGDM (Chu et al.,
2023) employs a diffusion model to capture universal mobility patterns, for trajectory generation, but
it focuses on simulating synthetic human mobility instead of recovery task on current trajectory. A
recent work DiffSTG (Wen et al., 2023) studied the spatial-temporal graph forecasting problem and
introduced a denoising network UGnet, which is capable of capturing spatial-temporal dependencies
among various geographical locations. However, DiffSTG focuses on predicting numerical readings
of geographical sensors in different locations across different time, while we focus on recovering
discrete locations in human trajectories.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

Definition 1 (Trajectory). The trajectory is a chronological sequence of a user’s locations within a
single day. Let T j

u : lj,1u → lj,2u ... → lj,ku ... → lj,Ku represent the trajectory of user u on the j-th day,
where lj,ku denotes the visited location during the k-th time slot within a specified time interval. If the
location for the k-th time slot is not observed, lj,ku is marked as null, i.e., lj,ku is missing.
Definition 2 (Current and Historical Trajectory). For a given targeted day J and user u’s trajectory
T J
u , we define T J

u as the user’s current trajectory, while the historical trajectories comprise u’s
trajectories in the past (J − 1) days, denoted as {T 1

u , T 2
u , ..., T J−1

u }.

We follow (Xia et al., 2021) to formulate the human trajectory recovery problem as follows:
Problem Definition. Given user u’s trajectory T J

u along with historical trajectories
T 1
u , T 2

u , ..., T J−1
u , the task is to recover the missing locations, i.e., ∀ null in T J

u , thereby recon-
structing the complete trajectory for the current day.

3.2 DENOISING DIFFUSION PROBABILISTIC MODEL

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) are deep generative models,
which map data from the normal distribution to another distribution via a learnable denoising network
step by step so that we can easily generate a data sample following the similar distribution of q(x0) by
sampling a random Gaussian noise. DDPM is composed of a forward process and a reverse process.

In the forward process, Gaussian noise is gradually added to the data sample x0 ∼ q(x0) by a
Markov chain. A closed form exists to transform the initial data sample x0 to the data sample xt at
arbitrary time step t by the reparameterization trick: xt =

√
ᾱtx0 +

√
1− ᾱtϵ(1)

where ᾱt = α1α2 . . . αt, αt = 1− βt, βt ∈ (0, 1) denotes the noise level and ϵ is sampled from a
Gaussian noise N (0, I).

The reverse process iteratively denoises a pure Gaussian noise xT ∼ N (0, I) to generate the data
sample x0 following the similar distribution of q(x0). The transformation between data of two
consecutive steps can be formulated as follows: pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)I)(2)

where θ is shared among different denoising time steps. The parameters of pθ(xt−1|xt) are calculated
as follows: µθ(xt, t) =

1
ᾱt
(xt − βt√

1−ᾱt
ϵθ(xt, t)), σ

2
θ(xt, t) =

1−ᾱt−1

1−ᾱt
βt(3)

where ϵθ is the denoising network, which takes the noise-added data xt and the time step t as inputs
and produces the predicted noise. By iteratively sampling according to Eq. (2), the generated data x̂0

is finally obtained. During the training stage, the denoising network parameters θ can be learned by
minimizing L(θ) = E||ϵ− ϵθ (xt, t) ||22, where xt can be obtained given x0 based on Eq. (1).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 METHODOLOGY

The main idea of diffusion-based trajectory recovery is to first transform discrete locations in
trajectories into the dense embedding space, then generate the recovered location embeddings via a
diffusion model, and finally rebuild the missing locations by an embedding matching process.

Raw Current Trajectory

Masked Locations 𝑙!"

Current Trajectory

Historical Trajectories

2 8
Noise 𝝐

2 8
Imputation Target
Embeddings 𝒆#$%

2 8
Noisy Target
Embeddings 𝒆$$%

Historical Location Embeddings 𝒆&'($

1 5 7 9
Observed Location Embeddings 𝒆#)*

C

Estimated Noise 𝝐𝜽

𝜎

Gaussian Distribution Recovered Locations $𝑙!"
Noise Estimation Loss 𝑳𝒅𝒊𝒇𝒇𝒖

Cross Entropy Loss 𝑳𝑪𝑬

Random
Masking

Sample

Lo
ca

tio
n

Em
be

dd
in

g
Embedding
Imputation

Embedding
Decoding

Spatial Conditional
Block

Denoising Network
Block

Target
Conditional Block

Diffusion Time Step 𝑡

Location Mask

Temporal Length 𝑘𝒆2&'($

𝒆'34	

𝐞(5%𝐞6Regularization Loss 𝑳𝑳𝟐

Addition C 1x1 Conv Concatenation 𝜎 ReLURecorded location Missing location Current observed location Masked locationLegend: Operations:

3.
M

is
si

ng
 L

oc
at

io
n

D
ec

od
er

 (M
LD

)

2.Conditional Embedding Denoiser (CED)1.Trajectory Location Encoder (TLE)

Figure 1: Overview of training stage of DiffMove.
To generate satisfactory location embeddings, the true conditional data distribution q(eta0 |
T J
u , {T 1

u , T 2
u , ..., T J−1

u }) in the embedding space should be estimated well, where eta0 are em-
beddings of missing locations. Incorporating those conditions, based on the idea of the diffusion
model, we need to learn the conditional transformation between consecutive steps (from t to t− 1):

pθ(e
ta
t−1 | etat , T J

u , {T 1
u , T 2

u , ..., T J−1
u }) =N (etat−1;µθ(e

ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }),

σθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u })I)

(4)

Specifically, the parameterization of DDPM in Eq. (3) is also extended to the conditional case:

µθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }) = µDDPM(etat , t, ϵθ(e

ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u })),

σθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }) = σDDPM(etat , t)

(5)

where µθ(xt, t) and σθ(xt, t) in Eq. (3) are denoted as µDDPM(et, t, ϵθ(et, t)) and σDDPM(et, t) here
respectively, and general variable x is replaced by the embedding of missing location e.

As can be observed, it essentially requires our denoising network ϵθ to incorporate observations in the
current trajectory and historical trajectories. To well encode those conditions and realize the diffusion-
based trajectory recovery, we present DiffMove, the training stage of which is shown in Figure 1.
As the existing imputation work (Xia et al., 2021) did, DiffMove is trained in a self-supervised
manner, which randomly masks some observed locations in the current trajectory and treats them as
supervision signals, i.e., missing locations. To facilitate the description DiffMove, we decompose the
whole process into three components: Trajectory Location Encoder (TLE), Conditional Embedding
Denoiser (CED) and Missing Location Decoder (MLD).

4.1 TRAJECTORY LOCATION ENCODER (TLE)

Trajectory Location Encoder (TLE) takes the current trajectory and historical trajectories of J − 1
days as inputs, and gives the embeddings of observed locations eob0 and missing locations etat in
the current trajectory, and historical trajectories ehist, which is shown in the left part of Figure 1.
During the training stage, etat is obtained by adding random Gaussian noise to embeddings of masked
locations, while during the inference stage, etat is directly sampled from the Gaussian distribution.
We now elaborate on its training stage in detail as follows.

As shown in Figure 1, the blue and white location icons in trajectories represent observed and
missing locations respectively. During the training stage, we first randomly mask some observed
locations in the raw current trajectory as imputation targets, and thus separate it into the current
trajectory (which is the actual input during the inference stage) and pseudo missing locations (icons

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

in orange), i.e., masked locations lta. Locations in trajectories l ∈ L are represented by discrete
IDs, and we also assign a special ID to the missing location, i.e., “null”. After that, we feed the
current trajectory, masked locations and historical trajectories into a location embedding layer, where
each location l would be transformed into a dense representation el ∈ Rd by an embedding layer:
el = EmbeddingL(l) (note: other embedding methods are also welcome). The imputation target
embeddings eta0 are added with a Gaussian noise by Eq. (1) to form noisy target embeddings etat .

Finally, historical location embeddings ehist, observed location embeddings eob0 and noisy target
embeddings etat would be fed into Conditional Embedding Denoiser for the noise estimation. The
learned embedding table, i.e., El ∈ R(|L|+1)×d would also be used to perform matching to recover
missing locations, which would be introduced later in Section 4.3.

4.2 CONDITIONAL EMBEDDING DENOISER (CED)

Conditional Embedding Denoiser (CED) takes diffusion time step t, noisy target embeddings etat
and conditions (i.e., historical location embeddings ehist, observed location embeddings eob0), and
estimates the noise added to the target embeddings etat−1 at the time step, which is shown in the top
right part of Figure 1. To fully exploit the power of conditions, Spatial Conditional Block is devised
to model the transition and periodicity patterns, Target Conditional Block is designed to capture the
relationship between the missing locations and historical trajectories, and Denoising Network Block
is developed to capture the local context and produce the noise estimation. The design of each block
is elaborated as follows.

Spatial Conditional Block. Spatial Conditional Block takes eob0 , ehist and diffusion step t, and
gives the spatial condition espa, which captures the transition and periodicity patterns from historical
trajectories. In addition to espa, an intermediate result, i.e., the diffusion time step embedding eT , is
also passed to Denoising Network Block, and a historical trajectory embedding ehistG is also obtained
to better capture the relationship between the missing locations and historical trajectories in Target
Conditional Block.

Since graph neural network (GNN) has demonstrated its capability to capture the consecutive
relationship between different entities (Xu et al., 2019; Wu et al., 2019) and attention mechanism is
good at capturing the periodicity information (Liang et al., 2018), we propose to use GNN to learn
the transition pattern and attention mechanism to learn the periodicity pattern. Since the degree of
noise among different diffusion time steps is different, the importance of spatial conditions may also
vary, we further incorporate the diffusion time step into the spatial condition learning. Considering
above insights, we give the detailed structure of Spatial Conditional Block in Figure 2B.

Firstly, we construct location transition graphs for both historical and current trajectories. For each
trajectory, we construct an incoming and an outgoing transition graph, where all unique locations
appearing in it serve as graph nodes, embeddings of locations from TLE serve as node embedding,
and consecutive locations together form two adjacency matrices, i.e., AI and AO, similar to (Xu
et al., 2019).

Secondly, a Diffusion Step T Gated Graph Neural Network (TGGNN) is proposed to make diffusion-
time-step-aware spatial pattern learning. Two TGGNN are introduced to learn patterns from current
trajectory and historical trajectories, separately. We first transform the diffusion time step into a
dense representation estep by sinusoidal functions DiffEmbedT (t) (Kong et al., 2021; Tashiro et al.,
2021), following by a fully connected layer: eT = DiffEmbedT (t)W

T + bT . Then, embeddings of
current and historical trajectories would be passed into TGGNN for several times. In the s-th layer of
TGGNN, (1) the information propagation from neighborhood is performed based on node embeddings
of s-th layer

[
e1s, . . . , e

N
s

]
and two adjacency matrices, i.e., AI and AO to obtain incoming/outgoing

aggregated node embedding eI,s/eO,s, respectively; (2) an intermediate representations as+1 is
created by concatenating those aggregated node embeddings with embedded diffusion time step eT
to enhance the representations; (3) a gating mechanism (Li et al., 2016) is used to fuse the node
embeddings of the s-th layer and (s+1)-th layer:

eI,s =
(
AI

i

([
e1s, . . . , e

N
s

]
WI + bI

))
eO,s =

(
AO

i

([
e1s, . . . , e

N
s

]
WO + bO

))
as+1 = eI,s ∥ eO,s ∥ eT, els+1 = Gates(as+1, es)

(6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: The Architecture for Conditional Embedding Denoiser

where ∥ is the concatenation, WI , WO, WT ∈ Rd×d are learnable parameters, and bI , bO,
bT ∈ Rd are bias vectors, N is the number of unique locations in the trajectory, and Gates denotes
several gates (Li et al., 2016), i.e., update gate, reset gate, to fuse node embeddings in consecutive
layers. We denote the final node embedding of TGGNN as el for simplicity. By pooling final node
embeddings from the historical branch, the historical trajectory embedding ehistG is derived.

Thirdly, we employ CrossAttention (Xia et al., 2021) to capture the periodicity among the current
trajectory and historical trajectories. For each user u, the headh calculate the cross attention between
the i-th time slot of the current trajectory embedding (eJ,iu) and the k-th time slot of the j-th historical
trajectory embedding (ej,ku). The final spatial condition espa is generated by a linear projection of the
concatenation of H number of heads as shown in Eq. (7).

headh = CrossAttention(eJ,iu , ej,ku)

espa = ReLU(W(head1 ∥ . . . ∥ headH) + eJ,iu) (7)

Target Conditional Block. Target Conditional Block takes target ID mask, temporal length k and
historical trajectory embedding ehistG , and gives eind, which captures the correlations between the
missing locations and historical trajectories to help the inference. The target ID mask representations
are in one-hot form: non-target locations are represented with all zeros, while target locations are
represented with ones. This method creates a placeholder embedding that signifies the absence of
data at specific positions. This embedding is then concatenated with ehistG and will be fused with
the output of the Temporal Length Embedding layer. We incorporate temporal length embedding
k = {k1:K} as auxiliary information. We adopt a 128-dimensional temporal embedding, consistent
with prior research (Vaswani et al., 2017; Zuo et al., 2020):

kembedding(kl) =

(
sin(kl/τ

0/64), . . . , sin(kl/τ
63/64), cos(kl/τ

0/64), . . . , cos(kl/τ
63/64)

)
(8)

Here, τ = 10000. This temporal length embedding enriches the model with sequential information,
enhancing its ability to recover trajectories. Finally, the concatenated representation forms eind.

Denoising Network Block. This block is the function of DiffMove to model ϵθ in Eq. (5). It receives
the inputs from TLE together with eT , espa, and eind. The concatenation of eob0 and etat from TLE
as well as espa are passed through a 1D convolution layer and a ReLU, and the results of both would
be added to eT to form the the total input of a temporal transformer (Tashiro et al., 2021) (with
multi-head self-attentions) to learn the temporal sequence features. Then it will be passed through a
1D convolution layer and added with the 1D convoluted result of eind. Following a gated activation
unit (Ramachandran et al., 2017), part of outputs is directed to the next residual layer as input,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

whereas the remainder is incorporated into the final output via a skip connection. The Conv1 × 1
blocks in the network facilitate the mapping of data to suitable dimensions. Ultimately, the output ϵ̂
is the culmination of data passed through skip-connections from each residual layer.

4.3 MISSING LOCATION DECODER (MLD)
Missing Location Decoder (MLD) leverages CED to recover locations. It consists of two steps:
Embedding Imputation, which transforms noises into meaningful location embeddings based on
the estimated noise from CED, and Embedding Decoding, which decodes the estimated target
embeddings to locations to recover the trajectory.

Embedding Imputation. Embedding Imputation is to obtain robust estimated target embeddings, we
perform target embeddings generation for M times, and the means of target embeddings ¯̂eta0 are used
for the location decoding. For each time of generation, a random noise etaT is sampled from N (0, I),
then we perform the reverse process of diffusion from step T to 1 gradually according to Eq. (4) and
Eq. (5) to obtain one estimated target embedding êta0 .

Embedding Decoding. After the mean imputed target embeddings ¯̂eta0 are obtained, we calculate the
inner product between ¯̂eta0 and location embeddings in embedding table E

′

l ∈ R|L|, which is from El

in TLE after excluding the embedding of “null” item. For each imputed target embedding ¯̂eta,i0 , its
similarities to different locations ẑtai ∈ R|L| are calculated as follows: ẑtai = ¯̂eta,i0 E

′⊤
l

Subsequently, we apply a softmax function to obtain the location likelihood vector ŷi for each
imputation target: ŷi = softmax (ẑtai). During the inference stage, the location with the highest
probability would be used to recover the trajectory.

4.4 MODEL TRAINING

Since trajectory recovery results are discrete, which cannot be easily obtained by the denoising
network, multiple losses are introduced as shown in Figure 1 when we train DiffMove.

The first loss is diffusion loss Ldiffu, which calculates noise estimation accuracy. We sample a noise ϵ
and obtain the noisy target embeddings etat at the diffusion time step t by Eq. (1). Then, DiffMove
estimates the added noise conditioned on observed locations in the current trajectory and the historical
trajectories. The expectation of the mean squared error between the actual noise and the estimated
noise is served as Ldiffu, which is defined as follows:

Ldiffu(θ) =Eeta
0 ∼q(eta

0),ϵ∼N (0,I),t||(ϵ− ϵθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }))||22 (9)

The second loss characterizes the location recovery accuracy, which is the cross entropy loss. Given
the one-hot representations of masked locations in the raw current trajectory Y = {y1,y2, ...,yKta}
and the predicted likelihood of the imputed locations Ŷj = {ŷ1, ŷ2, ..., ŷKta} (Kta is the number
of masked locations in the raw current trajectory), LCE is defined as

LCE(Y, Ŷ) = −
Kta∑
j=1

|L|∑
i=1

yji log(ŷ
j
i) (10)

The third loss is an L2 loss for regularization, which is suggested in (Gong et al., 2022). It regularizes
the learning of the location embeddings of the raw current trajectory, i.e.,

LL2(e
ta
0 , eob0) =

1

Kd
(

Kta∑
i=1

||eta,i0 ||2 +
K−Kta∑
j=1

||eob,j0 ||)2 (11)

Consequently, DiffMove is trained end to end by jointly optimizing the above three types of losses:
LE2E = Ldiffu + λ1LCE + λ2LL2, where λ1 and λ2 are multi-task learning weights.

5 EXPERIMENTS

5.1 DATASETS

• Foursquare1: This dataset (Yang et al., 2014) was obtained from the Foursquare API, covering the
period from April 2012 to February 2013. Each record in the dataset includes user ID, timestamp,

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

GPS location, and POI ID. We standardize the timestamps to a one-week format while preserving
the original trajectory order.

• Geolife2: This publicly available dataset is sourced from the Microsoft Research Asia Geolife
project (Zheng et al., 2010), involving 182 users and spanning from April 2007 to August 2012
globally. Each trajectory is represented by a sequence of time-stamped points, providing longitude
and altitude information (Zheng et al., 2010).

Table 1: Overall performance comparison in terms of Recall@K, Distance@K, and MAP.
Dataset Methods Recall@K Distance@K MAP

Recall@1 Recall@5 Recall@10 Distance@1 Distance@5 Distance@10

Geolife Top 0.1148 0.2451 0.3166 7863 6259 5176 0.1812
Markov 0.1417 0.3263 0.3974 6909 4974 4259 0.2304
PMF 0.1941 0.3436 0.4059 6506 4389 3555 0.2752
LSTM 0.2086 0.3917 0.4720 6318 3928 3068 0.2965
BiLSTM 0.2285 0.4538 0.5773 6209 3620 2255 0.3298
DeepMove 0.3045 0.5380 0.6371 5370 2052 1358 0.4131
AttnMove 0.3920 0.6696 0.7213 5342 2007 975 0.5046
PeriodicMove 0.4199 0.6893 0.7681 4209 1443 863 0.5385
TRILL 0.4721 0.7563 0.8364 3484 1112 603 0.5985
DiffMove w/ single gen-sample 0.4988 0.7701 0.8350 2905 973 601 0.6180
DiffMove 0.5173 0.7987 0.8578 2799 708 444 0.6407
%Improv. 9.57% 5.61% 2.56% 19.66% 36.33% 26.37% 7.05%

Foursquare Top 0.0865 0.1673 0.2268 8427 4919 3483 0.1347
Markov 0.1090 0.2010 0.2575 8345 4402 3125 0.1792
PMF 0.1215 0.2468 0.2887 8116 3971 3229 0.2358
LSTM 0.1393 0.2540 0.3143 7913 3804 2801 0.2519
BiLSTM 0.2323 0.3968 0.4703 6206 2745 1849 0.3154
DeepMove 0.2612 0.4631 0.5337 5189 2648 1649 0.3789
AttnMove 0.2975 0.5172 0.5746 4942 2396 1482 0.4078
PeriodicMove 0.3125 0.5534 0.6264 4704 1758 1197 0.4245
TRILL 0.3227 0.5636 0.6372 4639 1650 1074 0.4341
DiffMove w/ single gen-sample 0.3430 0.4614 0.5009 5206 1964 1339 0.4035
DiffMove 0.3600 0.6090 0.6876 4271 1548 989 0.4756
%Improv. 11.56% 8.06% 7.91% 7.93% 6.18% 7.91% 9.56%

5.2 BASELINES

We evaluate the proposed approach against baseline methods, including both traditional approaches
grounded in our understanding of human mobility and advanced deep learning models capable of
capturing intricate mobility patterns. We evaluate the proposed approach against below baselines:
Rule-based methods: 1): Top, 2) Markov (Gambs et al., 2012), 3) PMF (Mnih & Salakhutdinov,
2007). Deep learning based methods: 4) LSTM (Liu et al., 2016), 5) BiLSTM (Zhao et al., 2018), 6)
DeepMove (Feng et al., 2018), 7) AttnMove (Xia et al., 2021), 8) PeriodicMove (Sun et al., 2021), 9)
TRILL (Deng et al., 2023). Selections are to ensure fair comparisons in the same setting of free-space
human trajectory recovery. More details about baselines will be provided in the Appendices.

5.3 EXPERIMENTAL SETTINGS

Following (Deng et al., 2023), we mask randomly 10 time slots per day for both the Geolife and
Foursquare dataset. The trajectories are split chronologically into training (60%), validation (20%)
and test (20%) sets. We utilize the widely adopted metrics Recall@K and Mean Average Precision
(MAP) (Wang et al., 2019). Recall@K measures whether the ground truth is present in the top K
predictions, averaged over all test cases. MAP evaluates the overall ranking quality by considering
the entire prediction list. Larger values for both metrics indicate better performance. Additionally, we
use Distance@K, which computes the smallest geographical distance between the centers of locations
in the top-K ranked list and the ground truth, averaged across test cases. Lower Distance@K signifies
better performance. We report experimental results for Recall@K and Distance@K at K = 1, 5 and
10. This allows a comprehensive assessment of our model’s ability to rank ground truth locations.

5.4 EXPERIMENT RESULTS

As shown in Table 1, firstly, rule-based methods fail to achieve high accuracy, exhibiting the worst
performance for all evaluation metrics on both datasets. Secondly, RNN-based methods perform

2https://www.microsoft.com/en-us/research/project/geolife-building-social-networks-using-human-
location-history/

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

better than rule-based methods as they can model simple sequential patterns among locations.
Bidirectional RNNs perform better than unidirectional ones, indicating the importance of spatial-
temporal constraints for human mobility recovery. State-of-the-art deep learning methods, including
AttnMove, PeriodicMove and TRILL achieve satisfactory performance by capturing sequential
patterns and simple periodicity of human mobility. However, DiffMove outperforms all the baselines
for all evaluation metrics on both datasets. Specifically, for Recall, DiffMove outperforms the
best baseline, TRILL, by 9.57% on Geolife dataset and by 11.56% on Foursquare dataset. For
Distance, DiffMove outperforms the best baseline, TRILL, by 19.66% on Geolife dataset and by
7.93% on Foursquare dataset. For MAP, DiffMove outperforms the best baseline, TRILL, by 7.05%
on Geolife dataset and by 9.56% on Foursquare dataset. These significant improvements indicate
that our proposed DiffMove can better learn spatial temporal patterns of both current and historical
trajectories and recover the details of human mobility. We also change the number of generated
samples M (in Section 4.3) from 4 to 1, which simulates the normal single prediction method. We
observe the reduced performances in Table 1 (-1.85% Recall@1 on Geolife and -1.7% Recall@1 on
Foursquare) due to lacking probabilistic generation and sampling, which highlights the significance
of the probabilistic generation instead of deterministic single imputed embedding.

5.5 ABLATION ANALYSIS

We conduct ablations by systematically removing individual components. The results of Foursquare
dataset are presented in Table 2. The recall, distance and MAP performance of the first ablation
with unconditional diffusion (No observed location, no spatial, and target condition involved) drops
significantly to almost nonfunctional status. This emphasizes the inadequacy of relying solely on the
default diffusion probabilistic model for the trajectory recovery task in latent space and underscores
the importance of integrating multiple spatial and temporal related specific conditional modules for
effective learning and training. The removal of the Temporal Transformer or Spatial Conditional Block
significantly impacts performance, emphasizing their critical roles in reinforcing spatial and temporal
constraints for missing locations, resulting in substantial improvement when leveraging historical
information. The removal of the Target Conditional Block leads to decreased model performance,
highlighting the role of the target condition in guiding the model to reconstruct specific embeddings
in the locations through the diffusion process. Additionally, the Missing Location Decoder is also
identified as a crucial component. It can not be compared in the table since its removal renders the
model nonfunctional, as this module plays a vital role in converting the reconstructed embeddings of
missing locations into a decoded discrete ID space.

Table 2: Impact of components on Foursquare dataset, where δ denoted the performance decline.

Ablation Recall(∆) Dis.(∆) MAP(∆)(m)

Unconditional 0.0416 (-88.44%) 7913 (-85.27%) 0.0944 (-80.15%)
Spatial Conditional Block 0.3382 (-6.06%) 4591 (-7.49%) 0.4496 (-5.47%)
Target Conditional Block 0.3493 (-2.97%) 4377 (-2.48%) 0.4632 (-2.61%)
Temporal Transformer 0.3023 (-16.03%) 4783 (-11.99%) 0.4166 (-12.41%)

5.6 ROBUSTNESS STUDY

As shown in Table 3, our proposed model, DiffMove, consistently outperforms the baseline models,
AttnMove, PeriodicMove and TRILL across various missing ratios. The second best results are
underlined and the improvements are listed in the brackets. Notably, as the percentage of missing
locations in historical trajectories increases from 20% to 80%, DiffMove exhibits superior perfor-
mance, achieving higher Recall@10, lower Dist@10, and improved MAP scores compared to the
baselines. This suggests that DiffMove is more robust in scenarios with higher missing percentages
of historical trajectories and sparser locations. The significant reduction in Dist@10 for DiffMove
indicates its effectiveness in accurately recovering missing locations. Remarkably, the Distance
metric performance of our DiffMove with 80% missing ratio even outperforms TRILL with 40%
missing rate and surpasses both PeriodicMove and Attnmove, even when they have lower missing
rates 20%. This serves as one aspect of scalability and further reinforces the efficacy and good
potential of DiffMove in handling larger datasets since it shows better performance even when the
model is utilizing a smaller portion of the same existing data (larger missing ratio than those of
baselines), which provides insights into its applicability across various scalability of missing ratio

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

scenarios. These results underscore the robust, scalable and superior performance of DiffMove in
more challenging task of trajectory recovery, making it a promising model for real-world applications.

Table 3: Performance w.r.t. Missing Ratios on Geolife
Methods Metrics Missing Rate

20% 40% 60% 80%
AttnMove Recall@10 0.7117 0.6985 0.6785 0.6160

Dist@10 987 1037 1174 1371
MAP 0.4815 0.4657 0.4226 0.4112

PeriodicMove Recall@10 0.7451 0.7392 0.7186 0.6857
Dist@10 884 954 1059 1176
MAP 0.5175 0.4750 0.4413 0.4076

TRILL Recall@10 0.8216 0.8038 0.7627 0.7436
Dist@10 682 720 915 1089
MAP 0.5760 0.5534 0.5111 0.5044

DiffMove Recall@10 0.8344 0.8163 0.7931 0.7863
Dist@10 507 617 681 695
MAP 0.6107 0.5730 0.5495 0.5099

5.7 PARAMETER STUDY

We also conduct some experiments to provide insights into the performance of our model (DiffMove)
across different values of βT and embedding size.

Beta_end βT : Figure 3 and 4 illustrate the interplay between Recall@K, MAP, and Distance@K
across different values of βT . We vary the βT to change the noise schedule, the Recall@1 and
Distance@1 performance are more important and seem to have increasing trends but drop when βT

is too large although there are some fluctuations for Recall@5 and Recall@10. We try to choose
the optimal value at 0.6 after consideration of all tradeoffs. The relationship between βT and spatial
Distance@1 accuracy reveals specific βT values that result in optimal spatial alignment, indicating
the importance of βT in shaping spatial aspects of trajectory recovery performance.

Embedding Size: In addition to βT , Figure 5 and 6 illustrate the variation in all metrics across
different embedding sizes. As expected, the initial increase of the embedding size contributes to the
increase of Recall@1 and Distance@1 since more information is recorded by embedded vectors.
However, too large embedding could also bring some uncertain information and lead to saturation of
prediction accuracy. As a result, we choose the optimal value at 128.

0.2 0.4 0.6
T

0.4

0.5

0.6

0.7

Va
lu

es

Recall Metrics vs T

Recall@1
Recall@5
Recall@10
MAP

Figure 3: Recall vs βT

0.2 0.4 0.6
T

1000

2000

3000

4000

Va
lu

es
 (m

)

Distance Metrics vs T

Distance@1
Distance@5
Distance@10

Figure 4: Distance vs βT

256 128 64 32 16
Embed_Size

0.0

0.2

0.4

0.6

Va
lu

es

Recall Metrics vs Embed_Size

Recall@1
Recall@5
Recall@10
MAP

Figure 5: Recall vs Em-
bed_Size

256 128 64 32 16
Embed_Size

0

2000

4000

6000

Va
lu

es
 (m

)

Distance Metrics vs Embed_Size
Distance@1
Distance@5
Distance@10

Figure 6: Distance vs
Embed_Size

6 CONCLUSION

In conclusion, this research addresses the problem of trajectory recovery from sparse human mobility
data by introducing a novel model, DiffMove. Leveraging a conditional diffusion framework, it
excels in trajectory recovery by constructing and utilizing conditional information with trajectory
spatial patterns, inter-trajectory dependencies, temporal and target location patterns. The model is
innovatively designed and integrated with multiple conditional feature extraction modules, tackling
the complexity of spatial temporal dependencies in a principled manner. Our extensive experiments
demonstrate that DiffMove outperforms all state-of-the-art baselines, showcasing its effectiveness in
recovering missing locations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based conditional ecg generation with
structured state space models. arXiv preprint arXiv:2301.08227, 2023.

Layth C Alwan and Harry V Roberts. Time-series modeling for statistical process control. Journal of
business & economic statistics, 6(1):87–95, 1988.

Guangshuo Chen, Aline Carneiro Viana, Marco Fiore, and Carlos Sarraute. Complete trajectory
reconstruction from sparse mobile phone data. EPJ Data Science, 8(1):30, 2019.

Yile Chen, Gao Cong, and Cuauhtemoc Anda. Teri: An effective framework for trajectory recovery
with irregular time intervals. Proceedings of the VLDB Endowment, 17(3):414–426, 2023a.

Yuqi Chen, Hanyuan Zhang, Weiwei Sun, and Baihua Zheng. Rntrajrec: Road network enhanced
trajectory recovery with spatial-temporal transformer. In 2023 IEEE 39th International Conference
on Data Engineering (ICDE), pp. 829–842. IEEE, 2023b.

Chen Chu, Hengcai Zhang, and Feng Lu. Trajgdm: A new trajectory foundation model for simulating
human mobility. In Proceedings of the 31st ACM International Conference on Advances in
Geographic Information Systems, SIGSPATIAL ’23, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400701689. doi: 10.1145/3589132.3628362. URL
https://doi.org/10.1145/3589132.3628362.

Liwei Deng, Yan Zhao, Hao Sun, Changjie Yang, Jiandong Xie, and Kai Zheng. Fusing local and
global mobility patterns for trajectory recovery. In International Conference on Database Systems
for Advanced Applications, pp. 448–463. Springer, 2023.

Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin. Deepmove:
Predicting human mobility with attentional recurrent networks. In Proceedings of the 2018 World
Wide Web Conference, pp. 1459–1468. International World Wide Web Conferences Steering
Committee, 2018.

Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. Next place prediction
using mobility markov chains. In Proceedings of the first workshop on measurement, privacy, and
mobility, pp. 1–6, 2012.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Huan He, Shifan Zhao, Yuanzhe Xi, and Joyce C Ho. Meddiff: Generating electronic health records
using accelerated denoising diffusion model. arXiv preprint arXiv:2302.04355, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural
networks. In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.05493.

Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng. Geoman: Multi-level attention
networks for geo-sensory time series prediction. In IJCAI, volume 2018, pp. 3428–3434, 2018.

Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Predicting the next location: A recurrent model
with spatial and temporal contexts. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

11

https://doi.org/10.1145/3589132.3628362
http://arxiv.org/abs/1511.05493

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. Advances in neural
information processing systems, 20, 2007.

Steffen Moritz and Thomas Bartz-Beielstein. imputets: time series missing value imputation in r. R
J., 9(1):207, 2017.

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional Conference on Machine Learning, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Huimin Ren, Sijie Ruan, Yanhua Li, Jie Bao, Chuishi Meng, Ruiyuan Li, and Yu Zheng. Mtrajrec:
Map-constrained trajectory recovery via seq2seq multi-task learning. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1410–1419, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Hao Sun, Changjie Yang, Liwei Deng, Fan Zhou, Feiteng Huang, and Kai Zheng. Periodicmove:
shift-aware human mobility recovery with graph neural network. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pp. 1734–1743, 2021.

Yinzhou Tang, Huandong Wang, and Yong Li. Enhancing spatial spread prediction of infectious
diseases through integrating multi-scale human mobility dynamics. In Proceedings of the 31st
ACM International Conference on Advances in Geographic Information Systems, pp. 1–12, 2023.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. NeurIPS, 34:24804–24816, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Jingyuan Wang, Ning Wu, Xinxi Lu, Wayne Xin Zhao, and Kai Feng. Deep trajectory recovery
with fine-grained calibration using kalman filter. IEEE Transactions on Knowledge and Data
Engineering, 33(3):921–934, 2019.

Haomin Wen, Youfang Lin, Yutong Xia, Huaiyu Wan, Roger Zimmermann, and Yuxuan Liang.
Diffstg: Probabilistic spatio-temporal graph forecasting with denoising diffusion models. arXiv
preprint arXiv:2301.13629, 2023.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based
recommendation with graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 346–353, 2019.

Tong Xia, Yunhan Qi, Jie Feng, Fengli Xu, Funing Sun, Diansheng Guo, and Yong Li. Attnmove: His-
tory enhanced trajectory recovery via attentional network. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 4494–4502, 2021.

Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang,
and Xiaofang Zhou. Graph contextualized self-attention network for session-based recommenda-
tion. In IJCAI, volume 19, pp. 3940–3946, 2019.

Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. Modeling user activity preference
by leveraging user spatial temporal characteristics in lbsns. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 45(1):129–142, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hongyi Yuan, Songchi Zhou, and Sheng Yu. Ehrdiff: Exploring realistic ehr synthesis with diffusion
models. arXiv preprint arXiv:2303.05656, 2023.

Nicholas Jing Yuan, Yu Zheng, Xing Xie, Yingzi Wang, Kai Zheng, and Hui Xiong. Discovering
urban functional zones using latent activity trajectories. IEEE Transactions on Knowledge and
Data Engineering, 27(3):712–725, 2014.

Jing Zhao, Jiajie Xu, Rui Zhou, Pengpeng Zhao, Chengfei Liu, and Feng Zhu. On prediction of user
destination by sub-trajectory understanding: A deep learning based approach. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management, pp. 1413–1422.
ACM, 2018.

Yu Zheng, Xing Xie, Wei-Ying Ma, et al. Geolife: A collaborative social networking service among
user, location and trajectory. IEEE Data Eng. Bull., 33(2):32–39, 2010.

Yuanshao Zhu, Yongchao Ye, Shiyao Zhang, Xiangyu Zhao, and James Yu. Difftraj: Generating gps
trajectory with diffusion probabilistic model. Advances in Neural Information Processing Systems,
36, 2024.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes process.
In International Conference on Machine Learning, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 MORE DETAILS ON TRANSITION GRAPH CONSTRUCTION OF SPATIAL CONDITIONAL
BLOCK

The prior investigations (Xu et al., 2019; Wu et al., 2019; Sun et al., 2021) have demonstrated that a
gated graph neural network (GGNN) is adept at capturing intricate transition patterns among nodes.
This characteristic renders the gated GNN well-suited for addressing our specific problem. In the
graph neural network layer, we handle each trajectory independently to unveil the complex transition
patterns concealed within each trajectory. To elaborate, we initiate the process by establishing a
directed graph for each trajectory. Subsequently, the gated GNN is employed on each of these directed
graphs to refine the location embeddings, thereby capturing the transition patterns into the model.
Besides this, we manage to conduct data fusion of diffusion step embedding into the gated GNN to
make the transition pattern learning adaptive to the diffusion time step.

Trajectory Graph Construction: The initial step of the graph neural network layer involves
constructing a transition graph representation for each historical and current trajectory in the context
of trajectory recovery. Similar to session recommendation, given a location IDs’ trajectory T : l1 →
l2 . . . → lK , we consider each location li as a node and (li−1, li) as an edge, representing the user’s
movement from li−1 to li in the trajectory T . Consequently, each trajectory can be conceptualized
as a directed graph. The graph structure is learned by facilitating communication among distinct
nodes. Specifically, let AI,AO denote the weighted transitions of incoming and outgoing edges in
the trajectory graph, respectively. To address the possibility of repeated occurrences of locations in a
trajectory, we assign each edge a normalized weight, calculated as the edge’s occurrence divided by
the outdegree of the start node of that edge. Consider transitions in a trajectory [l1, l2, l3, l2, l4], the
corresponding graph, the incoming matrix AI and the outgoing matrix AO are shown in Figure 7.

Figure 7: A example of a trajectory transition graph and the incoming and outgoing matrix A

A.2 DETAILS ON DIFFUSION STEP EMBEDDING

estep is the 128-dimension diffusion step embedding obtained from a special embedding layer
DiffEmbedT (t) by sinusoidal functions following previous works (Kong et al., 2021; Tashiro et al.,
2021):

DiffEmbedT (t) =

(
sin(100·4/63t), . . . ,

sin(1063·4/63t), cos(100·4/63t), . . . , cos(1063·4/63t)

)
(12)

and it is further processed through a fully connected layer to obtain eT .

A.3 DETAILS OF CROSS ATTENTION IN SPATIAL CONDITIONAL BLOCK

Further details of Eq. (7) are elucidated in Eq. (13).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

α
(h)
i,k =

exp(ϕ(h)(eJ,iu , ej,ku))∑K
g=1 exp(ϕ

(h)(eJ,iu , ej,gu))
,

ϕ(h)(eJ,iu , ej,ku) = ⟨W (h)
Q eJ,iu ,W

(h)
K ej,ku ⟩,

ẽj,i(h)u =

K∑
k=1

α
(h)
i,k (W

(h)
V ej,ku),

ẽj,iu = ẽj,i(1)u ∥ ẽj,i(2)u ∥ · · · ∥ ẽj,i(H)
u ,

espa = ReLU(Wẽj,iu + eJ,iu),

(13)

where W
(h)
Q ,W

(h)
K ,W

(h)
V ∈ Rd′×d are transformation matrices, and ⟨, ⟩ denotes the inner product

function. Next, we compute the representation of time slot i for each head by aggregating information
from all locations in other time slots based on the coefficients α

(h)
i,k . The symbol ∥ denotes the

concatenation operator, and H represents the total number of heads.

A.4 IMPUTATION (SAMPLING) ALGORITHM WITH DIFFMOVE

Algorithm 1 Imputation (Sampling) with DiffMove
1: Input: a Location Embedding sample e0, No. of generated samples M , trained denoising

function ϵθ
2: Output: Imputed missing value ¯̂eta0
3: Construct observation condition of e0 as eob0
4: for m = 1 to M do
5: etaT ∼ N (0, I) where the dimension of etaT corresponds to the missing indices of e0
6: for t = T to 1 do
7: Sample êtat−1 using Eq. (4) and Eq. (5)
8: end for
9: Record êta0

10: end for
11: Calculate mean value ¯̂eta0 by mean(êta0)

multirow

A.5 STUDY OF NUMBER OF GENERATED SAMPLES M

We change the number of generated samples M from 4 to 1 (meaning only predict one single
embedding and use it directly), which simulates the normal deterministic way as an ablation study
to some extent. We observe the Table 4 results of reduced performances of the original DiffMove
(-1.85% Recall@1 on Geolife and -1.7% Recall@1 on Foursquare) due to lack of considering effects
of probabilistic generation and sampling , which highlights the significance of the probabilistic
generation instead of deterministic single imputed embedding.

A.6 IMPLEMENTATION DETAILS FOR REPRODUCIBILITY

DiffMove is trained using batch gradient descent with the Adam optimizer (Kingma & Ba, 2014),
implemented in Python and PyTorch (Paszke et al., 2019), on a Linux server equipped with an
NVIDIA RTX A5000. We set random seed as 2021. Multi-task learning weights λ1 and λ2 are set as
1 after experimental study. We employed a learning rate of 0.001 with a weight decay of 1e-6. We

Dataset Methods Recall@1 Recall@5 Recall@10 Distance@1 Distance@5 Distance@10 MAP

Geolife DiffMove w/ single gen-sample 0.4988 0.7701 0.8350 2905 973 601 0.6180
DiffMove 0.5173 0.7987 0.8578 2799 708 444 0.6407

Foursquare DiffMove w/ single gen-sample 0.3430 0.4614 0.5009 5206 1964 1339 0.4035
DiffMove 0.3600 0.6090 0.6876 4271 1548 989 0.4756

Table 4: Performance comparison between DiffMove variants

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

set the location embedding size as 128, the steps (loops) of TGGNN as 2, the number of heads for
cross attention as 4, diffusion step embedding dimension and temporal length embedding dimension
are 128. We set the number of residual layers as 4, residual channels as 128, and attention heads
for the temporal transformer as 8. We set the number of the diffusion step T = 50, the minimum
noise level β1 = 0.0001, and the maximum noise level βT = 0.6. We tuned hyperparameters
for each dataset to achieve optimal results. Following recent studies (Song et al., 2021; Nichol
& Dhariwal, 2021), a quadratic schedule was adopted for decay of αt to enhance sample quality:

βt =
(

T−t
T−1

√
β1 +

t−1
T−1

√
βT

)2

.

A.7 DETAILS OF BASELINES

We evaluate the proposed approach against several baseline methods, including both traditional
approaches grounded in our understanding of human mobility and advanced deep learning models
capable of capturing intricate mobility patterns:

• Top: A straightforward counting-based method that selects the most frequently visited
location in the training set as the recovery for each user.

• Markov (Gambs et al., 2012): A commonly used method treating visited locations as states
and constructing a transition matrix to capture first-order transition probabilities.

• PMF (Mnih & Salakhutdinov, 2007): An advanced model rooted in conventional collabora-
tive filtering, based on the user location matrix.

• LSTM (Liu et al., 2016): A deep learning model that captures sequential patterns through
recurrent neural networks, using the predicted next time slot as recovery.

• BiLSTM (Zhao et al., 2018): An extension of LSTM with bidirectional recurrent neural
networks, incorporating spatial-temporal constraints from all observed locations.

• DeepMove (Feng et al., 2018): A model that jointly considers user preferences and sequential
dependencies for predicting the next location used for recovery.

• AttnMove (Xia et al., 2021): A method leveraging various attention mechanisms to capture
the regularity and patterns in a user’s mobility.

• PeriodicMove (Sun et al., 2021):A recent model that considers factors such as transition
patterns among locations and periodicity in human mobility.

• TRILL (Deng et al., 2023): The latest state-of-the-art model which is capturing global
mobility patterns leveraging graph convolutional networks for mobility patterns.

Table 5: Basic statistics of mobility datasets.

Dataset City #Historical #Current #Distinctive Total #IDs Processed
Trajs Trajs Locations in Training (approx.)

Foursquare Tokyo 11,430 2,286 1,411 404.9K
Geolife Beijing 15,648 3,912 1,124 563.3K

A.8 PRE-PROCESSING

For our location representation, We collect the cities’ street map data of Tokyo and Beijing from an
online map source and partition the region into distinct blocks. Each of these blocks is considered as
an individual location, with an average area size of approximately 0.25 km2 (500m x 500m for both
datasets). Other pre-processings are the same as (Deng et al., 2023). As per (Chen et al., 2019), a
30-minute time interval is employed for both datasets. Further details and statistics are presented
in Table 5. Our framework is not inherently tied to the 30-minute interval and can easily adapt to
other interval lengths, such as 10 minutes or even finer resolutions, provided the data supports such
granularity. We can always treat the time interval as a parameter to tune on the data side. This
flexibility makes our method broadly applicable, as it caters to human mobility patterns by modeling
discrete location transitions effectively. Human mobility typically involves meaningful transitions at
specific timeframes (e.g., work, shopping, dining), which align naturally with discrete intervals.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

20 40 60 80 100
Scaling Ratio (%)

0.0

0.1

0.2

0.3

0.4

Re
ca

ll

Recall vs Scaling Ratio

TRILL
DiffMove

Figure 8: Recall vs Sample%

20 40 60 80 100
Scaling Ratio (%)

0

1000

2000

3000

4000

Di
st

an
ce

 (m
)

Distance vs Scaling Ratio

TRILL
DiffMove

Figure 9: Distance vs Sample%

A.9 SCALABILITY STUDY

Based on the experimental results shown in Figures 8 and 9, we conducted a scalability study
comparing the performance of the DiffMove and best baseline model TRILL across different scaling
ratios ranging from 20% to 100% to vary the scale of the whole training dataset. Regarding recall
performance, as depicted in Figure 8, DiffMove consistently outperforms TRILL across all scaling
ratios. In terms of distance performance, illustrated in Figure 9, both models display an increasing
trend with higher scaling ratios. Notably, DiffMove maintains a lower distance value (more accurate)
compared to TRILL across all scaling ratios, indicating superior trajectory recovery accuracy. During
the experiments, we also found that the average training time per epoch ranges from 4.2s to 22.4s
(scaling from 20% to 100% of full training data) which is still comparable with the best baseline.
The training time can satisfy the common requirement in company services since this model is only
for offline applications of trajectory recovery. These findings suggest that DiffMove exhibits better
scalability and accuracy to variations in different data scales, making it a promising solution for
trajectory recovery tasks across diverse datasets and scaling scenarios.

A.10 RUNNING TIME STUDY

Additional details of average time experiments are added in the attached Table 6 for reference. The
baselines have an average training time ranging from 7s to 10s with an inference time of 1s to 2s per
epoch. Other designed sub-modules are not resource consuming. GPU server we use is also listed in
Appendix A.6 (just one NVIDIA RTX A5000 should be enough). Given that trajectory recovery is
often an offline application, these time scales are still acceptable.

Table 6: Training and Inference Time per Epoch
Methods Avg Total No. of Epochs Average Time per Epoch

Training (s) Inference (s)
AttnMove 212 9.2 2.1
PeriodicMove 163 7.8 1.4
TRILL 151 8.2 1.6
DiffMove 69 18.9 230.2

17

	Introduction
	Related works
	Preliminaries
	Problem Statement
	Denoising Diffusion Probabilistic Model

	Methodology
	Trajectory Location Encoder (TLE)
	Conditional Embedding Denoiser (CED)
	Missing Location Decoder (MLD)
	Model Training

	Experiments
	Datasets
	Baselines
	Experimental Settings
	Experiment Results
	Ablation Analysis
	blackRobustness Study
	Parameter Study

	Conclusion
	Appendix / supplemental material
	More Details on Transition Graph Construction of Spatial Conditional Block
	Details on Diffusion Step Embedding
	Details of Cross Attention in Spatial Conditional Block
	Imputation (Sampling) Algorithm with DiffMove
	Study of Number of Generated Samples M
	Implementation Details for Reproducibility
	Details of Baselines
	Pre-processing
	Scalability Study
	Running Time Study

