
Enhancing Performance of Explainable AI Models
with Constrained Concept Refinement

Geyu Liang 1 Senne Michielssen 2 Salar Fattahi 1

Abstract
The trade-off between accuracy and interpretabil-
ity has long been a challenge in machine learning
(ML). This tension is particularly significant for
emerging interpretable-by-design methods, which
aim to redesign ML algorithms for trustworthy in-
terpretability but often sacrifice accuracy in the
process. In this paper, we address this gap by
investigating the impact of deviations in concept
representations—an essential component of in-
terpretable models—on prediction performance
and propose a novel framework to mitigate these
effects. The framework builds on the principle
of optimizing concept embeddings under con-
straints that preserve interpretability. Using a gen-
erative model as a test-bed, we rigorously prove
that our algorithm achieves zero loss while pro-
gressively enhancing the interpretability of the
resulting model. Additionally, we evaluate the
practical performance of our proposed framework
in generating explainable predictions for image
classification tasks across various benchmarks.
Compared to existing explainable methods, our
approach not only improves prediction accuracy
while preserving model interpretability across var-
ious large-scale benchmarks but also achieves this
with significantly lower computational cost.

1. Introduction
ML algorithms are often caught in a dilemma between in-
terpretability and performance. Models such as linear re-
gression (Hastie, 2009) and decision trees (Quinlan, 1986)
provide straightforward interpretability through parameter
weights and rule-based predictions. However, they fre-
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quently underperform on complex tasks. On the other hand,
high-performing models, such as deep neural networks (Le-
Cun et al., 2015) and large language models (Vaswani,
2017), are notoriously opaque, given their large parame-
ter spaces and intricate architectures.

Numerous methods have been proposed to extract inter-
pretability from complex models (Baehrens et al., 2010;
Simonyan et al., 2013; Zeiler & Fergus, 2014; Shrikumar
et al., 2017; Selvaraju et al., 2017; Smilkov et al., 2017;
Kolek et al., 2020; Subramanya et al., 2019). However,
these approaches typically adopt post-hoc strategies, utiliz-
ing sensitivity analysis to identify the key parameters that
influence predictions. Consequently, these methods lack
guarantees of providing explanations for random predic-
tion or ensuring their trustworthiness (Adebayo et al., 2018;
Rudin, 2019; Kindermans et al., 2019; Ghorbani et al., 2019;
Slack et al., 2020).

An alternative solution is to develop models that are inter-
pretable by design. These models intrinsically integrate
transparency into their architecture, providing explanations
directly tied to their predictions. Concept Bottleneck Mod-
els (CBMs, (Koh et al., 2020)) exemplify this approach
by mapping input data to an intermediate representation of
human-defined concepts, which is then used for prediction.
While concept-based models are promising, they require
datasets annotated with concept scores, limiting their appli-
cability. Extensions of CBMs aim to improve the approach
by utilizing pretrained encoders like CLIP (Yuksekgonul
et al., 2022; Oikarinen et al., 2023). A recent line of research
(Chattopadhyay et al., 2022; 2023; 2024) has introduced a
decision-tree-based architecture with enhanced explainabil-
ity. The predictions of the model are generated through a
sequence of queries, each closely associated with human-
specified concepts.

A high level design paradigm of expainable AI is illustrated
in Figure 1. Within these models, concept embeddings play
a pivotal role: they not only influence prediction generation
but also serve as the source of interpretability. However,
recent studies have raised several questions against its relia-
bility. These challenges are centered around its ambiguity
(Margeloiu et al., 2021; Watson, 2022; Kim et al., 2023;
Marconato et al., 2023), fragility (Furby et al., 2024), and
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Figure 1. The red arrows represent the backpropagation training process for classic explainable AI models. This paper extends the training
process to refine concept embeddings with constraints on their deviation from initial embeddings, represented by green arrows and box.

low accuracy (Zarlenga et al., 2022; Chowdhury et al., 2024).
For embeddings generated with pretrained models, their en-
coders are reported to face issues such as domain adaptation
(Shao et al., 2023; Gondal et al., 2024; Feng et al., 2024;
Wang & Kang, 2024), biases in pretraining data (Hamidieh
et al., 2024), and sensitivity to encoding errors (Ranjan et al.,
2024).

Efforts to address these challenges include introducing
unsupervised modules to enhance concept expressiveness
(Sawada & Nakamura, 2022), training residual learn-
ing modules in parallel with concept encoders (Yuksek-
gonul et al., 2022), learning dual embeddings per concept
(Zarlenga et al., 2022), and adding specialized data encoders
to address domain shifts (Chowdhury et al., 2024). How-
ever, these approaches all involve introducing additional
black-box learning modules, which undermines the purpose
of explainable AI. Moreover, theoretical guarantees for such
approaches, which is of particular interest for safety-critical
domains, such as medical imaging (Barragán-Montero et al.,
2021) and autonomous vehicles (Bensalem et al., 2023),
remain largely unexplored.

To address these challenges, this paper proposes a novel
framework termed Constrained Concept Refinement (CCR).
Unlike existing methods that introduce additional learning
modules, our approach directly optimizes concept embed-
dings within a constrained parameter space. By restricting
embeddings to a small neighborhood around their initial-
ization, our framework offers a tunable trade-off between
performance and interpretability, and in certain settings, it
can simultaneously improve both. Specifically, we present
the following contributions:

• Theoretical necessity. We rigorously demonstrate the
necessity of refining concept embeddings by establish-
ing a non-vanishing worst-case lower bound on model
performance when such refinements are not applied

to the concepts (Theorem 2.6). This highlights and
motivates the idea of concept embedding refinement,
which is at the crux of our proposed method.

• Accuracy and interpretability guarantees. We show
that CCR overcomes the aforementioned challenge
by eliminating performance degradation through the
appropriate refinement of concepts (Theorem 3.3). Fur-
thermore, to quantify the performance of CCR, we
consider a generative model as a test-bed, where both
“interpretability” and “accuracy” admit crisp mathemat-
ical definitions. Under this model, we demonstrate that
CCR achieves zero training loss while progressively
enhancing interpretability (Theorem 3.4).

• Application in interpretable image classification.
We demonstrate the practical efficacy of CCR on mul-
tiple image classification benchmarks including CI-
FAR 10/100 (Krizhevsky et al., 2009), ImageNet (Deng
et al., 2009), CUB200 (Wah et al., 2011) and Places365
(Zhou et al., 2017). In all benchmarks except CUB-200,
CCR outperforms two recently developed explainable
methods for visual classification tasks—CLIP-IP-OMP
(Chattopadhyay et al., 2024) and label-free CBM (lf-
CBM) (Oikarinen et al., 2023)—in terms of prediction
accuracy while preserving interpretability, achieving
this with a tenfold reduction in runtime.

On a high level, our main contribution is the introduction of
a framework in which concept embeddings in explainable
AI models are refined within a restricted parameter space to
attain a better balance between predictive performance and
interpretability. The remainder of the paper substantiates
this claim along two key dimensions:

1. Theoretical validation. We demonstrate that our
method is both necessary (Section 2.1) and effective
(Section 3) under the theoretical framework introduced
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by (Chattopadhyay et al., 2024), whose background
is reviewed in Section 2. This framework serves as
a suitable testbed for our contributions for two main
reasons: (1) Among interpretable-by-design models
(Zhou et al., 2018; Koh et al., 2020; Yuksekgonul et al.,
2022; Oikarinen et al., 2023; Chattopadhyay et al.,
2023), only (Chattopadhyay et al., 2024) presents a
generative model wherein both performance and inter-
pretability are rigorously defined. (2) The algorithm
motivated by this generative framework achieves state-
of-the-art results within the class of interpretable AI
methods.

2. Empirical evaluation. We conduct experiments on
multiple benchmark datasets for image classification
tasks to assess the practical effectiveness of our ap-
proach (Section 4).

Notations. For a matrix A, we denote its spectral norm by
∥A∥2, Frobenius norm by ∥A∥F , and maximum column-
wise ℓ2-norm by ∥A∥1,2. Define [n] = {1, 2, . . . , n}. A
matrix A ∈ Rn×m is called column-orthogonal if A⊤A =
Im×m. Events with probability at least 1− n−ω(1) are said
to occur with high probability.

2. Revisiting IP-OMP
We consider a classical interpretable-by-design setting in
the literature (Chattopadhyay et al., 2022; 2024), namely the
task of predicting a random variable by sequentially select-
ing a list of related random variables, termed queries, and
checking their values. The problem is defined as follows:

Definition 2.1 (Single Variable Prediction by Query Se-
lection). Given an input feature x ∈ Rd, a set of queries
{qi}ni=1 ⊂ R, and their associated query features (also
referred to as concept embeddings) {di}ni=1 ⊂ Rd, the
objective is to predict the target random variable y ∈ R
by selecting at most k queries from {qi}ni=1, leveraging
the query features {di}ni=1 to guide the selection process.
Specifically, the query set {qi}ni=1 consists of random vari-
ables that are correlated with y, whose observed values can
contribute to predicting y.

Definition 2.1 encompasses a broad spectrum of ML prob-
lems with applications in animal identification (Lampert
et al., 2009), medical diagnosis (Graziani et al., 2018;
Clough et al., 2019), visual question-answering (Yi et al.,
2018), image retrieval (Bucher et al., 2019), and so on.

One illustrative example is the game played among friends,
where the target random variable refers to the answer to the
question “what am I thinking now?”. In this context, the
queries {qi}ni=1 are binary random variables representing
“yes/no” answers to specific questions like “Is it an animal?”.
Here, the query feature is a vector embedding of each ques-

tion, encapsulating the information relevant to that question.
Additionally, the participants are limited to asking at most
k questions.

In (Geman & Jedynak, 1996), the authors introduced a clas-
sic greedy-style algorithm termed Information Pursuit (IP)
to address the task outlined in Definition 2.1. Specifically, IP
iteratively selects the most informative query based on the
observed values of previously selected queries. We provide
a formal definition of IP for subsequent discussion:
Definition 2.2 (Information Pursuit). At every iteration
t = 1, ..., k, IP selects π(t)-th query according to:

π(t) = argmax
1≤i≤n

{
I(qi, y | qπ(1) = rπ(1),

qπ(2) = rπ(2), ..., qπ(t−1) = rπ(t−1))
}
.

Here I(·, ·) denotes mutual information, π(·) : [k] → [n] is
an injective map representing the selection of queries, and
ri denotes the observed value for qi. The final output of IP
is defined as the maximum likelihood estimator given all
observed queries:

yIP = argmax
ỹ

{
P(y = ỹ | qπ(1) = rπ(1),

qπ(2) = rπ(2), ..., qπ(k) = rπ(k))
}
. (1)

In (Chattopadhyay et al., 2023), IP is demonstrated to
achieve highly interpretable predictions with competitive
accuracies. However, a significant limitation of IP is its
substantial computational expense, as mutual information
depends not only on the set {di}ni=1 but also on previous
observations, leading to an exponentially large input space.
(Chattopadhyay et al., 2024) addresses this complexity by
imposing additional assumptions on the underlying gener-
ative model. The first quantifies the connection between y
and qi, while the second defines their connections with di.
Assumption 2.3 (Generative model for IP-OMP). There
exists an unknown random vector z ∈ Rd drawn from
a standard Normal distribution that satisfies y = ⟨x, z⟩.
Moreover, the queries satisfy qi = ⟨vi, z⟩, where vi is a
latent feature vector associated with query i.

Under the above assumption, the target random variable
and the queries are correlated through the unknown random
variable z. In this setting, a natural way to define the query
features is by setting di = vi. This entails an exact prior
knowledge of the latent feature vectors.
Assumption 2.4 (Prior knowledge of latent feature vectors).
The latent feature vectors {vi}ni=1 are precisely observed.

Under Assumption 2.3 and 2.4, (Chattopadhyay et al., 2024)
establish a connection between IP and Orthogonal Matching
Pursuit (OMP) (Pati et al., 1993), a seminal algorithm in the
field of sparse coding.
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Theorem 2.5 (IP-OMP (Chattopadhyay et al., 2024)). Un-
der Assumption 2.3 and 2.4 and upon setting di = vi for
i = 1, . . . , n, the selection rule π(·) defined in Definition 2.2
admits a closed-form expression given by:

π(t) = argmax
1≤i≤n

|⟨Π⊥
D(t−1)di,Π

⊥
D(t−1)x⟩|

∥Π⊥
D(t−1)di∥2∥Π⊥

D(t−1)x∥2
,

where D(t−1) =
[
dπ(1) dπ(2) · · · dπ(t−1)

]
. This

selection criterion, referred to as IP-OMP, differs from
OMP solely by the inclusion of the normalization term
∥Π⊥

Dt−1
di∥2∥Π⊥

Dt−1
x∥2.

The main theoretical contribution of Theorem 2.5 lies in its
ability to transform the computation of mutual information
into that of a linear projection, thereby significantly reduc-
ing computational complexity. Although the equivalence
is derived under simplifying assumptions, IP-OMP demon-
strates remarkable generalization capabilities across various
benchmark experiments, outperforming models based on
the classical IP algorithm (Chattopadhyay et al., 2024).

2.1. A Major Hurdle: Inaccurate Query Features

As discussed in the previous section, Theorem 2.5, and as a
result, the success of IP-OMP is contingent upon correctly
choosing the query features {di}ni=1.

For learning algorithms, the effective utilization of {di}ni=1

is crucial for the accurate prediction of y. On the other hand,
humans derive comprehension from {di}ni=1 as these ele-
ments are intended to embed concepts that are interpretable
by humans. In practical applications, {di}ni=1 are either
embedded and learned from predefined datasets where con-
cepts are explicitly labeled (Koh et al., 2020) or generated
by pretrained multimodal models, with CLIP being the most
popular example (Oikarinen et al., 2023).

However, these learned embeddings are often misaligned
or inaccurate due to the inherent ambiguity and noise in
the training of the models used to generate. For example,
unlike carefully curated datasets, CLIP relies on large-scale,
noisy image-text pairs scraped from the internet. These
pairs often include mislabeled data, vague descriptions, or
culturally biased associations, resulting in inconsistencies in
representation, as recently reported by (Dutta et al., 2023).

This suggests that Assumption 2.4 may be overly opti-
mistic. In this section, we will illustrate how the violation
of Assumption 2.4—specifically, deviations of the avail-
able query features from the latent feature vectors—results
in a proportional degradation in the performance of IP-
OMP. For the remainder of this paper, we denote the ob-
served query feature set compactly by the matrix D =[
d1 d2 · · · dn

]
∈ Rd×n. This matrix D is also

referred to as a feature query matrix. We also refer to
D∗ =

[
v1 v2 · · · vn

]
∈ Rd×n as the ground truth

latent feature matrix. Assumption 2.4 can now be inter-
preted as assuming D = D∗, stating that we are using the
ground truth latent feature vectors as the feature query ma-
trix. This matrix can then be utilized to determine which
queries should be observed.

Let fD(x, {rπ(i)}ki=1) be the maximum likelihood estima-
tor of y, defined as Equation (1), when the selection rule
π(·) is obtained by executing IP-OMP using D as the query
feature set in Theorem 2.5. For brevity, when the context is
clear, we refer to this maximum likelihood estimator simply
as fD . Moreover, define L(ypred) as the squared population
loss of any estimator ypred:

L(ypred) = Ez∼N (0,Id×d)

[
(y − ypred)

2
]
.

where z ∼ N (0, Id×d) is the unknown random vector used
in the generative model described in Assumption 2.3.

To showcase the effect of deviation in the query features,
we consider a scenario where the input x can be written as a
linear combination of k latent feature vectors (corresponding
to k columns of D∗). This assumption is prevalent in the
sparse coding literature (Arora et al., 2015; Agarwal et al.,
2016; Liang et al., 2022) and ensures that using D∗ as the
query feature set guarantees good prediction performance.
However, even in this ideal scenario, we demonstrate that
even a small column-wise deviation from D∗ can lead to
performance degradation of IP-OMP.

Theorem 2.6. Suppose that Assumption 2.3 holds. Further-
more, suppose that D∗ is column-orthogonal and x = D∗β
for some k-sparse vector β with ∥β∥0 = k. Additionally,
assume that the non-zero entries in β have absolute val-
ues bounded below by γ and above by Γ. Then, for any

ϵ ∈
(
0, 1√

1+16Γ2/γ2

)
, there exists another orthonormal

matrix D̃ ∈ Rd×n such that ∥D̃ −D∗∥1,2 ≤ ϵ and

L(fD̃)− L(fD∗) ≥ 81(k − 1)ϵ2γ2

200
. (2)

We present the complete proof of Theorem 2.6 in Ap-
pendix C.1, which proceeds as follows: (1) we derive
the closed form solution for L(fD) using the column-
orthogonality of D and the distribution of z; (2) we then
construct the example that satisfies Equation (2) by rotating
columns of D∗ alongside the subspace spanned by itself.

When Γ/γ is bounded by a constant, we have ∥x∥22 =
∥β∥22 = Θ(kγ2) which simplifies Equation (2) to L(fD̃)−
L(fD∗) = Ω(ϵ2∥x∥22). This indicates that the perturbation
ϵ is fully captured by the resulting gap in the squared loss,
scaled by a factor of ∥x∥22.
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3. Our Proposed Framework
Building upon our discussion in the preceding section, it is
pertinent to consider the following question:

Since an inaccurate D can adversely affect the performance
of IP-OMP, can D be optimized to mitigate this effect while
preserving—or even enhancing—interpretability?

There are two critical challenges to address before answer-
ing this question. First, modifying D may diminish the en-
coded information that is interpretable by humans, thereby
compromising the interpretable-by-design principle of in-
formation pursuit. Second, treating the query features as
variables introduces significant complexity in deriving the
optimal decision rule, as the closed-form expression of IP-
OMP presented in Theorem 2.5 is no longer valid.

To overcome these challenges, we propose obtaining a cor-
rection ∆D that minimizes L(f̃D+∆D), where f̃D serves
as a differentiable surrogate of the original estimator pro-
duced by IP. To preserve interpretability, we constrain the
corrected query feature matrix D +∆D to remain within
a small neighborhood around D, where D represents the
potentially inaccurate initial query feature matrix (e.g., the
one obtained from CLIP). This leads to the following con-
strained optimization problem:

min
∥∆D∥1,2≤ρ

L(f̃D+∆D) (3)

Indeed, the choice of the correction radius ρ is crucial as
it controls the trade-off between prediction accuracy and
interpretability. Setting ρ = 0 recovers the IP-OMP, and
therefore, may suffer from the aforementioned performance
degradation. Conversely, choosing a large value for ρ can
mitigate the performance degradation of IP-OMP, but at the
cost of compromising the interpretability.

Our meta-algorithm for Problem (3), called constrained
concept refinement (CCR), is presented in Algorithm 1.

Algorithm 1 Constrained Concept Refinement

1: Input: Initial query feature matrix D, correction radius
ρ, training dataset D.

2: Initialize ∆D(0) = 0d×n
3: while t = 1, 2, . . . , T do
4: Forward propagation: calculate L(f̃D+∆D(t−1)).
5: Backward propagation: update ∆D(t) using the

gradient ∂L/∂∆D(t−1).
6: Perform projection to ensure ∥∆D(t)∥1,2 ≤ ρ.
7: end while
8: Return f̃D+∆D(T )

Below, we provide a description of its various steps.

Choice of the surrogate estimator. To motivate the
choice of the surrogate estimator f̃D, let us revisit the gen-
erative model in Assumption 2.3, and additionally assume
that the ground truth latent feature matrix D∗ is column-
orthogonal. By assuming D∗ to be column-orthogonal,
we effectively assume an ideal scenario in which queries
are mutually independent. Specifically, it follows that
⟨d∗
i , z⟩ is independent of ⟨d∗

j , z⟩ when d∗
i ⊥ d∗

j and
z ∼ N (0, Id×d). The primary motivation for focusing on
an column-orthogonal D∗ is that, under this assumption, the
estimator fD obtained from IP-OMP becomes inherently
differentiable with respect to D:

Lemma 3.1. Assuming that D = D∗ and D∗ is column-
orthogonal, we have

fD
(
x, {rπ(i)}ki=1

)
=
∑
i∈S

⟨di,x⟩ri,

where S=argmaxT⊆[n],|T |≤k
∑
i∈T |⟨di,x⟩| corresponds

to the indices of the top-k largest values of {|⟨di,x⟩|}ni=1.

The proof of Lemma 3.1 is deferred to Appendix C.4.1.
Assuming a small initial error, i.e., ∥D∗ − D∥ ≤ ρ for
some small ρ > 0, the iterates D(t) = D + ∆D(t) of
Algorithm 1 stay approximately column-orthogonal. This
consideration motivates the introduction of the following
surrogate estimator f̃ :

f̃D
(
x, {rπ(i)}ki=1

)
=
∑
i∈S

⟨di,x⟩ri,

where S = argmax
T⊆[n],|T |≤k

∑
i∈T

|⟨di,x⟩|. (4)

It is important to note that we do not require f̃ to be differ-
entiable everywhere; rather, differentiability is required only
almost surely along the trajectory of Algorithm 1, which
we will rigorously demonstrate. Alternative differentiable
surrogates for f include the task-driven dictionary learning
method (Mairal et al., 2011) and the unrolled dictionary
learning method (Malézieux et al., 2021; Tolooshams & Ba,
2021), which can be used in place of Equation (4).

Backward propagation and projection For the back-
ward propagation and projection steps, we propose to adopt
gradient descent updates, followed by a projection step
based on ℓ2-norm.

∆D(t+1)

= argmin
∥∆D∥1,2≤ρ

∥∥∥∥∥∆D−

(
∆D(t)−η

∂L(f̃D+∆D(t))

∂∆D(t)

)∥∥∥∥∥
2

,

(5)

We note that the specific instantiation of the proposed meta-
algorithm and its steps is inherently task-dependent. For
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example, while we have only discussed the squared loss, a
more common choice in image classification tasks is the
cross-entropy loss. Additionally, our choice of the surro-
gate estimator relies on the assumption that the ground truth
latent feature matrix is column-orthogonal. When this as-
sumption is not met, it becomes necessary to enforce it via
concept dispersion. Both of these modifications are dis-
cussed extensively within the context of image classification
in Section 4.

However, a more fundamental question has remained unan-
swered: how can “interpretability”—a concept inherently
meaningful only to humans—be measured and quantified?
One approach is to assess interpretability in an ad-hoc man-
ner by running the candidate method and relying on human
judgment to determine whether the predictions are inter-
pretable for different individual samples. This has been the
de facto approach adopted in nearly all previous works. An
alternative way—which we seek in this work—is to study
a simple test-bed for investigation, where “interpretability”
admits a crisp mathematical formulation.

3.1. Accuracy and Interpretability Guarantees

Consider the following probabilistic generative model.

Assumption 3.2 (Probabilistic generative model). Suppose
that the target random variable y and queries are gener-
ated according to Assumption 2.3. Moreover, suppose that
ground truth latent feature matrix D∗ is column-orthogonal
and the input x satisfies x = D∗β, where: (1) the support
of β, denoted as S∗, is drawn uniformly from the set of
k-element subsets of [n]; and (2) the non-zero elements
of β are i.i.d. and satisfy E[βi] = 0, Var[βi] = σ2, and
γ ≤ |βi| ≤ Γ.

The generative model in Assumption 3.2 is akin to those
explored in the sparse coding literature (Arora et al., 2015;
Agarwal et al., 2016; Ravishankar et al., 2020; Liang et al.,
2022). Under this model, prediction error can be evaluated
using the squared loss, while interpretability can be assessed
by the proximity of the query feature matrix D(T ), produced
by CCR, to the ground truth latent feature matrix D∗.

Our next theorem shows that CCR effectively resolves the
challenge faced by IP-OMP, as outlined in Theorem 2.6.1

Let D(t) = D + ∆D(t) be the corrected query feature
matrix generated by CCR at iteration t.

Theorem 3.3. Suppose that Assumption 3.2 holds. More-
over, suppose that that the initial query feature matrix D
satisfies ∥D − D∗∥1,2 = ρ ≤ γ

8
√
kΓ

and the step-size η

satisfies 0 < η < 1
2∥x∥2

2
. Algorithm 1 with surrogate estima-

1We note that the result of Theorem 2.6 also holds for the
generative model described in Assumption 3.2.

tor (4) and update rule (5) satisfies:

L(f̃D(t+1)) ≤
(
1− 2η∥x∥22

)2 L(f̃D(t)).

While Theorem 3.3 addresses the performance limitations
of IP-OMP, it does not guarantee improved interpretabil-
ity. This outcome is unsurprising, since the reliance of
the method on only a single input x ensures that only the
columns of D with indices in S∗ can be improved, essen-
tially leaving the columns outside S∗ unmodified. Moreover,
if D∗ is not full-rank, our analysis shows that D may devi-
ate from D∗ in directions column-orthogonal to the column
space of D∗; these deviations cannot be eliminated by Equa-
tion (5). This observation is further supported by numerical
experiments (see Figure 4).

To tackle these challenges, we assume that D∗ is full-rank.
Moreover, it is essential to use a sufficient number of i.i.d.
input samples to ensure that each column of D∗ contributes
to at least one input sample. This aligns more closely with
practical scenarios, such as image classification, where mul-
tiple samples are typically used during the training phase.
We denote the i.i.d. input samples and their corresponding
target random variables, generated according to Assump-
tion 3.2, as {xh}mh=1 and {yh}mh=1, respectively. For any
estimator ypred = {yhpred}mh=1, the aggregated squared loss
is defined as

Lm(ypred) =
1

m

m∑
h=1

Ezh∼N (0,Id×d)

[
(yh − yhpred)

2
]
.

(6)

Theorem 3.4. Suppose that {xh}mh=1 and {yh}mh=1 are i.i.d.
samples generated from Assumption 3.2 with a fixed full-
rank column-orthogonal D∗. Suppose that m = Ω

(
n6

σ2k5

)
.

Moreover, suppose that the initial query feature matrix D
satisfies ∥D − D∗∥1,2 = ρ ≤ γ

8
√
kΓ

and the step-size η

satisfies η = O
(

1
σ2

)
. With high probability, Algorithm 1

with surrogate estimator (4) and update rule (5) applied to
the aggregated squared loss (6) satisfies:

• (Interpretability) ∥D(t+1) − D∗∥1,2 ≤ τ∥D(t) −
D∗∥1,2, where τ =

√
1− k(k−1)σ2

2n2 η.

• (Accuracy)Lm(f̃D(t))≤ k
∑m

h=1 ∥xh∥2
2

m ∥D(t)−D∗∥21,2.

According to Theorem 3.4, by leveraging multiple samples,
CCR achieves the best of both worlds: it guarantees con-
vergence to the ground truth latent feature matrix D∗, pro-
gressively enhancing interpretability, while simultaneously
driving Lm to zero, thereby achieving perfect accuracy.

Contrary to traditional analyses in dictionary learning (Arora
et al., 2015; Liang et al., 2022), the proofs of Theorem 3.3
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and Theorem 3.4 require a careful alignment of the updates
from gradient descent with the direction of the true solution.
In the setting of Theorem 3.4, this is even more challenging
because the finite sample size m inevitably causes deviations
from the population-level behavior. Moreover, we must
further control the deviation introduced by the projection
step. The detailed proofs of these theorems are provided in
Appendix C. We also include a detailed discussion on both
theorems in Appendix B and experiments that validate them
in Appendix D.1.

4. Application: Interpretable Image
Classification

In this section, we showcase the performance of our
proposed CCR framework from Algorithm 1 on in-
terpretable image classification task. The Python
implementation of algorithm can be found here:
github.com/lianggeyuleo/CCR.git.

The image classification setting differs slightly from the
setting provided in Definition 2.1. Specifically, we are given
a dataset {ai,yi}mi=1 consisting of m image (a)-label (y)
pairs, where the goal is to predict the correct label for a
given image. Here, y represents a one-hot label vector.
Additionally, this setting provides access to a concept set
{ci}ni=1, which consists of n key concepts that can aid in
classifying an image. These concepts are typically textual;
for example, in the case of animal images, the concept
set might include descriptors like “stocky body” or “black
stripes”.

Algorithm 2 CCR for Interpretable Image Classification

1: Input: Dataset of image-label pairs {ai,yi}mi=1, con-
cept set {ci}ni=1.

2: Use CLIP to embed the images {ai}mi=1 into input fea-
tures {xi}mi=1, and the concepts {ci}ni=1 into query fea-
tures {di}ni=1.

3: Initialize D(0) via concept dispersion on {di}ni=1.

4: Initialize s
(0)
i = HTλ

(
D(0)⊤xi

)
for i = 1, . . . ,m.

5: Initialize L(0) with random values.
6: while t = 1, 2, . . . , T do
7: Calculate Lm =

∑
iCE

(
Ls

(t−1)
i ,yi

)
.

8: Update D(t) = D(t−1) − ηD ∂L/∂D(t−1).
9: Normalize and project D(t).

10: Update L(t) = L(t−1) − ηL ∂L/∂L(t−1).
11: Update s

(t)
i = HTλ

(
D(t)⊤xi

)
for i = 1, . . . ,m.

12: end while
13: Return D(T ), L(T ), and {s(T )

i }mi=1.

We formally introduce our algorithm in Algorithm 2. Prior
to comparing our approach with other interpretable AI meth-

ods, we provide a detailed explanation of the key compo-
nents in Algorithm 2.

CLIP embedding. We employ the multi-modal model CLIP
(Radford et al., 2021)—a recently introduced large Vision-
Language Model—to embed both images and concepts into
the same latent space.

Concept dispersion. After obtaining the CLIP embeddings,
the query features tend to cluster too closely, making the
query feature matrix D(0) far from column-orthogonal. To
address this, we introduce a concept dispersion procedure
(see Algorithm 3 in the appendix). This heuristic approach
enhances the mutual orthogonality of query features by
increasing their relative angles, thereby improving the or-
thogonality of D(0). Notably, this is achieved while pre-
serving interpretability by maintaining the relative positions
of features in the embedded space. Further details on the
dispersion step are provided in Appendix D.2.

Hard-thresholding. In Equation (4), f̃ is computed in two
steps: (1) constructing the sparse code s by keeping only
the entries with the top-k absolute values of D⊤x; and (2)
setting f̃ as the inner product of s with r = [r1, . . . , ri]

⊤ ∈
Rn. Here, we replace the top-k selection with the entry-wise
hard-thresholding operator:

HTλ(x) =

{
x, if |x| ≥ λ,

0, if |x| < λ.

This approach allows for parallelization and reduced com-
putational cost, although the exact sparsity level k can no
longer be directly specified; instead, k is determined implic-
itly by λ. Nonetheless, adjusting λ provides similar control
over sparsity.

Linear Layer. To compute f̃D as defined in Equation (4),
access to r is required, which is unavailable in the image
classification setting. To address this, we train a linear
classifier that takes the sparse code s as input and outputs
a weight vector over the possible labels. The label with
the highest weight is selected as the prediction. The loss
function is defined as the cross-entropy between the linear
layer’s output and the true label y.

Embedding normalization and projection. After each it-
eration, we perform a projection step similar to Equation (5)
for each updated concept embedding. Additionally, we nor-
malize each embedding to ensure that it remains on the unit
ball (see Algorithm 4 in Appendix D.2).

4.1. Performance

We compare the performance of Algorithm 2 against two
recently proposed explainable AI methods, CLIP-IP-OMP
(Chattopadhyay et al., 2024) and label-free CBM (lf-CBM)
(Oikarinen et al., 2023), as well as the CCR baseline without
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Figure 2. Prediction accuracy of CCR and its baseline across itera-
tions, with the final test accuracy of CLIP-IP-OMP and lf-CBM
indicated for reference. For CCR and its baseline, we run each
experiment for five times and present the average test accuracy at
each time step. The shaded area is bounded by the maximum and
minimum accuracy obtained over five runs.

the concept refinement step, in the context of explainable
image classification.

For the baseline version of CCR, we set ηD = 0 at Step 8
of Algorithm 2, ensuring that the comparison isolates the
effect of concept refinement. The two methods we compare
against represent state-of-the-art explainable AI approaches,
particularly in terms of scalability. Lf-CBM was the first
CBM-type model to be scaled to datasets as large as Ima-
geNet, while CLIP-IP-OMP further improves computational
efficiency while maintaining competitive accuracy. For a de-
tailed introduction to both methods, we refer to Appendix A.

The evaluation is conducted across five image classification
benchmarks: CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), ImageNet (Deng et al., 2009), CUB-200 (Wah et al.,
2011), and Places365 (Zhou et al., 2017).

To ensure a fair comparison, all methods use the same con-
cept set, which is generated by GPT-3 (Brown et al., 2020).
A detailed description of the generation process can be
found in (Oikarinen et al., 2023). For the CIFAR-10/100
and CUB-200 datasets, we tune CLIP-IP-OMP to match the
average sparsity level of s, also referred to as the explanation

length or k, used in CCR. For ImageNet and Places365, we
report the best accuracy achieved by CLIP-IP-OMP across
all explanation lengths. Since Lf-CBM does not allow tun-
ing of its explanation length, we directly report its accuracy.
The constraint parameter ρ for CCR is fixed at 0.1 for all
experiments.

As shown in Figure 2, CCR consistently outperforms its
baseline, CLIP-IP-OMP, and lf-CBM across all benchmarks
except CUB-200. This exception is expected, as lf-CBM
was built on a ResNet-18 backbone specifically trained on
CUB-200, whereas both CLIP-IP-OMP and CCR rely on
CLIP as their encoder, which was trained on more diverse
and general datasets.

Additionally, we report the average explanation length
(AEL, k), average sparsity ratio (ASR, k/n), and aver-
age concept embedding deviation (ACED, 1

n

∑n
i=1 ∥di −

d
(0)
i ∥2) of CCR in the following table:

AEL ASR ACED
CIFAR10 11.09 8.66% 0.056
CIFAR100 19.67 2.39% 0.061
CUB200 27.52 13.2% 0.062
ImageNet 48.97 1.08% 0.097
Places365 44.43 2.01% 0.041

Table 1. Average explanation length (AEL), average sparsity ra-
tio(ASR) and average concept embedding deviation (ACED) for
CCR.

Thanks to the parallelization enabled by hard threshold-
ing and the computational efficiency of backpropagation,
CCR significantly reduces computational costs compared
to CLIP-IP-OMP and lf-CBM, particularly when applied
to large-scale datasets such as ImageNet (≈ 1.2 million
images) and Places365 (≈ 1.8 million images). As reported
in (Chattopadhyay et al., 2024), training lf-CBM on Im-
ageNet requires ≈ 50 hours on an NVIDIA RTX A5000
GPU. Under the same experimental conditions, CLIP-IP-
OMP, with an average explanation length of ≈ 50, incurs
a computational cost of ≈ 40 hours. In our computational
environment, using an NVIDIA Tesla V100 GPU, CLIP-IP-
OMP remains comparably expensive, requiring ≈ 33 hours
for k = 50. In contrast, CCR (with k ≈ 49, as shown in
Table 1) processes ImageNet in only ≈ 2 hours (correspond-
ing to 200 iterations) while achieving even higher accuracy,
demonstrating a substantial improvement in computational
efficiency. To make CLIP-IP-OMP more computationally
feasible, one can reduce k; however, for k = 10, while the
processing time drops to ≈ 6 hours, it comes at the cost of
a significant accuracy decline to ≈ 63%.
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Figure 3. The first example illustrates a simple case where CCR
successfully learns the correct concepts. The second example rep-
resents a misleading case, where the image contains concepts like
“a flag” that, while relevant and visually apparent, could potentially
mislead classification. However, CCR effectively extracts both
useful and misleading information, assigning appropriate weights
to ensure the correct prediction.

4.2. Interpretability

To illustrate the interpretability of Algorithm 2, we follow
the methodology outlined in (Chattopadhyay et al., 2024)
and present the most significant coefficients and weights
from the algorithm on different samples from the Places365
dataset. As shown in Figure 3, we highlight the top 10
concepts in s with the highest values (left) along with their
corresponding weights in the linear layer L for the pre-
dicted label (right). The selected concepts are semantically
relevant to the image, and the linear layer effectively as-
signs substantial weight to key concepts such as “designated
fairways and greens”, enabling accurate prediction while
appropriately disregarding concepts that, although relevant,
may be misleading, such as “a flag” or “a country”. For
additional case studies on other datasets, we refer the reader
to Appendix D.5.

Impact Statement
This paper introduces Constrained Concept Refinement
(CCR), a principled framework that helps bridge the long-
standing gap between interpretability and accuracy in ma-
chine learning. By constraining the refinement of concept
embeddings to lie within a small neighborhood around their
initial values, CCR enables interpretable-by-design models

to improve prediction performance without compromising
their explainability. Our theoretical and empirical results
demonstrate the effectiveness of CCR across a variety of
tasks and datasets, both in terms of predictive performance
and computational efficiency.

The broader impact of this work lies in its potential to ad-
vance the practical adoption of interpretable machine learn-
ing methods in real-world settings. In particular, the com-
putational efficiency afforded by CCR may facilitate the
deployment of explainable artificial intelligence (XAI) tech-
niques in resource-constrained environments.

From an ethical perspective, the capacity to generate expla-
nations that are faithful, stable, and aligned with human-
interpretable concepts contributes to addressing critical con-
cerns related to algorithmic accountability and bias. For the
proposed method, hyperparameter tuning remains a crucial
yet underexplored component for ensuring effective perfor-
mance in practical applications. This aspect warrants careful
consideration to ensure that the resulting outputs are both
reliable and justifiable.
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A. Related Literature
In this section, we provide a more comprehensive literature review.

Explainable AI. In the main body of the paper, we provided an overview of related methods in explainable AI. Here, we
focus on two approaches that are closely related to and comparable with our proposed method. The first is the CLIP-IP-OMP
method introduced by (Chattopadhyay et al., 2024), which leverages CLIP embeddings to greedily solve sparse coding
problems for each input, subsequently passing the results through a linear layer to generate final predictions. Our method
builds upon the same theoretical framework established in (Chattopadhyay et al., 2024). Notably, the baseline model
(without concept refinement) considered in Section 3 and Section 4 serves as a differentiable surrogate for CLIP-IP-OMP.
The second approach is the label-free CBM (lf-CBM) proposed by (Oikarinen et al., 2023), which employs the inner product
between CLIP embeddings to achieve state-of-the-art results in interpretable models. Specifically, lf-CBM was the first
CBM model scaled to ImageNet. A detailed comparison of the performance of our method against these two approaches is
provided in Section 4.

Sparse coding and dictionary learning. Sparse Coding (Olshausen & Field, 1997) refers to the process of representing a
given signal (or vector) as a sparse linear combination of fixed signals, collectively referred to as a dictionary. Dictionary
Learning (Aharon et al., 2006) extends Sparse Coding to a bi-variable setting, allowing the dictionary itself to be optimized.
The objective is to identify a dictionary capable of generating effective sparse codes for a specific signal distribution.
(Chattopadhyay et al., 2024) establishes a novel connection between sparse coding and explainable AI, treating concept
embeddings as the dictionary. Our proposed method directly optimizes concept embeddings, which draws parallels to
dictionary learning, although the two approaches address fundamentally different objectives. Among works on dictionary
learning, (Mairal et al., 2011) is particularly relevant, as it optimizes dictionaries for downstream tasks. However, our
method distinguishes itself through the constrained concept requirement. Interestingly, (Mairal et al., 2011) aligns with
our framework as a differentiable learning module, and integrating this approach with our method presents an intriguing
avenue for future work. Another promising direction for future research is leveraging the personalized dictionary learning
framework proposed by (Liang et al., 2024) to extend our approach to Explainable AI in the context of heterogeneous
datasets.

Theoretical guarantees. To the best of our knowledge, our work is the first to establish a convergence guarantee in
the setting where dictionary atoms are updated for downstream tasks. The most closely related work is (Chattopadhyay
et al., 2024), which introduced IP-OMP. However, the connection between IP-OMP and column-orthogonal matching
pursuit lacks rigor due to the presence of normalization terms (see Theorem 2.5), making it difficult to prove that IP-OMP
minimizes the loss L or Lm using the optimality conditions of OMP (Tropp, 2004). Another related approach is task-driven
dictionary learning (Mairal et al., 2011), which establishes the differentiability of the objective function but does not provide
a convergence guarantee.

B. Further Discussion
In this section, we provide further discussion on Theorem 3.3 and Theorem 3.4.

Tolerance, Sample Size, and Convergence Speed. Both theorems establish that the population loss converges to zero,
provided that the initial dictionary estimate is within 1√

k
in the column-wise ∥ · ∥1,2-norm from the ground-truth dictionary

D∗. Assuming that a constant fraction of the queries in D∗ is utilized to generate each xh, i.e., k = Ω(n), Theorem 3.4
indicates that each column of D∗ can be accurately recovered with a sample size of m = O(n) and a convergence rate of
α = 1 − Ω(1). Notably, the linear sample size and linear convergence rate is consistent with the best-known results in
dictionary learning (Arora et al., 2015; Liang et al., 2022).

Sparsity Level. It is well established in the dictionary learning literature that higher sparsity levels in ground-truth sparse
codes (i.e., larger values of k in Assumption 3.2) present greater challenges for recovery; see (Arora et al., 2015). Indeed,
(Arora et al., 2015) asserts that sparsity levels beyond k = Ω

(
n

logn

)
rarely succeed in practice, even though several

approaches have been proposed to handle cases where k = Ω(n) (Sun et al., 2016; Liang et al., 2022). In contrast, our
results reveal that the sparsity level k plays a nuanced role when optimizing D for the downstream task L. On the one hand,
a larger k imposes a more stringent initial error bound for both theorems. On the other hand, a larger k in Theorem 3.4
improves the convergence rate τ and reduces the required sample size m. The former phenomenon is consistent with
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findings in dictionary learning literature, where exact support recovery becomes more feasible for sparser generative models.
A high-level explanation for the latter is that a denser generative model for β provides each x with more information, thereby
expediting the training process.

C. Proof of Theorems
C.1. Proof of Theorem 2.6

Our proof strategy follows two main steps:

• Step 1: We prove that L(fD∗) = 0. To do so, we first derive an explicit form of fD∗ , and then show L(fD∗) = 0 for
this explicit form.

• Step 2: We explicitly design a column-orthogonal D̃ such that ∥D̃ −D∗∥1,2 ≤ ϵ and L(fD̃) ≥ 2(k−1)ϵ2γ2

5 .

To streamline the presentation, we denote the i-th column of D∗ as d∗
i . Note that d∗

i is identical to vi used in the paper.

• Step 1: Establishing L(fD∗) = 0. We first provide an explicit characterization of fD∗ .

Lemma C.1. We have

fD∗
(
x, {rπ(i)}ki=1

)
=
∑
i∈S

⟨d∗
i ,x⟩ri,

where S = {π(1), π(2), ..., π(k)} is the index set selected by IP-OMP applied to x and D∗.

Our next goal is to provide an explicit characterization of S, introduced in the above lemma.

Lemma C.2. For any column-orthogonal D, the index set S = {π(1), π(2), ..., π(k)} selected by IP-OMP applied to x
and D corresponds to the indices of the top-k largest values of {|⟨di,x⟩|}ni=1:

S = argmax
T⊆[n],|T |≤k

∑
i∈T

|⟨di,x⟩|.

Moreover, if D = D∗, we have S = S∗, where S∗ is the support of β defined in Theorem 2.6.

We defer the proofs of Lemma C.1 and Lemma C.2 to Appendix C.4.2 and Appendix C.4.3, respectively. Combining the
above two lemmas, we obtain:

fD∗
(
x, {rπ(i)}ki=1

)
=
∑
i∈S

⟨d∗
i ,x⟩ri, where S = argmax

T⊆[n],|T |≤k

∑
i∈T

|⟨d∗
i ,x⟩|

Given this explicit form of fD∗ generated by IP-OMP, we are now ready to investigate the population loss L of that estimator.

For any column-column-orthogonal D, one can write

L (fD) = Ez∼N (0,Id×d)

(∑
i∈S

⟨di,x⟩ri − ⟨x, z⟩

)2


= Ez∼N (0,Id×d)

(∑
i∈S

⟨di,x⟩⟨d∗
i , z⟩ − ⟨x, z⟩

)2


= Ez∼N (0,Id×d)

(∑
i∈S

⟨d∗
id

⊤
i x, z⟩ − ⟨x, z⟩

)2


= Ez∼N (0,Id×d)

[(
⟨D∗

SD
⊤
S x, z⟩ − ⟨x, z⟩

)2]
= Ez∼N (0,Id×d)

[(
⟨D∗

SD
⊤
S x− x, z⟩

)2]

(7)
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It is easy to verify that random variable ⟨D∗
SD

⊤
S x− x, z⟩ is distributed as N (0, ∥D∗

SD
⊤
S x− x∥22). As a result, we can

conclude that

L(fD) = ∥D∗
SD

⊤
S x− x∥22 for any column-orthogonal D. (8)

Given Lemma C.2, we have S = S∗. We can subsequently conclude that:

D∗
SD

∗⊤
S x = D∗

S∗D∗⊤
S∗ x = D∗

S∗D∗⊤
S∗ D∗

S∗βS∗ = D∗
S∗βS∗ = x,

This leads to L(fD∗) = ∥D∗
SD

∗⊤
S x− x∥22 = 0, thereby completing the proof of our first step.

• Step 2: Constructing D̃. Without loss of generality, let us assume S∗ = [k], where k to be even. The case where k is odd
is easily proved by following the argument below and replacing k with k − 1. Consider the following explicit form for D̃:

d̃i = cos θd∗
i + sin θd∗

i+k/2, 1 ≤ i ≤ k/2,

d̃i+k/2 = − sin θd∗
i + cos θd∗

i+k/2 1 ≤ i ≤ k/2,

d̃i = d∗
i i > k,

where θ is an angle to be determined later.

Intuitively, D̃ is constructed by iteratively selecting a pair of columns in D∗
S and rotating them by an angle θ > 0 within the

two-dimensional subspace spanned by each pair. Based on its definition, we can establish the following properties for D̃:

Lemma C.3. D̃ has the following properties:

• D̃ is column-orthogonal.

• ∥D̃ −D∗∥1,2 = 2 sin θ
2 .

The proof of Lemma C.3 is presented in Appendix C.4.4

Our next step is to calculate L(fD̃). Note that D̃ is column-orthogonal according to Lemma C.3. Therefore, according to
Equation (8), we have L(fD̃) = ∥D∗

SD̃
⊤
S x− x∥22. According to Lemma C.2, in order to obtain the index set S selected by

IP-OMP applied to x and D̃, we need to find the indices of the top-k largest values of |⟨d̃i,x⟩|. For 1 ≤ i ≤ k/2, we have:

|⟨d̃i,x⟩| =

∣∣∣∣∣∣
〈
cos θd∗

i + sin θd∗
i+k/2,

k∑
j=1

βjd
∗
j

〉∣∣∣∣∣∣
= | cos θβi + sin θβi+k/2|

Upon choosing θ such that tan θ < γ/Γ, we have

| cos θβi| ≥
∣∣∣∣ sin θγtan θ

∣∣∣∣ > | sin θΓ| ≥ | sin θβi+k/2|,

which guarantees that |⟨d̃i,x⟩| > 0. Similarly, for 1 + k/2 ≤ i ≤ k, we have:

|⟨d̃i,x⟩| =

∣∣∣∣∣∣
〈
cos θd∗

i − sin θd∗
i−k/2,

k∑
j=1

βjd
∗
j

〉∣∣∣∣∣∣
= | cos θβi − sin θβi−k/2|
> 0.
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For i > k, we have |⟨d̃i,x⟩| = |⟨d∗
i ,x⟩| = 0. As a result, when tan θ < γ/Γ, Lemma C.2 guarantees that the index set

selected by IP-OMP is S = [k] = S∗. Given this fact, we can calculate L(fD̃) as:

L(fD̃) = ∥D∗
SD̃

⊤
S x− x∥22

= ∥D∗
S∗D̃⊤

S∗x− x∥22

= ∥D∗
S∗D̃⊤

S∗

k∑
i=1

βid
∗
i −

k∑
i=1

βid
∗
i ∥22

(a)
=

∥∥∥∥∥∥
k/2∑
i=1

(
cos θβi + sin θβi+k/2

)
d∗
i +

k∑
i=1+k/2

(
cos θβi − sin θβi−k/2

)
d∗
i −

k∑
i=1

βid
∗
i

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
k/2∑
i=1

(
(cos θ − 1)βi + sin θβi+k/2

)
d∗
i +

k∑
i=1+k/2

(
(cos θ − 1)βi − sin θβi−k/2

)
d∗
i

∥∥∥∥∥∥
2

2

(b)
=

k/2∑
i=1

(
(cos θ − 1)βi + sin θβi+k/2

)2
+

k∑
i=1+k/2

(
(cos θ − 1)βi − sin θβi−k/2

)2
,

(9)

where (a) is based on the construction of D̃, and (b) is due to the assumption that D∗ is column-orthogonal. When
sin θ

2 ≤ 1√
1+16Γ2/γ2

, we have for 1 ≤ i ≤ k/2:

sin θ = 2 sin
θ

2
cos

θ

2

= 2 sin
θ

2

√
1− sin2

θ

2

≥ 2 sin
θ

2
· 4Γ
γ

1√
1 + 16Γ2/γ2

≥ 8Γ

γ
sin2

θ

2

=
4Γ

γ
(1− cos θ),

which leads to (
(cos θ − 1)βi + sin θβi+k/2

)2
= (cos θ − 1)2β2

i + 2(cos θ − 1) sin θβiβi+k/2 + sin2 θβ2
i+k/2

≥ 2(cos θ − 1) sin θβiβi+k/2 + sin2 θβ2
i+k/2

≥ −
∣∣∣ γ
2Γ

sin2 θβiβi+k/2

∣∣∣+ sin2 θβ2
i+k/2

≥ 1

2
sin2 θβ2

i+k/2.

With identical arguments, we have for 1 + k/2 ≤ i ≤ k:(
(cos θ − 1)βi + sin θβi−k/2

)2 ≥ 1

2
sin2 θβ2

i−k/2.

As a result, Equation (9) reduces to:

L(fD̃) ≥
k/2∑
i=1

1

2
sin2 θβ2

i+k/2 +

k∑
i=1+k/2

1

2
sin2 θβ2

i−k/2

≥ k

2
sin2 θγ2

16



Enhancing Performance of Explainable AI Models with Constrained Concept Refinement

Finally, we need to perform a change of variable by setting ϵ = 2 sin θ
2 . Elementary calculation gives sin θ = ϵ

√
4−ϵ2
2 and

tan θ = ϵ
√
4−ϵ2

2−ϵ2 . When ϵ < 1
2 , we have sin θ ≥ 9ϵ/10 and tan θ ≤ 6ϵ/5. Recall that our proof requires tan θ < γ/Γ and

sin θ
2 ≤ 1√

1+16Γ2/γ2
. As a result, when ϵ = 2 sin θ

2 ≤ min

(
1
2 ,

5γ
6Γ ,

1√
1+16Γ2/γ2

)
= 1√

1+16Γ2/γ2
, we have

L(fD̃)− L(fD∗) = L(fD̃) ≥ 81kϵ2γ2

200
.

As we mentioned, for an odd value of k, an analogous argument can be made to arrive at a similar bound of

L(fD̃)− L(fD∗) = L(fD̃) ≥ 81(k − 1)ϵ2γ2

200
,

This completes the proof of Theorem 2.6.

C.2. Proof of Theorem 3.3

To prove the convergence of L
(
f̃D(t)

)
, we use an inductive approach where at each iteration, we will subsequently prove:

(1) f̃ recovers the exact support S∗; (2) gradient descent will make progress towards one of the optimal minimizers which
will be explicitly defined later; (3) L

(
f̃D(t)

)
will decrease linearly.

Recall that D(t) = D +∆D(t). The equations below rewrite Equation (5) for each column i ∈ [n] of D(t).

d
(t+0.5)
i = d

(t)
i − η

∂L(f̃D(t))

∂d
(t)
i

, (10)

d
(t+1)
i = argmin

d:∥d−d
(0)
i ∥2≤ρ

∥d− d
(t+0.5)
i ∥2. (11)

It is easy to verify that the above update rules are equivalent to Equation (5). We will use induction to prove this theorem. In
particular, define

A(t) : L(f̃D(t)) ≤ τ2L(f̃D(t−1)),where τ = 1− 2η∥x∥22.

To prove this we define an auxiliary feature vector which will play an important role in our arguments:

d̂i = d
(0)
i +

βi − x⊤d
(0)
i

∥x∥22
x, ∀i ∈ [n]. (12)

Based on this auxiliary feature vector, we define the following event:

B(t) : d̂i − d
(t)
i =

βi − x⊤d
(t)
i

∥x∥22
x, ∀i ∈ [n].

Now, our proof strategy is to show that, for t = 0, 1, . . . :

• B(t) implies B(t+ 1),

• B(t) implies A(t+ 1).

This two statements combined will establish the correctness of Theorem 3.3 Indeed, the base case A(0) is trivially satisfied
due to Equation (12).

• Establishing B(t) =⇒ B(t+ 1). To begin with, we use the following lemma to show that f̃ is able to find the correct
support when D(t) is close enough to D:

Lemma C.4. For any D such that ∥D −D∗∥1,2 ≤ 2ρ < γ

4
√
kΓ

,we have

S = argmax
T⊆[n],|T |≤k

∑
i∈T

|⟨di,x⟩| = S∗.
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We defer the proof of Lemma C.4 to Appendix C.4.5. To invoke Lemma C.4, we have

∥D(t) −D∗∥1,2 ≤ ∥D(t) −D(0)∥1,2 + ∥D(0) −D∗∥1,2 ≤ ρ+ ρ = 2ρ.

The bound on ∥D(t) −D(0)∥1,2 follows from the projection step in Equation (11) while the bound on ∥D(0) −D∗∥1,2
follows from the initial error bound. We can then conclude that S = S∗ at every iteration t, which means that Equation (10)
and Equation (11) will only change i ∈ S∗, while for other i ̸∈ S∗, we have d

(t+1)
i = d

(t)
i . This immediately implies that

B(t) is trivially satisfied for ∀i ̸∈ S∗ and ∀t. Now, the goal is to show that B(t) =⇒ B(t+ 1) for ∀i ∈ S∗.

Based on Equation (8), we have

L(f̃D(t)) = ∥D∗
S∗D

(t)⊤
S∗ x− x∥22,

Subsequently, the gradient of L at D(t)
S∗ can be written as:

∂L(f̃D(t))

∂D
(t)
S∗

= 2x
(
D∗
S∗D

(t)⊤
S∗ x− x

)⊤
D∗
S∗

= 2x
(
D∗
S∗D

(t)⊤
S∗ x−D∗

S∗βS∗

)⊤
D∗
S∗

= 2x
(
D

(t)⊤
S∗ x− βS∗

)⊤
D∗⊤
S∗ D∗

S∗

= 2x
(
D

(t)⊤
S∗ x− βS∗

)⊤
.

For i ∈ S∗, we have

∂L(f̃D(t))

∂d
(t)
i

= 2(d
(t)⊤
i x− βi)x.

This implies that:

d̂i − d
(t+0.5)
i = d̂i − d

(t)
i + 2η(d

(t)⊤
i x− βi)x

A(t)
=

βi − x⊤d
(t)
i

∥x∥22
x+ 2η(d

(t)⊤
i x− βi)x

=
βi − x⊤

(
d
(t+0.5)
i + 2η(d

(t)⊤
i x− βi)x

)
∥x∥22

x+ 2η(d
(t)⊤
i x− βi)x

=
βi − x⊤d

(t+0.5)
i

∥x∥22
x− 2η(d

(t)⊤
i x− βi)x+ 2η(d

(t)⊤
i x− βi)x

=
βi − x⊤d

(t+0.5)
i

∥x∥22
x.

In other words, B(t) implies B(t+ 0.5). Suppose ∥d(t+0.5)
i − d

(0)
i ∥2 ≤ ρ, then we have d

(t+1)
i = d

(t+0.5)
i , which readily

implies B(t+ 1). On the other hand, if ∥d(t+0.5)
i − d

(0)
i ∥2 > ρ, we have:

d
(t+0.5)
i − d

(0)
i =

(
d
(t+0.5)
i − d̂i

)
−
(
d
(0)
i − d̂i

)
A(t+0.5),A(0)

= −βi − x⊤d
(t+0.5)
i

∥x∥22
x+

βi − x⊤d
(0)
i

∥x∥22
x

=
x⊤d

(t+0.5)
i − x⊤d

(0)
i

∥x∥22
x,

(13)
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Therefore, when ∥d(t+0.5)
i − d

(0)
i ∥2 > ρ, we have:

d
(t+1)
i = argmin

d:∥d−d
(0)
i ∥2≤ρ

∥d− d
(t+0.5)
i ∥2

= d
(0)
i + ρ

d
(t+0.5)
i − d

(0)
i

∥d(t+0.5)
i − d

(0)
i ∥2

= d
(0)
i + ρ sign

(
x⊤d

(t+0.5)
i − x⊤d

(0)
i

) x

∥x∥2
.

(14)

This in turn implies

d̂i − d
(t+1)
i

= d̂i − d
(0)
i − ρ sign

(
x⊤d

(t+0.5)
i − x⊤d

(0)
i

) x

∥x∥2
A(0)
=

βi − x⊤d
(0)
i

∥x∥22
x− ρ sign

(
x⊤d

(t+0.5)
i − x⊤d

(0)
i

) x

∥x∥2

=
βi − x⊤

(
d
(t+1)
i − ρ sign

(
x⊤d

(t+0.5)
i − x⊤d

(0)
i

)
x

∥x∥2

)
∥x∥22

x− ρ sign
(
x⊤d

(t+0.5)
i − x⊤d

(0)
i

) x

∥x∥2

=
βi − x⊤d

(t+1)
i

∥x∥22
x,

establishing B(t+ 1), as desired.

• Establishing B(t) =⇒ A(t+ 1). First, we establish ∥d̂i − d
(t+1)
i ∥2 ≤ τ∥d̂i − d

(t)
i ∥2. We do so in two steps. First, we

prove that ∥d̂i − d
(t+0.5)
i ∥2 ≤ τ∥d̂i − d

(t)
i ∥2. Then, we show that ∥d̂i − d

(t+1)
i ∥2 ≤ ∥d̂i − d

(t+0.5)
i ∥2.

To establish ∥d̂i − d
(t+1)
i ∥2 ≤ τ∥d̂i − d

(t)
i ∥2, one can write:

∥d̂i − d
(t+0.5)
i ∥2 = ∥d̂i − d

(t)
i + 2η(d

(t)⊤
i x− βi)x∥2

A(t)
=
∥∥∥d̂i − d

(t)
i − 2η∥x∥22

(
d̂i − d

(t)
i

)∥∥∥
2

≤
∣∣1− 2η∥x∥22

∣∣ ∥d̂i − d
(t)
i ∥2

= τ∥d̂i − d
(t)
i ∥2.

Next, we show that ∥d̂i − d
(t+1)
i ∥2 ≤ ∥d̂i − d

(t+0.5)
i ∥2. To do so, we need the following elementary lemma:

Lemma C.5. Given a fixed vector v and a = av, b = bv, c = cv, where a, b and c are vectors and a, b, c are scalars, if
|c| ≥ |b| ≥ a and bc > 0, we have ∥c− a∥2 ≥ ∥b− a∥2.

We will prove Lemma C.5 in Appendix C.4.6. Now we invoke Lemma C.5 with:

v =
x

∥x∥2
,

a =
βi − x⊤d

(0)
i

∥x∥2
,

b = ρ sign
(
x⊤d

(t+0.5)
i − x⊤d

(0)
i

)
,

c =
x⊤d

(t+0.5)
i − x⊤d

(0)
i

∥x∥2
.
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Here bc > 0 is given by their definition. Moreover |c| ≥ |b| is established as:

|c| =

∣∣∣∣∣x⊤d
(t+0.5)
i − x⊤d

(0)
i

∥x∥2

∣∣∣∣∣
=

∥∥∥∥∥x⊤d
(t+0.5)
i − x⊤d

(0)
i

∥x∥22
x

∥∥∥∥∥
2

(13)
= ∥d(t+0.5)

i − d
(0)
i ∥2

≥ρ

=|b|.

Finally, |b| > a is given by:

a =
βi − x⊤d

(0)
i

∥x∥2

=
x⊤d∗

i − x⊤d
(0)
i

∥x∥2

≤ ∥d∗
i − d

(0)
i ∥2∥x∥2

∥x∥2
≤ ∥D∗ −D(0)∥1,2
= ρ

= |b|.

(15)

Now, upon substituting these parameters in Lemma C.5, we have ∥c− a∥2 ≥ ∥b− a∥2, which can be rewritten as:∥∥∥∥∥x⊤d
(t+0.5)
i − x⊤d

(0)
i

∥x∥22
x− βi − x⊤d

(0)
i

∥x∥22
x

∥∥∥∥∥
2

≥

∥∥∥∥∥ρ sign(x⊤d
(t+0.5)
i − x⊤d

(0)
i

) x

∥x∥2
− βi − x⊤d

(0)
i

∥x∥22
x

∥∥∥∥∥
2∥∥∥(d(t+0.5)

i − d
(0)
i

)
−
(
d̂i − d

(0)
i

)∥∥∥
2

(a)

≥
∥∥∥(d(t+1)

i − d
(0)
i

)
−
(
d̂i − d

(0)
i

)∥∥∥
2

∥d(t+0.5)
i − d̂i∥2 ≥ ∥d(t+1)

i − d̂i∥2
Here inequality (a) is obtained by Equation (13), Equation (12), and Equation (14). We can now conclude that:

∥d(t+1)
i − d̂i∥2 ≤ ∥d(t+0.5)

i − d̂i∥2 ≤ τ∥d(t)
i − d̂i∥2. (16)

Finally, we are ready to establish A(t+ 1). We rewrite L(f̃D(t)) as:

L(f̃D(t)) = ∥D∗
S∗D

(t)⊤
S∗ x− x∥22

= ∥D∗
S∗D

(t)⊤
S∗ x−D∗

S∗βS∗∥22
= ∥D(t)⊤

S∗ x− βS∗∥22

=
∑
i∈S∗

(
x⊤d

(t)
i − βi

)2
=
∑
i∈S∗

∥∥∥∥∥βi − x⊤d
(t)
i

∥x∥22
x

∥∥∥∥∥
2

2

∥x∥22

B(t)
=

∑
i∈S∗

∥∥∥d(t)
i − d̂i

∥∥∥2
2
∥x∥22

On the other hand,

L(f̃D(t+1)) =
∑
i∈S∗

∥∥∥d(t+1)
i − d̂i

∥∥∥2
2
∥x∥22
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can be established by identical arguments. Finally, we have

L(f̃D(t+1)) =
∑
i∈S∗

∥∥∥d(t+1)
i − d̂i

∥∥∥2
2
∥x∥22

(16)
≤ τ2

∑
i∈S∗

∥∥∥d(t)
i − d̂i

∥∥∥2
2
∥x∥22 = L(f̃D(t)),

which is exactly B(t+ 1). As a result, we have proved Theorem 3.3.

C.3. Proof of Theorem 3.4

To prove the statements of this theorem, we first establish the convergence of ∥d(t)
i − d∗

i ∥2 for every i ∈ [n]. Then, we

provide the desired upper bound on Lm
(
f̃D(t)

)
in terms of ∥D(t)−D∗∥21,2.

We will follow the same index convention defined in Equation (10) and Equation (11), with L replaced by Lm. For each
h ∈ [m], we use βh and Sh∗ to denote the corresponding variables in Assumption 3.2. We define the set Qi as the index set
of h such that i is in the support of βh:

Qi :=
{
h ∈ [m] | i ∈ Sh∗

}
.

Given Lemma C.4, we have:

∂Lm(f̃D(t))

∂d
(t)
i

=
1

m

∑
h∈Qi

2(d
(t)⊤
i xh − βhi )x

h, ∀i ∈ [n].

To ensure that
∂Lm(f̃

D(t) )

∂d
(t)
i

is indeed aligned with d
(t)
i − d∗

i , we first need the following lemma:

Lemma C.6. Suppose that m = Ω
(

n6

σ2k5

)
. With probability at least 1− 2 exp{log n− n} − 2 exp

{
log n− km

8n

}
, for all

i ∈ [n],

1

m
σd

∑
h∈Qi

xhxh⊤

 ≥ k(k − 1)σ2

4n2
,

1

m
σ1

∑
h∈Qi

xhxh⊤

 ≤ 4kσ2

n
.

We defer the proof of Lemma C.6 to Appendix C.4.7. Now, we can bound ∥d(t+0.5)
i − d∗

i ∥22 as:

∥d(t+0.5)
i − d∗

i ∥22 =

∥∥∥∥∥∥d(t)
i − η

m

∑
h∈Qi

2(d
(t)⊤
i xh − βhi )x

h − d∗
i

∥∥∥∥∥∥
2

2

= ∥d(t)
i − d∗

i ∥22 − 4η

〈
d
(t)
i − d∗

i ,
1

m

∑
h∈Qi

(d
(t)⊤
i xh − βhi )x

h

〉
+ 4η2

∥∥∥∥∥∥ 1

m

∑
h∈Qi

(d
(t)⊤
i xh − βhi )x

h

∥∥∥∥∥∥
2

2

. (17)
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For the second term on the right hand side, we have:〈
d
(t)
i − d∗

i ,
1

m

∑
h∈Qi

(d
(t)⊤
i xh − βhi )x

h

〉

=

〈
d
(t)
i − d∗

i ,
1

m

∑
h∈Qi

(d
(t)⊤
i xh − d∗⊤

i xh)xh

〉

=

〈
d
(t)
i − d∗

i ,
1

m

∑
h∈Qi

xhxh⊤(d
(t)
i − d∗

i )

〉

≥ 1

m
σd

∑
h∈Qi

xhxh⊤

∥∥∥d(t)
i − d∗

i

∥∥∥2
2

Lemma C.6
≥ k(k − 1)σ2

4n2

∥∥∥d(t)
i − d∗

i

∥∥∥2
2
.

For the third term on the right hand side of Equation (17), we have:∥∥∥∥∥∥ 1

m

∑
h∈Qi

(d
(t)⊤
i xh − βhi )x

h

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥ 1

m

∑
h∈Qi

xhxh⊤(d
(t)
i − d∗

i )

∥∥∥∥∥∥
2

2

≤ 1

m2
σ2
1

∑
h∈Qi

xhxh⊤

∥∥∥d(t)
i − d∗

i

∥∥∥2
2

Lemma C.6
≤ 16k2σ4

n2

∥∥∥d(t)
i − d∗

i

∥∥∥2
2
.

When η < k−1
128kσ2 , the above two inequalities can be combined with Equation (17) to arrive at:

∥d(t+0.5)
i − d∗

i ∥22 ≤
(
1− k(k − 1)σ2

n2
η +

64k2σ4

n2
η2
)
∥d(t)

i − d∗
i ∥22

≤
(
1− k(k − 1)σ2

2n2
η

)
∥d(t)

i − d∗
i ∥22

≤ τ2∥d(t)
i − d∗

i ∥22.

(18)

Next, we aim to show that ∥d(t+1)
i − d∗

i ∥22 ≤ ∥d(t+0.5)
i − d∗

i ∥22. Recall that:

d
(t+1)
i = argmin

d∈D
∥d− d

(t+0.5)
i ∥22 where D = {d : ∥d− d

(0)
i ∥2 ≤ ρ}.

It is obvious that D is convex and ∥d− d
(t+0.5)
i ∥22 is strongly convex with respect to d. As a result, first order stationary

condition requires that:〈
∇

d=d
(t+1)
i

∥d− d
(t+0.5)
i ∥22, d̃− d

(t+1)
i

〉
= 2

〈
d
(t+1)
i − d

(t+0.5)
i , d̃− d

(t+1)
i

〉
≥ 0,

for any d̃ ∈ D. Given the initial error bound ∥D(0) −D∗∥1,2 ≤ ρ, we have d∗ ∈ D, which results in:〈
d
(t+1)
i − d

(t+0.5)
i ,d∗ − d

(t+1)
i

〉
≥ 0.
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We subsequently have:

∥d∗
i − d

(t+0.5)
i ∥22 =

∥∥∥(d(t+1)
i − d

(t+0.5)
i

)
+
(
d∗ − d

(t+1)
i

)∥∥∥2
2

= ∥d(t+1)
i − d

(t+0.5)
i ∥22 + 2

〈
d
(t+1)
i − d

(t+0.5)
i ,d∗ − d

(t+1)
i

〉
+ ∥d∗

i − d
(t+1)
i ∥22

≥ ∥d∗
i − d

(t+1)
i ∥22, (19)

where the last inequality follows from the fact that both ∥d(t+1)
i − d

(t+0.5)
i ∥22 and

〈
d
(t+1)
i − d

(t+0.5)
i ,d∗ − d

(t+1)
i

〉
are

non-negative. Combining Equation (18) and Equation (19), we have

∥d(t+1)
i − d∗

i ∥22 ≤ ∥d(t+0.5)
i − d∗

i ∥22 ≤ τ2∥d(t)
i − d∗

i ∥22.

Finally, note that

∥D(t+1) −D∗∥1,2 = max
i∈[n]

{∥d(t+1)
i − d∗

i ∥2} ≤ τ max
i∈[n]

{∥d(t)
i − d∗

i ∥2} ≤ τ∥D(t) −D∗∥1,2,

Next, we show that Lm
(
D(t)

)
is upper bounded by ∥D(t) −D∗∥1,2:

Lm
(
f̃D(t)

)
=

1

m

m∑
h=1

∥D∗
Sh∗D

(t)⊤
Sh∗ xh − xh∥22

=
1

m

m∑
h=1

∥D(t)⊤
Sh∗ xh − βhSh∗∥22

=
1

m

m∑
h=1

∑
i∈Sh∗

(
xh⊤d

(t)
i − xh⊤d∗

i

)2
≤ 1

m

m∑
h=1

∑
i∈Sh∗

∥xh∥22∥d
(t)
i − d∗

i ∥22

≤ 1

m

m∑
h=1

k∥xh∥22∥D(t) −D∗∥21,2

=
k
∑m
h=1 ∥xh∥22
m

∥D(t) −D∗∥21,2.

To complete the proof of Theorem 3.4, we need to examine the success probability which the above linear convergence
occurs with. The only probability statement we use is Lemma C.6 and we only invoke it once. So the total success probability
is at least:

1− 2 exp{log n− n} − 2 exp

{
log n− km

8n

}
,

which is 1− n−ω(1) when m = Ω
(

n6

σ2k5

)
. This completes the proof of Theorem 3.4.

C.4. Proof of Lemmas

C.4.1. PROOF OF LEMMA 3.1

Lemma 3.1 directly follows from Lemma C.1 and Lemma C.2.

C.4.2. PROOF OF LEMMA C.1

We can decompose y as follows:

y = ⟨x, z⟩ = ⟨ΠD∗
S
x, z⟩+ ⟨Π⊥

D∗
S
x, z⟩
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Note that z ∼ N (0, Id×d). This implies that Π⊥
D∗

S
z is independent of ΠD∗

S
z (Anderson et al., 1958), which in turn entails

that ⟨Π⊥
D∗

S
x, z⟩ is independent of ⟨ΠD∗

S
x, z⟩ and the events {⟨d∗

i , z⟩ = ri ∀i ∈ S}. Therefore, we have:

MLE(⟨x, z⟩ | ⟨d∗
i , z⟩ = ri ∀i ∈ S) = MLE

(
⟨ΠD∗

S
x, z⟩ | ⟨d∗

i , z⟩ = ri ∀i ∈ S
)

+MLE
(
⟨Π⊥

D∗
S
x, z⟩

)
.

It turns out that the first term on the right hand side is deterministic:

⟨ΠD∗
S
x, z⟩ = ⟨D∗

SD
∗⊤
S x, z⟩

= ⟨
∑
i∈S

⟨d∗
i ,x⟩d∗

i , z⟩

=
∑
i∈S

⟨d∗
i ,x⟩⟨d∗

i , z⟩

=
∑
i∈S

⟨d∗
i ,x⟩ri.

For the last equality we used qi = ri. For the second term, we have:

MLE
(
⟨Π⊥

D∗
S
x, z⟩

)
=MLE

(
⟨Π⊥

D∗
S
x,Π⊥

D∗
S
z⟩
)

(a)
= 0.

The equality (a) is due to the observation that Π⊥
D∗

S
z is indeed distributed as N (0, I(d−k)×(d−k)) after a simple dimension-

ality reduction (Anderson et al., 1958). The resulting random variable ⟨Π⊥
D∗

S
x,Π⊥

D∗
S
z⟩ is distributed as N (0, ∥Π⊥

D∗
S
x∥22),

leading to the equality (a). To sum up, we have

MLE(⟨x, z⟩ | ⟨d∗
i , z⟩ = ri ∀i ∈ S) =

∑
i∈S

⟨d∗
i ,x⟩ri.

C.4.3. PROOF OF LEMMA C.2

Let us define

Sk = argmax
T⊆[n],|T |≤k

∑
i∈T

|⟨di,x⟩|.

We will use induction to show that Sk corresponds to the indices selected by IP-OMP after k iterations. At the first iteration,
according to (Chattopadhyay et al., 2024), IP-OMP simply selects the index i = argmaxj∈[n] |⟨dj ,x⟩|/∥dj∥2∥x∥2 =
argmaxj∈[n] |⟨dj ,x⟩|, where the second equality is due to ∥dj∥2 = 1 for all j ∈ [n]. As a result we have S1 = {i} and the
base case is established.

Suppose that the statement holds for Sk−1 = argmaxT⊆[n],|T |≤k−1

∑
i∈T |⟨di,x⟩|. Let DSk−1

be the submatrix of D
which consists of columns indexed by Sk−1. Then IP-OMP will select

i = argmax
j∈[n],j ̸∈Sk−1

|⟨Π⊥
DSk−1

dj ,Π
⊥
DSk−1

x⟩|

∥Π⊥
DSk−1

dj∥2∥Π⊥
DSk−1

x∥2
.

As D is column-orthogonal, we have Π⊥
DSk−1

dj = dj and ΠDSk−1
dj = 0 ∀j ̸∈ Sk−1. Therefore, for ∀j ̸∈ Sk−1, we have

⟨dj ,x⟩ = ⟨Π⊥
DSk−1

dj ,Π
⊥
DSk−1

x⟩+ ⟨ΠDSk−1
dj ,ΠDSk−1

x⟩

= ⟨Π⊥
DSk−1

dj ,Π
⊥
DSk−1

x⟩.
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As a result, we can rewrite the selection rule of IP-OMP as

i = argmax
j∈[n],j ̸∈Sk−1

|⟨Π⊥
DSk−1

dj ,Π
⊥
DSk−1

x⟩|

∥Π⊥
DSk−1

dj∥2∥Π⊥
DSk−1

x∥2

= argmax
j∈[n],j ̸∈Sk−1

|⟨dj ,x⟩|
∥dj∥2∥x∥2

= argmax
j∈[n],j ̸∈Sk−1

|⟨dj ,x⟩|.

The last equality is due to ∥dj∥2 = 1 and the fact that ∥x∥2 is the same for different j. This implies that, at iteration k,
IP-OMP will select the index j ̸∈ Sk−1 with the largest |⟨dj ,x⟩|, which completes the proof of our induction.

Finally, when D = D∗, one can verify that ⟨di,x⟩ = ⟨d∗
i ,D

∗β⟩ = 0 for i ̸∈ S∗. This implies that Sk = S∗.

C.4.4. PROOF OF LEMMA C.3

To prove D̃ is column-orthogonal, we first observe that, for i ≤ k, we have ∥d̃i∥22 = cos2 θ + sin2 θ = 1. Moreover, for
any pair i < j ≤ k/2, we have

⟨d̃i, d̃j⟩ = ⟨cos θd∗
i + sin θd∗

i+k/2, cos θd
∗
j + sin θd∗

j+k/2⟩ = 0,

which follows since ⟨d∗
i ,d

∗
j ⟩ = ⟨d∗

i+k/2,d
∗
j ⟩ = ⟨d∗

i ,d
∗
j+k/2⟩ = ⟨d∗

i+k/2,d
∗
j+k/2⟩ = 0. A similar argument can be made

for any i < j ≤ k and j ̸= i+ k/2. For any i ≤ k and j = i+ k/2, we have

⟨d̃i, d̃j⟩ = ⟨cos θd∗
i + sin θd∗

i+k/2,− sin θd∗
i + cos θd∗

i+k/2⟩ = − sin θ cos θ + sin θ cos θ = 0.

Finally, for any j > i > k we trivially have ⟨d̃i, d̃j⟩ = 0. This completes the proof of column-orthogonality of D̃.

To prove the second statement, note that ∥d̃i − d∗
i ∥2 = 0 for every i > k. Moreover, for every i ≤ k, we have

∥d̃i − d∗
i ∥2 = ∥(cos θ − 1)d∗

i + sin θd∗
i+k∥2 =

√
(cos θ − 1)2 + sin2 θ =

√
2− 2 cos θ = 2 sin

θ

2
.

This completes the proof.

C.4.5. PROOF OF LEMMA C.4

The proof strategy we adopt here is similar with the proof of Lemma 3.1 in (Liang et al., 2022). However, we con-
sider a different generative model in this paper, so we present the full proof for the purpose of completeness. We
will show that for i ∈ S∗, |⟨di,x⟩| > γ/2 and for i ̸∈ S∗, |⟨di,x⟩| < γ/2, which will immediately result in
S = argmaxT⊆[n],|T |≤k

∑
i∈T |⟨di,x⟩| = S∗, which proves Lemma C.4.

We decompose ⟨di,x⟩ as:
⟨di,x⟩ = ⟨di,

∑
j∈S∗

d∗
jβj⟩

= ⟨di,d∗
i ⟩βi︸ ︷︷ ︸

:=Ai

+
∑

j ̸=i,j∈S∗

⟨di,d∗
j ⟩βj︸ ︷︷ ︸

:=Bi

(20)

For Ai, we have:

Ai = ⟨di,d∗
i ⟩βi = ⟨d∗

i ,d
∗
i ⟩βi + ⟨di − d∗

i ,d
∗
i ⟩βi = βi + ⟨di − d∗

i ,d
∗
i ⟩βi.

When i ∈ S∗, we have

|βi + ⟨di − d∗
i ,d

∗
i ⟩βi| ≥ (1− ∥di − d∗

i ∥2)|βi|
≥ (1− ∥D −D∗∥1,2)|βi|
≥ (1− 2ρ)|βi|.
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Given that 2ρ < γ

4
√
kΓ

≤ 1
4 , we can conclude

|Ai|

{
≥ 3γ

4 if i ∈ S∗

= 0 if i ̸∈ S∗ , (21)

given that βi = 0 when i ̸∈ S∗. For Bi, we have:

|Bi| =

∣∣∣∣∣∣
∑

j ̸=i,j∈S∗

⟨di,d∗
j ⟩βj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j ̸=i,j∈S∗

⟨d∗
i + (di − d∗

i ),d
∗
j ⟩βj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j ̸=i,j∈S∗

⟨di − d∗
i ,d

∗
j ⟩βj

∣∣∣∣∣∣
≤

∑
j ̸=i,j∈S∗

⟨|di − d∗
i ,d

∗
j ⟩||βj |

≤ Γ∥di − d∗
i ∥1

≤
√
kΓ∥di − d∗

i ∥2
≤ 2

√
kΓρ

≤ γ/4

(22)

Combining Equation (21) and Equation (22), we have that for all i:

|⟨di,x⟩| = |Ai + Bi|

{
> 3γ

4 − γ
4 = γ

2 if i ∈ S∗

< γ
4 if i ̸∈ S∗ , (23)

which proves the exact support recovery.

C.4.6. PROOF OF LEMMA C.5

It is easy to see that ∥c− a∥2 ≥ ∥b− a∥2 is equivalent to |c− a| ≥ |b− a|.

If c > 0, by bc > 0 we must have b > 0. Then |c| ≥ |b| ≥ a becomes c ≥ b ≥ a, which gives |c− a| ≥ |b− a|.

If c < 0, by bc > 0 we must have b < 0. Then |c| ≥ |b| ≥ a becomes a ≥ b ≥ c, which gives |c− a| ≥ |b− a| as well.

C.4.7. PROOF OF LEMMA C.6

The proof of Lemma C.6 consists of two steps:

1. We first use classic concentration inequalities from covariance estimation literature to bound σd and σ1 given |Qi|.

2. Then we will show that when m is large enough, with high probability, we have |Qi| bounded above and below.

Combining these two steps and taking the union bound will complete the proof of Lemma C.6.

For the fist step, we first notice that:

σd

∑
h∈Qi

xhxh⊤

 = σd

∑
h∈Qi

D∗βhβh⊤D∗⊤


= σd

∑
h∈Qi

βhβh⊤


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The last equation is due to the fact that D∗ is a full-rank orthogonal matrix. Consider the vector βh for h ∈ Qi. According
to our generative model and the definition of Qi, we have βhi ̸= 0, and its support outside i is selected uniformly over
all (k − 1)-element subsets of [n]\{i}. Each nonzero entry of βh has a zero mean, variance of σ2, and an absolute value
bounded between γ and Γ. Therefore, its covariance matrix defined as Σ := E

[
βhβh

⊤
]

is diagonal, with its (i, i)-th entry

corresponding to σ2, and its (j, j)-th entry (with j ̸= i) corresponding to (k−1)σ2

n . We claim that when |Qi| is sufficiently
large,

∑
h∈Qi

xhxh⊤ will concentrate around |Qi|Σ. Specifically, we will use the following well-established result:

Theorem C.7 ((Vershynin, 2018)). Let w be a zero-mean sub-Gaussian random vector in Rd with covariance matrix Σ,
such that

∥⟨w,q⟩∥ψ2 ≤ K
(
E[⟨w,q⟩2]

)1/2
for any q ∈ Rd,

for some K ≥ 1. Here ∥ · ∥ψ2
denotes the sub-Gaussian norm of a random variable. Let W ∈ Rd×m̂ be a matrix whose

columns have identical and independent distribution as w. Then, for any u ≥ 0 and with probability at least 1− 2 exp (−u),
we have ∥∥∥∥ 1

m̂
WW⊤ −Σ

∥∥∥∥
2

≤ CK2

(√
d+ u

m̂
+

d+ u

m̂

)
∥Σ∥2

for some universal constant C.

To invoke Theorem C.7, we note that βh is indeed zero-mean and sub-Gaussian. Therefore, upon setting w = βh, we notice
that for any unit-norm q:

∥⟨βh,q⟩∥2ψ2
≤

d∑
j=1

q2
j∥βhj ∥2ψ2

≤ C0σ
2,

for some universal constant C0. We also have

E
[〈
βh,q

〉2]
= q⊤Σq ≥ (k − 1)σ2

n
.

By setting K2 = C0n
k−1 , we can invoke Theorem C.7 with u = n and conclude that, with probability at least 1− 2 exp{−n}:

σd

∑
h∈Qi

βhβh⊤

 ≥ |Qi|σd (Σ)− Cnσ

k − 1

√
2n|Qi| =

|Qi|(k − 1)σ2

n
− Cnσ

k − 1

√
2n|Qi|, (24)

σ1

∑
h∈Qi

βhβh⊤

 ≤ |Qi|σ1 (Σ) +
Cnσ

k − 1

√
2n|Qi| = |Qi|σ2 +

Cnσ

k − 1

√
2n|Qi|, (25)

for some universal constant C, which concludes the first step. Here we recall that d = n in the full-rank and orthogonal
setting.

For the second step, consider one specific i from [n]. The random variable |Qi| follows a binomial distribution with m trials
and k

n success rate. We next recall the Chernoff bound:

Theorem C.8 ((Motwani & Raghavan, 1996)). Let X1, X2, . . . , XN be independent Bernoulli random variables with
P(Xi = 1) = pi, and let

X =

N∑
i=1

Xi and µ = E[X] =

N∑
i=1

pi.

Then for any 0 < δ < 1, we have

P
(
X ≤ (1− δ)µ

)
≤ exp

{
− δ2 µ

2

}
,

and
P
(
X ≥ (1 + δ)µ

)
≤ exp

{
− δ2 µ

2

}
.
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We can then invoke Theorem C.8 with δ = 1
2 to obtain

km

2n
≤ |Qi| ≤

2km

n
, (26)

with probability at least 1− 2 exp
{
−km

8n

}
. Finally, by combining Equation (24) and Equation (26), we have

1

m
σd

∑
h∈Qi

βhβh⊤

 ≥ |Qi|(k − 1)σ2

nm
− Cnσ

(k − 1)m

√
2n|Qi|

≥ k(k − 1)σ2

2n2
− Cnσ

(k − 1)

√
4k

m
. (27)

When m ≥ 64C2n6

σ2k(k−1)4 , we have

Cnσ

(k − 1)

√
4k

m
≤ k(k − 1)σ2

4n2
,

which reduces Equation (27) to:

1

m
σd

∑
h∈Qi

βhβh⊤

 ≥ k(k − 1)σ2

2n2
− k(k − 1)σ2

4n2
=

k(k − 1)σ2

4n2
.

With a similar argument, we can combine Equation (25) and Equation (26) to get:

1

m
σ1

∑
h∈Qi

βhβh⊤

 ≤ |Qi|σ2 +
Cnσ

k − 1

√
2n|Qi| ≤

4kσ2

n
.

Finally, we take the union bound for all i ∈ [n], leading to the overall probability of 1− 2n exp{−n} − 2n exp
{
−km

8n

}
.

This completes the proof.

D. Detailed Experiments
D.1. Experiments on Generative Model

All experiments reported in this section were performed in Python 3.9 on a MacBook Pro (14-inch, 2021) equipped with an
Apple M1 Pro chip.

We generate samples according to the described generative model in Assumption 3.2, we construct the input data x or
{xh}mh=1 by sampling each non-zero entry from a uniform distribution over the interval [γ,Γ]. The matrix D∗ is chosen
to be a randomly generated orthonormal matrix, and we construct Dinit by setting Dinit = D∗ +E, where each column
of E is uniformly drawn from the set {e | ∥e∥2 ≤ ρ}. For the results shown in Figure 4, we set d = 10, k = 5, ρ = 0.2,
γ = 0.5, and Γ = 1. The first column of Figure 4 illustrates the scenario corresponding to Theorem 3.3, in which only a
single input feature x is available. Here, we choose n = 8 and η = 10−2. The plot showing L(f̃D(t)) confirms the linear
convergence of the loss function to zero, in agreement with Theorem 3.3. However, as previously noted, this setting does not
ensure exact recovery for each queried feature. Indeed, as shown in the right panel of the first row, ∥D(t) −D∗∥1,2 does
not converge to zero. Even if we only consider columns that are activated at each iteration, ∥D(t)

S −D∗
S∥1,2 also remains

nonzero, indicating that optimizing L with a single x is insufficient to recover the ground-truth dictionary D∗.

In the second column of Figure 4, we apply projected gradient descent to minimize Lm, as defined in Equation (6), under the
assumption that D∗ is rank-deficient. Specifically, we set n = 8 < d and η = 10−1. Evidently, ∥D(t) −D∗∥1,2 does not
converge to zero because the component of D(t)−D∗ orthogonal to the column space of D∗ remains unaffected throughout
the iterations. In contrast, the third column of Figure 4 corresponds to the setting n = d, which guarantees the full-rankness
of D∗ is full rank. In this case, ∥D(t)

S −D∗
S∥1,2 converges to zero, thus supporting the conclusion of Theorem 3.4.
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Figure 4. Results on synthetic dataset.

D.2. More Details on Algorithm 2

Here we provide a detailed description for the concept dispersion step and the embedding normalization and projection
step in Algorithm 2. In Algorithm 3, we present the pseudo-code for concept dispersion. The algorithm first calculates the
mean concept embedding for the given {di}ni=1 and calculates the angle between each d and the mean. Then, Algorithm 3
increases these angles by a constant factor r.

Algorithm 3 Concept dispersion

1: Input: {di}ni=1, dispersion factor r.
2: Calculate the mean concept embedding d̄ =

∑n
i=1 di/∥

∑n
i=1 di∥2.

3: for each di do
4: Decompose di as di = cosαi d̄+ sinαi ei, where αi ∈ [0, π/2], ∥ei∥2 = 1, and ei ⊥ d̄.
5: Calculate the dispersed query feature dnew

i = cos(rαi) d̄+ sin(rαi) ei.
6: Add dnew

i as the ith column of Dinit.
7: end for
8: Return Dinit.

The effectiveness of Algorithm 3 is shown in Figure 5, where we compare the correlation between concept embeddings
before and after this process across various datasets.

Algorithm 4 presents the pseudo-code for the projection and normalization step in Algorithm 2.

Algorithm 4 Embedding normalization and projection

1: Input: current query feature matrix D, initial query feature matrix Dinit, and radius ρ.
2: for each query feature di in D do
3: Normalize di as di = di/∥di∥2.
4: if ∥di − dinit

i ∥2 ≥ ρ then
5: di = argmind:∥d−dinit

i ∥2≤ρ,∥d∥2=1 ∥d− di∥2.
6: end if
7: end for
8: Return D.

29



Enhancing Performance of Explainable AI Models with Constrained Concept Refinement

Before Atom Dispersion After Atom Dispersion

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

CIFAR10

CIFAR100

CUB

ImageNet

Places365

Figure 5. We calculate the correlation matrix (D⊤D) for dictionaries before and after Algorithm 3, and present them in the format of
heatmaps. As can be seen, the proposed dispersion process effectively reduces the correlation between concept embeddings generated by
CLIP.
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Figure 6. Ablation study for Algorithm 3 and Algorithm 4.

D.3. Ablation Study

In this section, we present empirical findings from our ablation study. As a preliminary note, we emphasize that the
comparison between CCR and its baseline shown in Figure 2 serves as a key ablation analysis for the CCR module as
a whole. Here, we concentrate on evaluating the contributions of two critical components introduced in the preceding
section: Atom Dispersion and Atom Projection. To this end, we individually exclude these two steps—Algorithm 3 and
Algorithm 4—and compare the resulting models to the full CCR framework in terms of test accuracy, average sparsity,
average column deviation, and maximum column deviation over the course of training.

As illustrated in Figure 6, the omission of either step leads to an improvement in performance. However, these gains incur
different trade-offs. Specifically, removing Algorithm 3 results in a substantial increase in the average sparsity of the learned
sparse codes. In contrast, eliminating Algorithm 4 causes the concept atoms to drift significantly from their initial CLIP
embeddings, thereby compromising the interpretability of the model.

D.4. Hyperparameter Tuning

This section presents an empirical evaluation of two critical hyperparameters—namely, the hard-threshold parameter λ and
the radius bound ρ—which significantly influence the performance of Algorithm 2. The corresponding results are illustrated
in Figure 7 and Figure 8.

As depicted in Figure 7, increasing the value of λ results in sparser explanations by reducing the number of activated concepts.
However, this sparsity comes at the cost of reduced test accuracy. Therefore, selecting an appropriate threshold entails
balancing the trade-off between prediction accuracy and the level of explanation sparsity—a consideration of particular
relevance in explainable AI applications.

It is important to note that including more concepts does not inherently ensure improved accuracy. This point is exemplified
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Figure 7. Average sparsity and test accuracy for varying thresholds λ.

in the left column of Figure 8, which shows that expanding the search radius enables the CCR algorithm to identify solutions
that are simultaneously sparser and more accurate. Furthermore, the empirical results suggest that the performance gains of
CCR saturate beyond ρ > 0.1, indicating that ρ = 0.1 serves as a suitable choice for this hyperparameter.

D.5. More Experiments on Interpretability

In this section, we expand on the discussion of CCR’s interpretability from Section 4.2 by conducting a comprehensive
case study across all five datasets used to evaluate CCR. For each dataset, we select three representative image-label pairs
and present the ten highest-ranking concept scores on the left, alongside their corresponding weights associated with
the predicted label on the right. To facilitate a comparison of explainability with and without CCR, we also report the
corresponding results for the baseline model, which is obtained by setting ηD = 0 in Algorithm 2, presented at the end of
this section. Based on our case study, we derive several key observations:

• Semantic correlation. In most cases, concepts with higher concept scores exhibit a strong semantic correlation with
the input images. This finding substantiates the reliability of our algorithm as an interpretable AI model. A notable
example is illustrated in Figure 16 and Figure 17, where the algorithm effectively identifies the primary distinguishing
features between two visually similar bird species—their coloration—leading to an accurate classification.

• Weight distribution. In instances where misleading elements are present in an image, certain concepts unrelated to
the ground truth label may receive high concept scores. Nevertheless, the linear layer appropriately assigns a small
weight to such concepts. These weights encapsulate the algorithm’s interpretation of the label, thereby rendering it
comprehensible to human users. Examples of such cases include “a beak” in Figure 10, “a plow” in Figure 12, “a
seagull”/“a bird” in Figure 14, “a highlighter” in Figure 18, “iridescent” in Figure 19, and “abandoned buildings”/“a
sunset” in Figure 21.

• Debugging capability for incorrect predictions. Inevitably, our framework makes incorrect predictions for some
samples. A key application of explainable AI is to help human experts understand the reasoning behind these errors. Our
findings indicate that the proposed algorithm effectively captures interpretable misconceptions introduced by encoders.
For instance, in Figure 22, concepts such as “a display case” and “exhibits” suggest that the primary misleading factor
causing the model to predict “natural history museum” instead of the correct label “shopping mall” is the manner in
which the store displays its goods. This insight is valuable for human intervention and model correction.
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Figure 8. Average sparsity and test accuracy for varying radius bounds ρ.

• Reliance on the richness of the concept set. The effectiveness of the algorithm is inherently influenced by the quality
of the concept set, a phenomenon that aligns with the fundamental motivation behind explainable AI. As demonstrated
in Figure 23, the concept set lacks distinctive features that differentiate between “bus interior” and “train interior”.
Consequently, the model is unable to distinguish between these two labels.
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Figure 9. CIFAR-10 (a)

Figure 10. CIFAR-10 (b)

Figure 11. CIFAR-10 (c)
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Figure 12. CIFAR-100 (a)

Figure 13. CIFAR-100 (b)

Figure 14. CIFAR-100 (c)
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Figure 15. CUB-200 (a)

Figure 16. CUB-200 (b)

Figure 17. CUB-200 (c)
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Figure 18. ImageNet (a)

Figure 19. ImageNet (b)

Figure 20. ImageNet (c)
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Figure 21. Places365 (a)

Figure 22. Places365 (b)

Figure 23. Places365 (c)
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Figure 24. Baseline comparison to the top figure in Figure 3

Figure 25. Baseline comparison to the bottom figure in Figure 3

Figure 26. Baseline comparison to Figure 21

39



Enhancing Performance of Explainable AI Models with Constrained Concept Refinement

Figure 27. Baseline comparison to Figure 22

Figure 28. Baseline comparison to Figure 23
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