
Proceedings Track 2022 NeurIPS Workshop on Symmetry and Geometry in Neural Representations

Do Neural Networks Trained with Topological Features
Learn Different Internal Representations?

Sarah McGuire mcgui176@msu.edu

Department of Computational Mathematics, Science, and Engineering, Michigan State University

Pacific Northwest National Laboratory

Shane Jackson Shane.Jackson@pnnl.gov

Pacific Northwest National Laboratory

Tegan Emerson
∗

Tegan.Emerson@pnnl.gov

Pacific Northwest National Laboratory

Henry Kvinge
†

Henry.Kvinge@pnnl.gov

Pacific Northwest National Laboratory

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane

Abstract

There is a growing body of work that leverages features extracted via topological data anal-
ysis to train machine learning models. While this field, sometimes known as topological
machine learning (TML), has seen some notable successes, an understanding of how the
process of learning from topological features differs from the process of learning from raw
data is still limited. In this work, we begin to address one component of this larger issue by
asking whether a model trained with topological features learns internal representations of
data that are fundamentally different than those learned by a model trained with the orig-
inal raw data. To quantify “different”, we exploit two popular metrics that can be used to
measure the similarity of the hidden representations of data within neural networks, neural
stitching and centered kernel alignment. From these we draw a range of conclusions about
how training with topological features does and does not change the representations that
a model learns. Perhaps unsurprisingly, we find that structurally, the hidden representa-
tions of models trained and evaluated on topological features differ substantially compared
to those trained and evaluated on the corresponding raw data. On the other hand, our
experiments show that in some cases, these representations can be reconciled (at least to
the degree required to solve the corresponding task) using a simple affine transformation.
We conjecture that this means that neural networks trained on raw data may extract some
limited topological features in the process of making predictions.

Keywords: Topological data analysis, neural representation similarity, neural stitching,
representation learning

1. Introduction

For some problems, deep learning has proven to be extremely efficient at extracting features
from raw data which can then (at least to a moderate degree) generalize to unseen data.

∗ T.E. holds joint appointments in the Department of Mathematics at Colorado State University and the
Department of Mathematical Sciences at the University of Texas, El Paso

† H.K. holds a joint appointment in the Department of Mathematics at the University of Washington

© 2022 S. McGuire, S. Jackson, T. Emerson & H. Kvinge.

McGuire Jackson Emerson Kvinge

However, there remain classes of problems where domain expertise suggests that additional
feature preprocessing should lead to heightened ML model robustness. One increasingly
popular such type of data preprocessing involves using tools from topological data analysis
(TDA) to extract topological features from data. These topological representations are then
used to train an ML model. This growing field is often summarized as topological machine
learning (TML). For example, in the analysis of microscopy images in materials science
it is known that the size, abundance, and shape of precipitates in a material has a direct
effect on the resulting physical properties of that material (Kassab et al., 2022). While an
ML algorithm might learn to extract such features from raw data, the use of TML-based
methods can ensure that these domain-informed features are available when a model makes
predictions.

While there are an abundance of individual studies where topological features have been
used to effectively train ML-models, there are still gaps in the community’s understanding of
how training with such features impacts the resulting model. In this work we take a first step
in this direction by investigating the similarities and differences of models trained with raw
data and models trained with topological features. We focus on the question of how such
model’s internal representations differ. While topological representations generally bear
little resemblance to their corresponding raw data, it is conceivable that a network might
learn to extract some topological features naturally. It is also possible that topological
representations contain information that is “orthogonal” to the representations learned by
a model trained with raw data. We aim to begin answering such questions in this paper.

To measure differences between hidden activations, we leverage two common tools used
to quantify the similarity of neural representations. The first is model stitching (Lenc and
Vedaldi, 2015; Bansal et al., 2021). This technique evaluates whether the features extracted
by the first k layers of one frozen n-layer model f1 can be reconciled with the last n − k
layers of another frozen n-layer model f2 after attaching them with a single learnable layer L.
Informally, this method assumes such a composite network will be able to perform at least as
well as either f1 or f2 if the representation of data learned by these models at layer k is the
same up to a transformation of type L. Note that L is usually restricted to a specific family of
relatively simple transformations (e.g., affine transformations, orthogonal transformations,
or permutation matrices (Godfrey et al., 2022)). In this work we restrict ourselves to affine
transformations. We also explore the differences in neural representations using centered
kernel alignment (CKA), a metric that compares covariance matrices of hidden activations
of networks (Kornblith et al., 2019). We argue that neural stitching measures task-focused
similarity (can the information required for network f2 to solve a task be extracted from
the hidden activations of network f1), while CKA measures more task-agnostic structural
information.

We compare these representations for convolutional neural networks and multi-layer
perceptrons (MLPs) trained on two different datasets (topologically distinguishable subsets
of MNIST (Deng, 2012) and a subset of the describable textures dataset (Cimpoi et al.,
2014)). In each case, one set of networks is trained on the raw images and one set is trained
on persistence images (PIs) (Adams et al., 2017), a stable representation of the features
in a persistence diagram. We draw several conclusions from our experiments. (1) We find
that from a structural perspective, the representations learned by networks trained with
persistence images are indeed distinct from those trained with raw images. On the other

2

Neural Representations of Topological Features

hand, we find that to a limited degree (and depending on the network, dataset, and layer),
the internal representations of models trained on persistence images can be used by the later
layers of a model trained with raw data in order to solve a specific task. We argue that this
implies that either a small amount of non-topological data is leaking into our persistence
image representations or networks trained with raw data are actually preserving topological
features.

In summary our work contains the following contributions:

• We use neural similarity metrics to quantify the relationship between the representa-
tions learned by neural networks trained with topological features and those trained
on raw data.

• We show that the representations learned by networks trained with topological fea-
tures differ considerably from those trained with raw data at a structural level.

• Despite these differences however, we show that from the perspective of solving a given
classification task, these learned representations share some significant similarities.

2. Similarity metrics for neural representations

One approach to understanding how neural networks process data explores similarities and
differences between the internal representations of distinct deep learning models. When such
metrics are effective, they can reveal the answers to questions such as whether all models
with strong performance tend to learn similar representations of a dataset regardless of
random initialization or architecture (sometimes known as the ’Anna Karenina’ scenario).
Because of the value of such insight, considerable work has been put into identifying princi-
pled metrics of neural representations in both the deep learning and neuroscience literature
(Kriegeskorte et al., 2008; Kornblith et al., 2019). These include: canonical correlation
analysis (CCA) (Hardoon et al., 2004), along with its variants SVCCA (Raghu et al., 2017)
and PWCCA (Morcos et al., 2018). All of these methods directly compare the data matri-
ces obtained by extracting the hidden activations of a batch of input at some intermediate
layers of two neural networks.

The two metrics that we chose to use in this paper are model stitching and centered ker-
nel alignment (CKA). As described in the Introduction, model stitching (Lenc and Vedaldi,
2015) evaluates whether the hidden representation of one model can be transformed into a
form that can be used by the later layers of another network to solve a task. Important
conclusions about the way that deep learning models learn were later obtained using model
stitching in (Bansal et al., 2021).

Let f1, f2 : X → Y be two models with input space X and output space Y . Decomposing
f1 and f2 into layers we can write: f1 = fn1

1 ◦ f
n1−1
1 ◦ · · · ◦ f11 and f2 = fn2

2 ◦ f
n2−1
2 ◦ · · · ◦ f12 .

We can stitch f1 and f2 together at layers k1 < n1 and k2 < n2 by creating

st(f1, f2, k1, k2) = fn2
2 ◦ f

n2−1
2 ◦ · · · ◦ fk2+1

2 ◦ l ◦ fk11 ◦ · · · ◦ f
1
1

where fk2+1
2 has domain Rd

k2
2 , fk11 has range Rd

k1
1 , and l : Rd

k1
1 → Rd

k2
2 is some layer

belonging to a specified function class (e.g., affine transformations, linear transformations,
or orthogonal transformations). We keep all weights in st(f1, f2, k1, k2) except for those

3

McGuire Jackson Emerson Kvinge

in layer l. We then train st(f1, f2, k1, k2) on the training set and evaluate its accuracy
on the test set (we call this the stitching accuracy). If st(f1, f2, k1, k2) is able to achieve
performance comparable to either f1 or f2 then we draw the conclusion that a transformation
of type l is all that is need to reconcile the representations of f1 at layer k1 and f2 at layer
k2 respectively.

Since our concern is for the effect of input type (topological vs non-topological), when
we run stitching experiments, we record the accuracy when stitching together a model
trained with topological input and a model trained with raw input. We then compare
this with the result of stitching together two distinct models both trained with topological
input or both trained with raw input. We take a greater difference in accuracy to mean
a greater difference in internal representation between these two types of models (models
trained with topological features and models trained with raw input). Note that this is
a very task-centric approach to comparing representations, it measures similarity between
representations based on how well one representation can be used by another network to
complete a task.

On the other hand, centered kernel alignment (CKA) (Kornblith et al., 2019) take a
more structure focused approach to measuring the similarity of representations in neural
networks. CKA is defined as

CKA(f<k1
1 (D), f<k2

2 (D)) =
||Cov(f<k1

1 (D), f<k2
2 (D))||2F

||Cov(f<k1
1 (D), f<k1

1 (D))||F ||Cov(f<k2
2 (D), f<k2

2 (D))||F

where f<k1
1 are the first k1 layers of network f1, f

<k2
2 are the first k2 layers of network

f2, || · ||F is the Frobenious norm, and D is a set of samples from some data distribution.
It is clear that CKA does not take into account task specific features of f<k1

1 (D) and
f<k2
2 (D). That is, CKA can potentially take into account any structure in f<k1

1 (D) and
f<k2
2 (D), whereas neural stitching implicitly focuses on structure that leads to good or poor

performance in the second model in the stitching.

3. Topological features for machine learning

Topological data analysis (TDA) presents a collection of tools to characterize the shape of
data. In particular, persistent homology quantifies shape by identifying holes in different di-
mensions: connected components, cycles, voids, and higher dimensional cycles. Topological
information such as persistent homology representations have been incorporated into var-
ious aspects of ML problems: data pre-processing, feature extraction, model architecture,
and training procedures.

There exists a collection of work which aim to extract topological features from data
(for example, via persistent homology) and transform the representation for use as input to
machine learning models. A primary subset of such work is different vectorization methods
to transform topological features (which exist in spaces with properties such as non-unique
means) into fixed-dimensional feature vectors, which are then suitable for machine learning.
Vectorization methods include Betti curves, persistence images (Adams et al., 2017), per-
sistence landscapes (Bubenik, 2015), silhouettes (Chazal et al., 2014), extracting signatures
from point descriptors (Carrière et al., 2015), and other kernel-based vectorization methods
(Reininghaus et al., 2015; Carrière et al., 2017; Kusano et al., 2018).

4

Neural Representations of Topological Features

Additionally, there is a growing effort to incorporate topological information directly into
machine learning models to influence or understand the architecture itself. One access point
is regularization terms on the loss functions to encourage latent space representations to
have certain topological features. Adjusting loss terms and regularization terms to account
for topological information allows control over connectivity of an autoencoder’s latent space
such that topological features are preserved in latent space representations (Hofer et al.,
2019; Moor et al., 2020). Additional applications of TDA have been used to understand and
evaluate model behavior in different contexts: convolutional neural networks (Gabrielsson
and Carlsson, 2019), generative adversarial networks (Zhou et al., 2021), classifier decision
boundaries (Ramamurthy et al., 2019), and graph structure of neural networks (Rieck et al.,
2019).

Recent surveys (Hensel et al., 2021; Barnes et al., 2021; Pun et al., 2022; Rabbani and
Nugroho, 2020) provide more comprehensive discussion on topological information incor-
porated into machine learning and deep learning methods. These existing methods explore
ways to leverage topological features (as primary representations, or to augment more stan-
dard representations) or use topology to understand topological information encoded in
weights of the network. However, it is not well understood how training models with topo-
logical features actually affect the latent space representations of the model.

4. Experimental set-up

We chose to restrict ourselves to image datasets in this limited study. We strongly recom-
mend examining these questions for other data modalities in future work. We were further
constrained by the fact that we needed to choose datasets on which both a deep learning
model trained with TDA and a deep learning model trained on raw features would perform
reasonably well. For this reason, we used two simple datasets:

• MNIST-0-1-8: A subset of the standard MNIST dataset containing only the classes
of topologically distinct digits ‘0’, ‘1’,‘8’,

• Describable textures BBV: A subset of the describable textures dataset (Cimpoi
et al., 2014) containing only the classes ‘banded’, ‘bubbles’, and ‘veined’, using the
first split of data used for evaluation of the original dataset. We note that this is a
challenging dataset for all models because of the few images available.

On these datasets we trained two types of models: those that take persistence images
as input and those that take the raw images as input (see Figure 1). Where possible, we
made changes to both raw images and PIs so that their size and number of channels were
equal. We provide additional information on data preprocessing in A.

CKA and neural stitching are generally used to compare the representations of different
models/layers which take as input the same data. In our experiments, the two models
actually take as input different data representations (raw and topological). To reconcile
this, we interpret the process of transforming a raw image into a persistence image as an
initial layer in a model. Thus, when comparing representations, the underlying raw data is
the same between both models.

We use three different model architectures: (i) an MLP with 4 blocks, batchnorm,
and ReLU activations, (ii) a simple CNN with 6 blocks, and (iii) the standard AlexNet

5

McGuire Jackson Emerson Kvinge

Figure 1: A layout of the two types of models we use in this paper (those taking as input
raw images and those taking as input persistence images). We treat the process
of calculating persistence images as a layer in the model to accord with standard
practices when applying neural stitching and CKA.

architecture (exclusively for describable textures BBV). We trained our models on a 12GB
NVIDIA Tesla P100 GPU with access to 16 cores and 64GB of memory. We provide training
hyperparameters in Section B. All models were trained with standard cross entropy and the
Adam optimizer (Kingma and Ba, 2014).

We choose to work with persistence images (PIs) (Adams et al., 2017) as our vehicle for
extracting topological features from images. When computing PIs for MNIST-0-1-8, we use
the raw single-channel images as input to the TDA pipeline. Raw images in Describable
textures BBV, however, are RGB images and as such require separate PI computation for
each of the three channels.

In our stitching experiments we connect linear layers with an additional linear layer (with
appropriate dimension and a learned bias term). We stitch convolutional layers together
with an 2d-convolutional layer with 1×1 kernel (and no bias term). Further exploration with
different types of stitching transformations would be a valuable avenue of study. Stitching
is often used to compare representations at different layers of a model (or representations
at different layers of different models). Since we are already varying the input (persistence
image vs. raw image) we always stitch together networks with identical architecture and
always stitch at the same layer in both networks. That is, if both networks have n layers,
and we are using the first k layers of the initial model f1, then we always use the latter
n− k layers of model f2. Analogous conditions hold for our CKA measurements.

We include 95% confidence intervals to indicate the amount of statistical variation among
independently initialized and trained models. Our confidence intervals when stitching to-
gether a model trained with persistence images and a model trained with raw features are
calculated over 4 distinct model pairs. Our confidence intervals when stitching together
models trained with the same data type are calculated over 3 distinct pairs.

6

Neural Representations of Topological Features

Figure 2: The stitching accuracy calculated when (left) MLPs (respectively CNNs (right))
trained on MNIST-0-1-8 are stitched together. The x-axis indicates the layer or
block at which the networks were stitched. (Blue) corresponds to two networks
trained on persistence images stitched together, (orange) corresponds to networks
trained on persistence images (early) stitched to models trained on raw images
(late), (green) corresponds to networks trained on raw images (early) stitched to
models trained on persistence images (late), (red) corresponds a two networks
trained on raw images. Shaded regions indicate 95% confidence intervals calcu-
lated over distinct pairs of randomly initialized and trained models (see Section
4 for details).

Figure 3: (Left) Linear CKA values computed for hidden activations of (blue) two MLPs
trained on persistence images, (orange) an MLP trained on persistence images
and an MLP trained on raw images, and (green) two MLPs trained on raw images.
All networks were trained and evaluated on MNIST-0-1-8. (Right) The same
experiment but with CNNs rather than MLPs. Shaded regions indicate 95% con-
fidence intervals calculated over distinct pairs of randomly initialized and trained
models (see Section 4 for details).

7

McGuire Jackson Emerson Kvinge

5. Results

5.1. Models trained with persistence images and models trained with raw
images have structurally different representations

As noted in Section 2, CKA is one approach to measuring the structural similarity between
the hidden activations of two different models. In Figures 3 and 4 (right) we show the result
of applying CKA to representations from one model trained with persistence images and
another trained with raw images (orange in both plots). For comparison, we also show the
result of applying CKA to representations where both models were trained on the same type
of input (persistence images in blue and raw images in green). Perhaps unsurprisingly, we see
that the representations of models trained and evaluated on different datatypes (persistence
images vs. raw images) are generally more dissimilar than the average representations of
models trained on the same datatype.

Intriguingly, we note that in the case of MLP architectures the similarity between rep-
resentations actually increases as data passes to deeper layers (though still remaining low-
overall). This suggests that these network’s representations may actually converge to a
certain extent at deeper layers of the model. On the other hand, this type of behavior is
not seen in either the simple CNN or the AlexNet models where similarity begins to drop
off in later layers (this is true for other types of CKA comparisons, not just comparisons
between models using different data types). This points to a general phenomenon that we
observe: the architecture used has a significant effect on the similarity trends observed from
layer to layer.

5.2. Internal representations share more similarities when compared in the
context of the task

Our neural stitching results tell a somewhat different story. We see that while for most
models and most layers, stitching together models trained with different input types (topo-
logical vs raw) resulted in lower stitching accuracy than stitching together models trained
on the same datatype, there were exceptions and in general the differences were much less
significant than those captured by the task-agnostic CKA. For example, in Figure 2 we see
that at intermediate layers of the CNNs trained on MNIST-0-1-8, stitching together a model
trained on persistence images (earlier layers) and a model trained on raw images (later lay-
ers) actually led to statistically equivalent performance to stitching together two models
trained on persistence images. It is unclear what is significant about the layers where this
happens. Similarly, in Figure 4 we see that stitching together a model trained on persistence
images (earlier layers) and raw images (later layers) can sometimes result in significantly
higher accuracy than stitching together two different models trained on persistence images.
This is the case for layer 4 in Figure 4.

It is important to note that our analysis is complicated by the fact that in general, the
networks trained on raw images performed better than the networks trained on persistence
images. This was especially true for the AlexNet models trained and tested on Describable
Textures BBV, but also (to a lesser extent) for the MLP and CNN trained on MNIST-0-1-8.
The difference in performance may be attributable to the fact that topological features tend
to be significantly more coarse than standard raw input. It is also likely that AlexNet is

8

Neural Representations of Topological Features

a suboptimal architecture to use for tasks involving persistence images since it has (ap-
proximate) translation invariance built into it (a feature which is beneficial to many vision
tasks but not beneficial to making predictions on persistence images). However, it is still
surprising that when stitching two networks together, those that were trained on different
types of data would perform as well as those that were trained on the exact same data. It
may be that despite a change in data type, the seemingly more robust feature extraction
and processing learned by the networks trained with raw images provides a leg up when
stitched to the early layers of a model trained on persistence images. It is also likely that
the data itself plays a large role (this may explain the high stitching accuracy for red and
green MNIST CNN models in Figure 2 that when stitched together take as input the raw
MNIST images).

This phenomenon suggests a few possibilities. The first is that the way that models
trained on raw images organize their internal representations can be closely approximated
using topological information alone (at least enough to solve the task and achieve good
stitching accuracy relative to the original models). The second is that in practice, topolog-
ical representations leak a significant amount of non-topological features (this has already
been shown to some extent in Turkeš et al. (2022)) which are used to reconcile the repre-
sentations between models trained with persistence images and those trained on raw data.
Otherwise, it is hard to conceive how stitched networks would be able to recover much of
their performance via a simple learned stitching layer. Either way, there is clearly more
to learn about how topological features interact with non-topological ones in deep learning
models, both implicitly and when they are explicitly incorporated.

6. Limitations

There are a wide range of approaches to TML. While we investigated several axes represent-
ing the variation appearing between works in this field (e.g., model architecture and dataset)
a more comprehensive set of experiments would be desirable. For example, one key area
that we did not investigate was the use of different topological representations (we focused
exclusively on persistence images). It would be useful to not only understand how neural
representations differ between networks trained with and without topological features, but
also between networks trained with different types of representations of features.

7. Conclusion

In this work we made a first step toward understanding how the neural representations
of deep learning models trained with topological features differ from those trained with
standard features. We find that while training with topological features does result in a
network learning fundamentally different features, in certain cases (namely at the interme-
diate layers of a network) these representations contain enough common information that
an affine transformation is enough to translate between one representation and another to
the extent that a task can be solved. Through the lens of task-focused (neural stitching)
and task-agnostic (CKA) neural similarity metrics, we are able to quantify the relationship
between representations learned by neural networks trained with topological features, and
those trained without.

9

McGuire Jackson Emerson Kvinge

Figure 4: Results for AlexNet models trained the Describable Textures BBV dataset.
(Left) The stitching penalties for (blue) two AlexNets trained on persistence
images, (orange) an AlexNet trained on persistence images (early layers) and an
AlexNet trained on raw images (later layers), (green) two AlexNets trained on
raw images, and (red) an AlexNet trained on raw images (early layers) and an
AlexNet trained on raw images (later layers). (Right) The corresponding mea-
surement of CKA values. In both plots, the x-axis indicates where a network was
either stitched or CKA values calculated. Shaded regions indicate 95% confidence
intervals calculated over distinct pairs of randomly initialized and trained models
(see Section 4 for details).

References

Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick
Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier.
Persistence images: A stable vector representation of persistent homology. Journal of
Machine Learning Research, 18(8):1–35, 2017. URL http://jmlr.org/papers/v18/

16-337.html.

Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare
neural representations. Advances in Neural Information Processing Systems, 34:225–236,
2021.

Danielle Barnes, Luis Polanco, and Jose Perea. A comparative study of machine learning
methods for persistence diagrams. Frontiers in Artificial Intelligence, 4, 07 2021. doi:
10.3389/frai.2021.681174.

Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl.
Comput. Topol., 5(3):391–423, 2021. ISSN 2367-1726. doi: 10.1007/s41468-021-00071-5.
URL https://doi.org/10.1007/s41468-021-00071-5.

Peter Bubenik. Statistical topological data analysis using persistence landscapes. J. Mach.
Learn. Res., 16(1):77–102, jan 2015. ISSN 1532-4435.

10

http://jmlr.org/papers/v18/16-337.html
http://jmlr.org/papers/v18/16-337.html
https://doi.org/10.1007/s41468-021-00071-5

Neural Representations of Topological Features

Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced Wasserstein kernel for persistence
diagrams. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 664–673. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.

press/v70/carriere17a.html.

Mathieu Carrière, Steve Y. Oudot, and Maks Ovsjanikov. Stable topological signatures for
points on 3d shapes. Computer Graphics Forum, 34(5):1–12, 2015. doi: https://doi.org/
10.1111/cgf.12692. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.

12692.

Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry
Wasserman. Stochastic convergence of persistence landscapes and silhouettes. In Pro-
ceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14,
page 474–483, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 9781450325943. doi: 10.1145/2582112.2582128. URL https://doi.org/10.1145/

2582112.2582128.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in
the wild. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2014.

Li Deng. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

Rickard Gabrielsson and Gunnar Carlsson. Exposition and interpretation of the topology
of neural networks. pages 1069–1076, 12 2019. doi: 10.1109/ICMLA.2019.00180.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of
deep learning models and their internal representations. arXiv preprint arXiv:2205.14258,
2022.

David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis:
An overview with application to learning methods. Neural computation, 16(12):2639–
2664, 2004.

Felix Hensel, Michael Moor, and Bastian Rieck. A survey of topological machine learning
methods. Frontiers in Artificial Intelligence, 4:681108, 05 2021. doi: 10.3389/frai.2021.
681108.

Chris Hofer, Roland Kwitt, Mandar Dixit, and Marc Niethammer. Connectivity-optimized
representation learning via persistence homology. 05 2019.

Lara Kassab, Scott Howland, Henry Kvinge, Keerti Sahithi Kappagantula, and Tegan
Emerson. Toptemp: Parsing precipitate structure from temper topology. arXiv preprint
arXiv:2204.00629, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

11

https://proceedings.mlr.press/v70/carriere17a.html
https://proceedings.mlr.press/v70/carriere17a.html
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12692
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12692
https://doi.org/10.1145/2582112.2582128
https://doi.org/10.1145/2582112.2582128

McGuire Jackson Emerson Kvinge

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
neural network representations revisited. In International Conference on Machine Learn-
ing, pages 3519–3529. PMLR, 2019.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity
analysis-connecting the branches of systems neuroscience. Frontiers in systems neuro-
science, page 4, 2008.

Genki Kusano, Kenji Fukumizu, and Yasuaki Hiraoka. Kernel method for persistence dia-
grams via kernel embedding and weight factor. Journal of Machine Learning Research,
18(189):1–41, 2018. URL http://jmlr.org/papers/v18/17-317.html.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their
equivariance and equivalence. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 991–999, 2015.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In
Proceedings of the 18th ACM international conference on Multimedia, pages 1485–1488,
2010.

Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoen-
coders. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Re-
search, pages 7045–7054. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.

press/v119/moor20a.html.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in
neural networks with canonical correlation. Advances in Neural Information Processing
Systems, 31, 2018.

Chi Seng Pun, Si Lee, and Kelin Xia. Persistent-homology-based machine learning: a
survey and a comparative study. Artificial Intelligence Review, 55, 02 2022. doi: 10.
1007/s10462-022-10146-z.

Bijak Rabbani and Widijanto S. Nugroho. Topological signatures as complementary features
for deep learning model: A survey. In 2020 6th International Conference on Science and
Technology (ICST), volume 1, pages 1–6, 2020. doi: 10.1109/ICST50505.2020.9732831.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singu-
lar vector canonical correlation analysis for deep learning dynamics and interpretability.
Advances in neural information processing systems, 30, 2017.

Karthikeyan Natesan Ramamurthy, Kush Varshney, and Krishnan Mody. Topological data
analysis of decision boundaries with application to model selection. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5351–5360. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/

v97/ramamurthy19a.html.

12

http://jmlr.org/papers/v18/17-317.html
https://proceedings.mlr.press/v119/moor20a.html
https://proceedings.mlr.press/v119/moor20a.html
https://proceedings.mlr.press/v97/ramamurthy19a.html
https://proceedings.mlr.press/v97/ramamurthy19a.html

Neural Representations of Topological Features

Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale
kernel for topological machine learning. 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4741–4748, 2015.

Bastian Alexander Rieck, Matteo Togninalli, Christian Bock, Michael Moor, Max Horn,
Thomas Gumbsch, and Karsten M. Borgwardt. Neural persistence: A complexity measure
for deep neural networks using algebraic topology. ArXiv, abs/1812.09764, 2019.

Nathaniel Saul and Chris Tralie. Scikit-tda: Topological data analysis for python, 2019.
URL https://doi.org/10.5281/zenodo.2533369.

Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser.py: A lean persistent homol-
ogy library for python. The Journal of Open Source Software, 3(29):925, Sep 2018. doi:
10.21105/joss.00925. URL https://doi.org/10.21105/joss.00925.

Renata Turkeš, Guido Montúfar, and Nina Otter. On the effectiveness of persistent homol-
ogy. arXiv preprint arXiv:2206.10551, 2022.

Sharon Zhou, E. Zelikman, Fred Lu, A. Ng, and Stefano Ermon. Evaluating the disentan-
glement of deep generative models through manifold topology. ArXiv, abs/2006.03680,
2021.

Appendix A. Data preprocessing

In this section we give some further details on how we preprocessed images when training
and evaluating our networks.

Raw Images: We transform grayscale MNIST images into RGB images to make them
more comparable to persistence images which have at least 2 channels. We resized images
to 32× 32 before using them as input to our networks.

Persistence Images: We use the lower-star filtration of each grayscale image and com-
pute 0-dimensional and 1-dimensional persistent homology. For color images (Describable
textures BBV), the lower-star filtration is separately applied to each channel, resulting in
separate persistent homology computations for each image channel. However, for grayscale
images (MNIST-0-1-8), there is a single channel on which to apply the lower-star filtra-
tion. After persistent homology computations, each persistence diagram is vectorized into
a persistence image with resolution 28 × 28, using weight parameter n = 3.0 and kernel
parameter σ = 0.003. For MNIST-0-1-8, we append the 0-dimensional homology PI with
the 1-dimensional homology PI, resulting in a 2-channel (28× 28× 2) image representation
for each MNIST sample. For Describable textures BBV, we append the 0-dimensional ho-
mology PI with the 1-dimensional homology PI for each channel, resulting in a 6-channel
(28 × 28 × 6) image representation for each texture sample. All persistence diagrams and
subsequent persistence images are computed using Ripser (Bauer, 2021; Tralie et al., 2018)
and Persim packages in Scikit-TDA (Saul and Tralie, 2019). We resized images to 32× 32
before using them as input to our networks.

13

https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.21105/joss.00925

McGuire Jackson Emerson Kvinge

Appendix B. Hyperparameters

We provide the hyperameters used for training models in this work in Table 1. We provide
the hyperparameters used when computing stitching accuracy in Table 2.

Table 1: Hyperparameter choices used when training models. MNIST denotes MNIST-0-1-
8 and DTD denotes Describable Textures BBV.

CNN/MNIST MLP/MNIST AlexNet/DTD-BBV

Initial learning rate 5× 10−3 5× 10−3 5× 10−5

Batch size 64 64 12
Weight decay 10−5 10−5 10−5

Training iterations 2000 1000 2000

Table 2: Hyperparameters used when calculating stitching accuracy.

CNN/MNIST MLP/MNIST AlexNet/DTD-BBV

Initial learning rate 10−4 10−4 5× 10−5

Batch size 64 64 12
Weight decay 10−5 10−5 10−5

Training iterations 300 300 500

Appendix C. Model architectures

In this section we review the features of the two custom architectures used for the ex-
periments in this paper. The AlexNet architecture that we used was drawn directly from
Torchvision (Marcel and Rodriguez, 2010):
MLP: The MLP model used in this paper has 5 linear layers separated by ReLU nonlin-
earities.
CNN: The CNN model used in this paper has 6 convolutional blocks. Each block contains
a 2d-convolution, a batchnorm, and a ReLU nonlinearity. The model also includes 4 distinct
pooling layers and a final linear layer for classification.

14

	Introduction
	Similarity metrics for neural representations
	Topological features for machine learning
	Experimental set-up
	Results
	Models trained with persistence images and models trained with raw images have structurally different representations
	Internal representations share more similarities when compared in the context of the task

	Limitations
	Conclusion
	Data preprocessing
	Hyperparameters
	Model architectures

