
Trust the Model Where It Trusts Itself - Model-Based
Actor-Critic with Uncertainty-Aware Rollout Adaption

Bernd Frauenknecht∗, Artur Eisele∗, Devdutt Subhasish, Friedrich Solowjow, Sebastian Trimpe
Institute for Data Science in Mechanical Engineering

RWTH Aachen University
52068 Aachen, Germany

bernd.frauenknecht@dsme.rwth-aachen.de

Abstract

Dyna-style model-based reinforcement learning (MBRL) combines model-free
agents with predictive transition models through model-based rollouts. This combi-
nation raises a critical question: “When to trust your model?”; i.e., which rollout
length results in the model providing useful data? Janner et al. [2019] address this
question by gradually increasing rollout lengths throughout the training. While
theoretically tempting, uniform model accuracy is a fallacy that collapses at the
latest when extrapolating. Instead, we propose asking the question “Where to trust
your model?”. Using inherent model uncertainty to consider local accuracy, we
obtain the Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption
(MACURA) algorithm. We propose an easy-to-tune rollout mechanism and demon-
strate substantial improvements in data efficiency and performance compared to
state-of-the-art deep MBRL methods on the MuJoCo benchmark.
A similar version of this paper has been presented at the 41st International Confer-
ence on Machine Learning (ICML).

1 Introduction

Deep reinforcement learning (RL) has shown unprecedented results in challenging domains such as
gameplay Mnih et al. [2015], OpenAI et al. [2019b] and nonlinear control OpenAI et al. [2019a],
Wurman et al. [2022]. For engineering problems, however, the data inefficiency of model-free state-
of-the-art approaches Schulman et al. [2017], Haarnoja et al. [2018a] remains a substantial challenge
Kostrikov et al. [2023], Frauenknecht et al. [2023], prompting the need for more efficient methods
Janner et al. [2019], Chen et al. [2021]. One such method, model-based reinforcement learning
(MBRL), reduces the necessary degree of environment interaction by inferring information from a
learned environment model. Unfortunately, model errors can lead to faulty conclusions that severely
impact the agent’s performance. It is therefore critical to ensure the accuracy of these models.

Model-based policy optimization (MBPO) Janner et al. [2019] represents the current state-of-the-art in
Dyna-style MBRL Sutton [1991], combining a Soft Actor-Critic (SAC) agent Haarnoja et al. [2018a,b]
with a Probabilistic Ensemble (PE) model Lakshminarayanan et al. [2017]. Janner et al. [2019]
address two distinct learning problems: using interaction between the agent and the environment to
train the model and, simultaneously, employing model-based rollouts to train the agent. The agent
queries the model in short rollouts branched off from states that were observed during environment
interaction. The length of these rollouts is gradually increased throughout training, balancing model
usage against the risk of model exploitation.

∗Equal Contribution

17th European Workshop on Reinforcement Learning (EWRL 2024).

Janner et al. [2019] answer the question “When to trust your model?” with time-based arguments.
Essentially, uniform model accuracy is postulated after sufficiently long training which motivates to
use the model for rollouts of predetermined length. However, both the training time and the rollout
lengths are notoriously difficult to preschedule. Furthermore, the assumption of uniform model
improvement is problematic for complex systems.

Instead, we consider model accuracy as a local property, putting the question “Where to trust your
model?” at the heart of our approach. The inherent uncertainty of PE models allows for adaptive
rollout lengths: wherever the model is uncertain, rollouts are terminated quickly, while longer rollouts
can be generated where it is certain.

In this paper, we analyze the learning process of Dyna-style MBRL and present Model-Based
Actor-Critic with Uncertainty-Aware Rollout Adaption (MACURA), an algorithm with an easy-to-
tune mechanism for model-based rollout length scheduling. In particular, we present the following
technical contributions:

• We show monotonic improvement restricting model usage to a subset E of the state space S;
• We construct the subset E based on a novel model uncertainty measure; and
• We outperform state-of-the-art Dyna-style MBRL methods with regard to data efficiency

and asymptotic performance on the MuJoCo benchmark.

2 Background

In the following, we introduce the fundamental concepts of MBRL, and Dyna-style architectures.

2.1 Reinforcement Learning

We assume the environment to be represented by a discounted Markov decision process (MDP)
defined by M = (S,A, r, p, γ, ρ0), with S the state and A the action space, while a dynamics
function p(s′ | s, a) describes transitions between states s ∈ S and actions a ∈ A. Reward r ∈ R is
generated from a reward function r(s, a) and is discounted by γ ∈ (0, 1). The MDP is initialized
from an initial state distribution ρ0. The RL agent aims to find an optimal policy π∗ that maximizes
the expected discounted sum of rewards, henceforth referred to as expected return η. Thus,

π∗ = argmax
π

η[π] = argmax
π

Eπ

[∞∑
t=0

γtr (st, at)

]
, (1)

with s0 ∼ ρ0, at ∼ π(· | st), and st+1 ∼ p(· | st, at). The Q-function represents η[π] conditioned

on specific state-action pairs and is given by Qπ(st, at) = Eπ

[∑∞
k=t γ

k−tr (sk, ak)

∣∣∣∣st, at] .
2.2 Probabilistic Ensemble Models

In MBRL, we learn a dynamics model p̃(s′ | s, a) to approximate the unknown environment dynamics
p(s′ | s, a). In the following, we consider the particularly effective PE approach Lakshminarayanan
et al. [2017], Chua et al. [2018] as the model class for dynamics learning. A PE consists of E
probabilistic neural networks (PNN) with parameters θe, e ∈ {1, . . . , E}, which are trained on
bootstrapped datasets via a negative log-likelihood loss to approximate the distribution over the next
state with a Gaussian distribution

p̃θe(s
′ | s, a) = N (µθe(s, a),Σθe(s, a)). (2)

The PE architecture allows a distinction between aleatoric uncertainty due to the process noise of the
environment and epistemic uncertainty due to the parametric uncertainty of the model. While aleatoric
uncertainty corresponds to high individual variance estimates Σθe(s, a), epistemic uncertainty is
measured via model disagreement. Lakshminarayanan et al. [2017] define epistemic uncertainty as
the pairwise Kullback-Leibler (KL) divergence DKL between the individual PNN predictions pθe
and the Gaussian mixture distribution of the ensemble prediction p̃PE, given by

uKL =

E∑
e=1

DKL(p̃θe(s
′ | s, a)∥p̃PE(s

′ | s, a)), (3)

with p̃PE(s
′ | s, a) := 1

E

∑E
e=1 p̃θe(s

′ | s, a). In the following, we assume r(s, a) is known.

2

2.3 Dyna-Style Model-Based Reinforcement Learning

We focus on Dyna-style MBRL Sutton [1991] and MBPO Janner et al. [2019] in particular as it
represents the current state-of-the-art approach. A schematic of the architecture is depicted in Figure
1a. In MBPO, a SAC agent Haarnoja et al. [2018a,b] with policy π interacts with the environment.
The corresponding agent-environment interaction data are stored in a replay buffer Denv and are used
to train a dynamics model p̃. This model generates experience data in branched model-based rollouts
that are stored in a replay buffer Dmod and used to train the model-free agent. Branched model-based
rollouts are thus essential to Dyna-style MBRL as the accuracy of the generated experience data
determines the performance of the agent. The mechanism is illustrated in Algorithm 1.

Branched model-based rollouts start at random s0 ∼ U(Denv), with U(·) the uniform distribution,
and stop at a maximum rollout length Tmax ∈ N. During the rollout, the propagating PNN model
within the PE is randomly sampled for each time step. Actions and states are sampled from the
respective Gaussians of the policy and the PNN model.

The environment buffer Denv therefore serves two purposes for model-based branched rollouts. It
acts as the training data set for p̃, determining where the model is accurate, and it induces the set of
start states for model-based rollouts, influencing the data distribution in Dmod.

A key advantage of branched model-based rollouts is that they reduce the quantity of environment
data necessary for learning. This advantage stems from two learning mechanisms. First, the number
of update steps per observed transition is limited due to instabilities in value function learning Chen
et al. [2021]. The model allows a multitude of transitions to be generated, mitigating this problem.
Second, the data distribution in Dmod differs from that of Denv and can be more informative to the
agent. Generalization capabilities of p̃ allow for a richer set of transitions to be collected. Further,
model-based rollouts are conducted under the current policy π of the agent. Therefore, model-based
rollouts shift the off-policy distribution inDenv more towards an on-policy distribution. This generally
puts a stronger emphasis on the effects of the current policy and interesting areas of S, accelerating
policy improvement. The longer branched model-based rollouts are, the more the data distributions
of Denv and Dmod may differ. Typically, Tmax is gradually increased throughout training.

Algorithm 3 in Appendix A provides a detailed description of MBPO. We build on the eminent
MBPO method, modifying its core mechanism of branched model-based rollouts. We develop a
method to estimate where to trust the model and build a new adaptive rollout scheme around it. This
scheme may likewise benefit a multitude of derivatives of MBPO such as Zhang et al. [2020], Lai
et al. [2020, 2021], Morgan et al. [2021], Fröhlich et al. [2022], Luis et al. [2023b,a].

(a) Dyna-style MBRL. (b) Where to trust your Model?

Figure 1: Algorithmic Diagrams. (a) An agent with policy π interacts with the environment M.
This data is stored in Denv and used to train a dynamics model p̃ via supervised learning (SL).
Model-based rollouts under π are performed from start states s0 in Denv and stored in Dmod. The
policy is trained on Dmod via reinforcement learning (RL). (b) Denv induces a set of sufficient model
accuracy E ⊆ S. A notion of E allows to reason whether rollouts are in a region of sufficient model
accuracy. We use this reasoning to schedule rollout length.

3

Algorithm 1 “Vanilla” Branched Model-based Rollouts

Given Denv, Dmod, p̃θ1,...,E , π, and Tmax

s0 ∼ U(Denv)
for t = 0, . . . , Tmax − 1 do

et ∼ U(1, . . . , E)
at ∼ π(· | st)
st+1 ∼ p̃θet (· | st, at)
rt+1 = r(st, at)
Dmod ← Dmod ∪ {(st, at, rt+1, st+1)}

end for

3 Where to Trust your Model?

Our key idea is to define a subset Ep̃,k ⊆ S on which the model p̃ is sufficiently accurate at time k.
We refer to this subset as E for brevity and put it at the heart of our approach.

The main technical problem formulation then becomes: How can we construct the set E that ensures
a desired accuracy? In particular, we need to:

i) quantify the notion of sufficiently accurate;
ii) estimate E from a given model p̃; and

iii) expand E quickly via informative data in Denv.

Once we have a suitable E , we obtain a straightforward yet precise mechanism for branched model-
based rollouts. As long as the rollout stays within E , the benefits of long rollouts discussed in Section
2.3 outweigh the risk of model exploitation, while the opposite is the case once it leaves E .

Such a distinction is vital as model-based rollouts are performed from random start states of Denv, as
depicted in Figure 1b. Depending on the rollout policy, these start states can either lead to rollouts
staying in E for a long time without the necessity to terminate quickly, or leaving it early, where a
careful rollout length adaption is crucial. A fixed rollout length based on training time Janner et al.
[2019] cannot account for local differences in model accuracy.

4 Monotonic Improvement under
Dynamics Misalignment on E

Following the insights set out in Section 3, we provide a formal justification of our approach. We
analyze the effect of dynamics mismatch on the expected return, which will be instrumental for
formally defining E ⊆ S in Section 5 that will be used to schedule rollout length.

4.1 Formulation of Monotonic Improvement

In the context of branched model-based rollouts, we define two MDPs, M̂ and M̃, on the same S , A,
r(s, a), γ and start state distribution ρBR. Here, M̂ represents the MDP for branched rollouts under
the environment dynamics p(s′ | s, a), whereas M̃ is the MDP for branched model-based rollouts
following model dynamics p̃(s′ | s, a). Both, M̂ and M̃, have identical start states sM̂0 = sM̃0 ∈ E .

The MDPs are coupled through the following stopping times (which are random variables and thus
measurable functions T : Ω→ N as indicated by the argument T (ω)):

T (ω) := min{TM̂, TM̃} − 1, (4)

TM̂(ω) = min{t ∈ N | sM̂t ∈ EC}, (5)

TM̃(ω) = min{t ∈ N | sM̃t ∈ EC}, (6)

with EC the complement of E . The stopping times (5) and (6) denote the first time a rollout under
M̂ and M̃ leaves E , respectively. Thus, restricting the rollout length to T (ω) enforces that branched
rollouts remain in E .

4

We show a monotonic improvement similar to Luo et al. [2018], Janner et al. [2019], Pan et al. [2020]

η[π] ≥ η̃[π]− C, (7)

where η[π] corresponds to the expected return of the policy π in M̂, while η̃[π] denotes the expected
return of π under M̃. As long as the agent improves by more than C in M̃, we can guarantee
improvement in M̂.

Theorem 4.1. Suppose the expected return following policy π under M̂ is denoted by η[π] and η̃[π]

describes the expected return following π under M̃, then we can define a lower bound for η[π] on
E ⊆ S of the form

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γt
t∑

τ=0

∆pE [π], (8)

with
∆pE [π] := sup

s∈E,a∼π
DTV (p (s′ | s, a) ∥p̃ (s′ | s, a)) . (9)

Proof. See Appendix B, Theorem B.4.

We define C := 2rmax

∑T (ω)
t=0 γt

∑t
τ=0 ∆pE [π], which intuitively represents the accumulated worst-

case dynamics misalignment. The choice of E thus influences the bound C since the supremum in (9)
is taken over E and T (ω) directly depends on E .

4.2 Interpretation of the Result

In contrast to improvement bounds in previous work Luo et al. [2018], Janner et al. [2019], Pan
et al. [2020], Theorem 4.1 closely resembles branched model-based rollouts and allows a practical
mechanism to be inferred directly.

Rollouts under M̃ represent the data generated in the practical MBRL algorithm, while M̂ captures
the true environment behavior. Both share ρBR = U(Denv), the start state distribution of model-based
rollouts introduced in Algorithm 1, where we assume all states in Denv to be within E as depicted
in Figure 1b. Theorem 4.1 thus bounds the difference in expected return between using the model
MDP M̃ for generating branched model rollouts as compared to performing these rollouts under the
environment MDP M̂. Thus, Theorem 4.1 specifically considers model exploitation in branched
model-based rollouts that are the predominant data-generating process for training the agent.

By construction, both processes start from identical start states and deviate from each other based
on dynamic misalignment upper bounded by ∆pE [π] until T (ω) is reached. Unfortunately, the
result of Theorem 4.1 is not directly amenable for algorithmic use, as the process M̂ is unknown
in practice. Specifically, we are unable to detect when M̂ leaves E as indicated by TM̂(ω) in (5)
and need an approximation to obtain a practical algorithm. Assuming trajectories under M̂ and M̃
stay sufficiently close to each other and replacing T (ω) with TM̃(ω) − 1, we obtain an effective
approximation that works well in practice.

5 Constructing E from Model Uncertainty

In the following, we define E such that it represents parts of the state space with high model accuracy.

5.1 Defining E in Practice

Following Theorem 4.1, ideally we would define

E∗ := {s ∈ S | DTV (p (s′ | s, a) ∥p̃ (s′ | s, a)) ≤ κ, a ∼ π(· | s)} (10)

such that dynamics misalignment is upper-bounded by a threshold κ. This definition of E yields
∆pE [π] ≤ κ in (9) and thus allows C to be influenced by choosing κ. Estimating the ideal set E∗ is
intractable. Instead, we leverage these insights and consider a slightly different reformulation that
yields a computationally efficient, numerically well-behaved, and meaningful definition of E .

5

(a) Denv (b) DTV(p∥p̃) (c) uGJS (d) E with uGJS < κ

Figure 2: Constructing E on a toy example. (a) Data to train the PE model. (b) Dynamics
misalignment. (c) Proposed measure for model uncertainty (11). (d) Set of sufficient model accuracy
to perform branched model-based rollouts (13) .

Assuming that the individual PNNs of the PE model have sufficient representational capacity to
model p(s′|s, a) accurately makes epistemic uncertainty uPE an expressive quantity for dynamics
misalignment. One option to determine epistemic uncertainty would be using the formulation in (3)
and setting uPE = uKL. If all ensemble members agree sufficiently well on a subset of S ×A, the
PE model approximates the environment dynamics to a sufficient degree of accuracy. Following this
reasoning, we construct EPE := {s ∈ S | uPE(s, a) < κ, a ∼ π(· | s)} such that some uncertainty
uPE under the rollout policy π is upper bounded by a threshold κ.

5.2 Efficient Measure for Model Uncertainty

In an algorithmic implementation, efficient computation of uPE is vital as uncertainty is queried for
every model-based transition. The original formulation in (3) has no closed-form solution, rendering
it unsuitable for this purpose. Instead, we propose an estimate based on the geometric Jensen-Shannon
(GJS) divergence Nielsen [2019]

uGJS(s, a) =
2

E(E − 1)

E∑
e=1

e−1∑
f=1

DGJS (Ne∥Nf) , (11)

withNi =: N (µθi(s, a),Σθi(s, a)). The Jensen-Shannon divergence is a symmetrized version of the
KL divergence but has no closed-form solution for Gaussian distributions. While losing some of the
properties of the Jensen-Shannon divergence, the GJS divergence

DGJS (Ne∥Nf) =
1

2
DKL (Ne∥Nef) +

1

2
DKL (Nf∥Nef) (12)

with variance Σef =
(

1
2 (Σθe(s, a))

−1
+ 1

2

(
Σθf (s, a)

)−1
)−1

and mean µef =

Σef

(
1
2 (Σθe(s, a))

−1
µθe(s, a) +

1
2

(
Σθf (s, a)

)−1
µθf (s, a)

)
recovers a closed-form solu-

tion for Gaussian distributions. This allows us to compute model uncertainty in a closed form
replacing the comparison to the Gaussian mixture distribution in (3) with a pairwise comparison
between PNN predictions. Exploiting the symmetry of the GJS divergence allows to reduce the
number of pairwise comparisons.

Thus, uGJS yields an efficient-to-compute uncertainty measure, leading to a practical definition of
E := {s ∈ S | uGJS(s, a) < κ, a ∼ π(· | s)} (13)

that is directly applicable to algorithmic use.

5.3 Illustrative Example

As an illustrative example, we use a pendulum with known dynamics and a two-dimensional state.
Figure 2 visualizes the construction of E according to (13) for this system. An in-depth description is
provided in Appendix C.

We create a Denv with a characteristic spiral form by performing rollouts with a feedback controller
πFL as depicted in Figure 2a, and use the data to train a PE dynamics model. In the following,
dynamic misalignment and uncertainty of this model under πFL are analyzed over S using heat maps.

6

Dynamics misalignment as used in (10) is depicted in Figure 2b, where a clear trend can be observed:
dynamic misalignment is low, indicated in yellow, close to data in Denv but grows further away,
where blue corresponds to high misalignment. For approximations of the total variation distance we
use the common upper bound (24) in Appendix C.4.

Figure 2c shows the proposed model uncertainty uGJS used in (13). We observe a smooth behavior
of the uncertainty estimate and rediscover the data distribution in Denv for the lowest uncertainty
values indicated in bright yellow. Most importantly, areas of low uncertainty coincide with areas of
low dynamics misalignment in Figure 2b.

As depicted in Figure 2d, choosing a suitable threshold κ allows E to be defined such that a consider-
able portion of S can be explored in model-based rollouts while avoiding areas of high dynamics
misalignment. Here E is visualized in yellow, while blue regions indicate EC.

6 MACURA: Model-Based Actor-Critic with Uncertainty-Aware Rollout
Adaption

Combining the insights into how to choose a set E to enforce monotonic improvement, discussed
in Section 4, with those into how to construct E using model uncertainty, detailed in Section 5,
we present an uncertainty-aware adaption scheme for model-based rollouts. We further discuss
expanding E by efficiently exploring the environment. These building blocks lead to the Model-Based
Actor-Critic with Uncertainty-Aware Rollout Adaption (MACURA) algorithm.

6.1 Uncertainty-Based Rollout Adaption

The set E depends on the uncertainty threshold κ (13). Thus, an appropriate choice of κ is critical in
algorithmic design. We propose an adaptive mechanism for determining κ that transfers to different
applications and stages of training.

In the algorithm, M branched model-based rollouts are performed in parallel. As these start from
states in Denv, we evaluate the model uncertainty after the first prediction step to update κ propor-
tionally to the current model uncertainty.

We therefore define the base uncertainty ûGJS,k to be the ζ quantile of the M uncertainty measures
after the first prediction step at the kth round of model-based rollouts. We use this heuristic as an
upper bound on what can be considered certain. Further, we introduce ξ ∈ R+ as a tunable scaling
factor, which allows E to be increased or shrunk by scaling ûGJS up or down. To stabilize κ over
iterations, we define it to be the average scaled base uncertainty:

κ =
ξ

K

K∑
k=1

ûGJS,k, (14)

with K the rounds of rollouts performed thus far.

Theorem 4.1 indicates that the difference in expected return accumulates over the rollout length, even
with bounded dynamics misalignment. Since we only provide a pointwise bound for each transition
step, we still need to enforce a maximum rollout length Tmax, larger than the typical length of adapted
rollouts, to avoid extensive error accumulation.

During the experimental evaluation in Section 7, we see that predefined values of Tmax = 10 and
ζ = 95% perform well across different applications, requiring no environment-specific tuning. Thus,
ξ is a single, interpretable hyperparameter defining the rollout scheme. This makes the proposed
uncertainty-aware rollout adaption mechanism formulated in Algorithm 2 considerably easier to tune
than those in existing work Janner et al. [2019], Pan et al. [2020].

Due to its variable rollout length, the proposed model-based rollout scheme produces varying amounts
of data to train the model-free agent. As the update-to-data ratio plays a crucial role in the stability of
model-free RL Chen et al. [2021], we adapt the number of update steps

G =
⌊
Gmax

|Dmod|
|Dmod|max

⌉
(15)

7

Algorithm 2 Uncertainty-Aware Adapted Branched Model-Based Rollouts

Given Denv, Dmod, p̃θ1,...,E , π, ζ, ξ, and Tmax

s0 ∼ U(Denv)
for t = 0, . . . , Tmax − 1 do

et ∼ U(1, . . . , E)
at ∼ π(· | st)
st+1 ∼ p̃θet (· | st, at)
rt+1 = r(st, at)
uGJS(st, at) according to (11)
if t = 0 then

update κ according to (14)
end if
if uGJS(st, at) < κ then
Dmod ← Dmod ∪ {(st, at, rt+1, st+1)}

else
break

end if
end for

to the SAC agent according to the amount of data in the model buffer |Dmod| compared to its capacity
|Dmod|max. We use this ratio to scale the maximum number of update steps Gmax and round the
result to the nearest integer. An empirical analysis of how the update-to-data ratio interacts with
varying rollout lengths is provided in Appendix D.7.

6.2 Expanding E through Environment Exploration

Through the notion of E , MACURA has a reliable estimate of where to trust the model p̃ that is
trained on Denv. In line with common understanding in system identification Ljung [1998], more
informative data yields a better model. Thus, employing effective exploration mechanisms to generate
a meaningful Denv will improve the model and thus expand E , increasing the effectiveness of
model-based rollouts.

Although we do not place a strong focus on different exploration mechanisms for Dyna-style MBRL
in this work, we tested different approaches. As we discuss in Section 7, we see MACURA perform
particularly well with pink exploration noise Eberhard et al. [2023], which introduces a certain degree
of temporal correlation between consecutive actions blending white noise and Brownian motion.

We combine the mechanisms above in MACURA, with pseudocode in Algorithm 4 of Appendix A.

7 Experiments and Discussion

Next, we evaluate MACURA on the MuJoCo Todorov et al. [2012] benchmark. A direct comparison
to state-of-the-art Dyna-style methods reveals a substantial improvement in data efficiency and
asymptotic performance. Further, we provide an ablation over MACURA building blocks.

7.1 Experimental Setup

We compare MACURA to model-based MBPO Janner et al. [2019] and M2AC Pan et al. [2020]
approaches as well as the SAC Haarnoja et al. [2018b] algorithm, which represents the model-free
learner in all of the methods above. All implementations2 are based on the recent mbrl-lib library
Pineda et al. [2021]. A detailed description of the experimental setup is provided in Appendix D.1.

7.2 Performance Evaluation

The results on the MuJoCo benchmark are depicted in Figure 3. We see that MACURA learns
substantially faster than MBPO and M2AC, especially in high-dimensional environments. MACURA

2Code available at: https://github.com/Data-Science-in-Mechanical-Engineering/macura

8

https://github.com/Data-Science-in-Mechanical-Engineering/macura

100 200 300 400
1e3

5

10

15

Re
tu

rn

1e3 Halfcheetah

50 100 150 200
1e3

2

4

6

1e3 Walker

25 50 75 100 120
1e3

2

4 1e3 Hopper

100 200 300
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3 Humanoid

100 200 300
Steps 1e3

2

4

6

1e3 Ant

MACURA

MBPO

M2AC

SAC

SAC(asymptotic performance)

Figure 3: Performance on the MuJoCo Benchmark. MACURA shows substantial improvements
in data efficiency and asymptotic performance over state-of-the-art Dyna-style MBRL approaches
(MBPO, M2AC) in most tasks. Most noticeably, MACURA is on par with or outperforms the
asymptotic performance of the model-free SAC baseline.

100 200 300
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3
MACURA

MACURA rank-based

MACURA κ = 150

MACURA κ = 300

MACURA G = 20

MACURA (D)

MACURA OvR

(a) Ablation on MACURA building blocks.

100 200 300
Steps 1e3

100

200

300

400
Threshhold in MACURA

(b) Uncertainty threshold κ.

Figure 4: Ablation Study (a) The rank-based rollout mechanism with GJS uncertainty (11) and
adaptive threshold (14) yields strong performance. (b) MACURA initially keeps κ comparatively
high and reduces κ over time as more precise information is required to refine the policy.

further shows considerably stronger asymptotic performance than other model-based approaches . Re-
markably, MACURA frequently even outperforms SAC. All model-based methods learn substantially
faster than SAC. MBPO with fine-tuned rollout schedules can compete with M2AC.

7.3 Ablation and Further Results

Finally, we provide an ablation study on the building blocks of MACURA on the Humanoid task
in Figure 4a. The analysis reveals that the performance gain of MACURA mostly stems from the
combination of a threshold-based rollout length adaption mechanism, the self-tuning threshold κ, and
the reliable GJS uncertainty estimate.

Replacing the threshold-based rollout adaption of MACURA with the rank-based heuristic of Pan
et al. [2020] reduces performance. The threshold-based mechanism, however, requires a reliable
uncertainty estimate as in (11) and an adaptive threshold κ as presented in (14) for stable learning.

Replacing the GJS uncertainty estimate with One-vs-Rest (OvR) uncertainty Pan et al. [2020] leads
to divergence. We assume this is attributed to the brittleness of the OvR uncertainty estimate as
illustrated in Appendix C.4. Thus, faulty predictions are frequently used for training.

Figure 4b depicts the adaption of κ according to (14) for the standard MACURA runs in Figure 4a.
Following our intuition, κ is comparatively high in the early stages of training, as uncertain data is
sufficient to learn an initial policy. Throughout training, κ decreases as more precise information
is required to further improve the policy. Keeping κ fixed at 300 and 150, respectively, destabilizes
learning at different stages of training due to model exploitation.

Replacing the gradient step adaption in (15) with a fixed number of gradient steps G = 20 yields
moderate performance reduction on Humanoid, while deterministic environment interaction hinders
an effective expansion of E and thus substantially reduces performance.

9

We provide further experimental results in Appendix D. Additional insights on tuning the uncertainty-
aware rollout scheme are presented in D.2 and D.3, while the importance of exploration in the
environment is discussed in D.4 and D.5. Performance in tasks with process noise is presented inD.6,
D.7 provides detailed results for rollout length and update step adaption, D.8 discusses the impact of
different uncertainty estimates, and D.9 provides results for long experiments.

8 Related Work

A variety of improvements to the general idea of deep Dyna-style MBRL Janner et al. [2019] have
been proposed. These comprise online parameter tuning Lai et al. [2021], reduction of model error
during model-based rollouts Fröhlich et al. [2022], Lai et al. [2020], Shen et al. [2020], improved
exploration in the model Morgan et al. [2021], Zhang et al. [2020], model learning Ji et al. [2022],
Wang et al. [2023], Wu et al. [2022], and consideration of model uncertainty in the model-free
Q-function Luis et al. [2023b,a], Wang et al. [2022]. All the above are orthogonal to our method.

Using uncertainty in the model or the RL agent to control model usage is a common technique in
MBRL. One approach is to use model data where the agent is uncertain Kalweit and Boedecker
[2017], Nguyen et al. [2018]. Model-based offline RL methods Yu et al. [2020], Zhai et al. [2024],
Jeong et al. [2023] often construct a pessimistic MDP that penalizes model uncertainty in the value
function. Zhang et al. [2021] adapt rollout length in a multi-agent setting based on the error in the
policy model of opponent agents. In value expansion methods, rollout steps are frequently reweighted
based on model uncertainty Buckman et al. [2018], Jeong et al. [2023], Vuong and Tran [2019].
Further, Abbas et al. [2020] address uncertainty due to model inadequacy.

Despite the importance of reliable model-based rollouts, adapting rollout length based on model
accuracy has received little attention. An exception is the M2AC algorithm Pan et al. [2020], which is
closest to this work. M2AC schedules rollout lengths using a rank-based filtering heuristic depending
on model uncertainty. They introduce a reward penalty for model uncertainty similar to offline MBRL
approaches, which can, however, hinder the expansion of the known subset of S in an online setting.
Further, the uncertainty estimate of M2AC is comparatively brittle as presented in Appendix C.5. The
proposed rollout scheme of MACURA, instead, takes a strictly spatial perspective on rollout length
which is conceptually different from M2AC and generally new in Dyna-style MBRL.

9 Conclusion

Learning predictive dynamics models to tame data requirements of RL is an established concept,
leading to state-of-the-art MBRL approaches like MBPO that achieve high data efficiency and
asymptotic performance. This work builds on the successful MBPO architecture, addressing the
critical question of adapting the length of model-based rollouts. While it is common knowledge that
models are only helpful where they are accurate, and they are accurate only where they have seen
data, only few works in MBRL address model accuracy in general, and its spatial nature in particular.
We make the consideration of model accuracy as a local property a fundamental building block
of our theoretical analysis of Dyna-style MBRL, which provides us with an effective mechanism
for model usage. Combining this mechanism with an easy-to-compute and expressive estimate
for model accuracy, we propose the Model-Based Actor-Critic with Uncertainty-Aware Rollout
Adpation (MACURA) algorithm. Benchmarking on MuJoCo, we show that MACURA outperforms
the current state-of-the-art substantially concerning data efficiency and asymptotic performance.
Finally, the rollout mechanism of MACURA solely introduces one essential hyperparameter, making
it considerably easier to tune than competitor approaches.

Acknowledgments and Disclosure of Funding

ZF Friedrichshafen AG partially funded this research. Furthermore, the research was in part supported
by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the
project EEMotion. Computations were performed with computing resources granted by RWTH
Aachen University under projects rwth1428, rwth1472, and rwth1552.

10

References
Z. Abbas, S. Sokota, E. J. Talvitie, and M. White. Selective Dyna-style Planning Under Limited

Model Capacity. arXiv, July 2020. doi: 10.48550/arXiv.2007.02418.

J. Adamy. Nonlinear Systems and Controls. Springer, Berlin, Germany, 2022. ISBN 978-3-662-
65633-4.

J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-efficient reinforcement learning
with stochastic ensemble value expansion. In Int. Conf. on Neural Information Processing Systems.
2018.

X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized Ensembled Double Q-Learning: Learning
Fast Without a Model. Int. Conf. on Learning Representations, 2021.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep Reinforcement Learning in a Handful
of Trials using Probabilistic Dynamics Models. Adv. in Neural Information Processing Systems,
2018.

O. Eberhard, J. Hollenstein, C. Pinneri, and G. Martius. Pink noise is all you need: Colored noise
exploration in deep reinforcement learning. In Int. Conf. on Learning Representations, 2023.

B. Frauenknecht, T. Ehlgen, and S. Trimpe. Data-efficient deep reinforcement learning for vehicle
trajectory control. IEEE Int. Conf. on Intelligent Transportation Systems, 2023.

L. P. Fröhlich, M. Lefarov, M. N. Zeilinger, and F. Berkenkamp. On-Policy Model Errors in
Reinforcement Learning. Int. Conf. on Learning Representations, 2022.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor. In Int. Conf. on Machine Learning. 2018a.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft Actor-Critic Algorithms and Applications. arXiv, 2018b.

M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: model-based policy op-
timization. In Int. Conf. on Neural Information Processing Systems. Curran Associates Inc.,
2019.

J. Jeong, X. Wang, M. Gimelfarb, H. Kim, B. Abdulhai, and S. Sanner. Conservative Bayesian Model-
Based Value Expansion for Offline Policy Optimization. Int. Conf. on Learning Representations,
Oct. 2023. doi: 10.48550/arXiv.2210.03802.

T. Ji, Y. Luo, F. Sun, M. Jing, F. He, and W. Huang. When to update your model: constrained model-
based reinforcement learning. In Int. Conf. on Neural Information Processing Systems, pages
23150–23163. Curran Associates Inc., Red Hook, NY, USA, Nov. 2022. ISBN 978-1-71387108-8.
doi: 10.5555/3600270.3601952.

G. Kalweit and J. Boedecker. Uncertainty-driven Imagination for Continuous Deep Reinforcement
Learning. In Conf. on Robot Learning. 2017.

I. Kostrikov, L. M. Smith, and S. Levine. Demonstrating A Walk in the Park: Learning to Walk in 20
Minutes With Model-Free Reinforcement Learning, 2023.

H. Lai, J. Shen, W. Zhang, and Y. Yu. Bidirectional Model-based Policy Optimization. In Int. Conf.
on Machine Learning. PMLR, 2020.

H. Lai, J. Shen, W. Zhang, Y. Huang, X. Zhang, R. Tang, Y. Yu, and Z. Li. On Effective Scheduling
of Model-based Reinforcement Learning. Int. Conf. on Neural Information Processing Systems,
2021.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Int. Conf. on Neural Information Processing Systems. 2017.

L. Ljung. System Identification. In Signal Analysis and Prediction. Birkhäuser, Boston, MA, 1998.

11

C. Lu, P. J. Ball, J. Parker-Holder, M. A. Osborne, and S. J. Roberts. Revisiting Design Choices in
Offline Model-Based Reinforcement Learning. arXiv, Oct. 2021. doi: 10.48550/arXiv.2110.04135.

C. E. Luis, A. G. Bottero, J. Vinogradska, F. Berkenkamp, and J. Peters. Model-Based Epistemic
Variance of Values for Risk-Aware Policy Optimization. arXiv, 2023a.

C. E. Luis, A. G. Bottero, J. Vinogradska, F. Berkenkamp, and J. Peters. Model-Based Uncertainty in
Value Functions. Int. Conf. on Artificial Intelligence and Statistics, 2023b.

Y. Luo, H. Xu, Y. Li, Y. Tian, T. Darrell, and T. Ma. Algorithmic Framework for Model-based Deep
Reinforcement Learning with Theoretical Guarantees. arXiv, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 2015.

A. S. Morgan, D. Nandha, G. Chalvatzaki, C. D’Eramo, A. M. Dollar, and J. Peters. Model Predictive
Actor-Critic: Accelerating Robot Skill Acquisition with Deep Reinforcement Learning. In IEEE
Int. Conf. on Robotics and Automation. IEEE Press, 2021.

N. M. Nguyen, A. Singh, and K. Tran. Improving model-based rl with adaptive rollout using
uncertainty estimation. 2018.

F. Nielsen. On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means.
Entropy, 2019.

OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand. arXiv preprint, 2019a.

OpenAI, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fis-
cher, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P.
de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang. Dota 2 with large scale deep reinforcement learning. 2019b.

F. Pan, J. He, D. Tu, and Q. He. Trust the model when it is confident: masked model-based actor-critic.
In Int. Conf. on Neural Information Processing Systems. 2020.

L. Pineda, B. Amos, A. Zhang, N. O. Lambert, and R. Calandra. MBRL-Lib: A Modular Library for
Model-based Reinforcement Learning. arXiv, 2021.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. ArXiv, 2017.

J. Shen, H. Zhao, W. Zhang, and Y. Yu. Model-based policy optimization with unsupervised model
adaptation. In Int. Conf. on Neural Information Processing Systems. 2020.

R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART Bull.,
1991.

E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In Int. Conf.
on Intelligent Robots and Systems. IEEE, 2012.

T.-L. Vuong and K. Tran. Uncertainty-aware Model-based Policy Optimization. arXiv, June 2019.
doi: 10.48550/arXiv.1906.10717.

X. Wang, W. Wongkamjan, R. Jia, and F. Huang. Live in the Moment: Learning Dynamics Model
Adapted to Evolving Policy. In Int. Conf. on Machine Learning, pages 36470–36493. PMLR, July
2023. URL https://proceedings.mlr.press/v202/wang23an.

Z. Wang, J. Wang, Q. Zhou, B. Li, and H. Li. Sample-Efficient Reinforcement Learning via
Conservative Model-Based Actor-Critic. AAAI Conf. on Artificial Intelligence, 2022.

12

https://proceedings.mlr.press/v202/wang23an

Z. Wu, C. Yu, C. Chen, J. Hao, and H. H. Zhuo. Plan to predict: learning an uncertainty-foreseeing
model for model-based reinforcement learning. In Int. Conf. on Neural Information Processing
Systems, pages 15849–15861. Curran Associates Inc., Red Hook, NY, USA, Nov. 2022. ISBN
978-1-71387108-8. doi: 10.5555/3600270.3601423.

P. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, W. T. J., R. Capobianco,
A. Devlic, F. Eckert, F. Fuchs, L. Gilpin, P. Khandelwal, V. Kompella, H. Lin, P. MacAlpine,
D. Oller, T. Seno, C. Sherstan, T. M. D., H. Aghabozorgi, L. Barrett, R. Douglas, D. Whitehead,
P. Dürr, P. Stone, M. Spranger, and H. Kitano. Outracing champion Gran Turismo drivers with
deep reinforcement learning. Nature, 2022.

T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization. In Adv. in Neural Information Processing Systems, 2020.

Y. Zhai, Y. Li, Z. Gao, X. Gong, K. Xu, D. Feng, D. Bo, and H. Wang. Optimistic Model Rollouts for
Pessimistic Offline Policy Optimization. arXiv, 2024.

C. Zhang, S. R. Kuppannagari, and V. K. Prasanna. Maximum Entropy Model Rollouts: Fast Model
Based Policy Optimization without Compounding Errors. arXiv, 2020.

W. Zhang, X. Wang, J. Shen, and M. Zhou. Model-based Multi-agent Policy Optimization with
Adaptive Opponent-wise Rollouts. ResearchGate, pages 3384–3391, Aug. 2021. doi: 10.24963/
ijcai.2021/466.

13

A Pseudocode Algorithms

Algorithm 3 “Vanilla” Dyna-style Deep Model-based Reinforcement Learning

Initialize: dynamics model p̃θ, RL policy π, environment replay buffer Denv ← ∅, model replay
buffer Dmod ← ∅ , rollout length schedule for Tmax, steps before retraining R, number of model-
based rollouts M , RL update steps G.
for each iteration do

s0 ∼ ρ0(s)
for each environment step do

at ∼ π(· | st)
st+1 ∼ p(· | st, at)
rt+1 = r(st, at)
Denv ← Denv ∪ {(st, at, rt+1, st+1)}
if mod (environment step, R) = 0 then

for each epoch do
Train p̃θ on Denv

end for
Evict old data from Dmod

for m ∈M model rollouts do
sm0 ∼ U(Denv)
for t = 0, . . . , Tmax − 1 do

emt ∼ U(1, . . . , E)
amt ∼ π(· | smt)
smt+1 ∼ p̃θemt

(· | smt , amt),

rmt+1 = r(smt , amt)
Dmod ← Dmod ∪ {(smt , amt , rmt+1, s

m
t+1)}

end for
end for

end if
for G gradient steps do

Train π on Dmod ∪ Denv

end for
end for

end for

14

Algorithm 4 Model-based Actor-Critic with Uncertainty-aware Rollout Adaption (MACURA)

Initialize: dynamics model p̃θ, RL policy π, environment replay buffer Denv ← ∅, model replay
buffer Dmod ← ∅ , steps before retraining R, number of model-based rollouts M , maximum RL
update steps Gmax.
Initialize p̃θ, π,Denv ← ∅, Dmod ← ∅, fixed Tmax, ζ
for each iteration do

s0 ∼ ρ0(s)
for each environment step do

at ∼ π(· | st) with correlated exploration noise Eberhard et al. [2023]
st+1 ∼ p(· | st, at)
rt+1 = r(st, at)
Denv ← Denv ∪ {(st, at, rt+1, st+1)}
if mod (environment step, R) = 0 then

K ← K + 1
k ← K
for each epoch do

Train p̃θ on Denv

end for
Evict old data from Dmod

for m ∈M model rollouts do
sm0 ∼ U(Denv)
em0 ∼ U(1, . . . , E)
am0 ∼ π(· | sm0)
sm1 ∼ p̃θem0

(· | sm0 , am0)

rm1 = r(sm0 , am0)
uGJS(s

m
0 , am0) according to (11)

if uGJS(s
m
0 , am0) < κ then

Dmod ← Dmod ∪ {(sm0 , am0 , rm1 , sm1)}
else

stop rollout m and discard data
end if

end for
ûGJS,k = inf

{
uGJS(s0, a0) ∈

{
uGJS(s

1
0, a

1
0), . . . , uGJS(s

M
0 , aM0)

}
: ζ ≤ CDFk(uGJS(s0, a0))

}
3

κ← ξ
K

∑K
k=1 ûGJS,k

for t = 1, . . . , Tmax − 1 do
for m ∈M model rollouts do

emt ∼ U(1, . . . , E)
amt ∼ π(· | smt)
smt+1 ∼ p̃θemt

(· | smt , amt),

rmt+1 = r(smt , amt)
uGJS(s

m
t , amt) according to (11)

if uGJS(s
m
t , amt) < κ then

Dmod ← Dmod ∪ {(smt , amt , rmt+1, s
m
t+1)}

else
stop rollout m and discard data

end if
end for

end for
end if
for G =

⌊
Gmax

|Dmod|
|Dmod|max

⌉
gradient steps do

Update π on Dmod ∪ Denv

end for
end for

end for

15

B Proofs

Lemma B.1 (Return mismatch with respect to state distribution shift). Be the expected return
following policy π in M̂

Es∼M̂,a∼π

T (ω)∑
t=0

γtrM̂t+1

 := η[π]

and the expected return following the same policy in M̃

E
s∼M̃,a∼π

T (ω)∑
t=0

γtrM̃t+1

 := η̃[π],

then

|η[π]− η̃[π]| ≤ 2rmax
4
T (ω)∑
t=0

γtDTV

(
pt(s)∥p̃t(s)

)
5.

Proof.
|η[π]− η̃[π]|

=

∣∣∣∣∣∣Es∼M̂,a∼π

T (ω)∑
t=0

γtrM̂t+1

− E
s∼M̃,a∼π

T (ω)∑
t=0

γtrM̃t+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
E

∫
A

T (ω)∑
t=0

γt
(
pt(s, a)− p̃t(s, a)

) r(s, a) da ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T (ω)∑
t=0

∫
E

∫
A
γt

(
pt(s, a)− p̃t(s, a)

)
r(s, a) da ds

∣∣∣∣∣∣
≤

T (ω)∑
t=0

∫
E

∫
A
γt

∣∣pt(s, a)− p̃t(s, a)
∣∣ r(s, a) da ds

≤ rmax

T (ω)∑
t=0

∫
E

∫
A
γt

∣∣pt(s, a)− p̃t(s, a)
∣∣ da ds

= rmax

T (ω)∑
t=0

∫
E

∫
A
γt

∣∣(pt(s)− p̃t(s)
)
π(a | s)

∣∣ da ds

= rmax

T (ω)∑
t=0

γt

∫
E

∣∣pt(s)− p̃t(s)
∣∣ ds

= 2rmax

T (ω)∑
t=0

γtDTV

(
pt(s)∥p̃t(s)

)

3CDFk(uGJS(s0, a0)) denotes the cumulative distribution function of GJS uncertainty estimates at time
step 0 at the kth round of model-based rollouts.

4Dynamics mismatch is especially an issue in high-rewarding areas of the state-action space. In this work,
however, we will neglect the dynamics-reward coupling and instead, only focus on the dynamics mismatch.
Thus, we consider the conservative upper bound of rmax.

5We follow the common abuse of notation introduced in Janner et al. [2019], formulating the TV distance
with respect to the probability densities rather than the stochastic process as would be formally correct.

16

Lemma B.2 (Recursive Formulation). Be DTV (pt(ι)∥p̃t(ι)) := ϵt for an arbitrary ι and by con-
struction ϵ0 = 0. Further be Es∼p̃t−1 [DTV (p (s′ | s) ∥p̃ (s′ | s))] := δt and δ0 = ϵ0 = 0. Then we
can bound ϵt by

ϵt ≤
t∑

τ=0

δτ

Proof.

ϵt = DTV

(
pt(s′)∥p̃t(s′)

)
=

1

2

∫
E

∣∣pt(s′)− p̃t(s′)
∣∣ ds′

=
1

2

∫
E

∣∣∣∣∫
E
p(s′ | s)pt−1(s)− p̃(s′ | s)p̃t−1(s) ds

∣∣∣∣ ds′
≤ 1

2

∫
E

∫
E

∣∣p(s′ | s)pt−1(s)− p̃(s′ | s)p̃t−1(s)
∣∣ ds ds′

=
1

2

∫
E

∫
E

∣∣p(s′ | s)pt−1(s)− p(s′ | s)p̃t−1(s) + p(s′ | s)p̃t−1(s)− p̃(s′ | s)p̃t−1(s)
∣∣ ds ds′

≤ 1

2

∫
E

∫
E
p̃t−1(s) |p(s′ | s)− p̃(s′ | s)| ds ds′ +

1

2

∫
S

∫
E
p(s′ | s)

∣∣pt−1(s)− p̃t−1(s)
∣∣ ds ds′

= Es∼p̃t−1

[
1

2

∫
E
|p(s′ | s)− p̃(s′ | s)| ds′

]
+

1

2

∫
E

∣∣pt−1(s)− p̃t−1(s)
∣∣ ds

= Es∼p̃t−1 [DTV (p(s′ | s)∥p̃(s′ | s))] +DTV

(
pt−1(s)∥p̃t−1(s)

)
= δt + ϵt−1 = δt + δt−1 + ϵt−2 = . . . =

= ϵ0 +

t∑
τ=1

δτ = δ0 +

t∑
τ=1

δτ =

t∑
τ=0

δτ

Lemma B.3 (Dependency on dynamics mismatch). Be

∆pE [π] := sup
s∈E,a∼π

{DTV (p (s′ | s, a) ∥p̃ (s′ | s, a))}

then
Es∼p̃t−1 [DTV (p (s′ | s) ∥p̃ (s′ | s))] ≤ ∆pE [π]

Proof.
Es∼p̃t−1 [DTV (p (s′ | s) ∥p̃ (s′ | s))]

=
1

2

∫
E

∫
E
p̃t−1 (s) |p (s′ | s)− p̃ (s′ | s)| ds ds′

=
1

2

∫
E

∫
E
p̃t−1 (s)

∣∣∣∣∫
A
(p (s′ | s, a)− p̃ (s′ | s, a))π(a | s) da

∣∣∣∣ ds ds′

≤ 1

2

∫
E

∫
E

∫
A
p̃t−1 (s)π (a | s) |p (s′ | s, a)− p̃ (s′ | s, a)| da ds ds′

= Es∼p̃t−1,a∼π

[
1

2

∫
E
|p (s′ | s, a)− p̃ (s′ | s, a)| ds′

]
= Es∼p̃t−1,a∼π [DTV (p (s′ | s, a) ∥p (s′ | s, a))]
≤ ∆pE [π]

17

Theorem B.4 (Monotonic Improvement under Dynamics Misalignment on E ⊆ S). We define two
MDPs M̂ and M̃ with a common state space S, action space A and reward function r : S ×A →
R+ 6. M̂ has dynamics p(s′ | s, a) : S ×A → S , while M̃ has dynamics p̃(s′ | s, a) : S ×A → S .
For both MDPs, we define probability densities

P[sM̂t ∈ B] =
∫
B
pt(s) ds

P[sM̂t ∈ B, aM̂t ∈ C] =
∫
B

∫
C
pt(s, a) da ds

as well as a dynamics function

p(s′ | s) =
∫
A
p(s′ | s, a)π(a | s) da

and equivalently,

P[sM̃t ∈ B] =
∫
B
p̃t(s) ds

P[sM̃t ∈ B, aM̃t ∈ C] =
∫
B

∫
C
p̃t(s, a) da ds

p̃(s′ | s) =
∫
A
p̃(s′ | s, a)π(a | s) da

for all Borel-measuarble sets B ⊆ S, C ⊆ A and conditional probability densities π(a | s) : S → A.

Further, we define a coupling between M̂ and M̃ via a random stopping time

TM̂(ω) := min{t ∈ N | sM̂t (ω) ∈ EC}, TM̃(ω) := min{t ∈ N | sM̃t (ω) ∈ EC}, T (ω) := min{TM̂, TM̃}−1,

where st is a trajectory with respect to the MDPs M̂ or M̃ respectively and regarded as a random
variable, E ⊆ S, and EC the compliment of E .

as well as identical start states sM̃0 = sM̂0 ∈ E .

Suppose the expected return following policy π in M̂ is denoted by

Es∼M̂,a∼π

T (ω)∑
t=0

γtrM̂t+1

 := η[π]

and η̃[π] describes the expected return following the same policy in M̃

E
s∼M̃,a∼π

T (ω)∑
t=0

γtrM̃t+1

 := η̃[π],

then we can define a lower bound for η[π] of the form

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γt
t∑

τ=0

∆pE [π].

Proof.
η[π] ≥ η̃[π]− |η[π]− η̃[π]|

Using Lemma B.1

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γtDTV

(
pt(s)∥p̃t(s)

)
6We assume rewards to be strictly positive. An equivalent reward function can be trivially constructed from

any bounded reward function r(s, a) ∈ [rmin, rmax]∀s ∈ S, a ∈ A

18

Using Lemma B.2

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γt
t∑

τ=0

Es∼p̃τ−1 [DTV (p (s′ | s) ∥p̃ (s′ | s))]

Using Lemma B.3

η[π] ≥ η̃[π]− 2rmax

T (ω)∑
t=0

γt
t∑

τ=0

∆pE [π]

19

Figure 5: Free body diagram of the pendulum.

C Toy Example

In order to test the proposed uncertainty measure uGJS (11), we use a two-dimensional toy example
of a pendulum. We discuss the dynamics of the pendulum in Section C.1, the feedback controller used
as policy in Section C.2, and the experimental setup leading to Figure 2 in Section C.3. We further
compare our uncertainty estimate to the one proposed in Pan et al. [2020] and show a substantially
more reliable behavior of the uGJS measure in Section C.5.

C.1 Pendulum Dynamics

Figure 5 shows a free-body diagram of the pendulum near the upper fixed point. We can write the
equation of motion for such a pendulum as

ml2ϕ̈−mgl sinϕ+ bϕ = υ, (16)

where m is the mass of the pendulum, l is its length, g is the acceleration due to gravity, and b
is the coefficient of viscous friction. Further, υ is the torque applied at the base of the pendulum
that is used to control the pendulum. We define the continuous-time state as x =

[
ϕ ϕ̇

]T
with

ϕ ∈ [−3, 3][rad] the pendulum angle and ϕ̇ ∈ [−16, 16][rads] the pendulum’s angular velocity. The
nonlinear state-space equation for this system in continuous time are

ẋ =

[
ϕ̇

1
ml2

(
υ +mgl sinϕ− bϕ̇

)] = f(x, υ). (17)

When considering the system in discrete time, we sample observations and apply actions a = υ at
discrete time points separated by a fixed time interval ∆t. We simulate the pendulum by integrating
the state equation (17) between the sampling time steps, keeping the applied action fixed throughout
the integration. We additionally consider homoscedastic Gaussian process noise with covariance
matrix Σ. Hence we obtain the discrete-time MDP dynamics as

p(·|s, a) = N (µ(s, a),Σ) , (18)

with,

µ(s, a) =

∫ ∆t

0

f(x(t), a)dt, (19)

where x(0) = s. The values for the different parameters can be seen in Table 1.

20

Table 1: Parameters of the Pendulum.
Parameter Value

mass m 0.1
length l 1

acceleration due to gravity g 9.81
coefficient of viscous friction b 0.1

sampling time interval ∆t 0.01

process noise covariance matrix Σ

[
10−6 0
0 10−3

]

C.2 Controller

The pendulum is controlled via the applied torque υ. We can use feedback linearization Adamy
[2022] to obtain a controller of the form

πFL(s) = υFL(x) = ml2
(
ϕ̈d +KD(ϕ̇d − ϕ̇) +KP (ϕ

d − ϕ)
)
−mgl sinϕ+ bϕ̇, (20)

where ϕd, ϕ̇d, and ϕ̈d denote the desired pendulum angle, angular velocity, and angular acceleration,
respectively. The positive constants KP and KD denote the proportional and derivative gains
respectively. We choose them to give under-damped feedback dynamics. The values can be seen in
Table 2. For our purpose, we use the upper fixed point as the desired position, that is, ϕd = 0, ϕ̇d = 0
and ϕ̈d = 0.

Table 2: Parameters of the Controller.
Parameter Value

proportional gain KP 25
derivative gain KD 1

C.3 Data Generation

We create interaction data that is stored Denv to train a PE model. For this, we let the feedback
linearization controller (20) interact with the pendulum (17). Each trajectory starts from a fixed start
state

[
ϕ0 ϕ̇0

]T
. The trajectories are terminated upon reaching Tmax steps. Ten such trajectories are

generated. This results in a data distribution with a characteristic spiral shape as depicted in Figure
2a and 6a. The parameters used for generating the trajectories can be found in Table 3.

Table 3: Trajectory parameters for data generation.
Parameter Value

initial angle ϕ0 3
initial angular velocity ϕ̇0 0

number of steps Tmax 170

C.4 Illustrating the uGJS Uncertainty Measure

To illustrate the effectiveness of the proposed uncertainty measure uGJS, we investigate the connection
between dynamics misalignment DTV (p (s′ | s, a) ∥p̃ (s′ | s, a)) and model uncertainty on the toy
example.

We train a PE dynamics model on data created according to Section C.3 and evaluate both quantities
over S. To do this, we discretize the state space into a uniform grid {sij} where i is used to index
over ϕ and j is used to index over ϕ̇. For each sij the corresponding action is obtained as

aij = πFL(sij). (21)

21

(a) Denv (b) uGJS (Ours) (c) E with uGJS < κ
(d) E with uGJS over
DTV(p∥p̃)

(e)
DTV(p(s

′|s, a)∥p̃(s′|s, a))(f) uOvR (Pan et al. [2020]) (g) E with uOvR < κ
(h) E with uOvR over
DTV(p∥p̃)

Figure 6: Effectiveness of the GJS uncertainty measure

First, we evaluate dynamics misalignment DTV (p (s′ | s, a) ∥p̃ (s′ | s, a)) over the predefined grid.
We obtain the true and predicted next state distribution as

pij = p(·|sij , aij), (22)

querying the dynamics of the toy example (18), and

p̃ij,e = p̃θe(·|sij , aij) (23)

for each PNN prediction with e ∈ (1 . . . E).

As there is no closed-form solution for computing DTV (pij∥p̃ij) we use the common upper bound
of the total variation distance with respect to the Hellinger distance DH:

DTV (pij∥p̃ij) ≤
√
2DH (pij∥p̃ij) . (24)

Figures 2b and 6e show a heatmap over S of the discretized dynamics misalignment measurements

dij =
1

E

E∑
e=1

√
2DH(pij ||p̃ij,e). (25)

Similarly, we evaluate model uncertainty in Figures 2c and 6b over S plotting

uGJS,ij = uGJS(sij , aij). (26)

As discussed in Section 5.3, both align well. Choosing a suitable κ allows to construct a meaningful
set E as depicted in Figures 2d and 6c that aligns with areas of low dynamics misalignment as
illustrated in Figure 6d.

C.5 Illustrating the uOvR Uncertainty Measure of the M2AC Algorithm Pan et al. [2020]

Similar to MACURA, Pan et al. [2020] propose to adapt the length of branched model-based rollouts
in Dyna-style MBRL using model uncertainty. Therefore, they present the One-versus-Rest uOvR

uncertainty estimate for PE models:

uOvR(s, a) = DKL

(
N (µθe(s, a),Σθe(s, a))∥N (µθ−e

(s, a),Σθ−e
(s, a))

)
. (27)

22

This uncertainty estimate is defined as the Kullback-Leibler divergence between a randomly chosen
PNN prediction e ∼ U(1, . . . , E) and a Gaussian distribution defined by merging the remaining
PNNs of the PE model, such that

µθ−e(s, a) =
1

E − 1

E∑
f ̸=e

µθf (s, a) (28)

and

Σθ−e
(s, a) =

1

E − 1

E∑
f ̸=e

(
Σθf (s, a) + µθf (s, a)µθf (s, a)

⊤)− µθ−e
(s, a)µθ−e

(s, a)⊤. (29)

We evaluate the connection between dynamics misalignment and the uncertainty estimate uOvR on
the pendulum toy example. Here we use the exact same setup as the one discussed in Section C.4,
including the identical PE model. The only difference is that we compute the model uncertainty
according to

uOvR,ij = uOvR(sij , aij). (30)
The evaluation over S is depicted in Figure 6f. We see a substantially more noisy uncertainty estimate
of uOvR as compared to the uGJS uncertainty estimate proposed in MACURA and depicted in Figure
6b. Most importantly, we see uOvR to be overconfident in areas around ϕ = 0 and ϕ̇ = 0 where the
uOvR model uncertainty is low, while dynamics misalignment is high as can be seen from Figure 6e.

Trying to construct a subset

EOvR := {s ∈ S | uOvR(s, a) < κOvR, a ∼ π(· | s)}. (31)

choosing a suitable κOvR does not yield a reasonable result as shown in Figure 6g. The set has
no clear boundary, due to the noisiness of the uOvR uncertainty estimate. More importantly, the
set does not align with areas of low dynamics misalignment, as depicted in Figure 6h, due to the
overconfidence of uOvR.

23

D Experiments

In the following, we discuss the details of the experimental setup in Section D.1 and different
approaches to exploring the environment in Dyna-style MBRL in Section D.5.

D.1 Experimental Setup

Instead of the original implementation of MBPO7, all implementations of this work are based on the
more recent mbrl-lib library Pineda et al. [2021]. For MBPO and SAC, we use the implementations
provided by the library, while M2AC is reimplemented as an extension to MBPO, as no open-source
version of the M2AC code is available. We further implement the MACURA algorithm based on the
mbrl-lib version of MBPO. The code is available online8.

We run five random seeds for each experiment. Plots show the mean over the corresponding runs as a
solid line and the 95% confidence interval as a shaded region.

In all experiments, the training data for the SAC agent comprises 95%Dmod and 5%Denv for MBPO,
M2AC, and MACURA.

To achieve results comparable to the ones published in Janner et al. [2019], we tune the MBPO
hyperparameters according to Table 4.

Table 4: Hyperparameters MBPO
Environment Humanoid Ant Halfcheetah Walker Hopper

Epochs 300 300 400 200 125
Steps per Epoch 1000

PNNs per PE 7
PNN Layers 4

PNN Nodes per Layer 400 200
Critic Layers 3

Critic Nodes per Layer 2048 1024
Actor Layers 3

Actor Nodes per Layer 2048 1024
SAC Target Ent. -10 -1 -4 -1 0
SAC Updates G 20 10 30

Rollouts per Round M 406 203 406
Rollouts length Tmax 1→ 25 1→ 25 1 1→ 15

Episodes Schedule Tmax 20→ 300 20→ 100 20→ 100

For MACURA, we choose the hyperparameters very close to MBPO for a fair comparison. In the
MBPO implementation, the number of model-based rollouts per iteration M needs to be a multiple
of the number of ensemble members. We remove this requirement for the MACURA rollout scheme,
allowing us to choose M to plain hundreds. Also, we observe that the actual number of update steps
G according to (15) in MACURA is roughly one-half of Gmax. Thus we choose Gmax for MACURA
to be twice as much as G in MBPO. We further introduce the hyperparameters Tmax, ζ, and ξ of the
uncertainty-aware rollout adaption scheme of MACURA. Here, we keep Tmax and ζ constant among
all environments and solely tune ξ for the specific task. A comprehensive overview of the MACURA
hyperparameters is provided in Table 5.

In the case of M2AC, we have issues producing stable results. This forces us to deviate from the
hyperparameter setup of MBPO. Similar to MACURA, we remove the requirement for M to be
a multiple of the number of ensemble members, thus choosing M to plain hundreds. In some
environments, we observe M2AC yield better results with a fixed temperature parameter of the
SAC agent, thus we disable automatic entropy tuning in these cases9. For the study of different

7https://github.com/jannerm/mbpo
8https://github.com/Data-Science-in-Mechanical-Engineering/macura
9If the SAC Target Ent. hyperparameter is shown as N/A in the hyperparameter tables, this means that

automatic entropy tuning Haarnoja et al. [2018b] is not used for this case, instead a fixed temperature parameter
Haarnoja et al. [2018a] of 0.2 is used.

24

https://github.com/jannerm/mbpo
https://github.com/Data-Science-in-Mechanical-Engineering/macura

Table 5: Hyperparameters MACURA
Environment Humanoid Ant Halfcheetah Walker Hopper

Epochs 300 300 400 200 125
Steps per Epoch 1000

PNNs per PE 7
PNN Layers 4

PNN Nodes per Layer 400 200
Critic Layers 3

Critic Nodes per Layer 2048 1024
Actor Layers 3

Actor Nodes per Layer 2048 1024
SAC Target Ent. -10 -1 -4 -1 0

SAC Updates Gmax 40 20 60
Rollouts per Round M 400 200 400
Rollouts length Tmax 10

Quantile Factor ζ 0.95
Scaling Factor ξ 5 2 0.3 30

Table 6: Hyperparameters M2AC (Deterministic Environment Policy)
Environment Humanoid Ant Halfcheetah Walker Hopper

Epochs 300 300 400 200 125
Steps per Epoch 1000

PNNs per PE 7
PNN Layers 4

PNN Nodes per Layer 200
Critic Layers 3

Critic Nodes per Layer 1024 512 1024
Actor Layers 3

Actor Nodes per Layer 1024 512 1024
SAC Target Ent. -17 N/A -6 -1 0
SAC Updates G 20 10 30

Rollouts per Round M 400 200 400
Rollouts length Tmax 10

exploration schemes in Section D.5, we find that hyperparameter settings of M2AC that are stable
for deterministic environment interaction, destabilize when exploring and vice versa. Therefore, we
provide two sets of hyperparameters. Table 6 represents the hyperparameter setting for deterministic
interaction, and Table 7 shows the hyperparameters used when exploring with white or pink noise.

Finally, we choose the hyperparameters of the SAC baseline, according to Table 8. Similar to M2AC,
SAC yields better results with a fixed temperature hyperparameter10.

D.2 Tuning the Uncertainty-Aware Adaption Scheme

The uncertainty-aware rollout adaption scheme comprises three hyperparameters. We set Tmax = 10
and ζ = 95% for all tasks and never tune them any further 11. However, the scaling factor ξ requires
application-specific tuning.

Figure 7b shows the influence of different choices of ξ on the performance on Humanoid. While
we see that MACURA performs well for intermediate values for ξ, learning destabilizes for both
high and low choices. This is expected for high values of ξ as they enforce model exploitation.

10If the SAC Target Ent. hyperparameter is shown as N/A in the hyperparameter table, this means that
automatic entropy tuning Haarnoja et al. [2018b] is not used for this case, instead a fixed temperature parameter
Haarnoja et al. [2018a] of 0.2 is used.

11While potential performance gains are possible tuning Tmax and ζ, our focus is to underscore the ease of
tuning MACURA.

25

Table 7: Hyperparameters M2AC (Stochastic Environment Policy)
Environment Humanoid Ant Halfcheetah Walker Hopper

Epochs 300 300 400 200 125
Steps per Epoch 1000

PNNs per PE 7
PNN Layers 4

PNN Nodes per Layer 200
Critic Layers 3

Critic Nodes per Layer 1024
Actor Layers 3

Actor Nodes per Layer 1024
SAC Target Ent. -17 -1 -4 N/A
SAC Updates G 20 10 30

Rollouts per Round M 400 200 400
Rollouts length Tmax 10

Table 8: Hyperparameters SAC
Environment Humanoid Ant Halfcheetah Walker Hopper
Critic Layers 3

Critic Nodes per Layer 256
Actor Layers 3

Actor Nodes per Layer 256
SAC Target Ent. -17 N/A -6 -6 -3
SAC Updates G 1

However, that low values of ξ also destabilize training is more surprising. We assume that the
on-policy nature of Dyna-style MBRL, discussed in Section 2.3, in combination with the effective
rollout adaption mechanism of MACURA leads to narrow data distributions inDmod when restricting
model uncertainty too harshly. Consequently, the Q-functions of the model-free agent overfit, which
destabilizes learning. A practical guide on tuning ξ is provided in Appendix D.3.

D.3 Discussion ξ

The parameter ξ allows us to tune what sufficiently certain is. The general idea is that in the first
rollout step, the model is evaluated in states that are in Denv and have been seen before. Thus, the
uncertainty values we get for this first step are values of the GJS that correspond to being certain.
So we choose the base uncertainty ûGJS to be the ζ = 0.95 quantile of uncertainties after this first
rollout step. Taking this base uncertainty as the uncertainty threshold, which corresponds to ξ = 1,
yields reasonable results in all environments. In this case, whenever a prediction step overshoots the
0.95 quantile of uncertainty within the data support, we consider it to have left E and terminate the
model-based rollout.

However, the model is often very certain within the data support towards the end of the training,
leading to a low uncertainty threshold κ resulting from ξ = 1. This leads to a narrow data distribution
inDmod. Repeatedly training the critics on this narrow distribution causes overfitting. This introduces
instability towards the end of training as discussed in Section D.2 and shown in Figure 7b. Thus, we
typically choose ξ > 1. This is true for all MuJoCo environments but Walker. The Walker dynamics
seem hard to learn for the PE model. This can e.g. be seen from the learning behavior of MBPO in
Figure 3. Even though MBPO solely performs model-based rollouts of length 1 throughout training,
learning appears rather brittle. Thus, in the Walker task, the 0.95 quantile of uncertainties after the
first rollout step is too uncertain for stable learning. Therefore, we chose ξ < 1 to stabilize learning
in this case.

From our experience, ξ can be tuned in the following way:

• Perform a run with ξ = 1. This should result in stable learning as long as the agent is in the
early stages of training and improves sufficiently fast. As soon as the algorithm is close to its

26

100 200
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

(a) Exploration Schemes on MACURA and MBPO.
Impact of deterministic (D), white noise (WN), and pink
noise (PN) exploration on algorithmic performance.

100 200
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3
MACURA(ξ=1)

MACURA(ξ=3)

MACURA(ξ=5)

MACURA(ξ=10)

MACURA(ξ=20)

(b) Tuning scaling parameter ξ. MACURA performs
well for intermediate ξ. Too large values of ξ lead to
model exploitation, too small values lead to overfitting
of the agent.

asymptotic performance, the uncertainty threshold might get too low such that instabilities
in learning occur.

• If this is the case, increase ξ. As indicated in Figure 7b, there is a relatively broad range of ξ
values that yields stable performance. If ξ is chosen too large, however, instabilities due to
model exploitation occur.

• If instabilities occur early in training, when running MACURA with ξ = 1 the model
probably approximates the true dynamics poorly. This can be checked e.g. by reproducing
trajectories in Denv through model-based rollouts and considering the deviation. In this case,
ξ can be reduced until the learning behavior is stable.

The fact that the entire rollout mechanism can be tuned by choosing ξ, from our experience, makes
tuning considerably easier than determining all the required hyperparameters of the M2AC mechanism
or designing a suitable rollout schedule for MBPO.

D.4 The Importance of Environment Exploration

Following the state-of-the-art implementation Pineda et al. [2021], the agent interacts deterministically
with the environment in MBPO and M2AC, while we choose pink noise exploration for MACURA
in Figure 3. The impact of exploration on MACURA and MBPO is illustrated in Figure 7a for the
Humanoid task. We observe a general trend that is discussed in more detail in Appendix D.5. For
both algorithms, deterministic interaction yields limited yet stable performance. Classic white noise
exploration, where actions are sampled independently, has the potential of strong performance, as
can be seen in MACURA, while introducing the risk of destabilizing learning, as in the case of
MBPO. Pink noise exploration, instead, shows an intermediate, overall best behavior, combining high
performance with stable learning. The strongest gains from environment interaction can be observed
for MACURA, underscoring the effectiveness of the notion of E for model usage.

D.5 Exploration in the Environment

The implementation used in this work, based on the mbrl-lib library Pineda et al. [2021], uses deter-
ministic environment exploration for MBPO yielding similar results to the original implementation
Janner et al. [2019]. As far as we can reconstruct, the original implementation Janner et al. [2019]
uses white noise exploration in the agent environment interaction, however, when implementing white
noise exploration in the mbrl-lib code, we observe substantially different results from those reported
in Janner et al. [2019]. These range from better performance to divergence. For our reimplementation
of M2AC based on the mbrl-lib code, deterministic environment interaction also yields the most
stable results. Thus, we present the performance of deterministic environment interaction for MBPO
and M2AC in Figure 3.

In Figures 8 - 12 we present the performance of MACURA, MBPO, and M2AC with the considered
exploration schemes: deterministic interaction, white exploration noise and pink noise exploration
Eberhard et al. [2023], on the MuJoCo benchmark.

We have issues producing stable results for M2AC, despite putting the most tuning effort among
the compared approaches. We find that hyperparameter settings that are stable for deterministic
interaction destabilize in the case of exploration noise and vice versa. Thus we provide a set

27

100 200 300 400
Steps 1e3

5

10

15

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 8: Exploration Schemes on MACURA, MBPO, and M2AC on Halfcheetah. Impact of
deterministic (D), white noise (WN), and pink noise (PN) exploration on algorithmic performance.

of hyperparameters for deterministic environment interaction and one that we use for white and
pink noise exploration. For MACURA and MBPO we run the same sets of hyperparameters for
all exploration schemes. Generally, we see the performance of M2AC fall short as compared to
MACURA and MBPO.

For MBPO, we use the fine-tuned rollout schemes reported in Janner et al. [2019]. White noise
exploration in most cases positively impacts asymptotic performance but increases the variance among
runs. In some instances, we observe that white noise exploration destabilizes learning in MBPO,
leading to divergence. For pink noise exploration, we can report a generally positive impact on the
performance of MBPO, increasing data efficiency and asymptotic performance without destabilizing
learning. In some environments, MBPO with a fine-tuned rollout schedule and pink noise exploration
can even compete with MACURA.

MACURA with deterministic environment interaction shows the strongest performance among
deterministic interaction methods in most environments. White noise exploration in some cases yields
better results than pink noise exploration, while considerably increasing variance among trained
agents. Different from MBPO, however, white noise exploration does not destabilize MACURA up
to the point of divergence. Overall, we observe that MACURA with pink noise exploration yields the
best data efficiency, asymptotic performance, and stability among all approaches on the benchmark.
Combined with a considerably easier-to-tune rollout length scheduling mechanism than MBPO and
M2AC we consider this the most promising approach for Dyna-style MBRL.

D.6 Noisy Environment

We evaluate MBPO, M2AC, and MACURA on a noisy version of the Halfcheetah environment. To
introduce noise, we take the approach proposed in Pan et al. [2020] and add noise to the actions
applied to the environment. Therefore, the action applied to the environment is ãt = at + ϵ with
ϵ ∼ N (0,Σ). The covariance matrix Σ is a diagonal matrix with diagonal elements σ2. The
additive noise is not observable to the agent and therefore introduces process noise. Following the
experimental setup in Pan et al. [2020], we conduct three experiments with σ = 0.05, σ = 0.1 , and
σ = 0.2 respectively. The corresponding results are depicted in Figure 13. MACURA consistently
outperforms MBPO and M2AC.

D.7 Rollout Horizon, Data Uncertainty, Gradient Steps

We evaluate the rollout - and gradient step adaption mechanism of MACURA on the Walker environ-
ment. We compare MACURA to M2AC and MBPO.

First, we consider the average rollout length of the respective approaches throughout training as
depicted in Figure 14. Therefore, we record the rollout lengths of all M model-based rollouts

28

50 100 150 200
Steps 1e3

2

4

6

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 9: Exploration Schemes on MACURA, MBPO, and M2AC on Walker. Impact of deterministic
(D), white noise (WN), and pink noise (PN) exploration on algorithmic performance.

25 50 75 100 125
Steps 1e3

2

4

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 10: Exploration Schemes on MACURA, MBPO, and M2AC on Hopper. Impact of determinis-
tic (D), white noise (WN), and pink noise (PN) exploration on algorithmic performance.

100 200 300
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 11: Exploration Schemes on MACURA, MBPO, and M2AC on Humanoid. Impact of
deterministic (D), white noise (WN), and pink noise (PN) exploration on algorithmic performance.

29

100 200 300
Steps 1e3

2

4

6
Re

tu
rn

1e3
MACURA(D)

MACURA(WN)

MACURA(PN)

MBPO(D)

MBPO(WN)

MBPO(PN)

M2AC(D)

M2AC(WN)

M2AC(PN)

Figure 12: Exploration Schemes on MACURA, MBPO, and M2AC on Ant. Impact of deterministic
(D), white noise (WN), and pink noise (PN) exploration on algorithmic performance.

100 200 300 400
1e3

5

10

15

Re
tu

rn

1e3 = 0.05

100 200 300 400
1e3

5

10

15
1e3 = 0.1

100 200 300 400
Steps 1e3

5

10

15

Re
tu

rn

1e3 = 0.2

MACURA

MBPO

M2AC

Figure 13: Returns obtained by MACURA, MBPO, and M2AC on noisy Halfcheetah.

performed in parallel during one round of model-based rollouts and compute their average. As
proposed in Janner et al. [2019], MBPO performs one-step rollouts throughout training leading to an
average rollout length of one. The rank-based filtering heuristic of M2AC terminates a fixed quantile
of model-based rollouts after each rollout step. Effectively, this yields a predefined distribution over
rollout lengths, which does not change throughout training. As a side effect, this leads to a constant
average rollout length as depicted in Figure 14. MACURA, instead, has a threshold-based rollout
length adaption mechanism, thus the average rollout length varies throughout training. MACURA
performs short rollouts in the early stages of training, where the model has limited capabilities and
increases the rollout length as the model improves. Different from MBPO and M2AC, MACURA
can even discard the first rollout step enabling an average rollout length lower than one.

Next, we investigate the uncertainty of the corresponding data created in model-based rollouts. We
measure uncertainty with the variance of the mean predictions of the individual PNNs within the PE.
To recover a scalar uncertainty, we take the Frobenius norm of the resulting matrix:

uMV(s, a) =

∥∥∥∥∥ 1

E

E∑
e=1

(µθe(s, a)− µPE(s, a))(µθe(s, a)− µPE(s, a))
⊤

∥∥∥∥∥
F

(32)

30

50 100 150 200
Steps 1e3

2

4

6

8

10

av
er

ag
e

ro
llo

ut
 le

ng
th

Average Rollout Length (Walker)

MACURA

MBPO

M2AC

Figure 14: Average rollout lengths for MACURA, MBPO, and M2AC on Walker.

with µPE(s, a) =
1
E

∑E
e=1 µθe(s, a). By doing this, we aim to avoid artifacts introduced by compar-

ing uncertainty in the metrics used in M2AC or MACURA and instead provide an impartial analysis
of how uncertainty evolves in model-based rollouts.

The average uncertainty corresponding to the respective Dyna-style approaches is depicted in Figure
15. MBPO has the highest average uncertainty that reduces throughout training. M2AC shows lower
average uncertainty than MBPO. We assume this is the case, as low-uncertainty rollouts are propagated
for several rollout steps reducing the mean uncertainty. MACURA shows an average uncertainty
comparable to M2AC. However, the initial average uncertainty in MACURA is substantially lower
than in M2AC and MBPO due to the threshold-based rollout adaption mechanism. Different from the
rank-based heuristic of M2AC that always takes a particular most certain percentage into account
(which can include very uncertain data when initially most data is bad), MACURA can discard all
the data that is above the uncertainty threshold.

It should be noted that the average uncertainty gives a rough impression of data quality but is not
a suitable metric for detecting low-quality outliers that occur with low probability. These outliers,
however, have a strong influence on the learning process from our experience.

50 100 150 200
Steps 1e3

1

2

3

4

m
ea

n
ep

ist
em

ic
va

ria
nc

e

Mean Epistemic Variance of Rollouts (Walker)

MACURA

MBPO

M2AC

Figure 15: Mean epistemic uncertainty of rollouts for MACURA, MBPO, and M2AC on Walker.

The varying amounts of data created in model-based rollouts require adapting the amount of SAC
updates in MACURA. Figure 16 shows the average gradient steps G of the respective approaches.
Both MBPO and M2AC have a G = 30 fixed throughout training, while MACURA adapts G
depending on the occupancy of Dmod (15) that depends on the average rollout length depicted in
Figure 14. Therefore, MACURA performs fewer SAC updates in the early stages of training but

31

50 100 150 200
Steps 1e3

10

20

30

40

ag
en

t u
pd

at
es

 p
er

 e
nv

iro
nm

en
t s

te
p

Agent Updates per Environment Step (Walker)

MACURA

MBPO/M2AC

Figure 16: SAC Update Steps

catches up as the model improves. Towards the end of training, MACURA performs a bit over 40
SAC updates per timestep. Simply increasing G to 40 in MBPO and M2AC, however, does not yield
stable results, as depicted in Figure 17 (in the figure G is referred to as update-to-data (UTD) ratio).

50 100 150 200
Steps 1e3

2

4

6

Re
tu

rn

1e3 Episode Returns (Walker)

MACURA

MBPO UTD 40

M2AC UTD 40

MBPO UTD 30

M2AC UTD 30

Figure 17: Comparison of returns obtained on Walker.

D.8 Uncertainty Estimates

In the following, we investigate the performance of MACURA and M2AC with different uncertainty
estimates. Results on the Humanoid environment are depicted in Figure 18.

M2AC with the GJS uncertainty estimate learns slightly faster and shows slightly stronger perfor-
mance with less variance. We assume this to be the case, as the GJS estimate is more reliable in
detecting low-quality data, thus stabilizing learning.

MACURA with OvR uncertainty estimate Pan et al. [2020] performs well up to a return of about
7000 and subsequently diverges presumably due to the brittleness of the OvR uncertainty estimate.

Additionally, we conduct experiments with MACURA using the ensemble variance estimate proposed
in Lu et al. [2021] and mean variance (32).

While MACURA works with both these uncertainty metrics, they yield weaker results than the
GJS estimate. This aligns with our intuition, as ensemble variance is a combined estimate for
epistemic and aleatoric uncertainty, while we are solely interested in epistemic uncertainty. The
variance of ensemble means solely addresses epistemic variance but has no information about the

32

50 100 150 200 250 300
Steps 1e3

2

4

6

8

10

Re
tu

rn

1e3 Episode Returns (Humanoid)

MACURA

MACURA OvR

MACURA ensemble variance

MACURA epistemic variance

M2AC

M2AC GJS

Figure 18: MACURA and M2AC with different uncertainty metrics on Humanoid.

200 400 600 800 1000
Steps 1e3

3000

6000

9000

12000

15000

Re
tu

rn

MACURA

MBPO

Figure 19: MACURA and MBPO with prolonged experiment length on Halfcheetah.

aleatoric uncertainty at all, which can be problematic. Epistemic uncertainty, however, is defined
by the disagreement of individual PNN predictions, which rather corresponds to the overlap in the
probability mass of the individual predictions. The GJS uncertainty estimate measures this overlap in
probability mass, thus providing a better metric for epistemic uncertainty and works better in practice.

D.9 Prolonged Experiments

In the following, we discuss the behavior of MBPO and MACURA, when trained beyond the
typically reported length of experiments Janner et al. [2019], Pan et al. [2020]. Figure 19 depicts
results on Halfcheetah for 1,000,000 environment interactions as opposed to the 400,000 environment
interactions presented in Figure 3. We do not consider M2AC in these experiments as stabilizing
M2AC even for the first 400,000 environment interactions is a substantial challenge. Both MBPO
and MACURA destabilize after an extended amount of training. From our experience, this is due to
overfitting of either the model or the critic after training on similar data distributions over and over
again. The training heuristics for model and critic of MBPO that are largely inherited by MACURA
are not well suited for continuing training. Extending these algorithms to a continuing training setting
requires further research addressing when to train your model and agent that is beyond the scope of
this work.

33

	Introduction
	Background
	Reinforcement Learning
	Probabilistic Ensemble Models
	Dyna-Style Model-Based Reinforcement Learning

	Where to Trust your Model?
	Monotonic Improvement under Dynamics Misalignment on E
	Formulation of Monotonic Improvement
	Interpretation of the Result

	Constructing E from Model Uncertainty
	Defining E in Practice
	Efficient Measure for Model Uncertainty
	Illustrative Example

	MACURA: Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption
	Uncertainty-Based Rollout Adaption
	Expanding E through Environment Exploration

	Experiments and Discussion
	Experimental Setup
	Performance Evaluation
	Ablation and Further Results

	Related Work
	Conclusion
	Pseudocode Algorithms
	Proofs
	Toy Example
	Pendulum Dynamics
	Controller
	Data Generation
	Illustrating the uGJS Uncertainty Measure
	Illustrating the uOvR Uncertainty Measure of the M2AC Algorithm Pan2020Dec

	Experiments
	Experimental Setup
	Tuning the Uncertainty-Aware Adaption Scheme
	Discussion
	The Importance of Environment Exploration
	Exploration in the Environment
	Noisy Environment
	Rollout Horizon, Data Uncertainty, Gradient Steps
	Uncertainty Estimates
	Prolonged Experiments

