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Towards Expansive and Adaptive Hard Negative Mining:
Graph Contrastive Learning via Subspace Preserving
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ABSTRACT
Graph Neural Networks (GNNs) have emerged as the predominant

tool for analyzing graph data on the web and beyond. Contrastive

learning (CL), a self-supervised paradigm, not only mitigates the

reliance on annotations but also leads to breakthroughs in per-

formance. The hard negative sampling strategy that benefits CL

in other domains proves ineffective in the context of Graph Con-

trastive Learning (GCL) due to the message passing mechanism.

Embracing the subspace hypothesis in clustering, we propose a

method towards expansive and adaptive hard negative mining, re-

ferred to as Graph contRastive leArning via subsPace prEserving

(GRAPE). Beyond homophily, we argue that false negatives are

prevalent over an expansive range and exploring them confers ben-

efits upon GCL. Diverging from existing neighbor-based methods,

our method seeks to mine long-range hard negatives throughout

subspace, where message passing is conceived as interactions be-

tween subspaces. Additionally, our method adaptively scales the

hard negatives set through subspace preservation during training.

In practice, we develop two schemes to enhance GCL that are plug-

gable into existing GCL frameworks. The underlying mechanisms

are analyzed and the connections to related methods are investi-

gated. Comprehensive experiments demonstrate that our method

achieves state-of-the-art performance on multiple graph datasets

and maintains competitiveness in various application settings. Our

work contributes to the improvement of representation learning on

web graphs, aligning with the scope of The Web Conference. Our

code is available at https://anonymous.4open.science/r/Grape-code.
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1 INTRODUCTION
Graph data is ubiquitous in both real-world and virtual realms,

encompassing a broad spectrum of areas such as social networks,

molecular structures, trade circulation. Recently, GNNs have wit-

nessed significant strides in the domain of analyzing graph data,

exhibiting exceptional performance in tasks such as graph classi-

fication [90, 99], node clustering [16, 54], link prediction [98, 111]

and graph generation [40, 93]. Following the pioneering contri-

butions of GCN [32], GraphSAGE [20], GAT [71], etc., numerous

GNN architectures have been developed and enhanced. Almost

all GNNs are built upon the message passing mechanism between

neighbors, where each node acquires feature information from its

neighbors and contributes its own feature information. Analogous

to most neural networks, GNNs are typically trained in a supervised

manner and require an abundance of annotations.

Contrastive Learning (CL), as a category of self-supervised meth-

ods, has recently demonstrated a series of state-of-the-art perfor-

mances in various domains [6, 7, 14, 101, 107]. These studies em-

phasize that the representations learned by CL perform comparably

to supervised learning in downstream tasks. The essence of CL lies

in learning representations that retain invariance under a variety of

distortions, referred to as "data augmentations" [68, 69]. To achieve

this, researchers develop InfoNCE objective [18, 53], which maxi-

mizes a lower bound of mutual information between augmented

views [2, 25]. The core conception is to draw positive pairs closer

while repelling negative pairs apart [19].

The breakthroughs of CL in computer vision have motivated

studies to extend the analogous concepts from visual represen-

tation learning to graph data, referred to as Graph Contrastive

Learning (GCL). These GCL methods achieve sota in both graph-

level and node-level tasks [21, 67, 83, 97, 108, 109]. GCL adheres

to the typical CL paradigm, albeit with specific variations [63, 72].

In general, the application paradigms of CL in visual, textual, and

graph data domains can be illustrated as Figure 1. As demonstrated,

existing research in GCL can be summarized into the following

two main threads: (1) augmentation for graph [28, 37, 59, 65, 83, 94–

96, 102, 106, 110], which aims to adapt semantic-preserving aug-

mentation techniques from visual data to irregular graph data. (2)

contrastive loss for graph [21, 38, 64, 84, 97, 102, 109], which ex-

plores the loss functions suitable for GNN training within CL frame-

work. Our work falls into the latter category. Unlike other main-

stream instance-discriminating backbones [9, 10, 22, 23, 70, 76]

where instances do not exhibit explicit interactions, GNNs rely on

message passing among neighbors. A notable issue arises where

hard negative sampling techniques, proven to contribute in CL

[5, 29, 36, 60, 82], does not confer benefits in GCL and may even

impair performance, which has been discussed in [46, 64, 84, 108].

The main concept behind is that hard negatives in GCL are prone to

being false negatives, consequently, pushing away the semantically

similar representations leads to a degradation in performance.
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Figure 1: A comparison of CL for visual, textual, and graph
data. The irregularity of graph data and themessage passing
mechanism of GNNs distinguish GCL from CL in other do-
mains. Graph convolutional operator introduces smoothing
property among neighbors, while necessitating some techni-
cal changes to GCL.

In this paper, we report that mining expansive and adaptive
hard negatives enhances node-level tasks. To achieve both objec-

tives, we introduce a negative hardness estimation scheme for GCL,

aligning with the subspace preservation hypothesis in clustering.

The core strength of our method lies in its ability to capture hard

negatives beyond the scope of message passing and adjust the hard

negatives set in a self-scaled manner. In node-level tasks, the con-

cept of subspace preservation is intuitive. For instance, in a citation

network, it can be elucidated as follows: from the semantic per-

spective, articles with the similar theme tends to share keywords

(features); from the structural perspective, mutual citations within

the same subfield are frequent whereas cross-domain article cita-

tions are limited. Prominent recommendation mechanisms within

social or e-commerce networks, which curate personalized content

for individual entities, have catalyzed the emergence of subspaces

[58, 80, 81]. We provide theoretical and experimental analyses to

illuminate why and how our method works. To the best of our

knowledge, our work is the first to address the GCL through sub-

space techniques.

In summary, the main contributions of this paper can be encap-

sulate in threefold:

• We show that more expansive and adaptive hard negative

mining is promising for enhancing node-level GCL. In line

with this idea, we propose GRAPE, a novel negative hardness

estimation method for GCL based on subspace theory.

• In GRAPE, the hard negatives beyond the scope of message

passing can be captured and the hard negatives set can be

adaptively scaled. Two schemes are devised to alleviate the

influence of false negative samples on GCL. Besides, we

provide a theoretical exposition of GRAPE’s properties and

its connection with related methods.

• In comparison to several advanced GCL methods, GRAPE

exhibits superior performance on eight widely-used public

graph datasets. We conduct comprehensive experiments un-

der various settings to thoroughly analyze the results and

behaviors of GRAPE.

The proofs of involved theorems, experimental settings and sup-

plementary experiments are relegated to the appendix.

2 RELATEDWORK
In line with the focus of our work, we provide an overview of related

works on graph contrastive learning and subspace preserving.

2.1 Graph Contrastive Learning
Amidst the increasing recognition of contrastive learning’s expres-

sive capability, DGI [72] and InfoGraph [63] first leverage the maxi-

mization ofmutual information [25] at the node- and graph-level, re-

spectively, to attain effective representations. In subsequent works,

MVGRL [21] utilizes graph diffusion [15] to obtain augmented views

and applies contrastive learning at both the node and graph levels.

GMI [57] extends mutual information computations from vector

spaces to the graph domain and assesses the correlation between

input graphs and high-level hidden representations. GRACE [109],

GCA [110] employ the InfoNCE-style objective and obtain node rep-

resentations by treating others as negative samples, which serves

as a baseline in follow-up research. To mitigate the sampling bias

issue, BGRL [67] extends the BYOL [17] framework to graph. In this

strand, CCA-SSG [97] optimizes a feature-level objective inspired by

classical canonical correlation analysis. SpCo [43] is introduced as a

spectral GCL module based on the general graph augmentation rule

to enhance existing GCL methods. In another thread, ProGCL [85]

estimates the probability of a true negative using a two-component

beta mixture model. Empirical studies [108] verify that assigning

higher weights to hard negatives or generating hard negatives fails

to improve GCL. GDCL [104] jointly performs GCL and DEC [86];

nevertheless, this unsupervised process may lead to training col-

lapse. COSTA [102] advocates generating covariance-preserving

augmented features inspired by matrix sketching. HomoGCL [38]

proposes utilizing the homophily in graph to filter positive pairs.

PHASES [64] employs a progressive negative masking strategy to

enhance tolerance between sample pairs. We recommend readers

to refer to [45, 85, 87] for a comprehensive overview.

2.2 Subspace Preserving
One underlying tenet in machine learning is that the data con-

tains certain type of structure for intelligent representation. From

this, the subspace assumption, which runs through the research

journey of machine learning, can be described as follows [41]:

high-dimensional data is drawn from a union of multiple affine

or linear subspaces. In a simplified perspective, affine subspace

is more closely related to manifold learning [3, 24, 52, 61, 66, 91],

whereas linear subspace aligns more closely with dictionary learn-

ing [27, 35, 49, 78, 79]. Over the past decade, subspace learning

based on the self-expression model, which enjoys the benefits of

the both, has made significant strides [12, 39, 41, 47]. The main

divergence among these methods is the constraints imposed on the

self-expression coefficients, such as sparse constraint [12, 55, 77],

low-rank constraint [30, 41, 42], connectivity constraint [48, 89, 92],
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and smooth constraint [4, 26, 34]. We adopt the fundamental princi-

ples of such methods to tackle hard negative mining in GCL. Both

empirical investigations and theoretical analyses confirm the suit-

ability in the context of GCL. Recent studies in graph dictionary

learning [44, 74, 88] focus on sparse encoding for molecules, which

are not directly related to our work.

3 METHODOLOGY
3.1 Notations and Preliminaries
Let𝐺 = (𝑨,𝑿 ) denotes a graph with 𝑛 nodes, where 𝑨 ∈ {0, 1}𝑛×𝑛
denotes the adjacency matrix and 𝑿 ∈ R𝑛×𝑑 denotes the feature

matrix. Let
ˆ𝑨 = 𝑨 + 𝑰𝑛 be the adjacency matrix with self-loops.

The normalized adjacency matrix is then given by
˜𝑨 = 𝑫− 1

2 ˆ𝑨𝑫− 1

2 ,

where 𝑫 is the degree matrix. Vectors and matrices in this paper are

denoted by bold lowercase and bold uppercase letters, respectively.

Set {1, 2, · · · , 𝑛} is abbreviated by [𝑛] for simplicity.

Our objective is to train a GNN encoder 𝑓Θ (𝑨,𝑿 )in a label-scarce
scenario, where Θ represents the network parameters. The output

node embeddings are supposed to be directly applicable for down-

stream tasks, such as node classification and node clustering in this

paper. Take GCN for example, the layer-wise forward-propagation

operation at the 𝑙-th layer is formulated as:

𝒁 (𝑙) = 𝜎
(
˜𝑨𝒁 (𝑙−1)𝑾 (𝑙)

)
, (1)

where𝑾 (𝑙)
is the trainable weights for feature transformation and

𝒁 (𝑙)
denotes the node embeddings at the 𝑙-th layer. Clearly, there

is 𝒁 (0) = 𝑿 at the initial layer. 𝜎 (·) denotes an activation func-

tion such as ReLU. In context of GCL, two views 𝐺1 = (𝑨1,𝑿1),
𝐺2 = (𝑨2,𝑿2) are generated by augmentation strategies [105] each

epoch.𝐺1 and𝐺2 are fed into a Siamese GNN encoder [7] to produce

node embeddings {𝒖𝑖 }𝑛𝑖=1 and {𝒗𝑖 }
𝑛
𝑖=1

, respectively. The contrastive

loss can then be computed, followed by backpropagation. The com-

mon baseline for graph contrastive loss is the InfoNCE-style loss in

GRACE [109]. Specifically, the contrastive loss for 𝒖𝑖 is defined as:

ℓ (𝒖𝑖 ) =

− log

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏︸      ︷︷      ︸
positive pair

+
∑
𝑗≠𝑖

𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏︸            ︷︷            ︸
inter-view negative pairs

+
∑
𝑗≠𝑖

𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

︸            ︷︷            ︸
intra-view negative pairs

,

(2)

where 𝜃 (·, ·) denotes cosine similarity and 𝜏 is the temperature

parameter. The objective ℓ (𝒗𝑖 ) is defined symmetrically. Then the

overall loss is given as:

L =
1

2𝑛

𝑛∑
𝑖=1

(ℓ (𝒖𝑖 ) + ℓ (𝒗𝑖 )) . (3)

It can be observed in Eq. (2) that by minimizing loss L, embeddings

of the same sample under two augmentations are pulled closer

(positives), while embeddings of different samples are repelled

away (negatives). For simplicity, in this paper, we represent ℓ (𝒖𝑖 )
in the following form

ℓ (𝒖𝑖 ) = − log

pos(𝒖𝑖 )
pos(𝒖𝑖 ) + neg(𝒖𝑖 )

. (4)

3.2 Graph Contrastive Learning via Subspace
Preserving

Recent studies [84, 108] report that considering all samples other

than the anchor itself as negatives (Eq. (2)) unduly distances false
negatives (i.e., samples of the same class as the anchor). This so-

called "class collisions" phenomenon makes the marriage of CL and

GNNs seem subtle and, as a result, leads to a performance decline.

Hard negative mining provides a remedy to rectify this deficiency,

where hard negatives refer to samples exhibiting a high degree

of similarity to the anchor or having a greater likelihood of being

false negatives. Let 𝚽𝑖 be the hard negatives set of the 𝑖-th sample.

With {𝚽𝑖 }𝑛𝑖=1 identified, hard negative mining mainly employs two

forms of loss: one explicitly treats 𝚽𝑖 as positives [11, 38](referred

to as "Positive" strategy), i.e., modifying the "pos" term in Eq. (4) to:

pos(𝒖𝑖 ) = 𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 +
∑
𝑗 ∈𝚽𝑖

𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 +
∑
𝑗 ∈𝚽𝑖

𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏
; (5)

another strategy masks 𝚽𝑖 within the negatives [8, 84] (referred to

as "Mask" strategy), i.e., modifying the "neg" term in Eq. (4) to:

neg(𝒖𝑖 ) = 𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 +
∑
𝑗∉𝚽𝑖

𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 +
∑
𝑗∉𝚽𝑖

𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏 . (6)

While both strategies are intuitive, their effectiveness on graphs

remains to be thoroughly explored. We employ GRACE with two-

layer GCN as a baseline and probe the quality of hard negative

mining on three popular datasets. The results are shown in Table

1, with each value representing the average of 10 repeated runs.

The different settings are explained as follows: "w/o MP" denotes

GRACE without message passing, "𝑥-hop" denotes selecting neigh-

bors within 𝑥-hop as hard negatives, "𝑥-hop∗" denotes selecting
false negatives within 𝑥-hop as hard negatives, and "all labels" de-

notes selecting all false negatives as hard negatives. Here, 1-hop

includes own neighbors for each node, while 2-hop encompasses

the neighbors of neighbors and so forth. The "all labels" setting is

an extreme scenario with all labels available in which ℓ (𝒖𝑖 ) is akin
to the tuplet loss in metric learning [31, 62].

Table 1: Empirical study (node classification accuracy in per-
centage) on hard negative mining in GCL.

Datasets Cora CiteSeer PubMed

Settings Positive Mask Positive Mask Positive Mask

GRACE 81.05 71.27 79.57

w/o MP 44.34 60.52 72.94

1-hop 81.71 82.20 71.09 71.57 79.76 79.98

2-hop 80.68 81.95 69.43 71.52 77.41 78.80

3-hop 79.06 81.52 68.47 70.14 74.89 76.86

1-hop
∗

82.49 81.83 71.42 71.06 80.54 80.31

2-hop
∗

84.12 83.49 72.11 72.19 81.42 80.96

3-hop
∗

86.61 86.15 74.86 73.52 83.26 83.20

all labels 97.57 94.63 95.93 93.44 97.01 95.52

Through empirical study, we make the following observations:

(1) the performance of GCL significantly deteriorates in the absence

of message passing; (2) "𝑥-hop" settings provide limited benefits and

may even be detrimental to GCL; (3) training under "𝑥-hop∗" setting
improves GCL performance; (4) "𝑥-hop∗" setting with larger 𝑥 leads

to more noticeable performance improvements. A follow-up query

3
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arises as to whether it is feasible to narrow the gap between "𝑥-hop"

and "𝑥-hop∗"? Drawing insights from above observations: (2) and

(3) inspire us to capture more "precise" hard negatives, while (4)

encourages capturing "expansive" hard negatives. In self-supervised

scenarios, the notion of "precise" may appear impractical, and thus,

we pivot towards the pursuit of an "adaptive" solution.
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Figure 2: The number of average false negatives at each hops
on eight graph datasets.

We plot the average distributions of false negatives on eight most

commonly used network datasets in Figure 2. Cora and Citeseer

correspond to the left coordinate axis, while the rest correspond to

the right coordinate axis. It can be observed that false negatives are

prevalent over an expansive range. This gives rise to the following

concern: on the one hand, capturing more expansive false negatives

approximates the performance under "all labels" setting; on the

other hand, it is essential to prevent the capture of true negatives

and thus avert the occurrence of ’x-hop’ scenario. In other words,

this is promising intuitively and entails practical risks.

For a specific anchor, its neighbors in close proximity frequently

engage in message passing with it. Hence, its close neighbors are

inherently hard to distance, whereas points with no message ex-

change with the anchor are susceptible to being pushed farther

away, as shown in Figure 3a. This also explains why the "1-hop
∗
"

in Table 1 provides limited boost to the baseline. Beyond well-

known graph homophily [50], we employ subspace preserving

techniques to address this issue. The essence behind is to mine

hard negatives across the entire subspace, rather than limiting it to

graph-structured neighbors. Next, we provide the brief definition

of subspace preserving.

Definition 1. (Subspace Preserving) The given data {𝒙𝑖 }𝑛𝑖=1 is
drawn from a union of an unknown number 𝑘 of subspaces {S𝑗 }𝑘𝑗=1
with unknown dimensions {𝑑𝑖 }𝑘𝑖=1. S𝑗 is subspace preserving if ∀𝒙𝑖 ∈
S𝑗 can be expressed as a linear combination of other points in S𝑗 .

Based on the so-called self-expressiveness property [12], the

coefficients representing the contribution to the anchor can be

obtained by solving the optimization problem:

min

𝒄
∥𝒛 − 𝑯𝒄 ∥2

2
+ 𝜆Ω(𝒄), (7)

where 𝒛 ∈ R𝑑 is the representation of the anchor, and matrix

𝑯 ∈ R𝑑×𝑚 is formed by concatenating the representations of𝑚

hard negatives of the anchor. Ω corresponds to a specific constraint

on 𝒄 . Note that the anchor in problem (7) represents any sample and

we omit subscript 𝑖 for simplicity. Upon comparative analysis, we

inside MP

outside MP

anchor

(a) Negatives for an anchor

inside
subspace

outside subspace

(b) Classification on Cora

Figure 3: Qualitative schematic of our method.

opt for elastic net [112] as Ω in this paper, which is a combination

of the ℓ1 and ℓ2-norms widely used in machine learning [13, 92,

103]. ℓ1-penalty encourages sparsity, while ℓ2-penalty promotes

the connectivity. Furthermore, we expect to capture the consistent

contribute from each hard negative throughout the entire process.

The hard negatives selection for anchor 𝒛 turns out to be:

min

𝒄

𝐿∑
𝑙=1

1

2𝑑 (𝑙)
∥𝒛 (𝑙) − 𝑯 (𝑙) 𝒄 ∥2

2
+ 𝜆

(
𝜇∥𝒄 ∥1 +

1 − 𝜇
2

∥𝒄 ∥2
2

)
(8)

where 𝐿 is the number of network layers and 𝑑 (𝑙) is the dimension

of the 𝑙-th layer. There is 𝒛 (𝑙) ∈ R𝑑 (𝑙 )
and 𝑯 (𝑙) ∈ R𝑑 (𝑙 )×𝑚

. 𝜆 > 0 is

the regularization parameter and 𝜇 ∈ [0, 1] controls the trade-off
between two terms in the elastic net regularizer. As GNN performs

message passing between neighbors at each layer, the subspaces at

each layer may shift. Therefore, each forward propagation can be

regarded as interactions between subspaces: some nodes are drawn

into certain subspaces, while some are pushed out of their original

subspaces. Scalar
1

2𝑑 (𝑙 ) is for scale equilibrium. The interpretation

of the first term in Eq. (8) is to seek consistent coefficients 𝒄 across
training layers. In other words, if a node consistently resides in

the same subspace as the anchor, it is highly likely to be a false

negative of the anchor. The magnitude of this possibility depends

on the magnitude of self-expression coefficients.

Due to the sparse constraints, problem (8) can not be computed

in closed form by SVD. Multiple solutions are provided below.

Full parameterization: If each position of 𝒄 is considered as a

parameter, then problem (8) can be solved in fully parametric way,

such as Iterative Shrinkage Thresholding Algorithm (ISTA) [1].

Moreover, 𝒄 can also be solved by gradient-based training. Since

each sample serves as an anchor, the number of parameters in this

strategy is

∑𝑛
𝑖=1𝑚𝑖 . Updating these parameters during training may

bring computational burdens on large-scale data.

MLP parameterization: In this scheme, self-expression coeffi-

cients can be computed on the lower-dimensional representations

output from MLP. For example, SENet proposed in [100] employs

a lightweight query and key network to parameterize the self-

expression coefficients. Since MLP parameters does not depend on

𝑛, such methods alleviate computational overhead.

Attentive parameterization: Attentive models, such as GAT [71],

presuppose varying contributions of distinct features. These models

also utilize dimension-related memory to parameterize 𝒄 .
The number of parameters in the above three ways decreases

in order. Correspondingly, the expressive power decreases and

the efficiency increases. Details are given in Appendix B. Since

problem (8) is strongly convex, such accelerated proximal gradient

mothed or linearized alternating direction method can be applied

for seeking unique solution. Selecting non-zero indices in solution

4
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Figure 4: The model architecture of GRAPE. The two views are generated through data augmentation of the initial graph.
These three are fed into the parameter-sharing GNN encoder, where the projection header is alternative. The hard negatives
set and the corresponding subspace coefficients 𝑪 are computed within the middle pathway. The green line in contrastive loss
indicates hard negatives while the red line indicates true negatives, which are vary across epochs.

𝒄 and applying strategies like Eq. (5) and (6) may help attract false

negatives within the subspace. Ideally, as shown in Figure 3b, true

negatives are pushed farther away while false negatives are masked

or explicitly drawn closer. It encourages the emergence of clear class

boundaries, i.e. the golden band is stretched in Figure 3b. While the

solution process is straightforward, problem (8) itself may not be

static; in other words, the pre-selected matrix𝑯 may not be optimal.

This naturally prompts the question: how is the hard negatives set

𝑯 selected? Moreover, when dealing with large-scale data, it is

extravagant to employ the self-representation of all samples on one

single sample, we use a subset instead. Instead, we necessitate the

adaptive selection of a subset.

Therefore, we aim to seek an adaptivematrix𝑯 which can be self-

scaled during the training process. The selected indices are expected

to effectively preserve hard negative samples without becoming

excessively large and causing training difficulties. Remark that

problem (8) is independent for each sample. Next we introduce the

definition of Adaptive Hard Negative Set for individual anchor.

Definition 2. (Adaptive Hard Negative Set) Assume 𝒄̃ (𝑯 ) is the
optimal solution of problem (8) with the 𝑖-th sample as the anchor. 𝚽
is the adaptive hard negatives set of the 𝑖-th sample if the following
conditions are satisfied:

(𝑎) ∀𝑗 ∈ 𝚽, 𝒄̃𝑇
( [
𝑯 , 𝒛 𝑗

] )
=

[
𝒄̃𝑇 (𝑯 ) , 0

]
,

(𝑏) ∀𝑗 ∉ 𝚽, 𝒄̃𝑇
( [
𝑯 , 𝒛 𝑗

] )
=

[
𝒒𝑇 (𝑯 ) , 𝛼 𝑗

]
,

(9)

where
[
𝒒𝑇 (𝑯 ) , 𝛼 𝑗

]
denotes the solution vector with scalar 𝛼 𝑗 ≠ 0.

The interpretation of this definition is intuitive: 𝑗 within 𝚽make

a contribution to the self-expression of the anchor (i.e., the optimal

corresponding coefficient 𝛼 𝑗 are not zero), while 𝑗 outside 𝚽 will

not (i.e., the corresponding optimal coefficient equals to zero). In

training, 𝚽 can be ascertained via the following theorem.

Theorem 1. Assume 𝒄̃ (𝑯 ) is the optimal solution of problem (8)
with the 𝑖-th sample as the anchor. The auxiliary function is defined
as

𝑔( 𝑗) =
𝐿∑
𝑙=1

1

𝑑 (𝑙)
𝒛 (𝑙)
𝑗

𝑇 (
𝒛 (𝑙)
𝑖

− 𝑯 (𝑙) 𝒄̃ (𝑯 )
)
. (10)

Then hard negatives set can be computed by 𝚽 = { 𝑗 | |𝑔( 𝑗) | > 𝜆𝜇} .

We can now give an understanding of what kind of samples are

"hard" for a given anchor in the subspace framework. Theorem

1 implies that a sample is indispensable for subspace preserving

if its representation sufficiently resembles the residual of existing

self-expression. This diverges from homophily and similarity-based

methods. Hence, our method exhibits "adaptive" in two aspects:

On the one hand, as evident from the proof, it is clear that 𝒄 𝑗 = 0

is equivalent to 𝑗 ∉ 𝚽. Therefore, it can be removed from the

adaptive hard negatives set by updating 𝚽 once. On the other hand,

throughout the training process, updating 𝚽 continuously expands

the hard negatives set for the 𝑖-th sample. The distributional shifts

from contrastive loss make it possible for 𝚽 to capture long-range

hard negetives.

Inspired by the OMP in dictionary coding [56], we aim for the

gradual expansion of𝚽with the training process. Beginningwith an

initial set,𝚽 can be periodically updated every few epochs to reduce

additional time overhead while capturing expansive hard negatives.

In addition, to avoid large-scale computations, the size of 𝚽 can be

controlled by confining hard negatives within a specified 𝐾-hop

radius. The hyperparameter 𝐾 dictates the range of selectable hard

negatives.

Combining the solutions of all subproblems, the self-expression

matrix can be defined as 𝑪 = [𝒄1, · · · , 𝒄𝑛], where 𝑪 𝑗𝑖 reflects the

hardness of 𝑗 with respect to 𝑖 . To incorporate the subspace infor-

mation into the contrastive loss, the self-expression coefficients 𝑪𝑖 𝑗
is supposed to be mapped to the probability that 𝑗 serves as a false

negative for 𝑖 . This can be done through either a softmax operation

or a linear mapping as follows:

(𝑎) 𝑺𝑖 𝑗 =
exp

(
|𝑪𝑖 𝑗 |/𝜎

)∑
𝑘∈𝚽𝑗

exp

(
|𝑪𝑘 𝑗 |/𝜎

) , (𝑏) 𝑺𝑖 𝑗 = min

{ |𝑪𝑖 𝑗 |
𝜁

, 𝜌

}
. (11)

𝑺𝑖 𝑗 in (𝑎) satisfies probabilistic properties and 𝜎 is tunable. 𝑺𝑖 𝑗
in (𝑏) is proportionally scaled from 𝑪𝑖 𝑗 , where 𝜁 is the maximum

valuewithin a sampled subset

{
𝑪𝑖 𝑗

}
(𝑖, 𝑗) . The truncated parameter 𝜌

controls the ceiling of 𝑺𝑖 𝑗 and is set to 1 by default. Thus, numerous

values of 𝑺𝑖 𝑗 in equation (𝑏) can be equivalent to 𝜌 . In turn, 𝑺 can be
5
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symmetrized by (𝑺𝑇 + 𝑺)/2. Upon obtaining 𝑺 , two schemes can be

straightforwardly developed to enhance the performance of GCL.

GRAPE𝑚𝑎𝑠𝑘 : GRACE in Eq. (2) treats all samples except itself as

negatives, whose negatives set for anchor 𝑖 can be denoted as
˜N𝑖 =

[𝑛] \ {𝑖}. While GRAPE estimates negatives’ hardness and obtains

the probability 𝑺 for false negatives in turn, it can subsequently

excluded the highly probable false negatives from
˜N𝑖 . Specifically,

in each epoch, 𝑗 is included in the false negatives set F𝑖 for anchor
𝑖 with a probability of 𝑺 𝑗𝑖 . The negatives set in this case turns out

to be N𝑖 = ˜N𝑖 \ F𝑖 . Therefore, the objective for 𝒖𝑖 in GRAPE𝑚𝑎𝑠𝑘

is defined as:

ℓ𝑚𝑎𝑠𝑘 (𝒖𝑖 ) =

− log

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 + ∑
𝑗 ∈N𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) , (12)

GRAPE𝑝𝑜𝑠 : GRACE in Eq. (2) exclusively treats itself as positives,

whose positives set for anchor 𝑖 is ˜P𝑖 = {𝑖}. For anchor 𝑖 , GRAPE𝑝𝑜𝑠
incorporates 𝑗 into the positives set with a probability of 𝑺 𝑗𝑖 each
epoch. The expanded positives set is denoted as P𝑖 . Therefore, the

objective for 𝒖𝑖 in GRAPE𝑝𝑜𝑠 is defined as:

ℓ𝑝𝑜𝑠 (𝒖𝑖 ) =

− log

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 + ∑
𝑘∈P𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑘 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖𝑘 )/𝜏

)
𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 + ∑

𝑗≠𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) , (13)

It is noteworthy that loss (13) is a variant of MIL-NCE [51]. Opti-

mizing loss (13) enhances the overall similarity of positive pairs

relative to negative pairs, rather than focusing on instance-specific

distances.

Similar to GRACE, the overall contrastive loss is given as:

L𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 =
1

2𝑛

𝑛∑
𝑖=1

(
ℓ𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 (𝒖𝑖 ) + ℓ𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 (𝒗𝑖 )

)
. (14)

Reviewing the results in Table 1, we can empirically summa-

rize that Grape𝑝𝑜𝑠 are suitable for high-confidence false negatives,

while Grape𝑚𝑎𝑠𝑘 tolerates low-confidence false negatives. There-

fore, Grape𝑚𝑎𝑠𝑘 is deemed as a more robust scheme. The model

architecture is presented in Figure 4 and the procedure for GRAPE

is detailed in Appendix A.

3.3 Theoretical Analysis
Why GRAPE works? Reflecting on our motivation: we aim to

identifies expansive and adaptive hard negatives as false negatives,

which appears to be empirically derived. The essence behind this

is the message-passing in GNNs: neighbors that encompass a sub-

stantial proportion of shared connections are not unduly distanced

from each other. Therefore, local hard negative mining yield limited

benefits. Recall the results in Table 1 that 1-hop
∗
(even 2-hop

∗
) does

not significantly boost the baseline, while 3-hop
∗
shows a leap,

which interprets the pursuit of expansive hard negatives. Besides,

the self-expression loss can be expanded as follows

min

𝒄
∥𝒛 − 𝑯𝒄 ∥2

2
⇔ min

𝒄
−2

∑
𝑖

𝒛𝑇𝒉𝑖 𝒄𝑖 +
∑
𝑖, 𝑗

𝒉𝑇𝑖 𝒉 𝑗 𝒄𝑖 𝒄 𝑗 . (15)

The first term endows larger self-expression coefficients for nega-

tives similar to the anchor, while the second term endows smaller

coefficients for those highly similar to the other negatives. In GCL,

the second term implies that the contributions of those involved in

message passing with other hard negatives are diminished in self-

expression, which is consistent with the intent in Figure 3a. This

is rooted in its capacity to capture global long-range interactions,

as discussed in [73]. Moreover, the regularizer in Eq. (8) exhibits

sparsity as 𝜇 approaches 1 and group effect as 𝜇 approaches 0. It

is worth noting that 𝜆 and 𝜇 directly impact the tightness of hard

negative selection. GRAPE with large values of 𝜆 and 𝜇 results in a

small hard negatives set.

By iteratively updating self-expression coefficients during train-

ing, the efficacy of GRAPE loss is qualitatively described as follows:

Proposition 1. In cases where GRAPE captures hard negatives
{Φ𝑖 }𝑛𝑖=1 within each individual subspace, both L𝑚𝑎𝑠𝑘 and L𝑝𝑜𝑠 con-
tribute to the inter-subspace separation and intra-subspace cohesion.

Furthermore, GRAPE is associated with various methods, such

as graph attention [71], nonlinear latent subspace clustering [55],

and uniformity-tolerance dilemma [75], as revealed in Appendix D.

Maximizing mutual information The improvement of GRAPE

over the baseline can also be elucidated from the perspective of

maximizing Mutual Information (MI):

Theorem 2. The contrastive loss in Eq. (14) gives a stricter lower
bound of MI between input features 𝑿 and embeddings in two views
𝑼 and 𝑽 , compared with the contrastive loss L in Eq. (3) proposed by
GRACE. This can be written formally as

− L < −L𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 ⩽ I (𝑿 ;𝑼 , 𝑽 ) (16)

Therefore, maximizing GRAPE loss corresponds to optimizing a

more rigorous lower bound for the mutual information between

node features and the acquired node representations, thereby fur-

nishing a theoretical justification for the performance enhancement.

Complexity Analysis The procedure for GRAPE is detailed in

Appendix A. Compared to our baseline, GRACE, extra complexity

arises from the periodic updating of hard negatives set {𝚽𝑖 }𝑛𝑖=1 and
the computation of self-expression coefficients {𝒄𝑖 }𝑛𝑖=1 every 𝑖𝑛𝑡𝑣𝑙
epochs. Each of these 𝑛 independent subproblems can be solved

concurrently in parallel. The additional time overhead is O(𝑀𝑑),
where 𝑀 represents the largest cardinality within {𝚽𝑖 }𝑛𝑖=1. Since
the hard negatives sets are restricted within the 𝐾-hop, there is

𝑀 ≪ 𝑛. Therefore, the additional time overhead is manageable.

4 EXPERIMENTS
4.1 Experimental Protocol
We conducted comparisons between GRAPE and ten advanced

methods on eight node prediction datasets. The benchmark graph

datasets include: Cora, CiteSeer, PubMed, Wiki CS, Amazon
Photo,Amazon Computers, Coauthor CS, Coauthor Physics.
They are all hosted by DGL package

1
. The dataset information

is detailed in Appendix E.1. The comparative methods include:

two supervised baselines (GCN [32], GAT [71]), two autoencoder-

based baselines (GAE [33], VGAE [33]), eight state-of-the-art GCL

methods (DGI [72], GMI [57],MVGRL [21], GRACE [109], CCA-
SSG [97], BGRL [67], ProGCL𝑊 [84], COSTA𝑀𝑉 [102]).

1
https://https://github.com/dmlc/dgl

6
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Table 2: Node classification accuracy in percentage with standard deviation on eight real-world graph datasets. The bold and
underlined values indicate the best and the runner-up results respectively.

Methods Input Cora CiteSeer PubMed Wiki CS Am-Photo Am-Computer Co-CS Co-Physics
GCN 𝑿 ,𝑨, 𝒀 81.32 ± 0.5 70.84 ± 0.7 77.69 ± 0.3 76.85 ± 0.1 92.16 ± 0.2 87.06 ± 0.5 92.54 ± 0.3 95.65 ± 0.2

GAT 𝑿 ,𝑨, 𝒀 82.57 ± 1.0 71.96 ± 1.0 77.51 ± 0.3 78.35 ± 0.1 91.45 ± 0.4 86.80 ± 0.3 91.98 ± 0.3 95.47 ± 0.2

GAE 𝑿 ,𝑨 70.49 ± 1.8 63.56 ± 2.1 70.73 ± 1.0 72.08 ± 0.3 88.40 ± 0.3 82.93 ± 0.4 86.83 ± 0.6 92.50 ± 0.3

VGAE 𝑿 ,𝑨 74.18 ± 1.1 64.85 ± 1.0 71.71 ± 0.5 73.49 ± 0.3 92.20 ± 0.1 86.37 ± 0.2 92.11 ± 0.1 94.52 ± 0.0

DGI 𝑿 ,𝑨 82.90 ± 0.8 70.14 ± 0.8 76.80 ± 0.6 75.35 ± 0.1 91.61 ± 0.2 83.95 ± 0.5 92.15 ± 0.6 95.38 ± 0.1

GMI 𝑿 ,𝑨 82.43 ± 0.9 69.85 ± 1.3 79.90 ± 0.2 74.85 ± 0.1 90.68 ± 0.2 82.21 ± 0.3 OOM OOM

MVGRL 𝑿 ,𝑨 83.20 ± 0.7 69.85 ± 1.5 78.28 ± 0.2 77.52 ± 0.1 91.74 ± 0.1 87.52 ± 0.1 92.11 ± 0.1 95.13 ± 0.0

GRACE 𝑿 ,𝑨 81.05 ± 0.3 71.27 ± 0.4 79.57 ± 0.9 78.19 ± 0.0 92.15 ± 0.2 86.25 ± 0.3 92.26 ± 0.0 94.46 ± 0.6

CCA-SSG 𝑿 ,𝑨 84.20 ± 0.4 72.57 ± 0.3 81.10 ± 0.2 78.42 ± 0.1 92.05 ± 0.3 87.95 ± 0.3 92.03 ± 0.1 95.40 ± 0.1

BGRL 𝑿 ,𝑨 82.47 ± 0.2 71.13 ± 0.5 80.05 ± 0.2 78.06 ± 0.0 92.95 ± 0.3 88.19 ± 0.3 93.34 ± 0.1 95.54 ± 0.1
ProGCL𝑊 𝑿 ,𝑨 81.79 ± 0.6 68.63 ± 0.6 78.16 ± 0.2 78.30 ± 0.2 92.47 ± 0.2 87.23 ± 0.2 92.57 ± 0.1 OOM

COSTA𝑀𝑉 𝑿 ,𝑨 81.66 ± 0.2 71.62 ± 0.4 78.39 ± 0.6 78.67 ± 0.1 92.20 ± 0.3 88.09 ± 0.0 92.96 ± 0.1 95.24 ± 0.0

GRAPE𝑚𝑎𝑠𝑘 𝑿 ,𝑨 85.18 ± 0.0 72.59 ± 0.0 81.50 ± 0.2 79.11 ± 0.1 93.32 ± 0.0 88.42 ± 0.1 92.78 ± 0.0 95.37 ± 0.0

GRAPE𝑝𝑜𝑠 𝑿 ,𝑨 85.07 ± 0.0 73.54 ± 0.1 79.84 ± 0.2 78.13 ± 0.1 92.95 ± 0.0 87.46 ± 0.1 92.29 ± 0.1 95.08 ± 0.0

For all augmentation-based methods, we adopt the most com-

monly used strategies for the graph augmentation: "edge removing"

and "feature masking" [108]. At each epoch, "edge removal" ran-

domly removes a certain proportion of edges from the original

graph, while "feature masking" randomly masks a certain propor-

tion of features. To be consistent with the comparison method, we

configure the GNN encoder as a two-layer GCN. Self-supervised

training is conducted on the entire graph and on the features of all

samples. The embeddings obtained are fed into a semi-supervised

linear classifier to get the final result. For Cora, CiteSeer, and

PubMed datasets, we employ the standard split settings: 20 nodes

per class are available for training, 500 nodes for validation and

1000 for testing. For the other datasets, we randomly assign 10%

of the nodes for training, another 10% for validation, and allocate

the remaining 80% for testing. The linear classifier is uniformly set

to be a simple regularized logistic regression. The overall model is

trained using the Adam optimizer.

We implement our GRAPE based on GRACE. The max training

epoch is set to 100. The dimensions in the two-layer GNN encoder

are set to 512 and 256, respectively. The learning rate for GRAPE is

set to 1× 10
−3
, while that for linear classifiers is set to 1× 10

−2
. The

interval for updating 𝑪 𝑖𝑛𝑡𝑣𝑙 is fixed to 5 and the truncated param-

eter 𝜌 is fixed to 1. Our graph augmentation is achieved through a

combination of 40% edge removal and 10% feature masking. The

trade-off parameter 𝜆 is selected within {10−1, 100, 101, 102} and 𝜇 is
selected within {0, 0.1, · · · , 0.9, 1.0}. The temperature parameter 𝜏

is selected within {0.1, 0.2, · · · , 1.0} and the range of hard negatives
𝐾 is selected within {1, · · · , 5}. For all comparative methods, we

adhere to the authors’ default parameter settings and, where neces-

sary, conduct parameter grid searches to achieve fair comparisons.

Their implementations are all open-sourced. All experiments are

conducted on NVIDIA RTX A6000 GPU with 48GB memory.

4.2 Main Results
The node classification results are presented in Table 2. The re-

ported results are averaged over 10 runs with random seeds. The

“Input” refers to data for training, where 𝑿 , 𝑨 and 𝒀 denotes fea-

ture matrix, adjacency matrix and label matrix respectively. OOM

denotes out of memory. It can be observed that GRAPE achieves

the state-of-the-art self-supervised performance on the first six

datasets and surpasses the performance of supervised baselines

(GCN, GAT) on the first seven datasets. Compared to its baseline

GRACE, GRAPE achieves a comprehensive improvement. The hy-

perparameters involved in the experiment are listed in Appendix

E.2. We performe node clustering performance evaluations in the

completely unsupervised case in Appendix F.1. In addition, we

execute comparative experiments on heterophily graphs (where

connections primarily occur between dissimilar nodes) and the

results are presented in Appendix F.2. These results corroborate

GRAPE’s capacity for precise identification of false negatives.

4.3 How GRAPE Affects Training?
Subsequently, we conduct empirical investigations to explore what

properties GRAPE learns and what hard negatives it captures. The

experiments below are based on GRAPE𝑚𝑎𝑠𝑘 . Figure 5a illustrates

the evolution of the percentage of false negatives within the hard

negatives set {𝚽𝑖 }𝑛𝑖=1 throughout the training process. Figure 5b

depicts the distribution of hard negatives set over different hops

after training. Despite the expansion of the hard negatives set, the

proportion of false negatives within it scarcely declines. Besides, a

substantial portion of the hard negatives set consists of large-hop

neighbors. Both observations imply that we achieve expansive yet

dependable sets of hard negatives through subspace preservation.
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Figure 5: Quality and distribution of hard negatives.

Wang et al. [75] introduced the concept of uniformity-tolerance

dilemma in contrastive representation. We employ the two metrics

to showcase the difference between GRAPE and its baseline GRACE.

Specifically, the cohesion (CO) and uniformity (UN) of the learned
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embeddings can be defined as follows:

CO =
∑
𝑦𝑖=𝑦 𝑗

(
𝑓 𝑇 (𝒙𝑖 ) 𝑓 (𝒙 𝑗 )

)
, UN =

∑
𝑖, 𝑗

exp

(
−𝑓 𝑇 (𝒙𝑖 ) 𝑓 (𝒙 𝑗 )

)
(17)

𝑓 denotes our GNN encoder 𝑓Θ (𝑨,𝑿 ). A higher CO implies higher

intra-class cohesion, while a higher UN implies a more uniform

embedding distribution. The comparison of the two metrics for

GRAPE and GRACE during training is depicted in Figure 6.
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Figure 6: Variation of cohesion and uniformity.

At the beginning of training, CO and UN for both GRAPE and

GRACE are nearly identical due to the similar initialization. As

discussed ahead, GRAPE explicitly or implicitly brings the repre-

sentations inside the same subspace closer, which strengthens the

intra-class cohesion and reduces the global uniformity. With the ex-

pansion of the hard negatives set, the margin of cohesion between

GRAPE and GRACE is enlarged, which is in line with our original

intention. Since the mask mechanism of GRAPE𝑚𝑎𝑠𝑘 is presented

in a probabilistic form, uniformity doesn’t exhibit significant de-

creases compared to GRACE. Additionally, Figure 7 shows how the

test accuracy steadily improves as the GRAPE loss is optimized.
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Figure 7: Variation of loss and test accuracy with training.

Furthermore, the efficiency of GRAPE can be enhanced through

aforementioned the scalable parameterization or by integration

into negatives-independent methods. The corresponding results

are provided in Appendix F.3 and F.4.

4.4 Visualization and Hyperparameter Study
In this subsection, we present intuitive results to illustrate the

effectiveness of GRAPE. Figure ?? shows the distributions of the
true/false negatives of the same anchor in different phases on Cora.

The horizontal axis denotes the cosine similarity between negatives

and anchor, which is non-negative due to the ReLU before output.

The variation with training is discernible, especially from (b) to (c),

validating the efficacy of adaptive hard negative selection.

(a) Initial (epoch=0) (b) Training (epoch=50) (c) Trained (epoch=100)

Figure 8: Negatives distributions in different phases.

We present t-SNE visualization of GRAPE’s running results with-

out labels (i.e., before classification). As depicted in Figure 9, nodes

are partitioned into multiple distinct clusters.

(a) Am-Photo (b) Co-CS (c) Co-Physics

Figure 9: Visualization of node embedding without labels.

The influence of the hyperparameters in GRAPE is examined to

validate the feasibility. The sensitivity analysis of the two trade-off

parameters in Eq. (8) is depicted in Figure 10. The test accuracy of

GRAPE remains stable across a wide range of 𝜇 and 𝜆, indicating its

independence from meticulous parameter settings. Simultaneously,

both parameters indeed exert an influence on the model. Besides,

the parameter analyses of GRAPE under different interval 𝑖𝑛𝑡𝑣𝑙 and

range 𝐾 are shown in Appendix F.5.
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Figure 10: Sensitivity of trade-off parameters.

5 CONCLUSION
In this paper we propose a novel method for estimating negatives’

hardness in GCL. Our method emphasizes the potential in exploring

expansive and adaptive negatives. These two goals are coupled in

our subspace preserving scheme. We elucidate the motivation, pro-

vide empirical and theoretical underpinnings and conduct compre-

hensive experiments to dissect the effectiveness of GRAPE. Drawing

from the contributions of this paper, we hopefully point out two

interesting and promising avenues for further research. First, since

subspace theory is not directly reliant on existing connections, it

shows potential in addressing the impact of noisy, incomplete, or

vulnerable graph structures on GNNs (a branch called graph struc-

ture learning). Second, self-expression contribute to preserving

local structures and may serve as a form of constraint to slow down

message passing for deeper GNNs.
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A PROCEDURE FOR GRAPE

Algorithm 1 Procedure for GRAPE.

Input: Initial graph𝐺 = (𝑿 ,𝑨), temperature parameter: 𝜏 , trade-

off parameters: 𝜆, 𝜇, range of hard negatives: 𝐾 , interval for

updating 𝑪 : 𝑖𝑛𝑡𝑣𝑙 , maximum epochs: 𝐸𝑝𝑜 .

1: Initialization: Randomly initialize the GNN parameters. De-

termine candidate set of hard negatives {𝚽𝑖 }𝑛𝑖=1 and set the

self-expression coefficients {𝒄𝑖 }𝑛𝑖=1 to zero.

2: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝐸𝑝𝑜 do
3: Generate two augmented graphs 𝐺1 = (𝑿1,𝑨1) and 𝐺2 =

(𝑿2,𝑨2). Feed𝐺,𝐺1,𝐺2 into GNN encoder to obtain embed-

dings {𝑧𝑖 }𝑛𝑖=1, {𝑢𝑖 }
𝑛
𝑖=1

and {𝑣𝑖 }𝑛𝑖=1.
4: if 𝑒𝑝𝑜𝑐ℎ%𝑖𝑛𝑡𝑣𝑙 == 0 then
5: Compute the self-expression coefficients {𝒄𝑖 }𝑛𝑖=1 on former

hard negatives by solving Eq. (8).

6: Update {𝚽𝑖 }𝑛𝑖=1 within 𝐾-hop with solution {𝒄𝑖 }𝑛𝑖=1.
7: Re-compute the self-expression coefficients {𝒄𝑖 }𝑛𝑖=1 on 𝚽

and obtain 𝑺 by Eq. (11)

8: end if
9: Compute contrastive loss L𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 in Eq. (12) or (13).

10: Update 𝑓Θ (𝑨,𝑿 ) with Adam by minimizing the overall loss

in Eq. (14);

11: end for
Output: The trained 𝑓Θ (𝑨,𝑿 ) and the node embeddings {𝑧𝑖 }𝑛𝑖=1.

B LEARNING SELF-EXPRESSION
COEFFICIENTS

The self-expression coefficients can be addressed through multiple

efficient solutions. For instance, a common approach with iterative

shrinkage thresholding algorithm (ISTA) [1] can be written as

𝒄 (𝑡+1) =

Γ𝜆𝜇

(
𝒄 (𝑡 ) + 𝜀

𝐿∑
𝑙=1

1

𝑑 (𝑙)

(
𝑯 (𝑙)𝑇

(
𝒛 (𝑙) − 𝑯 (𝑙) 𝒄 (𝑡 )

)
+ 𝜆(𝜇 − 1)𝒄 (𝑡 )

))
(1)

where 𝜀 > 0 is a step size and the soft-thresholding operator Γ𝛼 :

R𝑛 → R𝑛 is defined by Γ𝛼 (𝒙) = ( |𝒙 | − 𝛼1)𝑇+ sgn(𝒙). Since the

problem is strongly convex, such accelerated proximal gradient

mothed or linearized alternating directionmethod can be applied for

seeking unique solution. The parameters to be solved are

∑𝑛
𝑖=1𝑚𝑖 ,

related to the total number of nodes 𝑛.

In MLP-style parameterization, multi-layer mapping transforms

the embeddings output by the GNN into another feature space. In

the new feature space, 𝒄𝑖 𝑗 can be obtained through the dot prod-

uct of the 𝑖-th and 𝑗-th samples, i.e., 𝒄𝑖 𝑗 = 𝑀𝐿𝑃𝑘 (𝒙𝑖 )𝑇𝑀𝐿𝑃𝑞 (𝒙 𝑗 )
Readers may refer to [100] for implementation details.

Attentive parameterization can be implemented through various

attention mechanisms, taking GAT as an example, where the self-

expression coefficient can be parameterized as follows:

𝒄𝑖 𝑗 =
exp

(
LeakyReLU

(−→𝒂 𝑇
[
𝑾𝒛𝑖 ∥W𝒛 𝑗

] ))
∑
𝑘∈ℎ (𝑖) exp

(
LeakyReLU

(−→𝒂 𝑇 [𝑾𝒛𝑖 ∥𝑾𝒛𝑘 ]
)) (2)

where 𝒂 ∈ R2𝑑 (𝐿)
is the weight vector on feature and | | is the

concatenation operation. Both MLP parameterization and attentive

parameterization have dimension-related parameters, making them

suitable for large-scale graphs.

C DETAILED PROOF
Theorem 1. Assume 𝒄̃ (𝑯 ) is the optimal solution of problem (8).

The auxiliary function is defined as

𝑔(𝒉) =
𝐿∑
𝑙=1

1

𝑑 (𝑙)
𝒉(𝑙)

𝑇
(
𝒛 (𝑙) − 𝑯 (𝑙) 𝒄̃ (𝑯 )

)
. (3)

Then hard negatives set can be computed by 𝚽 = {𝒉 | |𝑔(𝒉) | > 𝜆𝜇} .

Proof. Problem (8) can be reformulated as

min

𝒄

1

2

∥𝒛 − 𝑯𝒄 ∥2
2
+ 𝜆

(
𝜇∥𝒄 ∥1 +

1 − 𝜇
2

∥𝒄 ∥2
2

)
(4)

where

𝒛 = [ 1

𝑑 (1)
𝒛 (1)

𝑇
, · · · , 1

𝑑 (𝐿)
𝒛 (𝐿)

𝑇 ]𝑇

𝑯 = [ 1

𝑑 (1)
𝑯 (1)𝑇 , · · · , 1

𝑑 (𝐿)
𝑯 (𝐿)𝑇 ]𝑇

(5)

By taking derivatives, the optimal solution 𝒄̃ (𝑯 ) to problem (4)

satisfies:

𝜆(1 − 𝜇)𝒄̃ (𝑯 ) = Γ𝜆𝜇

(
𝑯𝑇 (𝒛 − 𝑯𝒄̃ (𝑯 ))

)
. (6)

Let

[
𝒒𝑇 (𝑯 ) , 𝑔(𝒉)

]𝑇
be the optimal solution for problem

min

𝒄
∥𝒛 − [𝑯 ,𝒉] 𝒄 ∥2

2
+ 𝜆

(
𝜇∥𝒄 ∥1 +

1 − 𝜇
2

∥𝒄 ∥2
2

)
. (7)

Then there exist

𝜆(1−𝜇)
[
𝒒𝑇 (𝑯 ) , 𝑔(𝒉)

]𝑇
= Γ𝜆𝜇

(
[𝑯 ,𝒉]𝑇

(
𝒛 − [𝑯 ,𝒉]

[
𝒒𝑇 (𝑯 ) , 𝑔(𝒉)

]𝑇 ))
.

(8)

By splitting the counterpart terms, the following two equations

hold:

𝜆(1 − 𝜇)𝒒 (𝑯 ) = Γ𝜆𝜇

(
𝑯𝑇 (𝒛 − 𝑯𝒒 (𝑯 ) − 𝒉𝑔(𝒉))

)
(9)

𝜆(1 − 𝜇)𝑔(𝒉) = Γ𝜆𝜇

(
𝒉𝑇 (𝒛 − 𝑯𝒒 (𝑯 ) − 𝒉𝑔(𝒉))

)
(10)

If 𝒉 ∉ 𝚽, then

[
𝒄𝑇 (𝑯 ) , 0

]𝑇
is an optimal solution because it

meets Eq. (9) and (10). Since the optimal solution to problem (7)

is unique, condition a is thus satisfied. Since the optimal solution

to problem (7) is unique, term (a) stipulated in the definition of 𝚽

holds.

In the case where 𝒉 ∈ 𝚽, we show that 𝑔(𝒉) is not equal to 0. If

𝑔(𝒉) = 0, due to the uniqueness of the optimal solution in problem

(4), Eq. (9) deduces 𝒒 (𝑯 ) = 𝒄̃ (𝑯 ). However, the obtained solution[
𝒄𝑇 (𝑯 ) , 0

]𝑇
does not satisfy Eq. (10). Therefore 𝑔(𝒉) ≠ 0 holds.

Combining the above discussion, 𝚽 is the adaptive hard negatives

set by Definition 2, which completes the proof. □

Proposition 2. If GRAPE captures hard negatives {Φ𝑖 }𝑛𝑖=1 within
each individual subspace, both L𝑚𝑎𝑠𝑘 and L𝑝𝑜𝑠 contribute to the
inter-subspace separation and intra-subspace cohesion.
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Proof. Compared to GRACE, GRAPE𝑝𝑜𝑠 explicitly brings hard

negative samples within the same subspace closer while repelling

negatives outside the subspace. Our focus then turns to GRAPE𝑚𝑎𝑠𝑘 .

From gradient analysis, the ratio of the gradients of negatives to

that of positives can be defined following [75]:

𝑟 (𝒖𝑖 , 𝒗 𝑗 ) =
���� 𝜕ℓ (𝒖𝑖 )
𝜕𝜃 (𝒖𝑖 , 𝒗 𝑗 )

���� /���� 𝜕ℓ (𝒖𝑖 )
𝜕𝜃 (𝒖𝑖 , 𝒗𝑖 )

���� , (11)

representing the relative penalty on negatives. The ratio in GRACE

and GRAPE can be derived as follows:

GRACE: 𝑟1 (𝒖𝑖 , 𝒗 𝑗 ) =
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏∑

𝑘≠𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) , (12)

GRAPE: 𝑟2 (𝒖𝑖 , 𝒗 𝑗 ) =
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏∑

𝑘∈N𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) . (13)

Clearly there is 𝑟2 (𝒖𝑖 , 𝒗 𝑗 ) ⩾ 𝑟1 (𝒖𝑖 , 𝒗 𝑗 ), which implies that GRAPE

imposes a greater penalty on negative pairs that are not within the

same subspace. Moreover, assume that 𝑺𝑖 𝑗 = 𝑺 𝑗𝑖 = 1, i.e., 𝒗𝑖 is not in
the denominator of ℓ

(
𝒖 𝑗

)
and vice versa. In this case, 𝜃

(
𝒖𝑖 , 𝒗 𝑗

)
is

not penalized explicitly. Apart from self-alignment, the subproblem

involving 𝒖𝑖 in the process of minimizing L𝑚𝑎𝑠𝑘 is equivalent to:

min

𝒖𝑖

∑
𝑖∉N𝑘∨𝑘∉N𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒖𝑘 ) + 𝑒𝜃 (𝒖𝑖 ,𝒗𝑘 )

)
(14)

If we consider the first-order Taylor expansion of the problem and

omit the second or higher-order infinitesimal terms, problem (14)

simplifies to

min

𝒖𝑖

∑
𝑖∉N𝑘∨𝑘∉N𝑖

(𝜃 (𝒖𝑖 , 𝒖𝑘 ) + 𝜃 (𝒖𝑖 , 𝒗𝑘 )) . (15)

It is clear that there is a unique solution to the above problem.

If 𝑖 and 𝑗 belong to the same subspace, the overlap between set

{𝑘 | 𝑖 ∉ N𝑘 ∨ 𝑘 ∉ N𝑖 } and set {𝑘 | 𝑗 ∉ N𝑘 ∨ 𝑘 ∉ N𝑗 } appears to be

high. Hence, the optimal solutions of the subproblems for 𝒖𝑖 and 𝒗 𝑗
tends to exhibit high similarity. As a result, 𝒖𝑖 and 𝒗 𝑗 are implicitly

drawn closer by updating the network parameters. Thereby we

prove the Proposition 2 qualitatively. □

Theorem 2. The contrastive loss in Eq. (14) gives a stricter lower
bound of MI between input features 𝑿 and embeddings in two views
𝑼 and 𝑽 , compared with the contrastive loss L in Eq. (3) proposed by
GRACE. This can be written formally as

− L < −L𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 ⩽ I (𝑿 ;𝑼 , 𝑽 ) (16)

Proof. We only consider the GRAPE𝑚𝑎𝑠𝑘 scheme, while GRAPE𝑝𝑜𝑠

can be analogized, since the proof is trivial. The contrastive loss in

GRAPE𝑚𝑎𝑠𝑘 and GRACE can be reformulated as follows:

ℓ𝑚𝑎𝑠𝑘 (𝒖𝑖 ) = − log

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 + ∑
𝑗 ∈N𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) ,
(17)

ℓ (𝒖𝑖 ) = − log

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 + ∑
𝑗≠𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) , (18)

It’s clear that the overall loss satisfies L > L𝑚𝑎𝑠𝑘 .

The InfoNCE loss [18, 53] can be formulated as

L𝑁𝐶𝐸 = −E𝑝 (𝒖,𝒗)
©­« 1𝑛

𝑛∑
𝑖=1

log

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏

1

𝑛

∑𝑛
𝑗=1 𝑒

𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏
ª®¬ . (19)

Analogously, replacing the empirical estimation by the expectation,

the contrastive loss in GRAPE can be reformulated as

L𝑚𝑎𝑠𝑘 = −E𝑝 (𝒖,𝒗)
(
1

2

(ℓ𝑚𝑎𝑠𝑘 (𝒖) + ℓ𝑚𝑎𝑠𝑘 (𝒗))
)
, (20)

where

ℓ𝑚𝑎𝑠𝑘 (𝒖)

= − log

𝑒𝜃 (𝒖,𝒗)/𝜏

𝑒𝜃 (𝒖,𝒗)/𝜏 + ∑
𝑗 ∈N𝒖

(
𝑒𝜃 (𝒖,𝒗)/𝜏 + 𝑒𝜃 (𝒖,𝒖)/𝜏

)
= − 1

𝑛

𝑛∑
𝑖=1

log

𝑒𝜃 (𝒖,𝒗)/𝜏

1

𝑛

∑𝑛
𝑗=1 𝑒

𝜃 (𝒖,𝒗)/𝜏 + ∑
𝑗 ∈N𝒖

(
𝑒𝜃 (𝒖,𝒗)/𝜏 + 𝑒𝜃 (𝒖,𝒖)/𝜏

) .
(21)

This clearly gives L𝑁𝐶𝐸 ⩽ L𝑚𝑎𝑠𝑘 . The InfoNCE estimator is a

lower bound of the true MI, i.e., −L𝑁𝐶𝐸 ⩽ I (𝑼 ; 𝑽 ). From the

data processing inequality in information theory, it can be deduced

that I (𝑼 ; 𝑽 ) ⩽ I (𝑿 ;𝑼 , 𝑽 ). Collecting the above discussion, there

exists −L𝑚𝑎𝑠𝑘 ⩽ I (𝑿 ;𝑼 , 𝑽 ), which completes the proof. □

D RELATED METHODS
Graph attention The connection between self-expression and at-

tention mechanism has been deliberated in [73]. In this context, we

underscore two pivotal distinctions between GRAPE and existing

graph attention methods, such as GAT [71] and its variants: (1)

Irrespective of the training paradigm, it’s essential to note that in

graph attention, the attention coefficients are learned with respect

to the loss, whereas in GRAPE, the self-expression coefficients 𝑪𝑖 𝑗
adapt during the training process and exert an influence on the

loss function. (2) Diverging from the structure-dependent attention

coefficients in graph attention methods, GRAPE’s self-expression

coefficients are not inherently contingent on the graph structure.

This feature expands the application domain of GRAPE to noisy

graphs, corrupted graphs, or even heterophily graph structures.

Nonlinear latent subspace clusterng The fundamental concept

underlying latent subspace clustering [55] and its variants is that

the subspaces delineating the representation of raw data may not be

readily discernible, hence, they may be partitioned into subspaces

via learnable transformations. The features of the samples may not

lie within 𝑘 specific subspaces, but their intrinsic semantics are

encapsulated within 𝑘 larger subspaces. GRAPE also enjoys this

concept. Each layer of the GNN encoder serves as a nonlinear trans-

formation of the previous layer, wherein point pairs that preserve

the same subspace structure are included into the hard negatives

set.

Uniformity-tolerance dilemma In [75], ’tolerance’ pertains to

the degree of similarity between false negatives, while ’uniformity’

signifies the separability of all negatives. These two concepts are

somewhat contradictory, a phenomenon commonly referred to as

the uniformity-tolerance dilemma. Though temperature-based ap-

proaches [75] are straightforward, temperature 𝜏 tend to be global

and challenging to learn. An intuitive comparison, as depicted in

Figure 11, showcases the average distribution of negatives on Cora.
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Figure 11: Similarity histograms of negatives

It becomes apparent that solely adjusting the temperature parame-

ter 𝜏 does not suffice to achieve local tolerance, whereas GRAPE

can effectively approximate the distribution in supervised scenario.

The setting with high uniformity (small 𝜏) pushes false negatives

further away, whereas the setting with high tolerance (large 𝜏)

makes it challenging to discriminate true negatives. Compared to

temperature-based methods, GRAPE alleviates class collisions ef-

fectively. [64] demonstrates how hard negative masking enhances

local tolerance, therefore, GRAPE can be regarded as a tolerance-

preferred method.

E EXPERIMENTAL SETUP
E.1 Datasets
Cora, CiteSeer, and PubMed are three prominent citation net-

works, where features correspond to keywords, directed edges

represent citation relationships, and labels denote subject.

Wiki CS is a database comprising nodes corresponding to Com-

puter Science articles, where edges base on hyperlinks, features

base on the average of pretrained GloVe word embeddings, and

classes represent various branches within the field.

Amazon-Photo andAmazon-Computers are segmentswithin

the Amazon co-purchase graph. In these segments, nodes corre-

spond to goods, edges denote frequent co-purchases between goods,

node features are derived from bag-of-words encoded product re-

views, and class labels are determined by the product categories.

Coauthor-CS andCoauthor-Physics are co-authorship graphs
obtained from the KDD Cup dataset. In these graphs, nodes corre-

spond to authors, edges represent collaborative research relation-

ships, node features encapsulate paper keywords associated with

each author’s publications, and class labels denote the most active

research fields for each author.

Statistics of datasets are shown in Table 3 and the pytorch usage

of these datasets is detailed in document
2
.

E.2 Hyperparameter Setting
Table 3 lists the hyperparameters for our main performance experi-

ments. The two-layer GCN maintains its dimensions at 512 and 256

throughout. Notably, the parameters do not require meticulous tun-

ing, implying that GRAPE obviates the need for parameter search.

This indicates the sound scalability of our method.

F SUPPLEMENTARY EXPERIMENTS
F.1 Node Clustering
The evaluation of node clustering is similar to classification, except

that k-means is employed for clustering. Clustering performance is

2
https://docs.dgl.ai/api/python/dgl.data.html

assessed using NMI and ARI, where higher values of these metrics

indicate superior clustering results. The average results of the 5

runs are presented in Table 4.

Table 4: Node clustering results in percentage on three graph
datasets.

Datasets PubMed Am-Photo Am-Computer

Metrics NMI ARI NMI ARI NMI ARI

GAE 24.41 24.35 57.30 49.45 42.80 24.68

VGAE 21.44 18.54 54.18 40.25 42.88 23.74

DGI 27.96 29.50 44.77 35.11 37.35 20.25

GMI 24.96 25.04 50.47 42.22 45.88 30.50

MVGRL 31.96 30.79 56.48 44.06 29.18 19.57

GRACE 26.01 28.44 61.93 50.41 48.76 33.85

CCA-SSG 25.04 28.22 62.30 53.87 49.62 36.64

BGRL 25.63 26.44 63.29 53.48 49.70 32.51

ProGCL𝑊 27.26 29.50 60.54 48.32 43.29 28.44

COSTA𝑀𝑉 27.91 28.59 58.69 48.87 45.54 36.90

GRAPE𝑚𝑎𝑠𝑘 32.13 31.80 65.33 57.72 53.06 38.49

GRAPE𝑝𝑜𝑠 33.98 32.91 66.32 59.65 55.74 41.82

GRAPE𝑝𝑜𝑠 outperforms advanced GCL methods in terms of clus-

tering performance. This indicates that GRAPE𝑝𝑜𝑠 explicitly brings

a number of positives closer thereby the learned representations

are more intra-class cohesive.

F.2 On Heterophily Graph
Table 5: Node classification accuracy in percentagewith stan-
dard deviation on three heterophily graphdatasets. The bold
and underlined values indicate the best and the runner-up
results respectively.

Methods Chameleon Squirrel Actor
GCN 63.90 ± 0.4 46.88 ± 0.4 28.33 ± 0.2

GAT 58.19 ± 0.4 41.66± 0.6 28.16 ± 0.2

GAE 47.94 ± 1.1 37.79 ± 1.0 25.18 ± 0.1

VGAE 44.46 ± 1.1 34.54 ± 0.7 25.68 ± 0.1

DGI 54.47 ± 0.6 40.96 ± 0.6 27.12 ± 0.1

GMI 49.05 ± 0.3 35.34 ± 0.3 25.90 ± 0.1

MVGRL 63.69 ± 0.5 49.14 ± 0.6 30.87 ± 0.0

GRACE 61.98 ± 0.4 38.83 ± 0.6 26.16 ± 0.0

CCA-SSG 60.01 ± 0.5 44.56 ± 0.5 28.15 ± 0.1

BGRL 63.28 ± 0.4 46.09 ± 0.3 28.24 ± 0.0

ProGCL𝑊 62.10 ± 0.6 48.39 ± 0.6 28.42 ± 0.1

COSTA𝑀𝑉 60.27 ± 0.5 46.13 ± 0.3 28.55 ± 0.0

GRAPE𝑚𝑎𝑠𝑘 66.58 ± 0.5 52.76 ± 0.4 33.89 ± 0.0
GRAPE𝑝𝑜𝑠 62.20 ± 0.5 53.49 ± 0.3 30.68 ± 0.1

We further evaluate the performance of GRAPE on three heterophily

graphs, with the results presented in Table 5. It is evident that
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Table 3: Statistics of datasets and corresponding hyperparameter settings.

Datasets Domain Nodes Edges Features Classes 𝜆 𝜇 𝜏 𝐾 𝜌 𝑖𝑛𝑡𝑣𝑙 𝐸𝑝𝑜

Cora Citation Network 2708 10556 1433 7 1 0.5 0.5 5 1 5 100

CiteSeer Citation Network 3327 9228 3703 6 1 0.5 1.0 5 1 5 100

PubMed Citation Network 19717 88651 500 3 1 0.5 1.0 4 1 5 100

Wiki CS Knowledge Base 11701 216213 300 10 1 0.1 0.2 2 1 5 100

Am-Photo Social Network 7650 119081 745 8 1 0.1 0.5 2 1 5 100

Am-Computer Social Network 13752 245861 767 10 1 0.5 0.5 3 1 5 100

Co-CS Citation Network 18333 81894 6805 15 1 0.5 0.5 3 1 5 100

Co-Physics Citation Network 34493 247962 8415 5 100 0.5 0.5 2 1 5 100

GRAPE achieves superior clustering performance compared to ad-

vanced GCL methods. This superiority stems from GRAPE’s ability

to adapt well to heterophily graphs, as it does not rely on short-

distance connections. It is worth noting that, although the nodes

connected in heterophilic graphs are dissimilar, they generally ad-

here to label consistency across edges. Therefore, our initial and

maximum ranges for the false negatives set based on hops are still

reasonable.

F.3 On Scalable Parameterization
In this subsection, we show the performance and efficiency under

different strategies (shown in appendix B) of solving for the self-

expression coefficients. Taking GRAPE𝑚𝑎𝑠𝑘 as the example, the test

accuracy and training time are exhibited in Table 6. It is evident

that our method can strike a balance between efficiency and per-

formance, making it suitable for large-scale graphs. Nevertheless,

it’s worth noting that scalable parameterization is still based on

negative samples, and the memory overhead during training cannot

be substantially reduced.

Table 6: Test accuracy (%) and training time (s) on different
parameterization.

Methods PubMed Am-Photo Am-Computer

Full 81.50 (116.59) 93.32 (22.57) 88.42 (66.32)

MLP 79.26 (93.08) 92.10 (18.61) 87.59 (51.19)

Attentive 79.43 (87.49) 91.92 (18.03) 87.50 (50.80)

F.4 Integration onto BGRL
As a negative hardness estimation scheme, GRAPE can be seam-

lessly extended to GCL methods, regardless of whether they are

based on negatives or not. Considering a large-scale GCL method,

BGRL [67], GRAPE𝑝𝑜𝑠 can be directly incorporated into its loss

function. The comparative results between the original BGRL and

BGRL with GRAPE are presented in Table 7. There are consistent

performance improvements achieved by the latter. Furthermore,

these negatives-independent methods reducememory consumption

and thus are more suitable for scaling to large-scale graphs.

Table 7: Test accuracy (%) of the extension to BGRL.

Methods PubMed Am-Photo Am-Computer

BGRL 80.05 92.95 88.19

BGRL w/ GRAPE 81.19 93.80 90.06

F.5 Supplementary Parameter Analysis
In this subsection, we probe the sensitivity of the interval for up-

dating 𝑪 (i.e., 𝑖𝑛𝑡𝑣𝑙 ) and the range of hard negatives (i.e., 𝐾 ).

The impact of adjusting 𝑖𝑛𝑡𝑣𝑙 on test set accuracy is depicted

in Figure 12. The regions covered by bands represent the range

of results obtained from 10 independent runs, and the points on

the curves correspond to the averages. When 𝑖𝑛𝑡𝑣𝑙 exceeds the

total number of epochs, it reverts to the GRACE approach. It is

evident that as 𝑖𝑛𝑡𝑣𝑙 increases, there is an overall decline in accuracy.

Consequently, frequent updates of self-expression coefficients entail

additional computational overhead. Both 𝑖𝑛𝑡𝑣𝑙 = 5 and 𝑖𝑛𝑡𝑣𝑙 = 10

are deemed acceptable in our experiments.

(a) CiteSeer (b) PubMed (c) Am-Photo

Figure 12: Parameter analysis on 𝑖𝑛𝑡𝑣𝑙 .

The impact of hyperparameter 𝐾 on the results is illustrated in

Figure 13. Due to variations in the inherent density of the graph

datasets, the optimal 𝐾 value also varies. For sparse graphs, mining

their expansive hard negatives indeed enhances performance but

introduces the risk of subspace fallacy. In summary, GRAPE demon-

strates stable performance in both narrow and expansive ranges

of hard negative mining, validating the efficacy of our adaptive

selection for hard negatives.

(a) CiteSeer (b) PubMed (c) Am-Photo

Figure 13: Parameter analysis on 𝐾 .

Furthermore, in contrast to methods such as BGRL, we have

observed that GRAPE displays a relatively low sensitivity to graph

augmentation. All results are under the setting with 40% edge re-

moval and 10% feature masking, which provides a substantial ad-

vantage compared to other GCL methods.
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