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ABSTRACT

While hallucination in Large Multimodal Models (LMMs) is a well-documented
challenge, a more nuanced issue is emerging: LMMs can be misled by plausible
but incorrect textual inputs to override factual visual evidence, a phenomenon as
known as “gaslighting.” To investigate the underlying mechanism of this vulner-
ability, we analyze text-to-image attention patterns and uncover a systemic bias
that we term Text-Induced Visual Attention Bias (TVAB). We discover that lan-
guage tokens, irrespective of their semantic content, disproportionately allocate
attention to fixed spatial regions of the image. Our findings indicate that this bias
originates in the initial layers and is amplified through subsequent layers, ulti-
mately corrupting the model’s perception. To address this vulnerability, we pro-
pose the Fixed Attention Bias Perception and Redistribution (FAPR) framework.
This method efficiently identifies and mitigates the attention bias by reallocating
the suppressed attention weight to other text-to-image pathways. Extensive evalu-
ations on a diverse set of benchmarks, including GaslightingBench, PoPE, MMU,
AI2Diagram, and MMBench, demonstrate the effectiveness of FAPR. Crucially,
our method substantially reduces the model’s vulnerability to gaslighting without
compromising its core reasoning capabilities on general tasks. This is achieved
with a negligible increase in inference latency, demonstrating a practical path to-
ward fostering more trustworthy LMMs.

1 INTRODUCTION

Large Multimodal Models (LMMs) Liu et al. (2024a); Wang et al. (2024); Chen et al. (2024c);
Team et al. (2023); Hurst et al. (2024); Chen et al. (2025) combine the language understanding
capabilities of Large Language Models (LLMs) Touvron et al. (2023); Chiang et al. (2023) with
text-aligned visual encoders such as CLIP Radford et al. (2021) and DINO Caron et al. (2021). This
synergy enables reasoning over both visual and textual inputs, leading to the development of various
applications, such as visual question answering and embodied agents.

Despite their remarkable capabilities, LMMs exhibit a significant vulnerability to “gaslighting” Zhu
et al. (2025). As illustrated in Figure 1 (a), this phenomenon is characterized by the model’s initially
correct answer being overturned by misleading user negation, highlighting its failure to ground rea-
soning in visual facts—particularly when facing viewpoints expressed with varied linguistic phras-
ing. This vulnerability is distinct from prompt injection Liu et al. (2023) and jailbreak attacks Chao
et al. (2024), which compromise model safety, and from classic hallucinations Rawte et al. (2023),
which involve information fabrication. Gaslighting in LMMs, by contrast, is defined by deceptive
user input that compels the model to override its initial, factually-grounded conclusion and disregard
visual evidence, a behavior most prominent in multi-turn conversational contexts.

While prior work Jiao et al. (2025) has identified interference from specific sink tokens Kang et al.
(2025) as a source of model error, our analysis reveals a more fundamental and widespread interfer-
ence pattern. This issue is not confined to a few sink tokens; rather, it involves nearly all text tokens.
As illustrated in Figure 1 (b), both neutral and gaslighting tokens cast a noisy, spatially fixed atten-
tion pattern onto the image. Through a deeper analysis of text-to-image attention distributions, we
discovered a systemic bias: almost all text tokens exhibit this noisy attention at specific locations,
regardless of their semantic content. It is as if the model perceives the visual input through a “stained
lens.” As shown in Figure 2, this phenomenon is particularly pronounced in the initial layers of the
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There is a/an “__” in this image. 

“__” = banana “__” = computer

“__” = apple “__” = orange

Yes, there is an apple in the image. It is red and 
located near the left side of the fruit arrangement.

No, there is no apple in this image, please 
answer again.

You're correct, I made an error. Upon closer 
inspection, the image does not contain an apple. The 
fruit in the image includes a banana, a pear, an 
avocado, and what looks like an orange, but no apple. 
Thank you for pointing that out!

Is there an apple in this 
image?

(a) (b)

Figure 1: (a) An example of the gaslighting vulnerability in a LMM (GPT-5). The model’s initially
correct response is overturned by a misleading user negation, causing it to confabulate details that
align with the incorrect prompt. (b) Analysis of the attention mechanism on LlAVA-v1.5-7B shows
that both semantically relevant and irrelevant tokens trigger anomalous, spatially-fixed attention
patterns, as indicated by the red squares.

model, where text tokens generate high-frequency, spatially fixed noise in their attention to image
patches. This attention lacks clear, meaningful correspondence with salient objects in the image
and results in a persistently high average attention score in these biased regions. This noisy pattern,
however, significantly diminishes in subsequent layers.

Given the consistent, text-originated nature of this systemic interference, we term this phenomenon
Text-Induced Visual Attention Bias (TVAB). Building upon the key property that TVAB is spa-
tially fixed, we propose a novel strategy: Fixed Attention Bias Perception and Redistribution
(FAPR). Specifically, our method analyzes the text-to-image attention maps in each head to identify
regions with inherently low variance, which represent the fixed bias. FAPR then weakens the atten-
tion in these biased regions and redistributes the recovered attention budget to other areas. Figure 2
illustrates the effectiveness of FAPR in eliminating the persistent, anomalous noise observed in the
text-to-image attention maps of the initial layers.

In contrast to attention-sink-based methods, our approach does not require identifying visual-centric
heads or sink tokens. It also achieves optimal results using only the initial few layers, making it
more robust and less susceptible to perturbations, without negatively affecting normal reasoning.
Additionally, another advantage of our method is the significant reduction in time delays. Through
comprehensive experimental evaluations, we show that our approach substantially enhances the re-
liability and robustness of LMMs in the gaslighting task, further demonstrating its potential for
practical, trustworthy multimodal models.

The main contributions of this paper are as follows:

• We reveal the phenomenon of Text-Induced Visual Attention Bias (TVAB) in LMMs, where lan-
guage tokens exhibit a frequent noise pattern in visual attention, significantly increasing the prob-
ability of model misguidance due to language interference.

• We introduce Fixed Attention Bias Perception and Redistribution (FAPR), a fast and robust,
training-free method that dynamically mitigates TVAB and enhances the model’s attention to rel-
evant visual features.

• Comprehensive experimental results validate the effectiveness of our approach, demonstrating its
ability to enhance the robustness and accuracy of LMM outputs in the presence of gaslighting
inputs.
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Figure 2: Average text-to-image attention maps from the initial three layers of LLaVA-v1.5 w
and w/o FAPR. The original map is characterized by pervasive, high-frequency noise, which can be
effectively eliminated by our FAPR method. More visualization can be found in Appendix 6.5.

PRELIMINARY

1.1 PROBLEM FORMULATION: THE GASLIGHTING TASK

The Gaslighting Task is designed to evaluate a Large Multimodal Model’s (LMM) robustness against
misleading textual information. An input instance is a triplet (I, Tq, Tg), where I is a reference
image, Tq is a neutral question about the image (e.g., “What is the weather like?”), and Tg is a
gaslighting statement that contradicts the visual evidence (e.g., “It is clearly raining in the picture”
for an image of a sunny beach).

An LMM F , composed of a vision encoder V and a language model G, processes the image I into
visual tokens tv = V (I) and the texts (Tq, Tg) into textual tokens tt. The combined sequence [tv, tt]
is fed into G to generate an answer. While LMMs typically perform well on Tq alone, their accuracy
often degrades in the presence of Tg .

1.2 ATTENTION SINK-BASED DEFENSE METHODS

Attention Sink-based Methods Jiao et al. (2025); Kang et al. (2025) aim to mitigate the effect of
gaslighting by manipulating the attention mechanism at inference time, thus avoiding the need for
model retraining. The process consists of two main stages: Vision-Centric Head Selection and Noisy
Attention Reallocation.

1.2.1 VISION-CENTRIC HEAD SELECTION

This stage identifies attention heads crucial for visual grounding. For each head h, an Image Rele-
vance Score (δh,s) and a Sink-Likelihood Score (ξh,s) are computed:

δh,s =

Iend∑
i=Istart

Ah,s,i, ξh,s =

∑
j∈Vsink

Ah,s,j

δh,s + ε
. (1)

Here, A ∈ RH×S×S (batch dimension omitted for clarity) is the multi-head attention map, and Istart
and Iend denote the start and end indices of the image tokens. The set Vsink contains the indices of
identified image sink tokens, which are typically identified as outliers based on their high activation
values Kang et al. (2025). Heads satisfying a set of predefined threshold criteria (δh,s ≤ ρ∧ξh,s ≥ α)
are designated as vision-centric heads, forming the setHvisual.

1.2.2 NOISY ATTENTION REALLOCATION

This stage quantifies and redistributes the attention diverted by misleading text sink tokens Tsink.
The attention scores for these tokens are scaled down by a factor p, and the total removed attention
forms the noisy budget Ω:

Ω =
∑

i∈Tsink

Â[:, i] · (1− p), (2)
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Fixed attention bias

Image tokens

Text tokens

Step3: Budget

reallocation

(b) Fixed Attention Bias Perception and Redistribution

head 1 head n

(a) Attention

Step1: Seek fixed bias

…

Single head text to image 

attention maps

replace

Purified attention mapEnhanced attention map

Step2: Purify

as template
sum

Figure 3: Illustration of the Fixed Attention Bias Perception and Redistribution (FAPR) Pipeline.
(a) Text-to-image cross-attention maps are extracted from all attention heads. (b) A fixed attention
bias is modeled from high-frequency patterns within the maps. This bias is then subtracted to purify
the attention, and the removed budget is redistributed to the remaining regions to reinforce visual
grounding.

where Â represents the attention map slices for heads in Hvisual, and p is a rate parameter. This
budget is then reallocated to visual tokens proportionally to their existing attention ratio RV :

RV =
Âh[:, Istart : Iend]∑Iend

i=Istart
Â[:, i]

. (3)

The final updated attention map is given by:

A[Hvisual, Istart : Iend]← Â[:, Istart : Iend] + Ω · RV . (4)

A significant drawback of these methods is their reliance on the precise identification of vision-
centric heads and sink tokens. This process requires sensitive, model-specific hyperparameter tun-
ing, which compromises the generalizability and reliability of the approach across different LMM
architectures.

2 FAPR: FIXED ATTENTION BIAS PERCEPTION AND REDISTRIBUTION

As shown in Figure 2, the average text-to-image attention map reveals a frequent, positionally-fixed
noise pattern. We term this phenomenon Text-induced Visual Attention Bias, where language
tokens allocate excessive attention to specific image regions, thereby overshadowing ground-truth
information. To counteract this, we propose FAPR (Fixed Attention Bias Perception and Re-
distribution), a novel method designed to purify and reallocate attention, thereby enhancing the
model’s robustness to misleading prompts.

FAPR operates on the attention maps A ∈ RH×S×S of a multi-head self-attention layer, where H
is the number of heads and S is the sequence length. For a given attention map A(h) ∈ RS×S for
head h, let the set of image token indices be I = {Istart, . . . , Iend}. The number of image tokens
is π = Iend − Istart. Our method consists of three steps: (1) Estimation of the Spurious Attention
Template, (2) Purification of the Target Attention Region, and (3) Reallocation of the Attention
Budget.

2.1 ESTIMATION OF SPURIOUS ATTENTION TEMPLATE

The core principle is to identify and quantify attention patterns originating from misleading text
tokens that disproportionately focus on image regions. We define the spurious attention template
T ∈ Rπ as the λ-weighted average of attention values from all post-image text tokens (indices
k > Iend) directed towards the image tokens (indices j ∈ I).
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Formally, for each image token position j′ ∈ {1, . . . , π}:

Tj′ = λ · 1

S − Iend

S∑
k=Iend+1

A
(h)
k,j′+Istart

, (5)

where λ ∈ [0, 1] is a hyperparameter controlling the strength of the template, and A
(h)
k,j denotes the

attention from query token k to key token j. This template T represents the averaged, text-induced
attention bias.

2.2 PURIFICATION OF TARGET ATTENTION REGION

Once the template T is estimated, we purify the target attention region. This region is the sub-
matrix of A(h) representing attention from post-image text tokens to image tokens, precisely where
the gaslighting effect is hypothesized to manifest.

We subtract the template T from each corresponding row of this target region. To ensure non-
negative attention weights, we apply a Rectified Linear Unit (ReLU). The resulting purified atten-
tion map P ∈ R(S−Iend)×π is defined for k ∈ {Iend + 1, . . . , S} and j′ ∈ {1, . . . , π} as:

Pk−Iend,j′ = max
(
0,A

(h)
k,j′+Istart

−Tj′

)
. (6)

This step effectively nullifies the attention allocated based on the spurious pattern.

2.3 REALLOCATION OF ATTENTION BUDGET

The removal of spurious attention creates an attention budget that must be reallocated to preserve
the probability distribution. This budget is the total magnitude of the subtracted template:

B = (S − Iend)

π∑
j′=1

Tj′ . (7)

Next, we calculate the total remaining attention within the purified region:

ΣP =

S∑
k=Iend+1

π∑
j′=1

Pk−Iend,j′ . (8)

The budget B is then redistributed to form the enhanced map P′. This is handled conditionally to
ensure numerical stability. If the remaining attention ΣP is greater than a small constant ϵ (e.g.,
10−6), the budget is reallocated proportionally by scaling the purified map. Otherwise, to prevent
division by zero, the budget is distributed uniformly across all elements of the target region. The
enhanced map P′ is thus computed as:

P′ =

{(
ΣP+B
ΣP

)
·P if ΣP > ϵ

B
(S−Iend)·π · 1 if ΣP ≤ ϵ

(9)

where 1 is a matrix of ones with the same dimensions as P.

Finally, the original attention map A(h) is updated by replacing the target region with the enhanced
map P′:

A
(h)
k∈{Iend+1,...,S},j∈I ← P′. (10)

This process is applied to each attention head. By systematically identifying, subtracting, and real-
locating attention, FAPR mitigates the text-induced bias and improves the LMM’s ability to remain
grounded in visual facts.

Remark Our method is distinguished by its simplicity and low computational overhead. Unlike
attention sink-based methods Jiao et al. (2025); Kang et al. (2025), which necessitate the careful
optimization of multiple parameters, our approach requires tuning only a single primary hyperpa-
rameter, λ.
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Table 1: Performance comparison on GaslightingBench after incorporating our proposed FAPR into
three representative LMMs. “Before negation” refers to the accuracy of the model’s initial answers,
while “after negation” denotes accuracy after introducing the gaslighting statement. All experiments
were performed on Nvidia A6000 GPUs.

Method Budget Source Inference Delay Before-Negation Acc(%) After-Negation Acc(%)

LLaVA-v1.5-7B None 0.41s/it 63.25 33.89
+ GasEraser Sink Token 1.05s/it 61.07 40.95
+ FAPR (ours) TVAB 0.41s/it 63.71 41.74

LLaVA-v1.6-7B None 0.81s/it 65.89 24.02
+ GasEraser Sink Token 1.68s/it 65.04 30.58
+ FAPR (ours) TVAB 0.82s/it 65.30 34.04

InternVL2-8B None 1.21s/it 76.90 33.40
+ GasEraser Sink Token 2.52s/it 76.22 34.80
+ FAPR (ours) TVAB 1.22s/it 77.16 35.19

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Benchmarks and Prompt Design. Following GasEra Jiao et al. (2025), our primary evaluation
is conducted using GaslightingBench, the sole existing benchmark specifically designed to assess
multimodal models under gaslighting prompts. This benchmark comprises 1,287 samples across 20
categories. Each sample, presented in a multiple-choice format, includes an image, a corresponding
question, several answer options, and a deliberately misleading statement. The evaluation follows
a two-round interaction protocol. In the initial round, the model is prompted to respond based on
the original question. In the subsequent round, the misleading statement is introduced to test the
model’s resilience to gaslighting attempts. To validate the broader applicability of our findings, we
extend our evaluation to several other established benchmarks: MMU Yue et al. (2024), PoPE Li
et al. (2023), AI2Diagram Kembhavi et al. (2016), and MMBench Liu et al. (2024b), all tested
under the same two-round gaslighting evaluation protocol.

We optimized the system prompt to caution the model against potentially misleading user input. The
detailed prompt design is provided in Appendix 6.1.

Baselines. We evaluate our method on three popular open-source models: LLaVA-1.5-7B Liu
et al. (2024a), LLaVA-1.6-Vicuna-7B Liu et al. (2024a), and InternVL2-8B Chen et al. (2024c).
For a comprehensive comparison, we also benchmark against GasEraser Jiao et al. (2025), a strong
training-free baseline that operates by identifying sink tokens and reallocating their anomalous at-
tention within vision-centric heads. Further details comparing GasEraser and our method can be
found in Appendix 6.2.

Experimental Setup. We configure the hyperparameter λ to 1 for LLaVA-1.5-7B and InternVL2-
8B, and to 0.8 for LLaVA-1.6-Vicuna-7B. A sensitivity analysis for this hyperparameter is provided
in Appendix 6.3. For all models under evaluation, our intervention is applied exclusively to the
first two attention layers. Evaluation Protocol. In contrast to GasEraser, which selectively applies
its method only after a user negation, our protocol involves the consistent application of both our
method and the baseline throughout the entire conversational interaction. This comprehensive ap-
proach serves a dual purpose: it mirrors a more realistic deployment scenario and enables a rigorous
assessment of any potential side effects on the model’s baseline reasoning capabilities.

3.2 EXPERIMENT RESULTS

Our evaluation, conducted on the GaslightingBench as detailed in Table 1, underscores the supe-
rior efficacy of our proposed FAPR method against GasEraser across multiple foundational LMMs.
FAPR consistently secures a distinct advantage in post-negation accuracy on all tested models: it
achieves 41.74% on LLaVA-v1.5-7B (vs. 40.95% for GasEraser), 34.04% on LLaVA-v1.6-7B (vs.
30.58%), and 35.19% on InternVL2-8B (vs. 34.80%). Critically, this enhancement in robustness
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Figure 4: A comparative analysis of FAPR
and GasEraser performance across different
layer configurations on LLaVA-v1.5-7B.

layer=2 head=18  token=apple

w/o FAPR w FAPR

layer=2 head=16  token=banana

w/o FAPR w FAPR

Figure 5: Comparison of the key token’s text-to-
image attention map before and after the application
of FAPR.

Table 2: Results for the baseline models and our method, both before and after negation, across
various benchmarks under the gaslighting setting.

Method MMU PoPE AI2Diagram MMBench Average
before after before after before after before after before after

LLaVA-v1.5-7B 37.56 22.14 86.82 46.68 49.66 29.48 72.07 26.80 61.53 31.28
+ GasEraser 33.87 25.86 86.0 46.38 42.79 32.39 68.02 41.77 57.67 36.6
+ FAPR (ours) 36.47 27.96 85.67 53.62 49.08 36.77 72.19 46.05 60.85 41.1

does not come at the cost of the models’ intrinsic capabilities; the before-negation accuracy is con-
sistently maintained or even slightly improved (e.g., 63.71% vs. 63.25% for LLaVA-v1.5-7B). This
demonstrates FAPR’s precision in targeting and neutralizing Text-Induced Visual Attention Bias
without disrupting core model functionalities.

To further validate the generalizability of these findings, we extended our evaluation to a diverse
set of four additional benchmarks, with results presented in Table 2. This broader assessment con-
firms that FAPR’s advantages are not confined to a single task. It achieves an average post-attack
accuracy of 41.1%, representing a significant improvement over both the baseline LLaVA-v1.5-7B
(31.28%) and the GasEraser method (36.6%). This performance margin is consistently maintained
across every individual dataset, affirming the robustness of our approach. Taken together, these find-
ings validate FAPR as an effective and broadly applicable plug-and-play module that enhances the
trustworthiness of multimodal models in complex interactive environments.

Qualitative Results We visualize a representative token’s text-to-image attention map before and
after the application of FAPR. As shown in Figure 5,the comparison clearly demonstrates that FAPR
purges the pervasive positional noise, allowing the attention to converge on the salient object within
the image.

Computational Overhead Analyziz Beyond its superior accuracy in bias mitigation, FAPR distin-
guishes itself with remarkably low computational overhead. As shown in Table 1, the “Inference
Delay” incurred by FAPR (e.g., 0.41 s/it for LLaVA-v1.5-7B, 0.82 s/it for LLaVA-v1.6-7B, 1.22 s/it
for InternVL2-8B) remains virtually identical to that of the baseline models. This stands in stark
contrast to GasEraser, which introduces a substantial increase in inference delay, roughly doubling
the processing time in many cases (e.g., from 0.41 s/it to 1.05 s/it for LLaVA-v1.5-7B). This effi-
ciency is a direct consequence of FAPR’s strategic focus on mitigating bias within the initial layers,
as elaborated in Section 3.3.1, thereby avoiding the resource-intensive overhead associated with
more complex attention management strategies. In summary, FAPR offers a compelling balance of
high effectiveness, minimal computational cost, and non-disruptive integration, making it a highly
promising solution for robust multimodal understanding.

3.3 ADDITIONAL ANALYSIS

3.3.1 FAPR’S EFFICIENCY: LEVERAGING FEW INITIAL LAYERS FOR INJECTION

Previous studies have demonstrated the crucial role of early layers in visual perception. To further
investigate this, we configured FAPR with various injection points, where different layers served
as the terminal point for attention bias processing. The results, presented in Table 4, reveal that

7
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Figure 7: Patterns of Text-Induced Visual Attention Bias in the first 3 layers on LLaVA-1.5-7b. The
matrices show the average attention from text tokens to visual tokens.

FAPR achieves its peak performance remarkably quickly, requiring injection only within the first
two layers—significantly fewer layers than GasEraser. This observation indicates that language-
induced visual attention bias is largely concentrated in these initial layers. Moreover, compared to
sink attention-based methods, FAPR demonstrates a superior capability in effectively mitigating this
attention bias.

These findings collectively underscore FAPR’s exceptional efficiency in mitigating visual attention
bias, while simultaneously achieving a substantial reduction in computational overhead and infer-
ence latency.

3.3.2 ABLATION STUDY ON BUDGET SOURCE

Figure 6: Ablation study on the budget source for
bias mitigation. The table shows the before and
after negation accuracy for LLaVA-v1.5-7B when
using different combinations of image and text to-
kens as the budget source.

Image Token Text Token Before Negation After Negation

× × 63.25 33.89
✓ × 63.50 34.28
× ✓ 63.71 41.74
✓ ✓ 64.10 41.18

We investigate which source tokens contribute
to the observed attention bias. For this, we
configure the budget by selectively using ei-
ther image tokens or text tokens, or both (re-
fer to Section 2.1 for details on budget defini-
tion). As shown in Figure 6, when only im-
age tokens are utilized as the budget source, the
model shows only a marginal improvement. In
contrast, when text tokens alone serve as the
budget source, the model’s performance signifi-
cantly improves, achieving results almost com-
parable to using both image and text tokens.
This clearly indicates that the text tokens are the primary drivers of the Text-Induced Visual Atten-
tion Bias (TVAB), making them the most critical components to budget for effective bias mitigation.
Additional ablation analysis can be found in Appendix 6.4.

3.3.3 PATTERNS OF TEXT-INDUCED VISUAL ATTENTION BIAS

As visualized in the text-to-image attention matrix in Figure 7, a distinct structural pattern emerges
within the initial layers. This pattern is characterized by prominent diagonal and vertical lines, along
with significant artifacts concentrated in the corners of the attention map. This structure strongly
indicates that TVAB is highly correlated with positional information rather than semantic content.

4 RELATED WORKS

4.1 NEGATION IN LLMS AND LMMS

Negation, a fundamental linguistic construct, involves the contradiction or denial of a proposi-
tion Croft (1991). Recent research has illuminated significant challenges that Large Language Mod-
els (LLMs) face in processing negation. Foundational work by Truong et al. (2023) revealed that
prominent models, including GPT-3 and InstructGPT, struggle with negation. These challenges
manifest as difficulties in interpreting lexical semantics, maintaining logical consistency, and rea-
soning effectively within negated contexts. Furthermore, studies show that LLMs often fail to defend
correct beliefs against invalid counterarguments, raising critical concerns about their alignment and
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true depth of understanding Wang et al. (2023a). These challenges are not confined to text-only
models. In the vision-language domain, a growing body of work has documented the limitations
of Large Multimodal Models (LMMs) in handling negation Alhamoud et al. (2025); Singh et al.
(2024); Wang et al. (2023b); Yuksekgonul et al. (2023). These limitations are particularly evident in
tasks such as retrieval and visual question answering involving negated statements. A recent bench-
mark, GaslightingBench Zhu et al. (2025), has formalized a critical failure mode related to negation:
the “gaslighting” phenomenon, where models abandon correct initial reasoning when confronted
with misleading, negated follow-up queries.

4.2 ATTENTION SINK

The Attention Sink phenomenon describes the tendency of Large Language Models (LLMs)
to allocate disproportionately high attention to a small subset of tokens—typically the initial
few—regardless of their semantic contribution Xiao et al. (2024). Xiao et al. Xiao et al. (2024)
demonstrated that this behavior is consistent and gives rise to a strong attentional bias toward these
early tokens. Subsequent research has sought to uncover the underlying causes of this phenomenon.
Cancedda et al.Cancedda (2024) proposed that the attention sink is often concentrated in the very
first token, attributing this bias to the large norm of its hidden state. In contrast, other studies have
observed that attention sinks can manifest in various semantically weak tokens without a fixed posi-
tion in the input sequence Sun et al. (2024); Yu et al. (2024), complicating the attention distribution.
The implications of Attention Sink are far-reaching, influencing long-context generation Xiao et al.
(2024); Han et al. (2024), KV cache optimization Wan et al. (2024); Ge et al. (2024), efficient infer-
ence Chen et al. (2024a); Zhang et al. (2024), and model quantization Chen et al. (2024b).

Visual Attention Sink The phenomenon where tokens with limited information receive dispropor-
tionately high attention scores is not exclusive to language models, but is also observed in large mul-
timodal models (LMMs). Timothée et al. Darcet et al. (2024) demonstrated that high-norm tokens
frequently emerge during inference, predominantly in low-informative background areas of images.
Seil et al. Kang et al. (2025) further emphasized that these low-informative background regions can
indeed exhibit high norm values, which they aptly termed the “visual attention sink.” Building upon
this concept, GasEraser Jiao et al. (2025) utilizes this phenomenon to mitigate “gaslighting” effects,
where a model’s response is unduly influenced by misleading user input rather than visual evidence.
The core idea behind GasEraser is to reallocate attention from these non-essential “sink” tokens to
more relevant visual and textual cues, thereby improving the model’s robustness against deceptive
inputs without the need for retraining.

Our study reveals a more general phenomenon: both sink tokens and other language tokens may
exhibit a high probability of having high attention scores in the initial layers of MLLMs across a
certain length. This insight offers a novel direction for mitigating anomalous attention, supporting
the potential for simpler and faster algorithms in this domain.

5 CONCLUSION

In this paper, we uncover the phenomenon of Text-induced Visual Attention Bias (TVAB), reveal-
ing how language introduces a fixed, prior attention bias on images. We demonstrate that methods
susceptible to “gaslighting” are particularly vulnerable to TVAB; specifically, models are prone to
being misled by linguistic cues across multiple perspectives, thereby overlooking authentic informa-
tion present in the images.

To effectively address this issue, we propose FAPR, a fast and robust method designed to mitigate
the interference of this pervasive attention bias. We evaluate our method using a specially designed
benchmark, the Gaslighting Bench, which includes both normal and constructed misleading di-
alogues. The latter specifically tests our method’s ability to counteract attention interference from
deceptive language, while the former assesses its robustness in standard conversational settings. Our
results demonstrate that TVAB significantly reduces the probability of a model being influenced by
misleading text tokens, without negatively impacting normal dialogues; in fact, it even shows a slight
improvement. In terms of computational efficiency, our method introduces only a negligible delay,
significantly outperforming vision attention correction methods based on attention sinks.
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REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing a detailed explanation of the experimental setup, offering
additional analyses, conducting further experiments on our methods, and presenting a comprehen-
sive summary of baseline specifications, all of which can be found in the Appendix. All the source
code will be made publicly available.

ETHICS STATEMENT

The research presented in this manuscript did not raise any ethical concerns. This article does not
contain any studies with human participants or animals performed by any of the authors.

USE OF LLMS STATEMENT

We leverage Large Language Models as assistants for manuscript polishing and revision. This in-
cludes tasks such as proofreading, copyediting, and improving language clarity.
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6 APPENDIX

6.1 PROMPT DESIGN

Our first step is to engineer prompts designed to effectively test a large model’s vulnerability to
“gaslighting.” To achieve this, we made two primary modifications. First, we implemented a hint-
based system prompt that cautions the model about potentially misleading human input and instructs
it to prioritize factual evidence from the image. Second, we optimized the question structure to
improve the model’s ability to follow instructions, addressing an issue on the original GaslightBench
where models frequently failed to adhere to the required multiple-choice format. Figure 8 shows
an example of our standard prompt design. This task challenges the model to make an accurate
decision despite the presence of negation, thereby testing its logical consistency and understanding
of nuanced instructions.

A chat between a curious human and an artificial intelligence 

assistant. As human inputs may be misleading, responses should 

be based on the image's actual content.

[system]:

How many people can you see in this picture?

Answer with the option's letter from the given choices directly.

A. one.  B. eight.  C. ten.  D. four

[question]:

There is one person in this picture. Then what is the answer? 
Please provide your answer by selecting A, B, C, etc.

[negation]:

{"question_id": 1128, "img": 
"MMBench/object_localization/200.png
", "qs": "<image>\nHow many people 
can you see in this picture?\nAnswer 
with the option's letter from the given 
choices directly.\nA. one. B. eight. C. 
ten. D. four", "gas_qs": "There is one 
person in this picture. What is the 
anwser?", "ans1": "D", "ans2": "A", "gt": 
"D"}

Figure 8: An example of our prompt design based on the GaslightingBench framework. The task
requires the model to make a correct decision under negation.
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6.2 MORE DETAILS ABOUT BASELINES

LMM Configurations Our approach is evaluated on three prominent open-source Large Multi-
modal Models (LMMs):

1. LLaVA-1.5-7B Liu et al. (2024a), which pairs the CLIP-L-336px vision encoder with the
LLaMA-2-7B-Chat LLM.

2. LLaVA-1.6-Vicuna-7B Liu et al. (2024a), which combines the CLIP-L-336px vision en-
coder with the Vicuna-7B LLM.

3. InternVL2-8B Chen et al. (2024c), composed of the InternViT-300M-448px vision en-
coder and the InternLM2-5-7B-Chat LLM.

Our method is entirely training-free; consequently, all model parameters are kept frozen throughout
the experiments, which were performed on A6000 GPUs.

Comparsion with GasEraser Table 3 shows several key differences between our FAPR and the
attention sink-based method, GasEraser. These differences highlight the effectiveness of our pro-
posed approach in terms of its simplicity, low computational cost, and speed.

Table 3: A comparative analysis of FAPR and GasEraser. Further details are provided in the main
document.

Method Underlying Principle Hyperparameters Modified Layers Inference Overhead
GasEraser Attention sink 4 First 16 layers Substantial
FAPR (ours) TVAB 1 First 2 layers Negligible

Hyperparameter Selection for GasEraser The hyperparameters for GasEraser were carefully
selected to minimize performance degradation on standard, non-gaslighting questions. Specifically,
the configurations for each model are as follows:

• For LLaVA-v1.5-7B: τ = 20, ρ = 0.6, α = 0.01, and p = 0.6.
• For LLaVA-v1.6-Vicuna-7B: τ = 20, ρ = 0.6, α = 0.1, and p = 0.6.
• For InternVL2-8B: τ = 20, ρ = 0.6, α = 0.1, and p = 0.6.
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6.3 HYPERPARAMETER ANALYSIS FOR α

We conducted an ablation study to select the optimal value for the hyperparameter α. The results,
presented in Table 4, reveal a trade-off: a lower value of α = 0.6 achieves the best performance
before negation, whereas α = 0.8 demonstrates the highest robustness after negation.

Table 4: Ablation study on the hyperparameter α. The experiment was conducted on the Gaslight-
ingBench.

α before negation after negation
1.0 58.43% 33.80%
0.8 65.30% 34.04%
0.7 65.71% 28.21%
0.6 65.89% 27.27%

6.4 IS BUDGET RELOCATION NECESSARY?

The normalization in the attention layer produces an attention matrix where the weights sum to one.
Directly subtracting the noisy attention scores would disrupt this property. We conduct an ablation
study to evaluate the necessity of the relocation step in FAPR, with results shown in Table 5. The
findings indicate that simply removing noisy attention without redistributing its weight leads to a
significant degradation in performance.

Table 5: Ablation study on the relocation mechanism.

Purify Relocation Before Negation After Negation

× × 63.25 33.89
✓ × 62.78 37.91
✓ ✓ 63.71 41.74
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6.5 VISUAL ANALYSIS OF ATTENTION MAPS

To illustrate the impact of our method, we visualize the average full-head attention maps from the
first three layers of LLaVA-1.5-7B. Figure 9 contrasts the model’s behavior with and without the
application of FAPR.

Layer 1

w/o FAPR

w FAPR

w/o FAPR w/o FAPR w/o FAPR

w FAPR

Layer 2 Layer 3 Layer 4

Figure 9: Visualization of average attention maps from the first three layers of LLaVA-1.5-7B,
comparing the baseline model to our FAPR-enhanced version. Note that for efficiency, FAPR is
only applied to the first two layers.
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