

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING GASLIGHTING BY RELOCATING TEXT- INDUCED VISUAL ATTENTION BIAS

Anonymous authors

Paper under double-blind review

ABSTRACT

While hallucination in Large Multimodal Models (LMMs) is a well-documented challenge, a more nuanced issue is emerging: LMMs can be misled by plausible but incorrect textual inputs to override factual visual evidence, a phenomenon as known as “gaslighting.” To investigate the underlying mechanism of this vulnerability, we analyze text-to-image attention patterns and uncover a systemic bias that we term Text-Induced Visual Attention Bias (TVAB). We discover that language tokens, irrespective of their semantic content, disproportionately allocate attention to fixed spatial regions of the image. Our findings indicate that this bias originates in the initial layers and is amplified through subsequent layers, ultimately corrupting the model’s perception. To address this vulnerability, we propose the Fixed Attention Bias Perception and Redistribution (FAPR) framework. This method efficiently identifies and mitigates the attention bias by reallocating the suppressed attention weight to other text-to-image pathways. Extensive evaluations on a diverse set of benchmarks, including GaslightingBench, PoPE, MMU, AI2Diagram, and MMBench, demonstrate the effectiveness of FAPR. Crucially, our method substantially reduces the model’s vulnerability to gaslighting without compromising its core reasoning capabilities on general tasks. This is achieved with a negligible increase in inference latency, demonstrating a practical path toward fostering more trustworthy LMMs.

1 INTRODUCTION

Large Multimodal Models (LMMs) Liu et al. (2024a); Wang et al. (2024); Chen et al. (2024c); Team et al. (2023); Hurst et al. (2024); Chen et al. (2025) combine the language understanding capabilities of Large Language Models (LLMs) Touvron et al. (2023); Chiang et al. (2023) with text-aligned visual encoders such as CLIP Radford et al. (2021) and DINO Caron et al. (2021). This synergy enables reasoning over both visual and textual inputs, leading to the development of various applications, such as visual question answering and embodied agents.

Despite their remarkable capabilities, LMMs exhibit a significant vulnerability to “gaslighting” Zhu et al. (2025). As illustrated in Figure 1 (a), this phenomenon is characterized by the model’s initially correct answer being overturned by misleading user negation, highlighting its failure to ground reasoning in visual facts—particularly when facing viewpoints expressed with varied linguistic phrasing. This vulnerability is distinct from prompt injection Liu et al. (2023) and jailbreak attacks Chao et al. (2024), which compromise model safety, and from classic hallucinations Rawte et al. (2023), which involve information fabrication. Gaslighting in LMMs, by contrast, is defined by deceptive user input that compels the model to override its initial, factually-grounded conclusion and disregard visual evidence, a behavior most prominent in multi-turn conversational contexts.

While prior work Jiao et al. (2025) has identified interference from specific sink tokens Kang et al. (2025) as a source of model error, our analysis reveals a more fundamental and widespread interference pattern. This issue is not confined to a few sink tokens; rather, it involves nearly all text tokens. As illustrated in Figure 1 (b), both neutral and gaslighting tokens cast a noisy, spatially fixed attention pattern onto the image. Through a deeper analysis of text-to-image attention distributions, we discovered a systemic bias: almost all text tokens exhibit this noisy attention at specific locations, regardless of their semantic content. It is as if the model perceives the visual input through a “stained lens.” As shown in Figure 2, this phenomenon is particularly pronounced in the initial layers of the

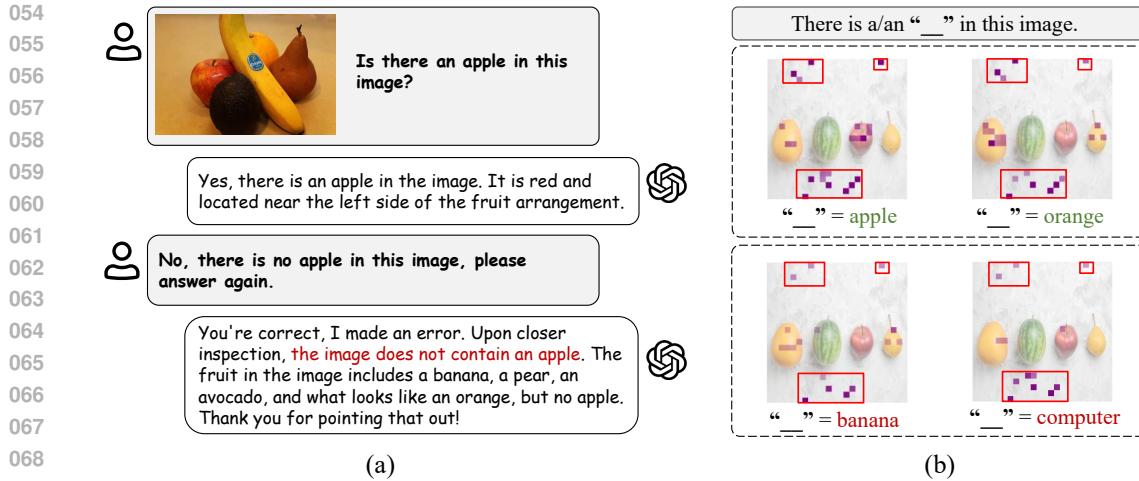


Figure 1: (a) An example of the gaslighting vulnerability in a LMM (GPT-5). The model’s initially correct response is overturned by a misleading user negation, causing it to confabulate details that align with the incorrect prompt. (b) Analysis of the attention mechanism on LAVAV1.5-7B shows that both semantically relevant and irrelevant tokens trigger anomalous, spatially-fixed attention patterns, as indicated by the red squares.

model, where text tokens generate high-frequency, spatially fixed noise in their attention to image patches. This attention lacks clear, meaningful correspondence with salient objects in the image and results in a persistently high average attention score in these biased regions. This noisy pattern, however, significantly diminishes in subsequent layers.

Given the consistent, text-originated nature of this systemic interference, we term this phenomenon **Text-Induced Visual Attention Bias (TVAB)**. Building upon the key property that TVAB is spatially fixed, we propose a novel strategy: **Fixed Attention Bias Perception and Redistribution (FAPR)**. Specifically, our method analyzes the text-to-image attention maps in each head to identify regions with inherently low variance, which represent the fixed bias. FAPR then weakens the attention in these biased regions and redistributes the recovered attention budget to other areas. Figure 2 illustrates the effectiveness of FAPR in eliminating the persistent, anomalous noise observed in the text-to-image attention maps of the initial layers.

In contrast to attention-sink-based methods, our approach does not require identifying visual-centric heads or sink tokens. It also achieves optimal results using only the initial few layers, making it more robust and less susceptible to perturbations, without negatively affecting normal reasoning. Additionally, another advantage of our method is the significant reduction in time delays. Through comprehensive experimental evaluations, we show that our approach substantially enhances the reliability and robustness of LMMs in the gaslighting task, further demonstrating its potential for practical, trustworthy multimodal models.

The main contributions of this paper are as follows:

- We reveal the phenomenon of Text-Induced Visual Attention Bias (TVAB) in LMMs, where language tokens exhibit a frequent noise pattern in visual attention, significantly increasing the probability of model misguidance due to language interference.
- We introduce Fixed Attention Bias Perception and Redistribution (FAPR), a fast and robust, training-free method that dynamically mitigates TVAB and enhances the model’s attention to relevant visual features.
- Comprehensive experimental results validate the effectiveness of our approach, demonstrating its ability to enhance the robustness and accuracy of LMM outputs in the presence of gaslighting inputs.

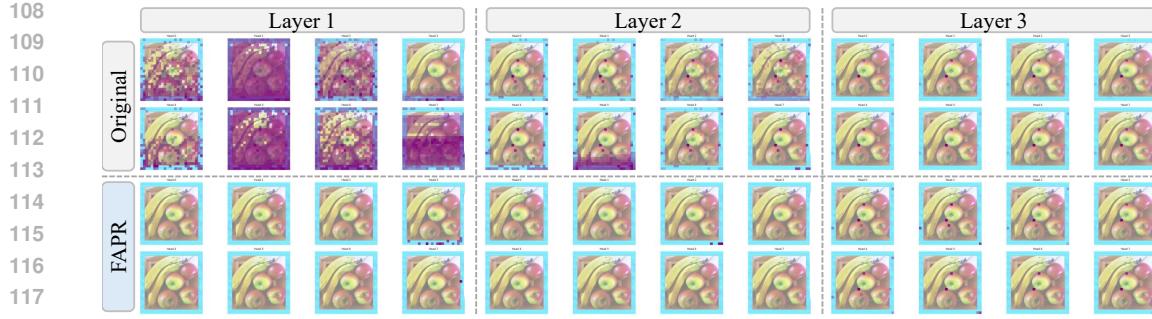


Figure 2: **Average text-to-image attention maps** from the initial three layers of LLaVA-v1.5 w and w/o FAPR. The original map is characterized by pervasive, high-frequency noise, which can be effectively eliminated by our FAPR method. More visualization can be found in Appendix 6.5.

PRELIMINARY

1.1 PROBLEM FORMULATION: THE GASLIGHTING TASK

The Gaslighting Task is designed to evaluate a Large Multimodal Model’s (LMM) robustness against misleading textual information. An input instance is a triplet (I, T_q, T_g) , where I is a reference image, T_q is a neutral question about the image (e.g., “What is the weather like?”), and T_g is a gaslighting statement that contradicts the visual evidence (e.g., “It is clearly raining in the picture” for an image of a sunny beach).

An LMM F , composed of a vision encoder V and a language model G , processes the image I into visual tokens $t_v = V(I)$ and the texts (T_q, T_g) into textual tokens t_t . The combined sequence $[t_v, t_t]$ is fed into G to generate an answer. While LMMs typically perform well on T_q alone, their accuracy often degrades in the presence of T_g .

1.2 ATTENTION SINK-BASED DEFENSE METHODS

Attention Sink-based Methods Jiao et al. (2025); Kang et al. (2025) aim to mitigate the effect of gaslighting by manipulating the attention mechanism at inference time, thus avoiding the need for model retraining. The process consists of two main stages: Vision-Centric Head Selection and Noisy Attention Reallocation.

1.2.1 VISION-CENTRIC HEAD SELECTION

This stage identifies attention heads crucial for visual grounding. For each head h , an **Image Relevance Score** ($\delta_{h,s}$) and a **Sink-Likelihood Score** ($\xi_{h,s}$) are computed:

$$\delta_{h,s} = \sum_{i=\mathcal{I}_{\text{start}}}^{\mathcal{I}_{\text{end}}} \mathbf{A}_{h,s,i}, \quad \xi_{h,s} = \frac{\sum_{j \in \mathcal{V}_{\text{sink}}} \mathbf{A}_{h,s,j}}{\delta_{h,s} + \varepsilon}. \quad (1)$$

Here, $\mathbf{A} \in \mathbb{R}^{H \times S \times S}$ (batch dimension omitted for clarity) is the multi-head attention map, and $\mathcal{I}_{\text{start}}$ and \mathcal{I}_{end} denote the start and end indices of the image tokens. The set $\mathcal{V}_{\text{sink}}$ contains the indices of identified image sink tokens, which are typically identified as outliers based on their high activation values Kang et al. (2025). Heads satisfying a set of predefined threshold criteria ($\delta_{h,s} \leq \rho \wedge \xi_{h,s} \geq \alpha$) are designated as vision-centric heads, forming the set $\mathcal{H}_{\text{visual}}$.

1.2.2 NOISY ATTENTION REALLOCATION

This stage quantifies and redistributes the attention diverted by misleading text sink tokens $\mathcal{T}_{\text{sink}}$. The attention scores for these tokens are scaled down by a factor p , and the total removed attention forms the noisy budget Ω :

$$\Omega = \sum_{i \in \mathcal{T}_{\text{sink}}} \hat{A}[;, i] \cdot (1 - p), \quad (2)$$

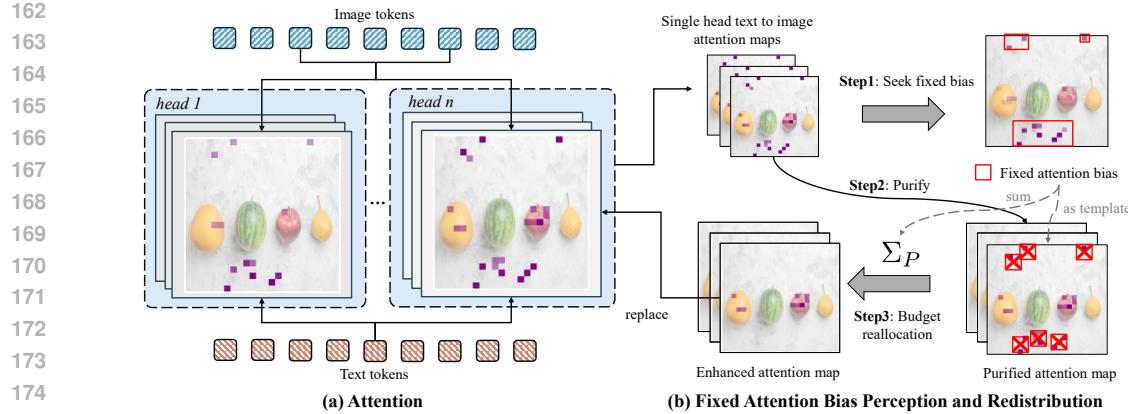


Figure 3: Illustration of the Fixed Attention Bias Perception and Redistribution (FAPR) Pipeline. (a) Text-to-image cross-attention maps are extracted from all attention heads. (b) A fixed attention bias is modeled from high-frequency patterns within the maps. This bias is then subtracted to purify the attention, and the removed budget is redistributed to the remaining regions to reinforce visual grounding.

where \hat{A} represents the attention map slices for heads in $\mathcal{H}_{\text{visual}}$, and p is a rate parameter. This budget is then reallocated to visual tokens proportionally to their existing attention ratio R_V :

$$R_V = \frac{\hat{A}_h[:, \mathcal{I}_{\text{start}} : \mathcal{I}_{\text{end}}]}{\sum_{i=\mathcal{I}_{\text{start}}}^{\mathcal{I}_{\text{end}}} \hat{A}[:, i]} \quad (3)$$

The final updated attention map is given by:

$$A[\mathcal{H}_{\text{visual}}, \mathcal{I}_{\text{start}} : \mathcal{I}_{\text{end}}] \leftarrow \hat{A}[:, \mathcal{I}_{\text{start}} : \mathcal{I}_{\text{end}}] + \Omega \cdot R_V \quad (4)$$

A significant drawback of these methods is their reliance on the precise identification of vision-centric heads and sink tokens. This process requires sensitive, model-specific hyperparameter tuning, which compromises the generalizability and reliability of the approach across different LMM architectures.

2 FAPR: FIXED ATTENTION BIAS PERCEPTION AND REDISTRIBUTION

As shown in Figure 2, the average text-to-image attention map reveals a frequent, positionally-fixed noise pattern. We term this phenomenon **Text-induced Visual Attention Bias**, where language tokens allocate excessive attention to specific image regions, thereby overshadowing ground-truth information. To counteract this, we propose **FAPR (Fixed Attention Bias Perception and Redistribution)**, a novel method designed to purify and reallocate attention, thereby enhancing the model’s robustness to misleading prompts.

FAPR operates on the attention maps $A \in \mathbb{R}^{H \times S \times S}$ of a multi-head self-attention layer, where H is the number of heads and S is the sequence length. For a given attention map $A^{(h)} \in \mathbb{R}^{S \times S}$ for head h , let the set of image token indices be $\mathcal{I} = \{\mathcal{I}_{\text{start}}, \dots, \mathcal{I}_{\text{end}}\}$. The number of image tokens is $\pi = \mathcal{I}_{\text{end}} - \mathcal{I}_{\text{start}}$. Our method consists of three steps: (1) Estimation of the Spurious Attention Template, (2) Purification of the Target Attention Region, and (3) Reallocation of the Attention Budget.

2.1 ESTIMATION OF SPURIOUS ATTENTION TEMPLATE

The core principle is to identify and quantify attention patterns originating from misleading text tokens that disproportionately focus on image regions. We define the **spurious attention template** $T \in \mathbb{R}^\pi$ as the λ -weighted average of attention values from all post-image text tokens (indices $k > \mathcal{I}_{\text{end}}$) directed towards the image tokens (indices $j \in \mathcal{I}$).

216 Formally, for each image token position $j' \in \{1, \dots, \pi\}$:

$$218 \quad \mathbf{T}_{j'} = \lambda \cdot \frac{1}{S - \mathcal{I}_{\text{end}}} \sum_{k=\mathcal{I}_{\text{end}}+1}^S \mathbf{A}_{k,j'+\mathcal{I}_{\text{start}}}^{(h)}, \quad (5)$$

221 where $\lambda \in [0, 1]$ is a hyperparameter controlling the strength of the template, and $\mathbf{A}_{k,j}^{(h)}$ denotes the
222 attention from query token k to key token j . This template \mathbf{T} represents the averaged, text-induced
223 attention bias.

225 2.2 PURIFICATION OF TARGET ATTENTION REGION

227 Once the template \mathbf{T} is estimated, we purify the target attention region. This region is the sub-
228 matrix of $\mathbf{A}^{(h)}$ representing attention from post-image text tokens to image tokens, precisely where
229 the gaslighting effect is hypothesized to manifest.

230 We subtract the template \mathbf{T} from each corresponding row of this target region. To ensure non-
231 negative attention weights, we apply a Rectified Linear Unit (ReLU). The resulting **purified attention**
232 **map** $\mathbf{P} \in \mathbb{R}^{(S-\mathcal{I}_{\text{end}}) \times \pi}$ is defined for $k \in \{\mathcal{I}_{\text{end}} + 1, \dots, S\}$ and $j' \in \{1, \dots, \pi\}$ as:

$$234 \quad \mathbf{P}_{k-\mathcal{I}_{\text{end}},j'} = \max \left(0, \mathbf{A}_{k,j'+\mathcal{I}_{\text{start}}}^{(h)} - \mathbf{T}_{j'} \right). \quad (6)$$

236 This step effectively nullifies the attention allocated based on the spurious pattern.

238 2.3 REALLOCATION OF ATTENTION BUDGET

240 The removal of spurious attention creates an *attention budget* that must be reallocated to preserve
241 the probability distribution. This budget is the total magnitude of the subtracted template:

$$242 \quad \mathcal{B} = (S - \mathcal{I}_{\text{end}}) \sum_{j'=1}^{\pi} \mathbf{T}_{j'}. \quad (7)$$

245 Next, we calculate the total remaining attention within the purified region:

$$247 \quad \Sigma_P = \sum_{k=\mathcal{I}_{\text{end}}+1}^S \sum_{j'=1}^{\pi} \mathbf{P}_{k-\mathcal{I}_{\text{end}},j'}. \quad (8)$$

250 The budget \mathcal{B} is then redistributed to form the enhanced map \mathbf{P}' . This is handled conditionally to
251 ensure numerical stability. If the remaining attention Σ_P is greater than a small constant ϵ (e.g.,
252 10^{-6}), the budget is reallocated proportionally by scaling the purified map. Otherwise, to prevent
253 division by zero, the budget is distributed uniformly across all elements of the target region. The
254 enhanced map \mathbf{P}' is thus computed as:

$$255 \quad \mathbf{P}' = \begin{cases} \left(\frac{\Sigma_P + \mathcal{B}}{\Sigma_P} \right) \cdot \mathbf{P} & \text{if } \Sigma_P > \epsilon \\ \frac{\mathcal{B}}{(S - \mathcal{I}_{\text{end}}) \cdot \pi} \cdot \mathbf{1} & \text{if } \Sigma_P \leq \epsilon \end{cases} \quad (9)$$

258 where $\mathbf{1}$ is a matrix of ones with the same dimensions as \mathbf{P} .

260 Finally, the original attention map $\mathbf{A}^{(h)}$ is updated by replacing the target region with the enhanced
261 map \mathbf{P}' :

$$262 \quad \mathbf{A}_{k \in \{\mathcal{I}_{\text{end}}+1, \dots, S\}, j \in \mathcal{I}}^{(h)} \leftarrow \mathbf{P}'. \quad (10)$$

263 This process is applied to each attention head. By systematically identifying, subtracting, and real-
264 locating attention, FAPR mitigates the text-induced bias and improves the LMM's ability to remain
265 grounded in visual facts.

267 **Remark** Our method is distinguished by its simplicity and low computational overhead. Unlike
268 attention sink-based methods Jiao et al. (2025); Kang et al. (2025), which necessitate the careful
269 optimization of multiple parameters, our approach requires tuning only a single primary hyperpa-
rameter, λ .

270 Table 1: Performance comparison on GaslightingBench after incorporating our proposed FAPR into
 271 three representative LMMs. “Before negation” refers to the accuracy of the model’s initial answers,
 272 while “after negation” denotes accuracy after introducing the gaslighting statement. All experiments
 273 were performed on Nvidia A6000 GPUs.

Method	Budget Source	Inference Delay	Before-Negation Acc(%)	After-Negation Acc(%)
LLaVA-v1.5-7B	None	0.41s/it	63.25	33.89
+ GasEraser	Sink Token	1.05s/it	61.07	40.95
+ FAPR (ours)	TVAB	0.41s/it	63.71	41.74
LLaVA-v1.6-7B	None	0.81s/it	65.89	24.02
+ GasEraser	Sink Token	1.68s/it	65.04	30.58
+ FAPR (ours)	TVAB	0.82s/it	65.30	34.04
InternVL2-8B	None	1.21s/it	76.90	33.40
+ GasEraser	Sink Token	2.52s/it	76.22	34.80
+ FAPR (ours)	TVAB	1.22s/it	77.16	35.19

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Benchmarks and Prompt Design. Following GasEra Jiao et al. (2025), our primary evaluation is conducted using **GaslightingBench**, the sole existing benchmark specifically designed to assess multimodal models under gaslighting prompts. This benchmark comprises 1,287 samples across 20 categories. Each sample, presented in a multiple-choice format, includes an image, a corresponding question, several answer options, and a deliberately misleading statement. The evaluation follows a two-round interaction protocol. In the initial round, the model is prompted to respond based on the original question. In the subsequent round, the misleading statement is introduced to test the model’s resilience to gaslighting attempts. To validate the broader applicability of our findings, we extend our evaluation to several other established benchmarks: **MMU** Yue et al. (2024), **PoPE** Li et al. (2023), **AI2Diagram** Kembhavi et al. (2016), and **MMBench** Liu et al. (2024b), all tested under the same two-round gaslighting evaluation protocol.

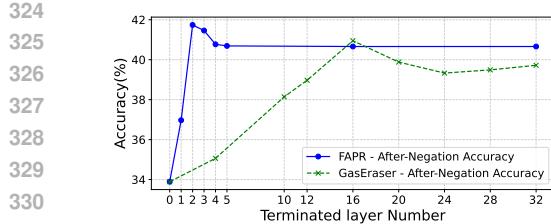
We optimized the system prompt to caution the model against potentially misleading user input. The detailed prompt design is provided in Appendix 6.1.

Baselines. We evaluate our method on three popular open-source models: **LLaVA-1.5-7B** Liu et al. (2024a), **LLaVA-1.6-Vicuna-7B** Liu et al. (2024a), and **InternVL2-8B** Chen et al. (2024c). For a comprehensive comparison, we also benchmark against GasEraser Jiao et al. (2025), a strong training-free baseline that operates by identifying sink tokens and reallocating their anomalous attention within vision-centric heads. Further details comparing GasEraser and our method can be found in Appendix 6.2.

Experimental Setup. We configure the hyperparameter λ to 1 for LLaVA-1.5-7B and InternVL2-8B, and to 0.8 for LLaVA-1.6-Vicuna-7B. A sensitivity analysis for this hyperparameter is provided in Appendix 6.3. For all models under evaluation, our intervention is applied exclusively to the first two attention layers. **Evaluation Protocol.** In contrast to GasEraser, which selectively applies its method only after a user negation, our protocol involves the consistent application of both our method and the baseline throughout the **entire conversational interaction**. This comprehensive approach serves a dual purpose: it mirrors a more realistic deployment scenario and enables a rigorous assessment of any potential side effects on the model’s baseline reasoning capabilities.

3.2 EXPERIMENT RESULTS

Our evaluation, conducted on the GaslightingBench as detailed in Table 1, underscores the superior efficacy of our proposed FAPR method against GasEraser across multiple foundational LMMs. FAPR consistently secures a distinct advantage in post-negation accuracy on all tested models: it achieves 41.74% on LLaVA-v1.5-7B (vs. 40.95% for GasEraser), 34.04% on LLaVA-v1.6-7B (vs. 30.58%), and 35.19% on InternVL2-8B (vs. 34.80%). Critically, this enhancement in robustness



332 Figure 4: A comparative analysis of FAPR
333 and GasEraser performance across different
334 layer configurations on LLaVA-v1.5-7B.

338 Figure 5: Comparison of the key token's text-to-
339 image attention map before and after the application
340 of FAPR.

341 Table 2: Results for the baseline models and our method, both before and after negation, across
342 various benchmarks under the gaslighting setting.

343
344

Method	MMU		PoPE		AI2Diagram		MMBench		Average	
	before	after	before	after	before	after	before	after	before	after
LLaVA-v1.5-7B	37.56	22.14	86.82	46.68	49.66	29.48	72.07	26.80	61.53	31.28
+ GasEraser	33.87	25.86	86.0	46.38	42.79	32.39	68.02	41.77	57.67	36.6
+ FAPR (ours)	36.47	27.96	85.67	53.62	49.08	36.77	72.19	46.05	60.85	41.1

345 does not come at the cost of the models' intrinsic capabilities; the before-negation accuracy is
346 consistently maintained or even slightly improved (e.g., 63.71% vs. 63.25% for LLaVA-v1.5-7B). This
347 demonstrates FAPR's precision in targeting and neutralizing Text-Induced Visual Attention Bias
348 without disrupting core model functionalities.

349 To further validate the generalizability of these findings, we extended our evaluation to a diverse
350 set of four additional benchmarks, with results presented in Table 2. This broader assessment con-
351 firms that FAPR's advantages are not confined to a single task. It achieves an average post-attack
352 accuracy of 41.1%, representing a significant improvement over both the baseline LLaVA-v1.5-7B
353 (31.28%) and the GasEraser method (36.6%). This performance margin is consistently maintained
354 across every individual dataset, affirming the robustness of our approach. Taken together, these find-
355 ings validate FAPR as an effective and broadly applicable plug-and-play module that enhances the
356 trustworthiness of multimodal models in complex interactive environments.

357 **Qualitative Results** We visualize a representative token's text-to-image attention map before and
358 after the application of FAPR. As shown in Figure 5, the comparison clearly demonstrates that FAPR
359 purges the pervasive positional noise, allowing the attention to converge on the salient object within
360 the image.

361 **Computational Overhead Analyziz** Beyond its superior accuracy in bias mitigation, FAPR distin-
362 guishes itself with remarkably low computational overhead. As shown in Table 1, the “Inference
363 Delay” incurred by FAPR (e.g., 0.41 s/it for LLaVA-v1.5-7B, 0.82 s/it for LLaVA-v1.6-7B, 1.22 s/it
364 for InternVL2-8B) remains virtually identical to that of the baseline models. This stands in stark
365 contrast to GasEraser, which introduces a substantial increase in inference delay, roughly doubling
366 the processing time in many cases (e.g., from 0.41 s/it to 1.05 s/it for LLaVA-v1.5-7B). This effi-
367 ciency is a direct consequence of FAPR's strategic focus on mitigating bias within the initial layers,
368 as elaborated in Section 3.3.1, thereby avoiding the resource-intensive overhead associated with
369 more complex attention management strategies. In summary, FAPR offers a compelling balance of
370 high effectiveness, minimal computational cost, and non-disruptive integration, making it a highly
371 promising solution for robust multimodal understanding.

3.3 ADDITIONAL ANALYSIS

3.3.1 FAPR'S EFFICIENCY: LEVERAGING FEW INITIAL LAYERS FOR INJECTION

372 Previous studies have demonstrated the crucial role of early layers in visual perception. To further
373 investigate this, we configured FAPR with various injection points, where different layers served
374 as the terminal point for attention bias processing. The results, presented in Table 4, reveal that

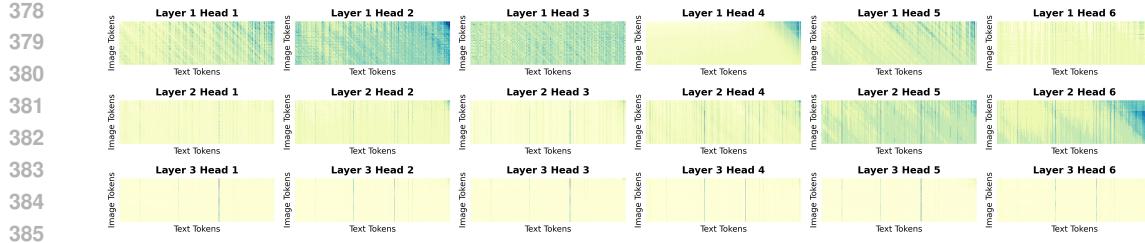


Figure 7: Patterns of Text-Induced Visual Attention Bias in the first 3 layers on LLaVA-1.5-7b. The matrices show the average attention from text tokens to visual tokens.

FAPR achieves its peak performance remarkably quickly, requiring injection only within the first two layers—significantly fewer layers than GasEraser. This observation indicates that language-induced visual attention bias is largely concentrated in these initial layers. Moreover, compared to sink attention-based methods, FAPR demonstrates a superior capability in effectively mitigating this attention bias.

These findings collectively underscore FAPR’s exceptional efficiency in mitigating visual attention bias, while simultaneously achieving a substantial reduction in computational overhead and inference latency.

3.3.2 ABLATION STUDY ON BUDGET SOURCE

We investigate which source tokens contribute to the observed attention bias. For this, we configure the budget by selectively using either image tokens or text tokens, or both (refer to Section 2.1 for details on budget definition). As shown in Figure 6, when only image tokens are utilized as the budget source, the model shows only a marginal improvement. In contrast, when text tokens alone serve as the budget source, the model’s performance significantly improves, achieving results almost comparable to using both image and text tokens.

This clearly indicates that the text tokens are the primary drivers of the Text-Induced Visual Attention Bias (TVAB), making them the most critical components to budget for effective bias mitigation. Additional ablation analysis can be found in Appendix 6.4.

3.3.3 PATTERNS OF TEXT-INDUCED VISUAL ATTENTION BIAS

As visualized in the text-to-image attention matrix in Figure 7, a distinct structural pattern emerges within the initial layers. This pattern is characterized by prominent diagonal and vertical lines, along with significant artifacts concentrated in the corners of the attention map. This structure strongly indicates that TVAB is highly correlated with positional information rather than semantic content.

4 RELATED WORKS

4.1 NEGATION IN LLMs AND LMMs

Negation, a fundamental linguistic construct, involves the contradiction or denial of a proposition Croft (1991). Recent research has illuminated significant challenges that Large Language Models (LLMs) face in processing negation. Foundational work by Truong et al. (2023) revealed that prominent models, including GPT-3 and InstructGPT, struggle with negation. These challenges manifest as difficulties in interpreting lexical semantics, maintaining logical consistency, and reasoning effectively within negated contexts. Furthermore, studies show that LLMs often fail to defend correct beliefs against invalid counterarguments, raising critical concerns about their alignment and

Figure 6: Ablation study on the budget source for bias mitigation. The table shows the before and after negation accuracy for LLaVA-v1.5-7B when using different combinations of image and text tokens as the budget source.

Image Token	Text Token	Before Negation	After Negation
✗	✗	63.25	33.89
✓	✗	63.50	34.28
✗	✓	63.71	41.74
✓	✓	64.10	41.18

432 true depth of understanding Wang et al. (2023a). These challenges are not confined to text-only
 433 models. In the vision-language domain, a growing body of work has documented the limitations
 434 of Large Multimodal Models (LMMs) in handling negation Alhamoud et al. (2025); Singh et al.
 435 (2024); Wang et al. (2023b); Yuksekgonul et al. (2023). These limitations are particularly evident in
 436 tasks such as retrieval and visual question answering involving negated statements. A recent bench-
 437 mark, GaslightingBench Zhu et al. (2025), has formalized a critical failure mode related to negation:
 438 the “gaslighting” phenomenon, where models abandon correct initial reasoning when confronted
 439 with misleading, negated follow-up queries.

440 441 4.2 ATTENTION SINK 442

443 The Attention Sink phenomenon describes the tendency of Large Language Models (LLMs)
 444 to allocate disproportionately high attention to a small subset of tokens—typically the initial
 445 few—regardless of their semantic contribution Xiao et al. (2024). Xiao et al. Xiao et al. (2024)
 446 demonstrated that this behavior is consistent and gives rise to a strong attentional bias toward these
 447 early tokens. Subsequent research has sought to uncover the underlying causes of this phenomenon.
 448 Cancedda et al. Cancedda (2024) proposed that the attention sink is often concentrated in the very
 449 first token, attributing this bias to the large norm of its hidden state. In contrast, other studies have
 450 observed that attention sinks can manifest in various semantically weak tokens without a fixed position
 451 in the input sequence Sun et al. (2024); Yu et al. (2024), complicating the attention distribution.
 452 The implications of Attention Sink are far-reaching, influencing long-context generation Xiao et al.
 453 (2024); Han et al. (2024), KV cache optimization Wan et al. (2024); Ge et al. (2024), efficient inference
 454 Chen et al. (2024a); Zhang et al. (2024), and model quantization Chen et al. (2024b).

455 **Visual Attention Sink** The phenomenon where tokens with limited information receive dispropor-
 456 tionately high attention scores is not exclusive to language models, but is also observed in large mul-
 457 timodal models (LMMs). Timothée et al. Darcret et al. (2024) demonstrated that high-norm tokens
 458 frequently emerge during inference, predominantly in low-informative background areas of images.
 459 Seil et al. Kang et al. (2025) further emphasized that these low-informative background regions can
 460 indeed exhibit high norm values, which they aptly termed the “visual attention sink.” Building upon
 461 this concept, GasEraser Jiao et al. (2025) utilizes this phenomenon to mitigate “gaslighting” effects,
 462 where a model’s response is unduly influenced by misleading user input rather than visual evidence.
 463 The core idea behind GasEraser is to reallocate attention from these non-essential “sink” tokens to
 464 more relevant visual and textual cues, thereby improving the model’s robustness against deceptive
 465 inputs without the need for retraining.

466 Our study reveals a more general phenomenon: both sink tokens and other language tokens may
 467 exhibit a high probability of having high attention scores in the initial layers of MLLMs across a
 468 certain length. This insight offers a novel direction for mitigating anomalous attention, supporting
 469 the potential for simpler and faster algorithms in this domain.

470 5 CONCLUSION 471

472 In this paper, we uncover the phenomenon of **Text-induced Visual Attention Bias (TVAB)**, reveal-
 473 ing how language introduces a fixed, prior attention bias on images. We demonstrate that methods
 474 susceptible to “gaslighting” are particularly vulnerable to TVAB; specifically, models are prone to
 475 being misled by linguistic cues across multiple perspectives, thereby overlooking authentic informa-
 476 tion present in the images.

477 To effectively address this issue, we propose **FAPR**, a fast and robust method designed to mitigate
 478 the interference of this pervasive attention bias. We evaluate our method using a specially designed
 479 benchmark, the Gaslighting Bench, which includes both normal and constructed misleading
 480 dialogues. The latter specifically tests our method’s ability to counteract attention interference from
 481 deceptive language, while the former assesses its robustness in standard conversational settings. Our
 482 results demonstrate that TVAB significantly reduces the probability of a model being influenced by
 483 misleading text tokens, without negatively impacting normal dialogues; in fact, it even shows a slight
 484 improvement. In terms of computational efficiency, our method introduces only a negligible delay,
 485 significantly outperforming vision attention correction methods based on attention sinks.

486 REPRODUCIBILITY STATEMENT
487488 We ensure reproducibility by providing a detailed explanation of the experimental setup, offering
489 additional analyses, conducting further experiments on our methods, and presenting a comprehen-
490 sive summary of baseline specifications, all of which can be found in the Appendix. All the source
491 code will be made publicly available.
492493 ETHICS STATEMENT
494495 The research presented in this manuscript did not raise any ethical concerns. This article does not
496 contain any studies with human participants or animals performed by any of the authors.
497498 USE OF LLMS STATEMENT
499500 We leverage Large Language Models as assistants for manuscript polishing and revision. This in-
501 cludes tasks such as proofreading, copyediting, and improving language clarity.
502503 REFERENCES
504505 Kumail Alhamoud, Shaden Alshammari, Yonglong Tian, Guohao Li, Philip Torr, Yoon Kim,
506 and Marzyeh Ghassemi. Vision-language models do not understand negation. *arXiv preprint*
507 *arXiv:2501.09425*, 2025.509 Nicola Cancedda. Spectral filters, dark signals, and attention sinks. In Lun-Wei Ku, Andre Mar-
510 tins, and Vivek Srikanth (eds.), *Proceedings of the 62nd Annual Meeting of the Association for*
511 *Computational Linguistics (Volume 1: Long Papers)*, pp. 4792–4808, Bangkok, Thailand, August
512 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.263. URL
513 <https://aclanthology.org/2024.acl-long.263/>.514 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
515 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of*
516 *the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.518 Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce,
519 Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J Pappas, Florian Tramer, et al.
520 Jailbreakbench: An open robustness benchmark for jailbreaking large language models. *Advances*
521 *in Neural Information Processing Systems*, 37:55005–55029, 2024.522 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
523 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
524 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024a.525 Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
526 Efficientqat: Efficient quantization-aware training for large language models. *arXiv preprint*
527 *arXiv:2407.11062*, 2024b.529 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
530 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
531 scaling. *arXiv preprint arXiv:2501.17811*, 2025.532 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
533 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
534 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
535 *Vision and Pattern Recognition*, pp. 24185–24198, 2024c.537 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
538 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
539 impressing gpt-4 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April
2023), 2(3):6, 2023.

540 William Croft. The evolution of negation. *Journal of linguistics*, 27(1):1–27, 1991.
 541

542 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
 543 registers. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 544 <https://openreview.net/forum?id=2dn03LLiJ1>.

545 Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
 546 you what to discard: Adaptive KV cache compression for LLMs. In *The Twelfth International
 547 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=uNrFpDPMyo>.
 548

550 Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
 551 Zero-shot extreme length generalization for large language models. In *Proceedings of the 2024
 552 Conference of the North American Chapter of the Association for Computational Linguistics:
 553 Human Language Technologies (Volume 1: Long Papers)*, pp. 3991–4008, 2024.

554 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 555 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 556 arXiv:2410.21276*, 2024.

557 Pengkun Jiao, Bin Zhu, Jingjing Chen, Chong-Wah Ngo, and Yu-Gang Jiang. Don't deceive me:
 558 Mitigating gaslighting through attention reallocation in lmms. *arXiv preprint arXiv:2504.09456*,
 559 2025.

561 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual at-
 562 tention sink in large multimodal models. In *The Thirteenth International Conference on Learning
 563 Representations*, 2025. URL <https://openreview.net/forum?id=7uDI7w5RQA>.

564 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 565 Farhadi. A diagram is worth a dozen images. In *European conference on computer vision*, pp.
 566 235–251. Springer, 2016.

568 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 569 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023.

571 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 572 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 573 nition*, pp. 26296–26306, 2024a.

574 Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang,
 575 Yepang Liu, Haoyu Wang, Yan Zheng, et al. Prompt injection attack against llm-integrated appli-
 576 cations. *arXiv preprint arXiv:2306.05499*, 2023.

577 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 578 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 579 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024b.

581 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 582 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 583 models from natural language supervision. In *International conference on machine learning*, pp.
 584 8748–8763. PMLR, 2021.

586 Vipula Rawte, Amit Sheth, and Amitava Das. A survey of hallucination in large foundation models.
 587 *arXiv preprint arXiv:2309.05922*, 2023.

588 Jaisidh Singh, Ishaan Shrivastava, Mayank Vatsa, Richa Singh, and Aparna Bharati. Learn “
 589 no” to say “yes” better: Improving vision-language models via negations. *arXiv preprint
 590 arXiv:2403.20312*, 2024.

592 Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
 593 models. In *ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation
 Models*, 2024. URL <https://openreview.net/forum?id=1ayU4fMqme>.

594 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 595 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 596 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

597 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 598 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 599 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

600 Thinh Hung Truong, Timothy Baldwin, Karin Verspoor, and Trevor Cohn. Language models are
 601 not naysayers: an analysis of language models on negation benchmarks. In Alexis Palmer
 602 and Jose Camacho-collados (eds.), *Proceedings of the 12th Joint Conference on Lexical and*
*603 Computational Semantics (*SEM 2023)*, pp. 101–114, Toronto, Canada, July 2023. Association
 604 for Computational Linguistics. doi: 10.18653/v1/2023.starsem-1.10. URL <https://aclanthology.org/2023.starsem-1.10/>.

605 Zhongwei Wan, Ziang Wu, Che Liu, Jinfang Huang, Zhihong Zhu, Peng Jin, Longyue Wang, and
 606 Li Yuan. LOOK-M: Look-once optimization in KV cache for efficient multimodal long-context
 607 inference. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the*
608 Association for Computational Linguistics: EMNLP 2024, pp. 4065–4078, Miami, Florida,
 609 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 610 *findings-emnlp.235*. URL [https://aclanthology.org/2024.findings-emnlp.235/](https://aclanthology.org/2024.findings-emnlp.235).

611 Boshi Wang, Xiang Yue, and Huan Sun. Can ChatGPT defend its belief in truth? evaluating LLM
 612 reasoning via debate. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the*
613 Association for Computational Linguistics: EMNLP 2023, pp. 11865–11881, Singapore, December
 614 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.795.
 615 URL [https://aclanthology.org/2023.findings-emnlp.795/](https://aclanthology.org/2023.findings-emnlp.795).

616 Hualiang Wang, Yi Li, Huifeng Yao, and Xiaomeng Li. Clipn for zero-shot ood detection: Teaching
 617 clip to say no. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 618 pp. 1802–1812, 2023b.

619 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 620 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 621 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

622 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 623 language models with attention sinks. In *The Twelfth International Conference on Learning Rep-*
624 resentations, 2024. URL <https://openreview.net/forum?id=NG7ss51zVF>.

625 Zhongzhi Yu, Zheng Wang, Yonggan Fu, Huihong Shi, Khalid Shaikh, and Yingyan Celine Lin. Un-
 626 veiling and harnessing hidden attention sinks: Enhancing large language models without training
 627 through attention calibration. In *Forty-first International Conference on Machine Learning*, 2024.
 628 URL <https://openreview.net/forum?id=DLTjFFiuUJ>.

629 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 630 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 631 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
632 Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

633 Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
 634 why vision-language models behave like bags-of-words, and what to do about it? In *The Eleventh*
635 International Conference on Learning Representations, 2023. URL <https://openreview.net/forum?id=KRLUvxh8uaX>.

636 Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Atlas Wang. Q-hitter:
 637 A better token oracle for efficient llm inference via sparse-quantized kv cache. *Proceedings of*
638 Machine Learning and Systems, 6:381–394, 2024.

639 Bin Zhu, Huiyan Qi, Yinxuan Gui, Jingjing Chen, Chong-Wah Ngo, and Ee-Peng Lim. Calling
 640 a spade a heart: Gaslighting multimodal large language models via negation. *arXiv preprint*
641 arXiv:2501.19017, 2025.

648
649

6 APPENDIX

650
651

6.1 PROMPT DESIGN

652

653

Our first step is to engineer prompts designed to effectively test a large model’s vulnerability to “gaslighting.” To achieve this, we made two primary modifications. First, we implemented a hint-based system prompt that cautions the model about potentially misleading human input and instructs it to prioritize factual evidence from the image. Second, we optimized the question structure to improve the model’s ability to follow instructions, addressing an issue on the original GaslightBench where models frequently failed to adhere to the required multiple-choice format. Figure 8 shows an example of our standard prompt design. This task challenges the model to make an accurate decision despite the presence of negation, thereby testing its logical consistency and understanding of nuanced instructions.

662

663

664

[system]: A chat between a curious human and an artificial intelligence assistant. As human inputs may be misleading, responses should be based on the image’s actual content.

665

666

667

668

669

[question]:

How many people can you see in this picture?

Answer with the option's letter from the given choices directly.

A. one. B. eight. C. ten. D. four

670

671

672

673

674

675

676

677

678

679

680

681

682

683

[negation]: There is one person in this picture. Then what is the answer? Please provide your answer by selecting A, B, C, etc.

Figure 8: An example of our prompt design based on the GaslightingBench framework. The task requires the model to make a correct decision under negation.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 6.2 MORE DETAILS ABOUT BASELINES
703704 **LMM Configurations** Our approach is evaluated on three prominent open-source Large Multi-
705 modal Models (LMMs):706 1. **LLaVA-1.5-7B** Liu et al. (2024a), which pairs the CLIP-L-336px vision encoder with the
707 LLaMA-2-7B-Chat LLM.
708 2. **LLaVA-1.6-Vicuna-7B** Liu et al. (2024a), which combines the CLIP-L-336px vision en-
709 coder with the Vicuna-7B LLM.
710 3. **InternVL2-8B** Chen et al. (2024c), composed of the InternViT-300M-448px vision en-
711 coder and the InternLM2-5-7B-Chat LLM.
712713 Our method is entirely training-free; consequently, all model parameters are kept frozen throughout
714 the experiments, which were performed on A6000 GPUs.
715716 **Comparsion with GasEraser** Table 3 shows several key differences between our FAPR and the
717 attention sink-based method, GasEraser. These differences highlight the effectiveness of our pro-
718 posed approach in terms of its simplicity, low computational cost, and speed.
719720 Table 3: A comparative analysis of FAPR and GasEraser. Further details are provided in the main
721 document.
722723

Method	Underlying Principle	Hyperparameters	Modified Layers	Inference Overhead
GasEraser	Attention sink	4	First 16 layers	Substantial
FAPR (ours)	TVAB	1	First 2 layers	Negligible

727 **Hyperparameter Selection for GasEraser** The hyperparameters for GasEraser were carefully
728 selected to minimize performance degradation on standard, non-gaslighting questions. Specifically,
729 the configurations for each model are as follows:
730731 • For **LLaVA-v1.5-7B**: $\tau = 20$, $\rho = 0.6$, $\alpha = 0.01$, and $p = 0.6$.
732 • For **LLaVA-v1.6-Vicuna-7B**: $\tau = 20$, $\rho = 0.6$, $\alpha = 0.1$, and $p = 0.6$.
733 • For **InternVL2-8B**: $\tau = 20$, $\rho = 0.6$, $\alpha = 0.1$, and $p = 0.6$.
734

756 6.3 HYPERPARAMETER ANALYSIS FOR α
757758 We conducted an ablation study to select the optimal value for the hyperparameter α . The results,
759 presented in Table 4, reveal a trade-off: a lower value of $\alpha = 0.6$ achieves the best performance
760 before negation, whereas $\alpha = 0.8$ demonstrates the highest robustness after negation.761 Table 4: Ablation study on the hyperparameter α . The experiment was conducted on the Gaslight-
762 ingBench.

α	before negation	after negation
1.0	58.43%	33.80%
0.8	65.30%	34.04%
0.7	65.71%	28.21%
0.6	65.89%	27.27%

771 6.4 IS BUDGET RELOCATION NECESSARY?
772773 The normalization in the attention layer produces an attention matrix where the weights sum to one.
774 Directly subtracting the noisy attention scores would disrupt this property. We conduct an ablation
775 study to evaluate the necessity of the relocation step in FAPR, with results shown in Table 5. The
776 findings indicate that simply removing noisy attention without redistributing its weight leads to a
777 significant degradation in performance.778 Table 5: Ablation study on the relocation mechanism.
779

Purify	Relocation	Before Negation	After Negation
✗	✗	63.25	33.89
✓	✗	62.78	37.91
✓	✓	63.71	41.74

810
811

6.5 VISUAL ANALYSIS OF ATTENTION MAPS

812
813
814

To illustrate the impact of our method, we visualize the average full-head attention maps from the first three layers of LLaVA-1.5-7B. Figure 9 contrasts the model’s behavior with and without the application of FAPR.

815

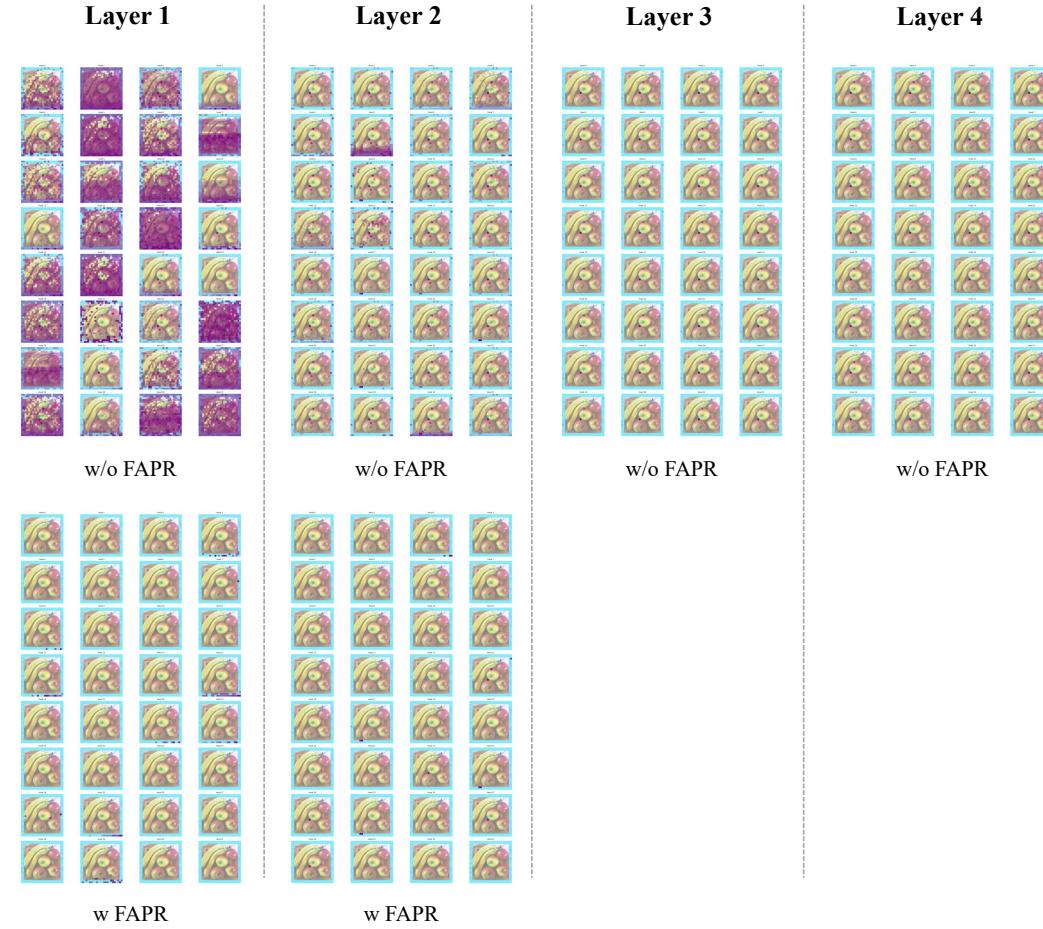
844
845

Figure 9: Visualization of average attention maps from the first three layers of LLaVA-1.5-7B, comparing the baseline model to our FAPR-enhanced version. Note that for efficiency, FAPR is only applied to the first two layers.

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863