
Under review as submission to TMLR

Task-Specific Exploration in Meta-Reinforcement Learning
via Task Reconstruction

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement learning trains policies specialized for a single task. Meta-reinforcement
learning (meta-RL) improves upon this by leveraging prior experience to train policies for
few-shot adaptation to new tasks. However, existing meta-RL approaches often struggle to
explore and learn tasks effectively. We introduce a novel meta-RL algorithm for learning
to learn task-specific, sample-efficient exploration policies. We achieve this through task
reconstruction, an original method for learning to identify and collect small but informative
datasets from tasks. To leverage these datasets, we also propose learning a meta-reward
that encourages policies to learn to adapt. Empirical evaluations demonstrate that our al-
gorithm achieves higher returns than existing meta-RL methods. Additionally, we show that
even with full task information, adaptation is more challenging than previously assumed.
However, policies trained with our meta-reward adapt to new tasks successfully.

1 Introduction

Research in reinforcement learning (RL) has led to many impressive achievements and powerful methods in
the past decade (Sutton, 2018). However, real-world usage is still not widespread, as the algorithms used to
solve RL problems often suffer from low sample efficiency and poor generalization to new tasks (Hospedales
et al., 2021; Beck et al., 2023b). Meta-reinforcement learning (meta-RL) is a re-emerging approach that
tackles these issues. It follows the meta-learning approach of “learning to learn” (Schmidhuber, 1987; Thrun
& Pratt, 1998), making it well-suited for few-shot adaptation settings. In few-shot adaptation, agents aim
to become optimal in any new task from a given distribution of tasks, after collecting only a few episodes.
Instead of directly learning to solve tasks from scratch, meta-RL finds RL algorithms that quickly learn the
optimal policy. While meta-RL agents are general, the algorithms they produce are task-specific. These meta-
learned algorithms contain prior knowledge of the task distribution. By leveraging this prior, they quickly
learn the optimal method of exploring or solving a task. Therefore, for any task in the distribution, meta-
learned algorithms are expected to be more sample-efficient than and outperform standard RL algorithms.

Meta-RL has already been successfully applied to ad hoc teamwork (Zintgraf et al., 2021a; He et al., 2023;
Mirsky et al., 2022), robotics (Nagabandi et al., 2018; Zhao et al., 2022), human-robot interaction (Gao et al.,
2019; Ballou et al., 2023), multi-agent RL (Yang et al., 2022; Xu et al., 2022a), and sim-to-real transfer (Arndt
et al., 2020). Despite this, meta-RL has not yet fully addressed the challenges it aims to overcome (Stoican
et al., 2023). While recent years have seen several improvements, meta-RL still struggles with adapting to
complex tasks. A significant issue is the difficulty of designing sample-efficient exploration strategies for
solving complex, dynamic RL environments. The advantage of meta-RL is that these strategies do not have
to be manually crafted, but can be learned from data for each particular task distribution. Often, meta-RL
agents interact with a task for a few episodes before being evaluated on that same task. These agents can
be seen as exploring the task by using an implicit or explicit meta-learned exploration strategy. However,
implicit exploration may be too sample inefficient for few-shot adaptation (e.g., agents that are not using
their task distribution priors effectively during exploration). Recent approaches have shown that explicitly
optimizing for sample-efficient exploration leads to more powerful few-shot adaptation agents (Beck et al.,
2023b). Moreover, the difficulties of few-shot adaptation extend beyond task exploration. Our empirical

1

Under review as submission to TMLR

results complement those of Beukman et al. (2024) in showing that optimizing a policy that leverages
learned priors to solve new tasks can be non-trivial.

To get a clear high-level picture of in-context meta-RL, we consider separating it into three main parts, as
shown in Fig. 1. The first phase is task exploration. After a task is sampled from the task distribution, a
policy πexplore collects a “few” episodes of data from it. Optionally, this policy may be guided by an encoder
fu. The goal of πexplore is to collect data that contains useful information about the task. This information
is then extracted by a second encoder g during the task learning stage, and encoded into a task context
vector. Finally, in the task-solving phase, a policy π attempts to optimally solve the task at hand. This final
stage is similar to standard RL, except that π is conditioned on the task context.

Task
Few

Episodes
One

Episode

Encoder g

Task Exploration Task Learning

Task Solving

Task Distribution

Exploration Policy πexplore Task-Solving Policy π

Exploration
Data

Task
ContextEncoder fu

Figure 1: A high-level overview of in-context meta-RL.

There are several ways of learning to reinforcement learn. The approach previously described, and used in this
work, is called in-context meta-RL. In-context policies πexplore and π use task context information provided
by fu and g to explore and solve tasks, respectively. Note that this three-phase paradigm is not always
cleanly separated in practice, e.g., encoders fu and g may share information or not be separate encoders at
all, a single policy may be used for both task exploration and solving, etc. Nevertheless, this view helps form
an intuitive understanding of meta-RL. Besides aiding intuition, we also use Fig. 1 throughout this paper to
clarify which of the three components (i.e., task exploration, learning, or solving) we are discussing.

We introduce Latent Space Exploration via Task Reconstruction (LaSER), a novel meta-RL algorithm
for few-shot adaptation.1 The primary objective of LaSER is to learn task-specific exploration strategies.
The core idea behind our method is to identify small datasets that capture rich task-specific information
with minimal redundancy. We achieve this by introducing a novel approach of meta-learning by linearly
reconstructing these small datasets into much larger datasets collected from the same task. We refer to this
process as task reconstruction. It serves as a measure of how effective a given small dataset is for few-shot
adaptation. Following this measure, LaSER meta-learns a latent space for directly identifying such small
datasets, without having to first collect a larger one. This allows training a sample-efficient exploration
policy that can collect task-specific data online. We then use the context vectors encoded from this data to
train a policy that solves tasks. However, we show that previous approaches to training such a policy fail,
even when using optimal task contexts provided by an oracle. Moreover, this failure persists even when the
task distribution is replaced by a predefined set of tasks. As a result, LaSER’s secondary objective is to learn
to use task contexts effectively. To achieve this, we propose an augmented RL objective that encourages the
task policy to continue exploring until contexts are effectively exploited.

We summarize our main contributions as follows.

1. We formalize an important assumption about the data required for few-shot adaptation. This forms
the basis of our task reconstruction method. We then show how an encoder built from these ideas
can learn representations that facilitate exploration.

1Our code is publicly available in an anonymized repository at https://anonymous.4open.science/r/LaSER-anon-4BBB.

2

https://anonymous.4open.science/r/LaSER-anon-4BBB

Under review as submission to TMLR

2. We leverage these representations to design an intrinsic reward for training a task-specific, sample-
efficient exploration policy.

3. We propose using our aforementioned augmented objective to improve the adaptability of task-
solving policies through directed exploration of the task context space. This simple change allows
meta-RL policies to be trained with standard RL algorithms.

4. We introduce a hybrid encoder architecture composed of a unidirectional and a bidirectional model.
The former is used for online task exploration, while the latter offers richer task contexts.

We formalize the meta-RL problem and introduce the necessary background in Sec. 2. In Sec. 3, we address
the objectives described above and introduce LaSER, our novel meta-RL algorithm. We position our work
within the meta-RL literature in Sec. 4. In Sec. 5, we provide empirical results by evaluating LaSER against
existing meta-RL algorithms. We first assess LaSER’s performance and adaptability to new tasks after a
short exploration phase (i.e., four episodes). We then analyze each individual component, i.e., exploration
policy, encoder, and task policy. Finally, we conclude and provide directions for future research in Sec. 6.

2 Preliminaries

Meta-Reinforcement Learning. Meta-RL extends the standard RL problem. Instead of learning from a
single task, a meta-RL agent trains on a distribution of tasks. Usually, the agent’s objective is to adapt to
new tasks. We consider a probability distribution p(M) over tasks and define each task Mi ∼ p(M) as a
Markov decision process (MDP) (S,A, Ti, Ri, γ,H). All MDPs share the set of states S, set of actions A,
discount factor γ, and horizon H. However, the transition function, given as the probability Ti(s′ | s, a,Mi)
of transitioning from state s to state s′ by taking action a in task Mi, is task-dependent. Similarly, the
reward function Ri is task-dependent. An episode τ = {st, at, rt}Ht=1 is a sequence of states, actions, and
rewards, such that at each time-step t a tuple (st, at, rt) is collected. For a distribution over episodes PπMi

(τ),
we denote τ ∼ PπMi

to be an episode collected by following a policy π(a | s) in task Mi. The return of an
episode τ is the accumulated discounted reward G(τ) =

∑H
t=1 γ

trt.

In-Context Meta-RL A common approach to solving meta-RL problems is in-context meta-RL, where a
pretrained policy acts as an adaptable RL algorithm (Duan et al., 2016; Laskin et al., 2023; Moeini et al.,
2025). Formally, given a context vector ci that describes a task Mi, the goal is to train a policy π to
optimally solve Mi by taking in-context actions a ∼ π(· | s, ci), conditioned on both the state s and the
context ci. The meta-RL agent can therefore learn new policies from ci, even post-training. A standard
approach is to concatenate s and ci, then optimize the in-context policy π(a | s, ci) using standard RL
algorithms. However, this simple method may not generalize well across tasks in complex task distributions
(Beukman et al., 2024). To address this, we propose a novel meta-RL optimization algorithm that explicitly
uses ci to train in-context policies.

Meta-RL for Few-Shot Adaptation. In few-shot adaptation settings, in-context meta-RL attempts to
optimize π to solve previously unseen tasks Mi ∼ p(M) in a sample-efficient manner. However, because
the meta-RL agent lacks knowledge of the task-specific dynamics Ti and Ri, it must first collect data
from Mi. The few-shot constraint limits this to K episodes per task. We call this a K-shot adaptation
problem. Following Beck et al. (2023b), we refer to a sequence of K episodes collected in Mi as a meta-
episode D(K)

i = {τk}Kk=1. We can then compute a latent context vector ci = g(D(K)
i) using an encoder g.

Importantly, ci should capture information about Ti and Ri, to allow generalization to new tasks. To collect
such meta-episodes, we follow Liu et al. (2021) and define a separate exploration policy πexplore, decoupled
from the task-solving policy π. For a given task, its goal is to collect an informative meta-episode, without
necessarily achieving a high return. We define πexplore(a | s,Γi) to be an in-context policy, where Γi is a
task representation encoded specifically for exploration. Although we can choose Γi to be the same as ci, it
is less restrictive to use a new representation. Given this setup, we generalize Liu et al. (2021) and consider

3

Under review as submission to TMLR

agents that maximize the meta-RL objective

J (π, πexplore, g) = EMi∼p(M),D(K)
i

∼Pπexplore
Mi

[
V πi

(
g(D(K)

i)
)]
, (1)

where V πi (ci) = E
τ∼Pπ(ci)

Mi

[G(τ)]

is the expected return in task Mi for the in-context policy π conditioned on ci.

Training Setup. Meta-training is the process of training a meta-RL agent. The goal is to learn a sample-
efficient algorithm for optimizing policies for each task encountered from p(M). The agent’s ability to
generalize is evaluated during meta-testing, by solving new tasks from p(M). For each meta-testing task,
the agent is first allowed to collect and learn from K episodes. Then, it is evaluated according to Eq. 1. We
refer to collecting K episodes from Pπ

explore

Mi
as task exploration. This type of exploration is meta-learned to

be task-specific. Besides task exploration, the agent still performs the standard RL exploration. To achieve
their objectives, π and πexplore have to explore their environment during meta-training. This is commonly
referred to as meta-exploration (Beck et al., 2023b). During meta-testing, there is no meta-exploration.

Data Representation. States, actions, and rewards are represented as vectors or scalars. A timestep
(st, at, rt) is then a d-dimensional vector, where d is the sum of the dimensions of st, at, and rt. We extend
this to episodes. An episode τ ∈ RH′ is a vector of H concatenated timesteps, where H ′ = Hd. We can
further extend this to meta-episodes. For a meta-episode D(K) ∈ RH′×K composed of K episodes, the k-th
column D(K)

:,k corresponds to the k-th episode. Episodes and meta-episodes can therefore be represented as
tensors instead of sequences, when convenient.

3 Methods

In this section, we present our approach to in-context meta-RL and use the ideas we introduce to design
the main components of our proposed algorithm, LaSER. We structure this section based on the three-stage
meta-RL paradigm in Fig. 1. Sec. 3.1 corresponds to the task-solving phase, while Secs. 3.2 and 3.3 focus on
the task exploration part. Sec. 3.4 continues task exploration but also discusses task learning, with Sec. 3.5
corresponding to the combination of these three stages into a complete meta-RL algorithm.

Specifically, in Sec. 3.1, we introduce a novel approach for in-context RL optimization. Given a context
vector ci for taskMi, we propose augmenting the standard RL objective with a term that encourages meta-
exploration whenever π can achieve better returns by improving its understanding of ci. Then, Sec. 3.2
discusses the training of an exploration policy πexplore for collecting the data required to compute ci. It
assumes a given encoder fu for training πexplore, with fu modeled as a unidirectional transformer (Vaswani
et al., 2017) of size dmodel. We propose a novel method of training fu for sample-efficient task-specific
exploration in Sec. 3.3. We first introduce an important assumption on the data collected for few-shot
adaptation, then show how a practical learning objective, i.e., task reconstruction, can be built from it.
Next, we describe our proposed architecture for encoders fu and g in Sec. 3.4. We model g as a transformer,
as their ability to process each timestep in the context of an entire meta-episode has been shown to be
advantageous in meta-RL settings (Melo, 2022; Shala et al., 2024). Finally, in Sec. 3.5, we introduce our
meta-training and meta-testing algorithms. From this point forward, we simplify notation and drop the task
subscript i whenever it is clear that we are referring to task-specific data or representations.

3.1 Task Solving

As discussed in Sec.2, Beukman et al. (2024) show that optimizing an in-context policy π(at | st, c) to
adapt to and solve tasks is non-trivial. We therefore introduce an approach for augmenting rewards with a
term that encapsulates performance in the meta-RL setting. The agent can leverage this term to perform
directed meta-exploration in the context of c. With this new reward, we could overcome the aforementioned
limitation by simply optimizing π(at | st, c) using standard RL algorithms.

We start from the hypothesis that the task policy π is suboptimal because it fails to understand that the
task context vector c offers important information about the current task Mi. In a standard RL setting, a

4

Under review as submission to TMLR

policy π(at | st) would need to explore enough to understand the (single) task it is expected to solve. In our
meta-RL setting, we have an additional meta-exploration objective. Whenever the optimal action depends
on both st and c, the policy π(at | st, c) must understand the relationship between these two inputs. In
other words, π needs to meta-explore more than in a standard RL setting.

Following this idea, we propose a method that encourages π to meta-explore more if c is not properly used.
Let V (st, c) and V (st) be the approximated value functions at state st, with and without considering c, re-
spectively. We make the assumption that, for an optimal policy, V (st) ≤ V (st, c) should hold at any timestep
t. That is, using c should never decrease performance. If this does not hold for π in some state st, then
the agent should meta-explore more from st. We adopt the standard approach of encouraging exploration
by maximizing entropy (Williams & Peng, 1991), with the important distinction that this maximization is
guided by the context c. This idea is implemented as a meta-reward

r+
t = rt + β w(st, c)S[π](st, c), (2)

where w(st, c) = max (0, tanh (V (st)− V (st, c)− ζ)) (3)

is a non-negative dynamic weight on the entropy S of π(· | st, c), rt is the environment reward, and β is a
constant. Note that w(st, c) is non-zero only when V (st)− V (st, c) ≥ ζ, for a given threshold ζ ∈ (−∞, 0].

Intuitively, w(st, c) > 0 means that the agent is disregarding the information provided by c and should
meta-explore more from state st. When w(st, c) = 0, i.e., V (st) ≤ V (st, c) + ζ, we recover the original RL
objective, with r+

t = rt. By simply replacing rt with r+
t , π can now be optimized in-context using standard

RL algorithms. We use the proximal policy optimization (Schulman et al., 2017, PPO) algorithm in our
work. Furthermore, we stabilize PPO (Wang et al., 2020; Sun et al., 2022; 2023; Moalla et al., 2024) using
proximal feature optimization (Moalla et al., 2024, PFO). In Appendix A, we provide a short overview of
PPO and explain our method of applying it to meta-RL.

This subsection introduced a novel meta-exploration method for meta-training task policies. However, it
does not address task exploration. We tackle this distinct challenge in the next subsection.

3.2 Task Exploration Policy

While the approach in Sec. 3.1 addresses how to use a task context c effectively, it assumes such a context is
already available. We now formally discuss how to obtain it. To create a vector c for identifying a task, the
meta-RL agent must first learn to explore tasks. The objective of the exploration policy πexplore is to collect a
single informative meta-episode D(K) for a taskMi ∼ p(M). Specifically, πexplore should collect information
about the task-specific dynamics ofMi while avoiding irrelevant or redundant exploration. Ultimately, D(K)

should enable a task policy π to become optimal inMi, assuming that π has enough prior knowledge about
the task distribution p(M).

The encoder fu computes a matrix Γ = fu(D(K)) ∈ R(Hdmodel)×K . Here, Γ is a latent representation of the
K episodes in D(K), with Γ:,k denoting the representation of the k-th episode D(K)

:,k . We optimize fu such
that the similarity between Γ:,k and Γ:,k′ is inversely proportional to how useful it is to collect episode D(K)

:,k′ ,
after having already collected episode D(K)

:,k , for any k, k′ ∈ [K], k < k′.2 We measure similarity using the
pairwise cosine similarity matrix SC(ΓT,Γ) ∈ RK×K . Lower scores correspond to lower similarity between
the K episodes, which in turn corresponds to D(K) being more informative. In Sec. 3.3, we show how to
meta-train a function fu with this property.

We use this idea to optimize πexplore for task exploration. We begin by computing the average column-wise
similarity in D(K) as a vector d = 1

KSC(ΓT,Γ)T111 ∈ RK . Consequently, dk represents the average similarity
between the k-th episode and all other episodes. Therefore, a meta-episode D(K) contains an informative
and diverse set of episodes if d ≈ 0. Based on this, we define an intrinsic reward function for encouraging

2With a slight abuse of notation, we use [N] to mean the sequence [1, 2, . . . , N] for any integer N .

5

Under review as submission to TMLR

task exploration. For the k-th exploration episode, the agent receives a task-dependent reward

R̃k(skt , akt) =
{

exp
(
− 1
σ d̂2

k

)
if the k-th episode terminates at timestep t,

0 otherwise,
(4)

where σ is a constant, and skt and akt denote the state and action, respectively, at timestep t of episode
k. The causal similarity d̂k is defined as the average similarity between the current k-th episode and the
current and past episodes {1, . . . , k}. Since πexplore is trained on full meta-episodes, but must collect episodes
sequentially, we apply a causal mask when computing d̂k. This hides similarities between the representation
of the k-th episode and those of any future episodes.In practice, πexplore is meta-trained on full meta-episodes.
Therefore, we apply a causal mask when computing d to hide similarities between the representation of an
episode D(K)

:,k and those of any future episodes D(K)
:,k′ , for k < k′. We then train πexplore to maximize this

intrinsic reward using PPO.

For πexplore to collect a useful episode, it must have knowledge of the episodes it has already collected. To
create an exploration-focused task context, we denote D(:k,:t) to be an incomplete meta-episode, containing
k−1 complete episodes, and the first t timesteps of the k-th episode, for k ∈ [K], t ∈ [H]. We then condition
the in-context policy πexplore on the history Γ(:k,:t) = fu(D(:k,:t)) and explore episode k by taking action
akt+1 ∼ πexplore(· | skt+1,Γ(:k,:t)). The overall task exploration process is visualized in Fig. 2.

D(:k,:t−1) fu

πexplore
Task Mi;
episode k

r̃kt ∼ R̃k

Γ(:k,:t−1)
akt

sktskt , a
k
t , r

k
t

Figure 2: Task exploration. Policy πexplore explores a task Mi by collecting K episodes. At each timestep
t of each episode k, πexplore is conditioned on the current state skt and the latent representation Γ(:k,:t−1)

of previous timesteps and episodes. Its objective is to take actions that maximize the intrinsic exploration
reward function R̃k. Both Γ(:k,:t−1) and R̃k are computed by the encoder fu from the data collected.

3.3 Learning to Explore by Reconstructing Tasks

The exploration policy described in the previous section relies heavily on the assumption that the latent
space Γ produced by fu encodes the informativeness of collected data in its geometry. In this section, we
formally introduce a training method for fu that ensures this assumption holds.

Throughout this section, our focus is centered on encoders g and fu, which enable task solving and task
exploration, respectively. Let B ∈ RQ×H′×K be a tensor containing a batch of Q meta-episodes collected
from Mi. Each slice Bj (shorthand notation for Bj,:,:), for j ∈ [Q], corresponds to a distinct meta-episode
D(K), as defined in Section 2. While D(K) was used to represent a single independent meta-episode, we adopt
this change in notation to emphasize that each Bj is a component of the batch tensor B. Let B ∈ RQ×H′×K

be the tensor of Q meta-episodes collected from Mi. That is, for j ∈ [Q], Bj,:,: is the j-th meta-episode in
B. For simplicity, we use Bj to denote Bj,:,:. Additionally, to emphasize the relationship between Bj and B,
we refer to meta-episodes as Bj instead of D(K).

Recall that, given Bj , we use c = g(Bj) for task-solving and Γ = fu(Bj) for task exploration. The LaSER
encoders g and fu are optimized based on a key assumption about the data used for few-shot adaptation.
Before describing this assumption, we first formalize the idea of K-shot adaptation.
Definition 1 (K-Shot Adaptation). A policy π is K-shot adaptable in a distribution p(M) over MDPs if,
for any Mi ∼ p(M), π becomes optimal in Mi after at most K episodes collected from Mi.

Finding these K episodes can be difficult. Instead, consider rearranging the tensor B ∈ RQ×H′×K into a
matrix B[2] ∈ RH′×(QK) via mode-2 matricization (Vasilescu, 2009). That is, (B[2]):,k represents the k-th

6

Under review as submission to TMLR

episode, for k ∈ [QK]. If a policy is K-shot adaptable in a task Mi when using the QK episodes in B[2],
Definition 1 implies that B[2] contains the K episodes required for K-shot adaptation. More precisely, there
exists a meta-episode B∗

[2] composed of these K episodes. To create a practical algorithm from this idea, we
make the following assumption on the relationship between B[2] and B∗

[2].

Assumption 1 (Linear Task Reconstruction). Let B[2] ∈ RH′×(QK) contain QK episodes collected from an
MDP Mi such that B[2] is sufficient for K-shot adaptation. Let B∗

[2] ∈ RH′×K be the submatrix of B[2] that
contains these K necessary episodes. Then, we assume there exists C[2] ∈ RK×(QK) such that

B∗
[2]C[2] ≈ B[2]. (5)

It follows from Assumption 1 that rank(B[2]) ≈ K. Let B∗
[2] be the submatrix containing K linearly

independent columns of B[2]. Then, B∗
[2] is an optimal full-rank approximation of B[2], and there exists

a coefficients matrix C[2] such that Eq. 5 holds. For efficiency and simplicity, we switch back to tensor
representations. We use B instead of B[2], represent B∗

[2] as the meta-episode Bj ∈ RH′×K for a given
j ∈ [Q], and rearrange C[2] into C ∈ RQ×K×K . Eq. 5 is then reframed as the batch matrix multiplication
Bj,:,:Cl,:,: ≈ Bl,:,: for all l ∈ [Q], which we denote compactly as BjC ≈ B.

Besides its simplicity, another reason for keeping Assumption 1 linear is to create an information bottleneck
for task reconstruction. While an expressive enough non-linear reconstruction could reconstruct B from any
(non-informative) meta-episode, our linear transformation ensures that successful reconstruction relies on
the content of Bj .3

To identify meta-episodes of interest, we introduce a novel approach of reconstructing tasks, based on As-
sumption 1. For a meta-episode Bj , our method allows us to quantify its effectiveness for K-shot adaptation.
That is, for a given j, we measure how effective it is to compute a task context vector c from Bj instead of B.
Following Eq. 5, the problem is reduced to probing the linear relationship between Bj and B, by attempting
to find coefficients C. To this end, we define the task-reconstruction loss

Lt-rec = EMi∼p(M),B∼Pπexplore
Mi

, j∼U(Q) [MSE (BjC, B)] , (6)

where U(Q) is a uniform distribution over the integers {1, 2, . . . , Q}, MSE is the mean squared error, and C
is computed from B and Bj using encoder g (see Sec. 3.4). By minimizing this loss, the agent learns to find
C, which is used to assess the quality of the meta-episode Bj .

Recall that our ultimate goal is to train a function fu that can reliably guide πexplore to collect an informative
meta-episode Bj during online task exploration. While the linear map C can assess the quality of Bj , a crucial
limitation is that C cannot be computed during online exploration, where the agent is limited to collecting a
single meta-episode. Specifically, computing C is equivalent to finding an approximate solution to the system
of linear equations BjC = B, which requires access to the full batch B.

Note that computing C is equivalent to finding an approximate solution to the system of linear equations
BjC = B. Therefore, g requiring B as an input is an unavoidable constraint. Consequently, C cannot be
computed during task exploration, where the agent is limited to collecting a single meta-episode. We present
an alternative approach for optimizing fu for sample-efficient exploration. Consider a target

Our solution is to treat C strictly as an offline “ground truth” metric that supervises the learning of fu. To
this end, we aim to optimize fu to create a latent exploration space that acts as a proxy for the information
contained in C. The first step is to define a target δj that quantifies the effectiveness of the linear recon-
struction in Eq. 5 for a given meta-episode Bj . Specifically, we design δj such that δj ≈ 0 implies Bj is a
good approximation of B:

δj = 1− exp
(
−ξ(BjC− B)2

)
, (7)

3Regardless, Eq. 5 and our entire framework can naturally extend to non-linear settings by replacing the linear map C with
a parameterized non-linear function. This change should not compromise learning as long as the expressivity of the non-linear
transformation is carefully tuned. However, we find that the linear approximation is sufficient for effective task reconstruction
in the domains evaluated in this work, while also being simpler and computationally cheaper. For the sake of completeness, we
provide a formal definition of the non-linear extension in Appendix E and an ablation study in Appendix H.1.

7

Under review as submission to TMLR

where ξ is a constant and the operator (·) gives the element-wise mean of any tensor. This target measures
the linear task reconstruction in Eq. 5, such that δj ≈ 0 implies Bj is a good approximation of B.

We use this target to shape the latent exploration space Γ = fu(Bj), measuring distances via cosine similarity,
as in Sec. 3.2. By optimizing fu such that the distance between episode representations Γ:,k and Γ:,k′ is
approximately δj (for k, k′ ∈ [K]), we encode reconstruction quality directly into the latent angles. Therefore,
collecting a meta-episode where all vectors in {Γ:,k}Kk=1 are approximately orthogonal becomes equivalent to
searching for a Bj that closely approximates B. This property is important, as it enables K-shot adaptation,
while the alternative approach of collecting Q meta-episodes is much more sample-inefficient.

To optimize fu to learn a latent space that encodes the reconstruction information contained in δj into the
angles between episode representations, we introduce the loss

Lcontr = EMi∼p(M),B∼Pπexplore
Mi

, j∼U(Q)
[
MSE

(
SC(ΓT,Γ), A(δj)

)]
, (8)

where Γ = fu(Bj),

and A(δj) ∈ RK×K is the matrix in which off-diagonal elements are δj and diagonal elements are 1. Eq. 8
is a form of contrastive learning for RL (Eysenbach et al., 2022; Erraqabi et al., 2022), where Γ:,k and
Γ:,k′ are pushed apart or pulled together according to a soft similarity signal δj . This signal quantifies
the similarity between the corresponding inputs Bj,:,k and Bj,:,k′ . Since this contrastive objective operates
over cosine similarity, pushing dissimilar representations corresponds to maximizing the angle between them,
while pulling corresponds to aligning similar representations by minimizing the angle.

Through this training regime, the encoder fu is optimized to be used as described in Sec. 3.2. Specifically,
it can train an exploration policy πexplore to find an informative meta-episode Bj (denoted as D(K) during
online task exploration).

Eq. 8 is a form of contrastive learning for RL (Eysenbach et al., 2022; Erraqabi et al., 2022), where Γ:,k
and Γ:,k′ are pushed apart or pulled together according to a soft similarity signal δj . This signal quantifies
the similarity between the corresponding inputs Bj,:,k and Bj,:,k′ . Since this contrastive objective operates
over cosine similarity, pushing dissimilar representations corresponds to maximizing the angle between them,
while pulling corresponds to aligning similar representations by minimizing the angle. Intuitively, given the
definition of similarity in Eq. 7, the angles between the K columns in Γ are optimized to encode how well
Bj reconstructs the task data B. Therefore, collecting a meta-episode where all vectors in {Γ:,k}Kk=1 are
approximately orthogonal to each other is now equivalent to searching for a Bj that closely approximates B.
The important advantage is that this method of finding Bj can be used for K-shot adaptation. In contrast,
the alternative approach of collecting Q meta-episodes would be much more sample-inefficient. The encoder
fu can now be used to train an exploration policy πexplore to find a meta-episode Bj , as described in Sec. 3.2.

3.4 Architecture and Optimization

Having defined the learning objectives for task exploration and reconstruction, we are now in a position to
describe the architectures and optimization procedures we use to obtain the latent task context vector c.

We begin by introducing the architecture of our encoder g. Because of their close relation, we define fu to be
a sub-network of g (i.e., g and fu are optimized together). Recall that fu separates informative meta-episodes
from non-informative ones during task exploration. Moreover, fu is constrained to encode meta-episodes
online, timestep by timestep, as they are being collected. To satisfy this, we model fu as a unidirectional
transformer with parameters ωu and train it using autoregressive attention masks (Vaswani et al., 2017). To
obtain more informative contexts once all task data has been collected, we define an additional bidirectional
transformer fb of size dmodel, with parameters ωb. Finally, we set g to be composed of fu and fb.4

Given B, fb computes two new latent representations, z and Z, as (z,Z) = fb(B; ωb). Importantly, fb is
bidirectional, so it encodes data “offline”, i.e., after task exploration is over. Although B refers to a single-

4Due to overlapping terminology, LaSER can be seen as performing in-context learning in two senses. From the meta-RL
perspective, LaSER uses in-context policies conditioned on contextual information. From a different perspective, these context
vectors are computed using transformers, which, due to their self-attention mechanism, are considered to be in-context learners.

8

Under review as submission to TMLR

task collection of meta-episodes, in practice, we meta-train on a batch of such tensors, each collected from a
different task. This batching accelerates learning. More importantly, it allows us to capture the shared task
structure across p(M) by computing the vector z ∈ Rdmodel from the full batch of meta-episodes. In contrast,
the tensor Z ∈ RQ×HK×dmodel is a task-specific representation of Mi, encoded solely from the dataset B
collected in Mi. We use Zj to denote the matrix Zj,:,: ∈ R(HK)×dmodel encoding the meta-episode Bj , for
any j ∈ [Q]. While Z and Γ have similar roles, Γ is optimized to learn representations that are only useful
for task exploration, so it may fail to capture structure that is important for solving tasks, but irrelevant for
exploration.

For a given meta-episode Bj , we compute the task context vector c ∈ R(HKdmodel) as a function of z, Zj ,
and Γ.5 Specifically, for a function hωh

with parameters ωh, we encode Bj into

c = gω(Bj) = hωh
(z,Zj ,Γ), (9)

where gω has the concatenated parameters ω = ωu⊕ωb⊕ωh. In practice, h consists of two attention layers.
Our encoder architecture is shown in Fig. 3.

Bidirectional
Transformer fb

U
n

id
ir

ec
ti

on
al

E
nc

od
er

g

Unidirectional
Transformer fu

Attention Module h

z Z(i)
j Γ(i)

c(i)

B(i)
j ∼ P πexplore

Mi

Hybrid Encoder g

c(i)

(a) (b)

Meta-episode B(i)
j

Ep
iso

de
τ

1

x
1
0

x
1
H−1

. . .
x

1
1...

Ep
iso

de
τ

K

x
K
0

x
K
H−1

x
K
1...

where
x

k
t =

(
s

k
t , a

k
t−1, r

k
t−1

)
B(i)

j ∼ P πexplore
Mi

Figure 3: Two types of meta-RL encoders. (a) Unidirectional encoder, common in meta-RL. It processes task
exploration data online, step by step, as it is being collected. (b) LaSER’s encoder g. We enhance standard
architectures by adding a bidirectional encoder. Encoder g can be used online for task exploration or offline
to compute context c(i). We use ·(i) to differentiate between meta-episodes and representations belonging
to different tasks. Note that we define timesteps xkt to contain the current state skt , but the previous action
akt−1 and reward rkt−1, with xk1 = (sk1 ,_,_). This simplifies the training of unidirectional encoders.

To train our encoder g, we define two pre-training heads: ht-rec and hrec, parameterized by ωt-rec and
ωrec, respectively. The task-reconstruction head ht-recThe former is used to compute the coefficient tensor
C = ht-rec(gω(B), gω(Bj); ωt-rec) required in Eq. 6. That is, ht-rec combines the representations of Q meta-
episodes, gω(B), with the representation of the j-th meta-episode, gω(Bj). Note that, to increase training
stability, the tensor C used to compute δj in Eq. 7 is encoded by target parameters ω̂t-rec, which are only
updated to ωt-rec every ν iterations (Mnih et al., 2015). The reconstruction head hrecThe latter head is used
during the optimization of gω to reconstruct data from corrupted inputs. Specifically, it projects the task
context vector c, computed from masked meta-episodes, back to the original input and attempts to predict
the masked timesteps. This reconstruction objective is a common approach for pre-training bidirectional
transformers. Since both ht-rec and hrec are only used during meta-training, they are replaced by policies
πexplore and π during meta-testing. Fig. 4 gives an overview of the heads.

5The reader might note that the (HKdmodel)-dimensional context vector c does not necessarily reduce the size of the input
Bj . A high-dimensional c is beneficial since preserving the structure of Bj (i.e., the HK timesteps) makes it simpler to train
transformers fu and fb. Despite this, c is still a useful representation of Bj . Each of the HK output timesteps has been
computed from its corresponding input timestep and the rest of the input sequence. This enables dimensionality reduction later
on. Specifically, we use the task policy π to reduce c to a dmodel-dimensional vector.

9

Under review as submission to TMLR

Task-Reconstruction Reconstruction Exploration Policy Task Policy

C

Z c

Reconstructed Input

sk
t Γ(:k,t−1) st c

ak
t at

(a) (b)

Figure 4: LaSER’s pre-training and policy heads. (a) Task-reconstruction head ht-rec and reconstruction
head hrec, used for pre-training encoder g for task exploration and task learning, respectively. (b) Policies
πexplore and π, used for task exploration and task solving, respectively.

We train gω using masked self-supervision (Devlin et al., 2019; Lewis et al., 2019). The encoder learns
useful representations by adding noise to the input, reconstructing the original input, and optimizing a
reconstruction loss Lrec (see Appendix B for more details). We extend this idea and define the loss of gω as

LLaSER(ω, ωrec, ωt-rec) = crecLrec(ω, ωrec) + ct-recLt-rec(ω, ωt-rec) + ccontrLcontr(ω) + cRR(ω), (10)

where crec, ct-rec, ccontr, cR are weighting coefficients, and R is a regularization term. It regularizes the latent
spaces generated by fb and fu. Following Piratla et al. (2020), R enforces a soft orthogonality constraint
between the vector representations z and Zj,t,:, for each j ∈ [Q] and timestep t ∈ [HK], by minimizing
(zTZj,t,:)2. Intuitively, Z is encouraged to avoid capturing information already contained in z, and instead
focus on task-specific structure. Furthermore, R normalizes the vector representations z, Zj,t,:, and Γ:,k, for
all j ∈ [Q], t ∈ [HK], k ∈ [K].

3.5 Meta-Training and Meta-Testing

The LaSER meta-training algorithm contains two training phases, as shown in Alg. 1. We first train the
exploration policy πexplore

ϕ , parameterized by ϕ, and the encoder gω, parameterized by ω, for Nexplore iter-
ations. Note that these components are trained together because they are interdependent. We alternate
between optimizing one while keeping the other fixed. In the second stage, these two components are fixed
and only the task policy πθ, parameterized by θ, is optimized for Ntask iterations.

Algorithm 1 LaSER Meta-Training
Input p(M), task distribution
Output πθ, task policy; πexplore

ϕ , exploration policy; gω, encoder; ẑ, shared component
1: θ, ϕ, ω, ωrec, ωt-rec ← initialize randomly
2: for n ∈ [Nexplore] do
3: ω, ωrec, ωt-rec ← train_encoder(p(M), πexplore

ϕ , gω, ωrec, ωt-rec) ▷ Alg. 3
4: ϕ← train_exploration_policy(p(M), πexplore

ϕ , gω) ▷ Alg. 4
5: end for
6: B ←

{
B ∼ P

πexplore
ϕ

Mi

∣∣∣∣Mi ∼ p(M)
}

▷ Collect a batch of data from multiple tasks

7: ẑ,_← fb(B; ωb)
8: for n ∈ [Ntask] do
9: θ ← train_task_policy(p(M), πθ, πexplore

ϕ , gω, ẑ) ▷ Alg. 5
10: end for
11: return πθ, π

explore
ϕ , gω, ẑ

Recall that z is computed from multiple tasks, which is only feasible during the pre-training phase. Therefore,
we compute a fixed ẑ from the pre-training data and use it to train the task policy and perform meta-testing.

10

Under review as submission to TMLR

During meta-testing, for any Mi ∼ p(M), the meta-trained agent first collects K episodes and computes
the latent context c. Then, it uses c to find the optimal policy for Mi. This is shown in Alg. 2.

Algorithm 2 LaSER Meta-Testing
Input p(M), task distribution;

πθ, task policy; πexplore
ϕ , exploration policy; gω, encoder;

ẑ, shared component
1: for Mi ∼ p(M) do

2: D(K) ∼ P
πexplore

ϕ

Mi
▷ Sample exploration meta-episode

3: c← gω(D(K)) ▷ Compute c, using ẑ as the shared component
4: τ ∼ Pπθ(a|s,c)

Mi
▷ Sample exploitation episode

5: Measure return in τ
6: end for

4 Related Work

Meta-RL. The earlier successes of modern meta-RL start with MAML (Finn et al., 2017) and RL2 (Duan
et al., 2016; Wang et al., 2016a). MAML, together with other MAML-inspired algorithms (Sung et al., 2017;
Li et al., 2017; Gupta et al., 2018; Zintgraf et al., 2019), are gradient-based methods for meta-training policies
that adapt to new tasks by taking a small number of task-specific gradient steps. Gradient-based approaches
usually implement an explicit dual-loop algorithm that follows the standard meta-learning paradigm of
adapting to tasks in an inner loop, while meta-learning adaptation strategies in an outer loop. On the other
side of the spectrum, RL2 is an in-context meta-RL approach, meta-training a policy to behave like an RL
algorithm that learns from collected task contexts (Laskin et al., 2023; Moeini et al., 2025). This learning is
usually represented by a forward pass through the meta-trained policy, with no task-specific weight updates.
Recent meta-RL techniques, including ours, follow this paradigm of first identifying task dynamics and then
adapting a task-agnostic policy to them. Generally, this in-context learning tends to be more sample-efficient
than gradient-based methods, which is ideal in few-shot adaptation (Beck et al., 2023b).

In-Context Policies. To learn task-specific policies, RL2 uses a recurrent architecture that implicitly
conditions the policy on task history. Later works make this conditioning more explicit (Rakelly et al.,
2019; Zhou et al., 2019; Zintgraf et al., 2019). Specifically, they show that in-context policies can be trained
using standard RL optimization by simply augmenting the input state with task contexts. Similar ideas
have been explored in the closely related area of unsupervised representation learning for RL (Igl et al.,
2018; Papoudakis et al., 2021; Botteghi et al., 2025). This approach has since become standard in meta-RL,
with subsequent research focusing more on learning informative task contexts than on novel architectures or
optimization algorithms for in-context policies. Recently, Beukman et al. (2024) observed that this simple
method may struggle when there is high variation across the optimal task-specific policies, which can arise
in complex task distributions. As an alternative, Beck et al. (2023a) and Beukman et al. (2024) propose that
meta-training hypernetworks (Ha et al., 2017) may lead to better generalization. Therefore, they introduce
hypernetworks that take the task context as input and generate the weights of a context-dependent policy.
While this architectural change may better leverage task contexts, their approach is still limited by the use
of standard RL optimization, which constrains task space exploration. Additionally, this method inherits
issues related to hypernetworks, such as slow and unstable training (Ortiz et al., 2023; Chauhan et al., 2024;
Beukman et al., 2024).

In contrast, our proposed meta-reward is not an adaptation of standard learning methods to meta-RL, but is
explicitly designed for the meta-RL setting. Moreover, it is architecture-agnostic, introduces little overhead,
and allows in-context policies to be optimized through standard RL. This may simplify solving meta-RL
problems, as practitioners can rely on stable and well-understood RL algorithms.

Exploration in Meta-RL. A considerable body of literature also focuses on exploration in meta-RL. As
opposed to standard RL, exploration strategies for few-shot meta-RL can be learned from interactions with
the environment and then applied to new tasks. Since identifying and solving RL tasks requires exploration,

11

Under review as submission to TMLR

all meta-RL algorithms learn to explore, at least implicitly. However, several works have shown the benefits
of explicitly learning to explore. Rakelly et al. (2019) use posterior sampling to explore. Zintgraf et al.
(2021b) consider Bayes-optimal policies, which optimally trade off exploration and exploitation, and meta-
learn approximations of such policies. They later extend their work in Zintgraf et al. (2021c) by encouraging
the agent to explore novel hyper-states during meta-training. Some other approaches make exploration more
efficient by structuring the exploration space through contrastive learning (Fu et al., 2021; He et al., 2024;
Yu et al., 2024) or information gain (Liu et al., 2021; Jiang et al., 2021; Zhang et al., 2021). Similarly,
Chu et al. (2024) construct an exploration space through task clustering, enabling exploration via a divide-
and-conquer strategy of first identifying a task’s cluster, then the task itself. Gradient-based meta-RL can
also explicitly learn to explore. Gupta et al. (2018) explore by adding structured, meta-learned noise to the
policy. Similarly, Stadie et al. (2018) enhance MAML and RL2 by adding an exploration term to the meta-
RL objective. Gurumurthy et al. (2020) add self-supervised objectives to lower variance during exploration.
Finally, several of the works discussed improve exploration even further by decoupling the exploration and
task-solving policies (Zhou et al., 2019; Gurumurthy et al., 2020; Liu et al., 2021; Fu et al., 2021; Chu et al.,
2024). Norman & Clune (2024) train such a decoupled policy to meta-learn exploration strategies that know
when to sacrifice environmental rewards during exploration to maximize returns during exploitation.

LaSER also collects data using a decoupled exploration policy and then meta-learns a structured exploration
space. However, it uses a novel objective that encourages the collection of a single meta-episode, which serves
as a low-rank linear representation of a larger dataset drawn from the same task. An important distinction
to numerous previous works is that task exploration depends only on the structure of the data, while being
agnostic to the RL objective of the task policy. This may be advantageous for out-of-distribution adaptation,
where meta-test tasks may have goals that differ from those seen in meta-train tasks. In such scenarios, data
collected for maximizing meta-training return might not always be relevant during meta-testing.

Norman & Clune (2024) is an example of recent work that, similarly to us, attempts to meta-learn structured
task exploration. A critical difference, however, is their limitation in collecting multiple exploration episodes
effectively. While LaSER explicitly optimizes a policy that avoids redundancy within a meta-episode, “First-
Explore does not actively explore to enable future exploration” (Norman & Clune, 2024). Consequently,
LaSER is primarily designed for settings with an exploration budget of K > 1, where information from early
episodes enables more effective or diverse exploration in subsequent episodes.

Meta-Learning Contexts. Once task data has been collected, a straightforward way to obtain informative
contexts is through recurrent neural networks (Duan et al., 2016; Wang et al., 2016a). More sophisticated
methods include meta-learning latent representations of value functions (Rakelly et al., 2019) or MDP dynam-
ics (Zhou et al., 2019; Zintgraf et al., 2021b;c), model-based meta-RL (Clavera et al., 2018; Nagabandi et al.,
2018), hybrid techniques that combine in-context and gradient-based methods (Imagawa et al., 2022), using
permutation variant and invariant sequence models (Beck et al., 2024), or enhancing tasks by incorporating
language instructions (Bing et al., 2023). Attention mechanisms (Bahdanau et al., 2015) and transformers
(Vaswani et al., 2017) have also been adopted by the meta-RL community. These architectures’ success in
in-context learning, long-sequence modeling, and efficient parallelizable training aligns well with the needs
of in-context meta-RL. Earlier research focused solely on meta-learning through attention (Mishra et al.,
2018), whereas more recent work used transformer architectures (Melo, 2022; Xu et al., 2022b; Lee et al.,
2023; Shala et al., 2024; Grigsby et al., 2024). Moving beyond architecture, Zhou et al. (2025) emphasize the
importance of measuring the reliability of task contexts to avoid ambiguous or out-of-distribution contexts.
The scope of their uncertainty estimator shares similarities with our goals of measuring data quality through
task reconstruction. However, while their approach is built for offline meta-RL for one-shot adaptation, we
tackle the online few-shot adaptation scenario.

A limitation of previous works that attempt to meta-learn task dynamics is that only unidirectional encoders
are used. This constraint arises naturally since task exploration and task learning are coupled. Specifically,
task data must be encoded online while it is being collected, in order to guide the exploration policy at the
next timestep. An obvious limitation is that only interactions between the current and past timesteps are
considered. LaSER improves this design by using an additional bidirectional encoder that also considers
future timesteps, which could possess useful information and lead to richer representations (Devlin et al.,

12

Under review as submission to TMLR

2019; Banino et al., 2022). While the aforementioned constraint cannot be avoided during task exploration,
it need not restrict the computation of the final task context once all exploration data has been collected.

Another critical distinction between LaSER and prior work lies in the structural assumptions. Many meta-
RL algorithms rely on the implicit assumption that task dynamics can be effectively captured simply by
encoding interaction histories into a latent variable via the agent’s learning mechanism (e.g., recurrence,
variational inference, attention). However, without explicit structural constraints, it is unclear whether
these unstructured representations can generalize to the entire task distribution or apply to new tasks.
Additionally, these representations often optimize for state or reward prediction, without encoding explicit
signals to aid task exploration. In LaSER, we instead make an explicit low-rank linear reconstruction
assumption (Assumption 1). The assumption that a small set of basis episodes is sufficient to linearly
reconstruct any data collected from a specific task leads to representations that provide a more directed
exploration signal. Specifically, LaSER’s exploration objective is reduced to finding these basis episodes,
leading to a policy that can safely ignore non-basis episodes.

5 Experiments

In this section, we present empirical results for LaSER. We first introduce the environment and algorithms
we use in Sec. 5.1. In Sec. 5.2, we compare LaSER with other types of meta-RL algorithms on multiple
benchmarks. Next, we perform two ablation studies by analyzing individual stages of the meta-RL pipeline
(Fig. 1). In Sec. 5.3, we evaluate our novel approach to meta-training in-context task policies. This cor-
responds to LaSER’s task-solving phase, which we perform using ground-truth contexts instead of task
exploration and learning. Finally, we assess LaSER’s task exploration and task learning stages in Sec. 5.4
by visualizing the latent task contexts computed during meta-testing.

5.1 Experimental Setup

5.1.1 Environments

We evaluate LaSER on the meta-RL benchmarks MEWA (Stoican et al., 2023), Meta-World (Yu et al., 2020;
McLean et al., 2025), and MuJoCo HopperMass (Rothfuss et al., 2019; Zhou et al., 2019; Nakhaeinezhadfard
et al., 2025). We briefly discuss these environments here, focusing especially on MEWA. We then provide
more details in Appendix F, including the publicly available code used to implement each benchmark.

MEWA provides a distribution of tasks that share the same central idea: certain states, called critical
states, can lead to mistakes. These mistakes affect the final return negatively. The probability of a mistake
happening depends on both the type of critical state and the task’s dynamics. For each task, meta-RL agents
must find the optimal policy for avoiding high-risk mistakes while minimizing delays. Importantly, Stoican
et al. (2023) ensure MEWA’s task distribution has no globally optimal non-adaptive policy (i.e., no policy
can zero-shot solve all tasks). Therefore, the optimal agent must collect new data and adapt. This property
makes MEWA ideal for our case, allowing us to evaluate LaSER’s task exploration ability.

MEWA evaluates agents on their ability to take optimal actions in different types of “critical” states. These
critical states provide agents with two options. Consider a critical state sx of type x. The agent’s first option
is to take a “risky” action. This may lead to a mistake of type x happening, which in turn leads to a large
delay in task completion. The probability of a type x mistake happening depends on the transition function
of the task. The second option is a “safe” action. This provides a guaranteed small delay and leads to a
state sx−1 of type x. An important feature shared by all MEWA tasks is that for any y < x, mistakes of
type y are less likely to happen than mistakes of type x. Therefore, depending on the task, taking several
safe actions before a risky action could be optimal.

We meta-train all meta-RL agents on the narrow task distribution analyzed by Stoican et al. (2023). This
corresponds to a distribution p(M) in which any task Mi ∼ p(M) has four different types of critical states
and can be described by a vector p(i) ∈ [0, 1]4. For each task Mi, the probability of making a mistake of
type x ∈ [4] is p

(i)
x ∼ N (µx, 0.12), where N is a normal distribution and µT = [0.38, 0.28, 0.19, 0.09]. Note

that we clip all p
(i)
x to [0, 1]. See Appendix F.1 for a more formal definition of MEWA’s tasks.

13

Under review as submission to TMLR

We meta-test on the fixed set of 12 tasks proposed by Stoican et al. (2023). Their corresponding p(i) vectors
are listed in Appendix F.1, Table 3. We assign a score to each task, given by the average probability of a
mistake of any type happening, i.e., 1/4

∑4
x=1 p

(i)
x . We use this as a rough estimate of the similarity between

tasks, such that tasks with a similar score require similar (but not identical) optimal policies. Additionally,
note that half of the meta-testing tasks are out-of-distribution (OOD) tasks. OOD tasks lie outside the
meta-training distribution p(M), so they are more challenging to explore and solve during meta-testing.

Note that no globally optimal non-adaptive policy exists for these 12 meta-testing tasks. Additionally, the
difference in performance between the optimal non-adaptive and optimal adaptive policies is high enough to
evaluate the agent’s ability to generalize and adapt.

MEWA offers 3 baselines to compare our agents to during meta-testing. The random baseline represents
the expected performance of an agent that takes uniformly random actions. The task-agnostic baseline
represents an agent that always takes optimal actions in MEWA’s non-critical states. These are states in
which the optimal action can be computed even if the policy has no task information, i.e., for the optimal
value function V ∗, if V ∗(s, c) ≤ V ∗(s) for all c, then s is a non-critical state. For any critical state, the
task-agnostic baseline considers all actions that could potentially be optimal in a valid task, then takes one
at random. Finally, the optimal baseline gives the expected return of the optimal meta-RL agent, i.e., the
agent that optimally adapts to and solves each task.

To assess the generalizability of our algorithm, we also conduct experiments on Meta-World V2 ML10 and
MuJoCo HopperMass. Meta-World is a suite of 10 meta-training and 5 meta-testing robotic manipulation
tasks where the goal is hidden and must be meta-learned. To avoid reproducibility issues, we follow McLean
et al. (2025) and use the V2 reward function. HopperMass is the meta-RL extension of the popular MuJoCo
Hopper environment (Todorov et al., 2012). The agent’s goal is to rapidly move forward, taking into account
task variations given by multiplying the body parts’ mass, the joints’ damping, and the ground friction
with weights uniformly sampled from [1.5−1, 1.51]. To assess out-of-distribution (OOD) generalization, we
follow Nakhaeinezhadfard et al. (2025) and extend HopperMass to OOD meta-testing tasks with weights in
[1.5−1.5, 1.5−1) ∪ (1.51, 1.51.5].

In some environments, such as HopperMass, low exploitation returns during task exploration may lead to
the LaSER agent only “surviving” for a small number of timesteps, hindering effective data collection. To
avoid exploratory episodes terminating prematurely, we let LaSER’s reward function for episode k be

R̃′
k(skt , akt) = R̃k(skt , akt) + αRR(skt , akt), (11)

where R̃ is the exploration reward function in Eq. 4, R is the environment reward function, and αR is a
constant weight. For MEWA and Meta-World, we set αR = 0. In HopperMass, we tune αR such that R
does not dominate R̃.

5.1.2 Algorithms and Meta-Training Setup

We compare our method, LaSER, with four other meta-RL algorithms, MAML (Finn et al., 2017), PEARL
(Rakelly et al., 2019), VariBAD (Zintgraf et al., 2021b), and DREAM (Liu et al., 2021). For each benchmark,
we meta-train the algorithms on tasks sampled from the meta-training distribution. For each task Mi,
the agents are allowed to collect K episodes during the task exploration phase. For both MEWA and
HopperMass, we use 3, 000 tasks with K = 4, while for Meta-World we use the 10 tasks provided and set
K = 2. The agents’ performance on Mi is then given by a single exploitation episode collected by the task
policy. Besides this final return, we also analyze an agent’s ability to improve its performance as more data is
collected. MEWA tasks have a horizon of H = 50, Meta-World has H = 200, and HopperMass has H = 400.
All of the results we present are averaged over 10 seeds.

We meta-train LaSER in two decoupled phases. Following Alg. 1, the exploration policy πexplore
ϕ and encoder

gω are first trained for Nexplore iterations. The task policy πθ is then trained separately for Ntask iterations.
Note, however, that for the first N initial

explore out of Nexplore iterations, we only train fu (and thus gω), without
updating πexplore

ϕ since its training is conditioned on representations learned by fu. For these initial updates,
we use data collected by a uniformly random policy.

14

Under review as submission to TMLR

LaSER’s hyperparameters are listed in Appendix I. We selected these based on performance on the meta-
training task distribution of each environment. For implementation details and hyperparameters for MAML,
PEARL, VariBAD, and DREAM, see Appendix G.

Note that we perform our primary in-depth analysis on MEWA, as its design ensures that task exploration
and adaptability are strictly necessary. In contrast, while Meta-World and HopperMass are important
benchmarks, they have not been explicitly designed to test task exploration (Liu et al., 2021). Therefore,
their primary role in our work is to demonstrate the general applicability of our algorithm to meta-RL
problems.

For the latter two benchmarks, we select only VariBAD as a baseline for two primary reasons. First,
prior literature has shown VariBAD consistently outperforming MAML and PEARL in continuous control
environments (Zintgraf et al., 2021b). Demonstrating improvement over VariBAD is therefore sufficient.
Second, as indicated by Liu et al. (2021), benchmarks like Meta-World and HopperMass have not been
designed to test complex task exploration policies, as naive exploration can often be sufficient. The authors
then highlight that DREAM is not engineered for such environments and is not necessarily expected to
outperform simpler baselines. For these two benchmarks, we use VariBAD as the baseline. This choice is
justified as VariBAD outperforms MAML and PEARL on Meta-World (Zintgraf et al., 2021b), and DREAM
was not designed for this type of benchmark (Liu et al., 2021).

5.1.3 Complexity and Trade-offs

We analyze the computational complexity of meta-training each algorithm on MEWA. Specifically, we mea-
sure the total wall clock time required to collect environmental transitions and optimize all components of an
algorithm. We additionally report the total time divided by the number of timesteps collected, showcasing
the average cost of interacting with the environment once and updating based on that interaction. Note
that all seeds of an algorithm are meta-trained for the same number of timesteps. This duration is set by
the timestep at which the last seed’s performance (i.e., return or loss) stops improving.

We provide detailed measurements, averaged over 10 seeds, in Fig. 15. Regarding total time, LaSER is
the most expensive, being 1.34 times slower than the next slowest algorithm, DREAM. This is followed by
PEARL, and finally by MAML and VariBAD. Most of LaSER’s time complexity comes from its transformer
encoders, which are powerful but require a high amount of data. However, LaSER appears more efficient
when collecting a single timestep and updating. Specifically, LaSER is 11.93 and 5.86 times faster than
DREAM and PEARL, respectively. Furthermore, it is only 1.71 and 2.64 times slower than MAML and
VariBAD, respectively.

To understand the architectural complexity of LaSER, Table 4 compares the number of trainable parameters
to those of the baseline algorithms. While LaSER has notably more parameters, approximately 90% of these
belong to the two pre-training heads, hrec and ht-rec. Since these are not used beyond the pre-training
phase, LaSER agents only require approximately 8 million parameters during meta-testing and task policy
meta-training. This is roughly eight times larger than DREAM, the next-largest architecture.

LaSER’s high number of parameters is a consequence of the transformer encoder g, whose additional com-
plexity enables more efficient in-context computations. Moreover, since the context vector c outputted by
g is also higher-dimensional than the ones used by PEARL, VariBAD, and DREAM, LaSER’s task policy
requires a larger network for extracting features from c. Besides this feature extractor, LaSER’s policy
networks are comparable in size to those of PEARL and VariBAD.

Note that, while scaling up the encoders and the latent context space of the baselines could arguably lead
to fairer comparisons, this is non-trivial and impractical. Unlike LaSER’s transformers, architectures based
on recurrent neural networks or variational auto-encoders (Kingma & Welling, 2014) suffer from instabilities
and optimization difficulties when scaled to millions of parameters.

While LaSER has a higher computational cost than the baselines during meta-training, this trade-off proves
advantageous during meta-testing. By shifting the computational burden of learning general representations
and exploration strategies for an entire task distribution to the meta-training phase, the meta-trained agent
can reduce the amount of data required during online adaptation. While other meta-RL algorithms also

15

Under review as submission to TMLR

attempt to offload computation to meta-training, their smaller architectures or coupled approach to learning
task exploration and solving may limit their ability to scale. In contrast, LaSER’s decoupled paradigm can
leverage large quantities of meta-training data to learn complex exploration priors.

5.2 Results and Analysis

5.2.1 Meta-Training Convergence on MEWA

To ensure a fair evaluation, we first show that all algorithms converge during meta-training. For this, we
evaluate agents on MEWA’s meta-training task distribution. As shown in Fig. 5, LaSER’s exploration policy,
encoder, and task policy converge across 10 seeds. The encoder loss is computed by Eq. 10, with Fig. 10
showing results for each of its terms. The exploration return is computed using intrinsic rewards (see Eq. 4)
collected by the exploration policy. Note that we first train the encoder and exploration policy in parallel
for 220 and 170 million timesteps, respectively, then the task policy for 7.5 million timesteps.

Figure 5: Performance on tasks from MEWA’s meta-training task distribution. For each metric, the shaded
areas report the standard error of the average return across 10 random seeds. We use exponential moving
average (EMA) smoothing yj = αEMAxj + (1 − αEMA)yj−1 for each point xj , with αEMA = 0.6. We
first meta-train the exploration policy and the encoders for 2.2e8 timesteps, then the task policy for 7.5e6.
Additionally, we only start exploring tasks after 50 million timesteps. (left) Undiscounted exploration return
of policy πexplore

ϕ for exploration reward function R̃. (middle) Encoder loss LLaSER. (right) Undiscounted
return of policy πθ.

Appendix H provides convergence results on MEWA’s meta-training distribution for all the baseline al-
gorithms. All their task policies converge (Fig. 11), together with PEARL’s, VariBAD’s, and DREAM’s
encoders (Fig. 12), and DREAM’s exploration policy (Fig. 13). Note that MAML does not have an encoder,
and DREAM is the only baseline algorithm with a separate exploration policy.

Finally, to verify the validity of our linear task reconstruction assumption (Assumption 1), we train a variant
of LaSER (on MEWA) that utilizes non-linear transformations to construct its latent exploration space, as
formally introduced in Appendix E. We analyze the results of this ablation study in Appendix H.1. The
non-linear variant achieves a lower task reconstruction loss, which is to be expected, as non-linear mappings
are more expressive than linear ones. Crucially, however, this does not translate to an improvement in final
task performance. This indicates that identifying a low-rank linear basis for a task’s meta-episode space is
sufficient, at least in the MEWA environment. Moreover, our competitive results on Meta-World (Sec. 5.2.3)
suggest that the effectiveness of our linear assumption may also extend to environments that are highly
non-linear and continuous.

5.2.2 Meta-Testing Performance on MEWA

We now evaluate LaSER’s ability to solve MEWA’s meta-testing tasks. For each algorithm, we meta-test
the agent obtained at the end of meta-training. Note that before being evaluated on a task, each agent

16

Under review as submission to TMLR

is allowed to explore for K = 4 episodes. We report average returns over 10 seeds in Fig. 6 and Table 1.
Because of the inherent randomness in MEWA’s tasks, we take an additional step to ensure the results are
not due to random chance. For each seed, we repeat the entire meta-test (i.e., both task exploration and
exploitation) 9 times per agent for each of the 12 meta-testing tasks. For each repetition, we collect 20
exploitation episodes, using the same context vector, and then average over their returns. In addition to the
results averaged over all tasks, we report per-task performance in Fig. 14.

Figure 6: Average returns achieved on MEWA’s meta-testing tasks. Each agent is meta-tested with an
exploration budget of K = 4. Results are averaged over 10 seeds, with error bars indicating standard error.
Note that we normalize results between the random and optimal baselines.

LaSER (ours) MAML PEARL VariBAD DREAM
0.8± 0.021 0.43± 0.072 0.67± 0.32 0.08± 0.262 0.6± 0.191

Table 1: MEWA returns averaged across 10 seeds (± std).

LaSER achieves the highest average returns among all meta-RL algorithms. It also proves to be the most
stable algorithm, with a post-adaptation standard deviation of just 0.02 across all seeds. LaSER is one
of only two methods to outperform the task-agnostic baseline. The other algorithms only outperform the
random baseline. PEARL learns a strong global policy, but is less stable and underperforms compared to
LaSER. While DREAM appears more stable, its performance is slightly below the task-agnostic baseline. In
contrast, MAML and VariBAD perform poorly, with VariBAD being both unstable and close in performance
to the random baseline.

5.2.3 Meta-Testing Performance on Meta-World and HopperMass

In this section, we evaluate LaSER on Meta-World and HopperMass. As detailed in Sec. 5.1.2, we omit
MAML, PEARL, and DREAM in this setting and compare only with VariBAD, the strongest baseline
applicable to these environments.

Fig. 7 (left) shows that LaSER achieves competitive performance with VariBAD on Meta-World ML10. For
a meta-training budget of 50 million timesteps, we present the average success rate on the ML10 meta-testing
tasks, measured at intervals of 4 · 105 timesteps.

Note that for LaSER, the encoder and exploration policy have been pretrained for Nexplore iterations before
starting the task policy training. Therefore, the learning curve of LaSER can be seen as post-pretraining
efficiency, measuring how quickly the agent learns to solve tasks, given a pretrained task exploration prior.
On the contrary, VariBAD learns from scratch. We chose this type of comparison to explicitly measure
adaptation efficiency and maximum asymptotic performance, rather than total sample complexity across the
entire meta-training phase.

17

Under review as submission to TMLR

LaSER appears to be more sample-efficient initially. However, both algorithms end up performing similarly
on Meta-World, as suggested by the error bars that largely overlap throughout meta-training. Overall,
LaSER’s sample efficiency and asymptotic performance are comparable to VariBAD’s, with both agents
reaching a maximum performance of approximately 0.11. LaSER appears to be more sample efficient initially,
outperforming VariBAD for approximately 20 million timesteps. For example, LaSER requires only 8 million
timesteps to pass the 0.05 success rate threshold, i.e., 1.75 times fewer than VariBAD’s 14 million. While
VariBAD learns faster in the second half, both algorithms reach the 0.1 threshold after approximately 40
million timesteps and eventually achieve maximum performances of 0.113 (LaSER) and 0.116 (VariBAD).
LaSER’s performance, however, degrades in the last 10 million timesteps, while VariBAD’s remains stable.

Figure 7: Meta-testing performance, averaged across 10 random seeds (± standard error). We use EMA
smoothing with αEMA = 0.1. (left) Average success rate on Meta-World ML10 meta-testing tasks for an
exploration budget of K = 2. We measure performance every 4 · 105 timesteps. (right) Average return on
HopperMass OOD tasks for K = 4, measured at intervals of 40, 000 thousand timesteps.

As shown in Fig. 7 (right), LaSER performs slightly better thanoutperforms VariBAD in HopperMass in
terms of OOD performance. We meta-train each agent for 10 million timesteps and measure OOD per-
formance at intervals of 40, 000 timesteps. As before, LaSER’s encoder and exploration policy are first
pretrained for Nexplore iterations.

LaSER is more stable and adapts better to the HopperMass OOD tasks than VariBAD. Specifically, LaSER
achieves a maximum average performance of 540, while VariBAD stops improving at 496. Additionally,
LaSER’s superior stability is shown in the lower average standard error (26.3) compared to VariBAD (30.3)
during the final million timesteps.

5.3 Ablation Study: Task Solving

As an ablation study, we evaluate our approach for meta-training in-context task policies, which was in-
troduced in Sec. 3.1. The results in this section correspond solely to the task-solving phase of Fig. 1. We
meta-test task policies by rolling them out before and after they receive a task context c. Our primary
objective is to assess adaptability, i.e., a policy’s ability to use c to improve its performance. We quantify
this as the difference between post-adaptation and pre-adaptation return.

We make two important simplifications to the standard MEWA benchmark.

• To ensure a fair comparison of task policies alone, we meta-train and meta-test without task explo-
ration or task learning. Instead, for each task, we use a ground truth, oracle-provided context vector
c, which is normally unavailable to the agent.

• To assess adaptability to non-stationary dynamics, we use a simpler, multi-task objective: we perform
both meta-training and meta-testing on MEWA’s 12 meta-testing tasks.

Despite these restrictions, MEWA’s guarantee for the nonexistence of a globally optimal policy still holds.
That is, only adaptive policies can achieve maximum return.

18

Under review as submission to TMLR

LaSER combines PPO and the proposed meta-reward r+
t (see Eq. 2) to optimize the in-context policy πθ. We

compare it to a simpler in-context PPO policy, where the state st and context c are first preprocessed sepa-
rately, with their representations concatenated into a single vector, which is finally passed through a policy
optimized through standard PPO. We also compare to Decision Adapters (Beukman et al., 2024, DAs), which
use hypernetworks to generate task-specific policies.We compare it to the simpler approach of using in-context
policies optimized through standard PPO, as well as to Decision Adapters (Beukman et al., 2024, DAs),
which use hypernetworks to generate task-specific policies.6 For a fair comparison, the in-context PPO pol-
icy has the same architecture as LaSER’s policy. We also use PPO to optimize DAs, so the main difference
between these and the other two methods is the architectural change. Appendix G.5 provides implementation
details and hyperparameters for DAs.

The meta-training results are shown in Fig. 8 and Table 2. Our method achieves the highest average return
while also stabilizing meta-training. It is also the only method to find a policy that adapts optimally, which
occurs in 5 out of 10 seeds. In-context PPO is slightly less stable, presumably because the agent is trying
to find a single policy that maximizes returns across all tasks. However, without task-specific adaptation, it
fails to find such a globally optimal policy. Hypernetworks, on the other hand, are highly unstable. This is
likely due to hypernetworks being inherently challenging to train (Ortiz et al., 2023; Chauhan et al., 2024;
Beukman et al., 2024). They also achieve the lowest average return.

Figure 8: Task policy meta-training. We use oracle-provided task contexts c, and meta-train and meta-test
on the same set of 12 MEWA tasks. The shaded areas show the standard error of the average return across
10 random seeds. (left) Post-adaptation return of task policy πθ, given task context c. All returns are
normalized between MEWA’s random and optimal baselines. To improve readability, we restrict the plot
to the [0.3, 1.0] range and exclude the random baseline (which is positioned at 0). (right) Adaptability,
quantified as the difference in return achieved by πθ with and without access to c.

LaSER Task In-Context PPO Decision Adapter
Policy (ours) Hypernetwork

Return 0.97± 0.006 0.93± 0.014 0.86± 0.149
Delta Return 0.47± 0.019 0.07± 0.067 0.12± 0.164

Table 2: Average returns and delta returns over the last 1e6 timesteps, averaged across 10 seeds (± std).
We meta-train and meta-test on the same 12 MEWA tasks, and use oracle-provided context vectors c.

The LaSER task policy also achieves greater task-adaptation success than the other two methods. After the
meta-exploration phase, the agent stabilizes towards the end of meta-training. The task-conditioned policy
then consistently outperforms the pre-adaptation policy. Hypernetwork-generated policies adapt better than
in-context PPO but are also more unstable. Additionally, their low average return limits the benefits of this

6Since Beukman et al. (2024) build and evaluate their DAs with ground-truth contexts in mind, their algorithm is agnostic
to the context-learning mechanism, and, as reported by the authors, sensitive to noisy contexts. We therefore only consider
DAs as baselines for LaSER’s task policy, and not for the entire LaSER algorithm.

19

Under review as submission to TMLR

adaptability. In-context PPO does not explicitly optimize for adaptation, so its adaptability is approximately
five times lower than our method.

Note that, at the beginning, our method learns more slowly than in-context PPO and hypernetworks. That is,
it requires more samples to pass the average return thresholds of 0.9 (for PPO) and 0.85 (for hypernetworks).
We attribute this to additional meta-exploration in the state space, performed in the context of the task
space. The meta-reward r+

t encourages the policy to learn how to take in-context actions that increase the
gap between V (st) and V (st, c), for a state st and context c. This is in addition to the meta-exploration
required to only maximize the standard RL objective V (st). We hypothesize that in-context PPO and
hypernetworks cannot surpass our method due to their lack of explicit task-space meta-exploration. The
policies they produce optimize standard RL objectives, so they meta-explore accordingly.

We also observe that our method is nearly as computationally efficient as in-context PPO and much faster
than hypernetworks. We measure the average wall-clock time to roll out and optimize πθ, per iteration. On
average, hypernetwork-based agents are approximately 3.3× slower than ours, while our method is only 1.3×
slower than in-context PPO. See Fig. 16 for a detailed comparison. We discuss how meta-rewards cause this
additional overhead in Appendix A.2.

Finally, to verify that the benefit of our meta-reward arises specifically from the interaction between the
context-usage weight w and the entropy regularization S (see Eq. 2), we conduct an additional ablation
study. We compare our proposed objective with two simpler alternatives: a direct non-entropy-dependent
penalty for not leveraging contexts effectively (rt − β w(st, c)), and an “always-on” entropy bonus that is
agnostic to the value function’s context utilization (rt + β S[π](st, c)). As discussed in Appendix H.2, we
find that Eq. 2 outperforms both of these two simpler alternatives in terms of final returns, stability, and
delta returns.

5.4 Ablation Study: Exploring and Learning Tasks

To better understand LaSER’s ability to explore and encode tasks during meta-testing, we visualize its
latent task space. We compare the task contexts computed by LaSER, PEARL, VariBAD, and DREAM
for each of the 12 meta-testing tasks in MEWA. For each algorithm, we show results for only one of the
meta-training seeds. However, we obtain similar representations for the other seeds. We first roll out the
corresponding agent’s meta-trained policy, collecting 100 meta-episodes per task, with K = 4 episodes per
meta-episode. Note that in the case of LaSER, we roll out the exploration policy πexplore

ϕ . We then encode
each meta-episode D(K) into a latent task context vector c using the agent’s meta-trained encoder. Similarly,
DREAM collects data using its exploration policy. We visualize two-dimensional projections of task contexts,
computed using t-SNE (Van der Maaten & Hinton, 2008), in Fig. 9. The 12 tasks are sorted by similarity,
i.e., average mistake probability, as in Table 3.

For LaSER, we can find clusters of task contexts. Specifically, meta-episodes collected from the first five
tasks, the next four tasks, and the final three tasks appear to be projected apart from each other. We note
that the tasks in each cluster share common traits. In the first cluster, mistakes of type x ∈ {3, 4} never
occur. In the third cluster, p

(i)
x ≥ 0.9 for any x ̸= 4. The second cluster’s average mistake probabilities lie

between those of the other two clusters. The separation appears to follow this trend. More details on the
tasks’ properties are shown in Table 3.

In contrast, PEARL’s and VariBAD’s latent contexts lack clear clustering that could distinguish data col-
lected from different tasks. This low separation may make it more difficult to identify task-specific features.
DREAM, on the other hand, appears to follow a similar three-cluster separation as LaSER. A distinguishable
feature is that data collected from any of the first five tasks collapses into a single context representation.

We argue that learning higher-quality clusters is not trivial. The difficulty may come from the high variance
in episodes collected from the most difficult tasks. These tasks limit the exploration policy’s control over the
states it encounters. Additionally, the low adaptation budget of K can make it difficult to separate contexts
of similar tasks.

20

Under review as submission to TMLR

Figure 9: Latent representations of meta-episodes collected and encoded by meta-trained agents. Each of the
1200 points is a context vector belonging to one of the 12 meta-testing tasks in MEWA. The two-dimensional
visualizations are computed using t-SNE. Different tasks have different colors.

To gain an intuition about the behavior of LaSER’s exploration policy, we provide a qualitative discussion
of some example episodes. We choose to focus on MEWA due to its inherent interpretability and select two
of its meta-testing tasks to discuss (see Appendix H.3 for visualizations and detailed discussions).

We find that, in in-distribution tasks where each type of mistake has a moderate likelihood of occurring,
LaSER’s policy reduces redundancy and increases diversity across K exploration episodes. Specifically,
LaSER appears inclined to generate action sequences that are distinct from those in earlier episodes or
to experiment with the different types of risky actions available in the MEWA environment. In contrast,
VariBAD tends to repeat action sequences and mistakes. In such tasks, the diversity in DREAM’s exploration
episodes is approximately on par with LaSER’s.

However, we also find task setups where DREAM’s exploration policy collapses, preventing full understanding
of the task. For example, in an OOD task where mistakes of type 4 never occur but other types are highly
likely, DREAM repeats the same action sequence for allK episodes, as this sequence leads to high exploitation
returns. In contrast, LaSER avoids this pitfall and attempts to sample distinct episodes that better capture
the task context. We attribute LaSER’s behavior in this setting to its meta-training objective, which
explicitly encourages the agent to avoid redundancy and ignore environmental rewards during exploration.

6 Conclusion

We introduced LaSER, a new approach for meta-learning RL exploration. Our results demonstrate that
LaSER outperforms previous meta-RL algorithms on the MEWA benchmark and is competitive on the Meta-
World and HopperMass benchmarks. They also show that LaSER can meta-learn better task clustering
during exploration. Additionally, we propose a novel meta-exploration bonus for training task policies
efficiently. This outperforms previous approaches of meta-training in-context policies in both accumulated
rewards and adaptability. Since our task-solving method is agnostic to how tasks are explored or represented,
it can be integrated into any in-context meta-RL algorithm and then optimized using standard RL.

From a practical perspective, LaSER’s previously discussed shift in computational burden from deployment
to meta-training (Sec. 5.1.3) offers clues to the types of domains our work could be applied to. On one hand,
this shift makes LaSER particularly suited to applications where task data is scarce, due to expensive or
dangerous test-time interactions, while data from similar tasks can be obtained easily during meta-training.
For example, sim-to-real settings can use simulations during meta-training to enable rapid adaptation during
real-world deployment. On the other hand, environments with a moderate amount of data during both meta-

21

Under review as submission to TMLR

training and meta-testing may see LaSER struggle. Its pre-training phase could fail to converge, while its
quick-adaptation capabilities (if achieved) may not be necessary.

An important strength of LaSER is that, in the setting where contexts are meta-learned, it outperforms
other algorithms, despite none of the methods being optimally adaptive. We argue that this is a result
of meta-training with higher-quality task contexts. Note that the main role of these contexts remains to
provide task information for adaptation during meta-testing. However, our results suggest they may also
enhance performance and sample efficiency during meta-training. We believe this secondary role should also
be investigated in future work.

LaSER is built upon the unique properties and requirements of the meta-RL framework, which we approach
through the lens of few-shot adaptation. As a result, we tackle challenges that are specific to meta-RL, i.e.,
challenges that might not exist in the broader fields of RL or meta-learning. For example, our exploration
algorithm leverages a key assumption about the structure of data collected in few-shot RL environments.
Similarly, LaSER’s task policy is meta-trained with the explicit goal that in-context policies must outperform
context-agnostic policies in a meta-RL setting. This idea, realized as a form of extended meta-exploration
over the task context space, leads to almost-optimal adaptive policies in MEWA, when ground-truth contexts
are available. We hope our findings inspire future research to leverage the meta-RL framework in novel ways.

For example, an extension to LaSER grounded in the meta-RL framework would be dynamic exploration
budgets. Although we use a fixed budget K in this work, our task reconstruction objective implies that a
quality metric (e.g., δj , Eq. 7) could enable an autonomous stopping criterion. This extension would have
practical utility, as K can be dynamically allocated on a task-by-task basis based on rank and complexity,
instead of being selected by the algorithm designer.

While LaSER outperforms other meta-RL algorithms, it still struggles to adapt to new tasks when task con-
texts are meta-learned. We discuss this from the perspective of LaSER’s three main components: exploration
policy, encoder, and task policy. Empirical results suggest that the first two components are well-optimized
for exploring and learning tasks effectively. For instance, the encoder learned to separate MEWA’s meta-
testing tasks into three groups. This suggests that LaSER should be able to outperform its pre-adaptation
policy in these tasks. Furthermore, our results show that the task policy can become more adaptive when
restricting the meta-training task distribution and using ground truth contexts. We therefore propose the
hypothesis that effectively combining these three components is non-trivial. Additionally, we suggest that
future research should seek to explore and understand this issue.

Finally, we also note that LaSER ignores environmental reward maximization during task exploration.7 On
one hand, this keeps meta-RL agents general, discouraging them from overfitting to a single goal. On the
other hand, this may cause issues when environmental rewards are necessary for the agent’s survival. While
we provide a simple method for combining our proposed exploration rewards with environmental rewards
in Eq. 11, more complex approaches may be required to find the optimal trade-off between exploration and
survival. We leave this interesting problem as future work.

Acknowledgments

Acknowledgments will be added once the paper is accepted.

References
Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta reinforcement learning for sim-to-

real domain adaptation. In 2020 IEEE international conference on robotics and automation (ICRA), pp.
2725–2731. IEEE, 2020.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
7LaSER still accounts for environmental rewards, as these are embedded in the context vector Γ used for guiding task

exploration. However, the exploration objective does not explicitly encourage the maximization of such rewards.

22

Under review as submission to TMLR

Anand Ballou, Xavier Alameda-Pineda, and Chris Reinke. Variational meta reinforcement learning for social
robotics. Applied Intelligence, 53(22):27249–27268, 2023.

Andrea Banino, Adrià Puigdomenech Badia, Jacob C Walker, Tim Scholtes, Jovana Mitrovic, and Charles
Blundell. Coberl: Contrastive bert for reinforcement learning. In International Conference on Learning
Representations, ICLR, 2022.

Jacob Beck, Matthew Thomas Jackson, Risto Vuorio, and Shimon Whiteson. Hypernetworks in meta-
reinforcement learning. In Conference on Robot Learning, pp. 1478–1487. PMLR, 2023a.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon White-
son. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023b.

Jacob Beck, Matthew Thomas Jackson, Risto Vuorio, Zheng Xiong, and Shimon Whiteson. SplAgger: Split
aggregation for meta-reinforcement learning. Reinforcement Learning Journal, 1:450–469, 2024.

Michael Beukman, Devon Jarvis, Richard Klein, Steven James, and Benjamin Rosman. Dynamics gener-
alisation in reinforcement learning via adaptive context-aware policies. Advances in Neural Information
Processing Systems, 36, 2024.

Zhenshan Bing, Alexander Koch, Xiangtong Yao, Kai Huang, and Alois Knoll. Meta-reinforcement learning
via language instructions. In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pp. 5985–5991. IEEE, 2023.

Nicolò Botteghi, Mannes Poel, and Christoph Brune. Unsupervised representation learning in deep rein-
forcement learning: A review. IEEE Control Systems, 45(2):26–68, 2025.

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A Clifton. A brief review of
hypernetworks in deep learning. Artificial Intelligence Review, 57(9):250, 2024.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207, 2019.

Zhendong Chu, Renqin Cai, and Hongning Wang. Meta-reinforcement learning via exploratory task clus-
tering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 11633–11641,
2024.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel. Model-
based reinforcement learning via meta-policy optimization. In Conference on Robot Learning, pp. 617–629.
PMLR, 2018.

Tristan Deleu. Model-Agnostic Meta-Learning for Reinforcement Learning in PyTorch, 2018. Available at:
https://github.com/tristandeleu/pytorch-maml-rl.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In North American Chapter of the Association for Computational
Linguistics, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Akram Erraqabi, Marlos C Machado, Mingde Zhao, Sainbayar Sukhbaatar, Alessandro Lazaric, Denoyer
Ludovic, and Yoshua Bengio. Temporal abstractions-augmented temporally contrastive learning: An
alternative to the laplacian in rl. In Uncertainty in Artificial Intelligence, pp. 641–651. PMLR, 2022.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning as
goal-conditioned reinforcement learning. Advances in Neural Information Processing Systems, 35:35603–
35620, 2022.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

23

Under review as submission to TMLR

Haotian Fu, Hongyao Tang, Jianye Hao, Chen Chen, Xidong Feng, Dong Li, and Wulong Liu. Towards effec-
tive context for meta-reinforcement learning: an approach based on contrastive learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35(8), pp. 7457–7465, 2021.

Yuan Gao, Elena Sibirtseva, Ginevra Castellano, and Danica Kragic. Fast adaptation with meta-
reinforcement learning for trust modelling in human-robot interaction. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 305–312. IEEE, 2019.

Jake Grigsby, Justin Sasek, Samyak Parajuli, Daniel Adebi, Amy Zhang, and Yuke Zhu. Amago-2: Breaking
the multi-task barrier in meta-reinforcement learning with transformers. Advances in Neural Information
Processing Systems, 37:87473–87508, 2024.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-reinforcement
learning of structured exploration strategies. Advances in neural information processing systems, 31, 2018.

Swaminathan Gurumurthy, Sumit Kumar, and Katia Sycara. Mame: Model-agnostic meta-exploration. In
Conference on Robot Learning, pp. 910–922. PMLR, 2020.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In 5th International Conference on Learning
Representations, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Hongcai He, Anjie Zhu, Shuang Liang, Feiyu Chen, and Jie Shao. Decoupling meta-reinforcement learning
with gaussian task contexts and skills. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38(11), pp. 12358–12366, 2024.

Jerry Zhi-Yang He, Zackory Erickson, Daniel S Brown, Aditi Raghunathan, and Anca Dragan. Learning
representations that enable generalization in assistive tasks. In Conference on Robot Learning, pp. 2105–
2114. PMLR, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural networks:
A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):5149–5169, 2021.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimization through
better initialization. In International Conference on Machine Learning, pp. 4475–4483. PMLR, 2020.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational rein-
forcement learning for pomdps. In International conference on machine learning, pp. 2117–2126. PMLR,
2018.

Takahisa Imagawa, Takuya Hiraoka, and Yoshimasa Tsuruoka. Off-policy meta-reinforcement learning with
belief-based task inference. IEEE Access, 10:49494–49507, 2022.

Peng Jiang, Shiji Song, and Gao Huang. Exploration with task information for meta reinforcement learning.
IEEE Transactions on Neural Networks and Learning Systems, 34(8):4033–4046, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations ICLR, 2015.

24

Under review as submission to TMLR

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations, 2014.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu Sahni,
Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm distillation. In
The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=hy0a5MMPUv.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma Brun-
skill. Supervised pretraining can learn in-context reinforcement learning. Advances in Neural Information
Processing Systems, 36:43057–43083, 2023.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel rahman Mohamed, Omer Levy, Veselin
Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In Annual Meeting of the Association for Computational
Linguistics, 2019.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-shot learning.
arXiv preprint arXiv:1707.09835, 2017.

Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and exploitation
for meta-reinforcement learning without sacrifices. In International conference on machine learning, pp.
6925–6935. PMLR, 2021.

Reginald McLean, Evangelos Chatzaroulas, Luc McCutcheon, Frank Röder, Tianhe Yu, Zhanpeng He,
KR Zentner, Ryan Julian, JK Terry, Isaac Woungang, et al. Meta-world+: An improved, standardized, rl
benchmark. arXiv preprint arXiv:2505.11289, 2025.

Luckeciano C Melo. Transformers are meta-reinforcement learners. In international conference on machine
learning, pp. 15340–15359. PMLR, 2022.

Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan, Peter
Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. In European conference on
multi-agent systems, pp. 275–293. Springer, 2022.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-learner.
In 6th International Conference on Learning Representations ICLR, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No representation,
no trust: Connecting representation, collapse, and trust issues in ppo. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information
Processing Systems, volume 37, pp. 69652–69699. Curran Associates, Inc., 2024.

Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and Shangtong
Zhang. A survey of in-context reinforcement learning. arXiv preprint arXiv:2502.07978, 2025.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. In
International Conference on Learning Representations, 2018.

Mohammadreza Nakhaeinezhadfard, Aidan Scannell, and Joni Pajarinen. Entropy regularized task repre-
sentation learning for offline meta-reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 19616–19623, 2025.

25

https://openreview.net/forum?id=hy0a5MMPUv
https://openreview.net/forum?id=hy0a5MMPUv

Under review as submission to TMLR

Ben Norman and Jeff Clune. First-explore, then exploit: Meta-learning to solve hard exploration-exploitation
trade-offs. In NeurIPS 2024 Workshop on Open-World Agents, 2024.

Jose Javier Gonzalez Ortiz, John Guttag, and Adrian Dalca. Magnitude invariant parametrizations improve
hypernetwork learning. arXiv preprint arXiv:2304.07645, 2023.

Georgios Papoudakis, Filippos Christianos, and Stefano Albrecht. Agent modelling under partial observabil-
ity for deep reinforcement learning. Advances in Neural Information Processing Systems, 34:19210–19222,
2021.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint arXiv:2207.09238,
2022.

Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Efficient domain generalization via common-
specific low-rank decomposition. In International Conference on Machine Learning, pp. 7728–7738. PMLR,
2020.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In International conference on machine learning,
pp. 5331–5340. PMLR, 2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal meta-policy
search. In International Conference on Learning Representations, 2019.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: the
meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and P. Abbeel. High-dimensional contin-
uous control using generalized advantage estimation. CoRR, abs/1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Gresa Shala, André Biedenkapp, and Josif Grabocka. Hierarchical transformers are efficient meta-
reinforcement learners. arXiv preprint arXiv:2402.06402, 2024.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. Advances in
Neural Information Processing Systems, 31, 2018.

Radu Stoican, Angelo Cangelosi, and Thomas H Weisswange. Mewa: A benchmark for meta-learning in
collaborative working agents. In 2023 IEEE Symposium Series on Computational Intelligence (SSCI), pp.
1435–1442. IEEE, 2023.

Mingfei Sun, Vitaly Kurin, Guoqing Liu, Sam Devlin, Tao Qin, Katja Hofmann, and Shimon Whiteson. You
may not need ratio clipping in ppo. arXiv preprint arXiv:2202.00079, 2022.

Mingfei Sun, Sam Devlin, Jacob Beck, Katja Hofmann, and Shimon Whiteson. Trust region bounds for decen-
tralized ppo under non-stationarity. In Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pp. 5–13, 2023.

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn: Meta-critic
networks for sample efficient learning. arXiv preprint arXiv:1706.09529, 2017.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to learn, pp.
3–17. Springer, 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE, 2012.

26

Under review as submission to TMLR

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 30(1), 2016.

M Alex O Vasilescu. A Multilinear (Tensor) Algebraic Framework for Computer Graphics, Computer Vision
and Machine Learning. PhD thesis, University of Toronto, 2009.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles
Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763, 2016a.

Yuhui Wang, Hao He, and Xiaoyang Tan. Truly proximal policy optimization. In Uncertainty in artificial
intelligence, pp. 113–122. PMLR, 2020.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling network
architectures for deep reinforcement learning. In International conference on machine learning, pp. 1995–
2003. PMLR, 2016b.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning algo-
rithms. Connection Science, 3(3):241–268, 1991.

Haotian Xu, Qi Fang, Cong Hu, Yue Hu, and Quanjun Yin. Mira: Model-based imagined rollouts augmen-
tation for non-stationarity in multi-agent systems. Mathematics, 10(17):3059, 2022a.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In international conference on machine
learning, pp. 24631–24645. PMLR, 2022b.

Jiachen Yang, Ethan Wang, Rakshit Trivedi, Tuo Zhao, and Hongyuan Zha. Adaptive incentive design with
multi-agent meta-gradient reinforcement learning. In Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, pp. 1436–1445, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference
on robot learning, pp. 1094–1100. PMLR, 2020.

Xuehui Yu, Mhairi Dunion, Xin Li, and Stefano V Albrecht. Skill-aware mutual information optimisation
for zero-shot generalisation in reinforcement learning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Jin Zhang, Jianhao Wang, Hao Hu, Tong Chen, Yingfeng Chen, Changjie Fan, and Chongjie Zhang.
Metacure: Meta reinforcement learning with empowerment-driven exploration. In International Con-
ference on Machine Learning, pp. 12600–12610. PMLR, 2021.

Tony Z Zhao, Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Nicolas Heess, Jon Scholz, Stefan Schaal,
and Sergey Levine. Offline meta-reinforcement learning for industrial insertion. In 2022 international
conference on robotics and automation (ICRA), pp. 6386–6393. IEEE, 2022.

Hongtu Zhou, Ruiling Yang, Yakun Zhu, Haoqi Zhao, Hai Zhang, Di Zhang, Junqiao Zhao, Chen Ye, and
Changjun Jiang. CERTAIN: Context uncertainty-aware one-shot adaptation for context-based offline
meta reinforcement learning. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=cx9AnB8rzi.

27

https://openreview.net/forum?id=cx9AnB8rzi

Under review as submission to TMLR

Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing interaction policies. In 7th Inter-
national Conference on Learning Representations, ICLR 2019, 2019.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context adap-
tation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702. PMLR, 2019.

Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive bayesian
reinforcement learning via meta-learning. In Proceedings of the 20th International Conference on Au-
tonomous Agents and MultiAgent Systems, pp. 1712–1714, 2021a.

Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin Gal, Katja
Hofmann, and Shimon Whiteson. Varibad: variational bayes-adaptive deep rl via meta-learning. The
Journal of Machine Learning Research, 22(1):13198–13236, 2021b.

Luisa M Zintgraf, Leo Feng, Cong Lu, Maximilian Igl, Kristian Hartikainen, Katja Hofmann, and Shimon
Whiteson. Exploration in approximate hyper-state space for meta reinforcement learning. In International
Conference on Machine Learning, pp. 12991–13001. PMLR, 2021c.

A Policy Optimization in Meta-RL

LaSER uses the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) to optimize both its
task-exploration and task-solving policies. Therefore, we provide a short technical description of PPO in
Appendix A.1. Then, in Appendix A.2, we show a detailed overview of how PPO can be used in meta-RL,
by implementing the method proposed in Sec. 3.1.

A.1 PPO Background

For a policy πθ with parameters θ, Schulman et al. (2017) propose the objective

LPPO
t (θ) = Et

[
LCLIP
t (θ)− c1LVF

t (θ) + c2S[πθ](st, c)
]
, (12)

where c1, c2 are constants, LCLIP
t is the main PPO objective, and LVF

t and S[πθ] are additional objectives.
LVF
t is a squared-error loss on the value function Vθ(st, c), while S[πθ] is the policy entropy. Note that the

sole change from the original description of PPO is that πθ(at | st, c) and Vθ(st, c) depend not only on the
state st, but also on the task context c. The clipped surrogate objective LCLIP

t is defined as

LCLIP
t = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (13)

for a constant ϵ, policy probability ratio rt(θ), and estimated advantage Ât. The probability ratio rt(θ) =
πθ(at|st,c)
πθold (at|st,c) is computed using the parameters θold from before an update. Eq. 13 encourages small, stable
policy updates that keep πθ close to πθold , by constraining rt(θ) to remain within [1− ϵ, 1 + ϵ].

A popular choice for the advantage estimator Ât is the generalized advantage estimator (GAE) (Schulman
et al., 2015). In the meta-RL setting, the GAE can be defined as ÂGAE

t =
∑H−t
l=0 (γλ)lδVt+l for an episode

τ with horizon H. Here, γ ∈ [0, 1] is the MDP’s discount factor, λ ∈ [0, 1] is an additional discount, and
δVt = rt + γV (st+1, c)− V (st, c) is the temporal-difference (TD) error at timestep t for a reward rt.

A.2 PPO for Meta-RL

In Sec. 3.1, we propose a simple change to the policy optimization objective. By replacing the environment
reward rt with our proposed meta-reward r+

t , PPO can be used to optimize πθ to solve meta-RL tasks. That
is, we compute the TD error

δVt (θ) = rt + β w(st, c)S[πθ](st, c) + γV (st+1, c)− V (st, c), (14)

28

Under review as submission to TMLR

where w(st, c) = max(0, tanh(V (st) − V (st, c) − ζ)). The estimated advantages can then be computed as
ÂGAE
t (θ) =

∑H−t
l=0 (γλ)lδVt+l(θ). Note that, because ÂGAE

t (θ) is now a function of the parameters θ, the
advantages must be recomputed every time θ is updated, i.e., after each PPO minibatch update. This is in
contrast to standard PPO, where ÂGAE

t is computed only once, before an update, and then kept fixed until
new data is collected.

Intuitively, w(st, c) measures how effective the policy πθ is at using the context c, for each timestep t.
The assumption is that, while PPO-optimized policies in single-MDP settings might explore the state space
sufficiently, there is no guarantee that the task context space is explored enough in a meta-RL setting. By
introducing w(st, c), whenever c does not lead to an improvement above a threshold ζ, the policy is urged to
explore from state st, thus learning more about c. As the agent improves at using c to maximize return, the
exploration bonus w(st, c)S[πθ](st, c) at state st decreases. The standard PPO objective is only recovered
when V (st) ≤ V (st, c)+ζ. This signals that the agent has learned how to use c in state st, and no additional
exploration is required.

B Masked Self-Supervised Training

The bidirectional transformer encoder fb, introduced in Sec. 3, learns useful data representations by learning
to reconstruct its input. Since reconstructing a meta-episode Bj is trivial when the entire Bj is given as input,
we use masked self-supervised training. We create a masked meta-episode Bmasked

j by applying a stochastic
masking function, similarly to Devlin et al. (2019) and Lewis et al. (2019). More precisely, Bmasked

j is identical
to Bj , with the exception that each timestep (s, a, r) in Bmasked

j has a 15% chance of being corrupted. The
loss Lrec measures the ability of fb to predict the true value of each corrupted timestep. The encoder must
learn to compute these values from the non-corrupted timesteps in the input. We consider two types of
corruption.

• Masking: with a probability of 80%, the selected timestep is replaced by a special ⟨MASK ⟩ timestep,
which carries no information.

• Replacing: with a probability of 10%, the selected timestep is replaced by another timestep from
the same meta-episode.

The rest (i.e., 10%) of the selected timesteps are not corrupted but are still used when computing Lrec. To
optimize this loss, fb must learn general temporal relationships between the timesteps in a meta-episode.
We compute Lrec as the MSE between the unmasked tokens in Bj and the reconstructed meta-episode
B′
j = hrec(c; ωrec), where c = gω(Bmasked

j). Note that masked meta-episodes are only used to train the
encoder. When training the task policy πθ or during meta-testing, we compute c using unmasked meta-
episodes.

C Algorithms

For the sake of completeness, but also to enable reproducibility and further analysis (Phuong & Hutter,
2022), we provide pseudocode for our proposed algorithm LaSER. Alg. 1 shows our meta-training process.
It is composed of three main parts. Each part optimizes one of the three LaSER components: the encoder
gω (Alg. 3), the exploration policy πexplore

ϕ (Alg. 4), and the task policy πθ (Alg. 5). Finally, we provide
details on how we meta-test a fully trained LaSER agent in Alg. 2.

D Implementation Details

We provide additional details on our implementation of the LaSER algorithm and our architecture. This
section is complemented by the hyperparameters given in Appendix I.

29

Under review as submission to TMLR

Algorithm 3 train_encoder()
Input p(M), task distribution;

πexplore
ϕ , exploration policy; gω, encoder;
ωrec, ωt-rec, head parameters

Output ω, ωrec, ωt-rec, updated parameters

1: B ←
{

B ∼ P
πexplore

ϕ

Mi

∣∣∣∣Mi ∼ p(M)
}

▷ Collect an ordered batch of data from multiple tasks

2: Bmasked ← {mask(B)|B ∈ B}
3: for u ∈ [Nencoder] do
4:

(
z,

{
Z(1), . . . ,Z(|B|)

})
← fb(Bmasked; ωb)

5: LLaSER ← 0
6: for i ∈

[
|B|

]
do

7: B← Bi; Bmasked ← Bmasked
i

8: for j ∈ [Q] do
9: Γ← fu(Bmasked

j ; ωu)
10: c← hωh

(z,Z(i)
j ,Γ) ▷ Eq. 9

11: B′
j ← hrec (c; ωrec) ▷ Compute reconstructed input

12: end for
13: j ∼ U(Q)
14: C← ht-rec(gω(B), gω(Bj); ωt-rec)
15: δj ← 1− exp

(
−ξ(BjC− B)2

)
▷ Eq. 7

16: ω ← ωu ⊕ ωb ⊕ ωh
17: L(i)

LaSER(ω, ωrec, ωt-rec)← compute using B, B′, C, and δj ▷ Eq. 6, 8, 10
18: LLaSER ← LLaSER + 1

|B|L
(i)
LaSER(ω, ωrec, ωt-rec)

19: end for
20: ω, ωrec, ωt-rec ← update using ∇LLaSER
21: end for
22: return ω, ωrec, ωt-rec

30

Under review as submission to TMLR

Algorithm 4 train_exploration_policy()
Input p(M), task distribution; πexplore

ϕ , exploration policy; gω, encoder
Output ϕ, updated parameters

1: D ← []
2: for Mi ∼ p(M) do
3: D(K) ← []
4: for k ∈ [K] do
5: for t ∈ [H] do
6: akt ∼ π

explore
ϕ

(
· | skt ,Γ(:k,:t−1))

7: D(k,t) ← (skt , akt , rkt)
8: Γ(:k,:t) ← fu

(
D(:k,:t); ωu

)
9: Collect skt+1, r

k
t+1 by taking action akt in Mi

10: end for
11: end for
12: Γ← fu(D(K); ωu); d̂← mask

(1
KSC(ΓT,Γ)T111

)
13: R̃k(skt , akt)← compute for each k ∈ [K], t ∈ [H] ▷ Eq. 4
14: Replace environment rewards in D(K) with the corresponding r̃kt = R̃k(st, at)
15: D ← [D,D(K)]
16: end for
17: for u ∈ [NPPO] do
18: Optimize ϕ on transitions from D using PPO
19: end for
20: return ϕ

Algorithm 5 train_task_policy()
Input p(M), task distribution;

πθ, task policy; πexplore
ϕ , exploration policy; gω, encoder;

ẑ, shared component
Output θ, updated parameters

1: B ← []
2: for Mi ∼ p(M) do

3: D(K) ∼ P
πexplore

ϕ

Mi
▷ Sample exploration meta-episode

4: c← gω(D(K)) ▷ Compute c, using ẑ as the shared component
5: B ← [B, τ ∼ Pπθ(a|s,c)

Mi
] ▷ Sample exploitation episode

6: end for
7: for u ∈ [NPPO] do
8: Âθ ← []
9: for τ ∈ B do

10: for t ∈ [H] do
11: Compute V (st, c), V (st), and S[πθ](st, c)
12: w(st, c)← max (0, tanh (V (st)− V (st, c)− ζ)) ▷ Eq. 3
13: r+

t ← rt + βw(st, c)S[πθ](st, c) ▷ Eq. 2
14: ÂGAE

t (θ)← compute using r+
t

15: Âθ ←
[
Âθ, Â

GAE
t (θ)

]
16: end for
17: end for
18: Optimize θ on transitions from B with advantages Âθ using PPO
19: end for
20: return θ

31

Under review as submission to TMLR

D.1 Encoder

Both fu and fb use the same transformer architecture (Vaswani et al., 2017), except that fu is unidirectional,
while fb is bidirectional. Each transformer has size dmodel = 128, 8 layers, 16 attention heads, and feed-
forward networks of size 512, with GELU activation functions (Hendrycks & Gimpel, 2016). All input timesteps
are linearly mapped to dmodel-dimensional embeddings, with positional encodings added before they are
passed through the transformer. For stable training, we apply the T-Fixup initialization scheme (Huang
et al., 2020), as recommended by Melo (2022).

The output of the transformer in fu is passed through a single-layer feed-forward network that outputs Γ.
Similarly, the transformer output of fb is independently processed by two separate single-layer feed-forward
networks, outputting z and Z. Each of these three networks has size 64 and uses tanh activation functions.

When using data from multiple tasks, Γ and Z are computed separately for each task. In contrast, z is
computed with data from multiple tasks, leading to a general representation of the entire distribution.

Before computing z, we apply average pooling to reduce the dimensionality of the output of fb. We treat Z
as a batch of Q meta-episode representations, such that each slice Zj , for j ∈ [Q], is computed independently
by the feed-forward network. Similarly, each of the Q meta-episodes has its own representation Γ, computed
independently by the feed-forward network in fu.

The encoder gω has two final transformer layers, hωh
, similar to those in fb. The first layer combines Z

and Γ. The second computes c by combining the output of the first with z. The reconstruction head hrec
is a single linear layer that transforms each of the HK vectors in c from dmodel to d, thus computing the
reconstructed input. The task-reconstruction head ht-rec is a (256, 128, 128) feed-forward network with GELU
activations, used for computing the tensor of coefficients C. We have found, empirically, that using only the
task-specific representations Z as input for ht-rec is enough. That is, for a given j ∈ [Q], we compute

C = ht-rec(Z,Zj ; ωt-rec),
where (·,Z) = fb(B;ωb),

and optimize ωt-rec such that C approximates the linear transformation that maps Bj to B. To train gω,
hrec, and ht-rec, we use the Adam optimizer (Kingma & Ba, 2015).

D.2 Policies

We represent πexplore
ϕ , Vϕ, πθ, and Vθ using feed-forward networks. For task exploration, we use two separate

(128, 128, 128) networks with tanh activations to represent policy πexplore
ϕ and value function Vϕ. These

take 64-dimensional embeddings of st and Γ(:k,:t) as input, which are computed by a shared, single-layer,
tanh-activated network.

We use similar architectures for πθ and Vθ. However, c is first mapped to a lower-dimensional representation
by a feed-forward context encoder with tanh activations. The same encoder is used for both πθ and Vθ. The
hyperparameters of πθ and Vθ are given in Table 8.

To optimize both policies, each PPO update is run for NPPO epochs, using minibatches. The exploration
policy is always meta-trained using NPPO = 4 with 2 minibatches. For the task policy, these two hyperpa-
rameters are environment-dependent and shown in Table 8. Moreover, we normalize the state s, the reward
r, and the context c before passing them to the task policy. We use the Adam optimizer, and clip the norm
of the gradients to 0.5 before updating parameters ϕ and θ. Additionally, we set the coefficients in Eq. 12
to c1 = 0.5 and c2 = 0.01. The GAE ÂGAE

t is computed using discounts γ = 0.99 and λ = 0.9.

Finally, as mentioned in Sec. 3.1, we stabilize the optimization of πθ by adding the PFO term suggested by
Moalla et al. (2024) to the PPO objective, weighted by cPFO, which is set based on the environment. The
PFO term is omitted when optimizing πexplore

ϕ . We found that including it made training more difficult,
whereas πexplore

ϕ was already sufficiently stable without it.

32

Under review as submission to TMLR

D.3 Meta-Training

LaSER agents are meta-trained in two phases. In the first phase, we alternate between updating the encoder
gω and the exploration policy πexplore

ϕ for Nexplore iterations. Before each encoder update, we collect a dataset
B by following πexplore

ϕ in different tasks. Each element B ∈ B is a tensor that contains Q meta-episodes
from a task Mi ∼ p(M).

We update gω on the masked dataset Bmasked for Nencoder epochs (see Alg. 3). To improve meta-training
sample efficiency, we use all Q meta-episodes in each tensor B to compute Lrec and R. In practice, each
B is stored in a buffer and reused in future updates. To update πexplore

ϕ , exploration data is collected from
multiple tasks as described in Sec. 3.2. In the second phase, the task policy πθ is updated for Ntask iterations.

For the losses Lrec and Lt-rec in Eq. 10, we exclude the reconstructed actions from the loss computation.
This ensures that the encoder focuses on learning patterns in states and rewards, rather than the exploration
policy. Additionally, we scale the loss on states by a factor of 0.05.

Note that the encoder gω is optimized purely through self-supervised methods. This constraint can be lifted.
The RL loss used to update the task policy πθ can also be used to fine-tune gω. This fine-tuning could adapt
the general pretrained encoder to align more closely with the task-solving objective. However, similar to
Zintgraf et al. (2021b), we observe no empirical benefits from fine-tuning, so we omit it in our experiments.

A closely related idea is to continue improving the context vector c by encoding data from the exploitation
episode as it is being collected by the task policy πθ. This effectively turns our setting into “(K + 1)-shot
adaptation”, where the final episode comes from a different source. We have considered this alternative
variant, but observed no significant changes in terms of empirical performance. However, a more interleaved
interaction between the exploration and task policies may lead to more effective data collection.

In practice, LaSER’s encoder gω and exploration policy πexplore
ϕ are meta-trained using an Nvidia A100 80GB

GPU. In the second phase, we switch to an Nvidia RTX 4070 Ti SUPER 16GB GPU to meta-train the task
policy πθ. All environment data is collected using CPU computations only.

E Non-Linear Task Reconstruction

In this section, we show a straightforward method of extending the linear task reconstruction formulation
from Sec. 3.3 to a non-linear variant. Specifically, we relax the linear Assumption 1, which assumes the
existence of a coefficient tensor C such that BjC ≈ B.

For the non-linear extension, we replace the linear mapping with a non-linear function Ψψ, modeled as an
MLP parameterized by ψ. To obtain these parameters, we repurpose the task reconstruction head ht-rec
(defined in Sec. 3.4) to output the vector ψ instead of a tensor C. This effectively turns ht-rec into a
hypernetwork that computes the weights and biases ψ = ht-rec(gω(B), gω(Bj); ωt-rec). Assumption 1 can
then be replaced with the non-linear variant Ψψ(Bj) ≈ B.

The task-reconstruction loss (Eq. 6) is adapted to minimize the error of this non-linear reconstruction:

Lt-rec = EMi∼p(M),B∼Pπexplore
Mi

, j∼U(Q) [MSE (Ψψ(Bj) , B)] . (15)

Similarly, the target δj (Eq. 7) used to shape the latent exploration space becomes:

δj = 1− exp
(
−ξ(Ψψ(Bj)− B)2

)
. (16)

Apart from these changes, the LaSER variant with non-linear task reconstruction follows the same formula-
tion as linear LaSER (see Sec. 3).

In practice, we take the same approach as in the linear variant and process a batch B of Q meta-episodes by
independently generating a non-linear transformation for each meta-episode. Specifically, ht-rec outputs a
set of Q distinct parameter vectors ψl, one for each target meta-episode Bl ∈ B, for l ∈ [Q]. An element-wise
concatenation of these Q reconstructions would then give the desired approximation: {MLPψl

(Bj)}Ql=1 ≈ B.

33

Under review as submission to TMLR

F Benchmarks Details

This section provides additional implementation details for the meta-RL benchmarks used in this work.

F.1 MEWA

We continue the discussion from Sec. 5.1.1 and provide more details on the tasks available in the
MEWA benchmark. In our implementation, we use the publicly available official code for MEWA, at
https://github.com/RStoican/MEWA.

In a critical state sx of type x, a risky action arisk can either lead to a state s′ or s′
x. We use s′ to denote

that a mistake has been avoided and the agent has progressed in the task. In contrast, s′
x denotes that a

mistake has happened, resulting in a large delay in task completion and thus, lower returns. The probability
of arisk leading to a mistake depends on both the mistake’s type x and the dynamics of task Mi ∼ p(M).
Formally, we define Ti(s′

x | sx, arisk,Mi) = p
(i)
x to be the task-specific transition leading to a mistake. Here,

the vector p(i), with p
(i)
y ≤ p

(i)
x for all y < x, denotes the probabilities of making a mistake of each type.

The probability of avoiding a mistake is then simply Ti(s′ | sx, arisk,Mi) = 1− p
(i)
x .

An agent’s second option is to take a safe action asafe in a critical state sx. This comes at the cost of a
small delay, and leads to a critical state sx−1, with p

(i)
x−1 ≤ p

(i)
x . Formally, the dynamics are given by the

task-agnostic transition Ti(sx−1 | sx, asafe,Mi) = 1.

Table 3 provides the 12 meta-testing tasks used for the results in Sec. 5. We describe each task by its
corresponding vector of mistake probabilities p(i) ∈ [0, 1]4. Additionally, for each task Mi, we provide
the average probability of a mistake of any type happening, computed as 1/4

∑4
x=1 p

(i)
x . As previously

mentioned, we use this as a rough measure of similarity between tasks. Finally, we mark tasks that are
outside of MEWA’s meta-training distribution (i.e., cannot be sampled during meta-training) as OOD tasks.

Task Mistake Probability Average Mistake OOD
Index Type I Type II Type III Type IV Probability

0 0 0 0 0 0.000 No
1 0.05 0 0 0 0.013 No
2 0.1 0 0 0 0.025 No
3 0.772 0 0 0 0.193 No
4 0.672 0.618 0 0 0.322 No
5 0.622 0.618 0.577 0.434 0.563 No
6 0.622 0.618 0.577 0.534 0.588 Yes
7 0.872 0.818 0.777 0 0.617 Yes
8 0.672 0.668 0.627 0.584 0.638 Yes
9 0.972 0.968 0.927 0.384 0.813 Yes
10 0.972 0.968 0.927 0.784 0.913 Yes
11 0.972 0.968 0.927 0.884 0.938 Yes

Table 3: The configuration of the 12 MEWA tasks used for meta-testing agents. A task is described by
a 4-dimensional vector. Each dimension denotes the probability of a mistake of the corresponding type
happening. We additionally compute the average mistake probability across all types. This can be seen as a
way of comparing tasks, i.e., tasks with similar average probabilities have similar optimal policies. Finally,
tasks marked as OOD are outside MEWA’s meta-training task distribution.

F.2 Meta-World

Meta-World was proposed by Yu et al. (2020). Its latest version, which was introduced by McLean et al.
(2025), offers a unified and consistent framework for easily evaluating and comparing meta-RL algorithms.
The most important change in this version is the option of selecting between Meta-World’s initial set of task-

34

https://github.com/RStoican/MEWA

Under review as submission to TMLR

specific reward functions (V1) and the newer set (V2). To be more consistent with the recent literature, we
choose to follow V2 in our work. All Meta-World experiments are performed on the ML10 evaluation protocol.
Ten tasks, with randomized positions for objects and goals, are selected for meta-training. Five structurally
similar novel tasks are then used for meta-testing (for more details, see Yu et al. (2020)). To implement Meta-
World, we use the official open codebase provided at https://github.com/Farama-Foundation/Metaworld.

F.3 HopperMass

Our implementation of MuJoCo HopperMass is similar to the one provided at
https://github.com/MohammadrezaNakhaei/ER-TRL by Nakhaeinezhadfard et al. (2025). The main
difference from other implementations used in the literature is the focus on generating OOD tasks during
meta-testing. The hopper model is characterized by four vectors: body mass, body inertia, friction, and
degree of freedom damping. When generating a new task, each element from each of these vectors is
scaled by a different weight. Weights are sampled from [1.5−1, 1.51] for meta-training tasks and from
[1.5−1.5, 1.5−1) ∪ (1.51, 1.51.5] for OOD meta-testing tasks.

G Baseline Algorithms Details

We provide details for the architectures, hyperparameters, and the meta-training process for the baseline
algorithms used in Sec. 5. We tune these algorithms and use the best-performing hyperparameters. Where
possible, and if performance is not negatively affected, the task policy’s architecture and meta-training are
similar to LaSER’s. Otherwise, the task policy is tuned with the rest of the model. All baseline algorithms
are meta-trained using an Nvidia RTX 4070 Ti SUPER 16GB GPU.

G.1 MAML

For MAML (Finn et al., 2017), we use the publicly available code provided for meta-RL by Deleu (2018) at
https://github.com/tristandeleu/pytorch-maml-rl. We train for 12000 meta-iterations, with batches of 16
tasks. For each task, we sample 5 episodes. MAML is meta-trained to maximize returns after one policy
gradient update. However, during meta-testing, it performs K = 4 gradient updates. We use a discount
factor of γ = 0.99. We also use λ = 0.9 to compute the generalized advantage estimator (GAE). To ensure
optimal results, we did not use the first-order approximation proposed by Finn et al. (2017), but instead
computed the second derivatives and backpropagated. The policy is a (64, 64) feed-forward network with
tanh activations. Due to the computational cost of MAML, we had to use a smaller policy network than
in the other algorithms. All other hyperparameters follow the ones used by Finn et al. (2017) in their RL
experiments.

G.2 PEARL

We use the publicly available code at https://github.com/katerakelly/oyster for our implementation of
PEARL (Rakelly et al., 2019). Each agent is meta-trained for 350 iterations on a total of 3000 training
tasks, with 16 tasks per batch. At each iteration, both the encoder and the task policy are optimized for
2000 gradient steps, with batches of 64 transitions for the encoder and 256 for the policy.

PEARL uses a variational approach for computing task contexts c. When computing PEARL’s loss, the
KL divergence of the encoder is weighted by 0.1. Additionally, both the task policy and the encoder have a
learning rate of 3× 10−4 and use the Adam optimizer.

PEARL uses Soft-Actor Critic (SAC) (Haarnoja et al., 2018a;b), an off-policy RL algorithm. Note that,
since SAC is designed for continuous action spaces, we instead use a SAC version for discrete action spaces
(Christodoulou, 2019). We tune SAC’s temperature hyperparameter automatically, using the approach
introduced by Haarnoja et al. (2018b), since manual tuning can be difficult. We use a discount factor of
γ = 0.99 and a target smoothing coefficient for SAC of 0.005. At each iteration, PEARL adds data collected
from 5 randomly selected tasks to a replay buffer of size 1000000 timesteps. For each of these tasks, it
collects 400 timesteps by conditioning its policy on a context c sampled from a prior distribution over tasks.

35

https://github.com/Farama-Foundation/Metaworld
https://github.com/MohammadrezaNakhaei/ER-TRL
https://github.com/tristandeleu/pytorch-maml-rl
https://github.com/katerakelly/oyster

Under review as submission to TMLR

It additionally collects 600 more timesteps using a c sampled from its meta-trained posterior over tasks.
However, this latter data is only used to update the task policy, not the encoder. Before training starts, the
replay buffer is populated with 2000 timesteps per task, collected by following a uniformly random policy.

PEARL’s encoder is a (200, 200, 200) feed-forward network with ReLU activations that computes 5-
dimensional latent task context vectors c. The task policy is a (128, 128, 128) feed-forward network with
tanh activations.

G.3 VariBAD

We use the code at https://github.com/lmzintgraf/varibad for VariBAD (Zintgraf et al., 2021b). We meta-
train for 2350 (MEWA), 18750 (Meta-World), or 3125 (HopperMass) iterations. In MEWA, we meta-train
on 3000 tasks. For any benchmark, at each iteration, we collect 200 timesteps per task from 16 different
tasks. These timesteps are stored in a buffer of 10000 episodes. Additionally, before training, a uniformly
random policy adds 5000 timesteps to the buffer. This buffer is later used to update the encoder.

VariBAD uses a variational auto-encoder (Kingma & Welling, 2014, VAE) to encode data collected from
tasks into a latent context c. In MEWA, this encoder is optimized using Adam with a learning rate of
0.001. At each iteration, the encoder is updated for 3 steps, using batches of 15 episodes, sampled from the
buffer. The encoder is a recurrent neural network of size 128 that computes 5-dimensional task contexts c.
The decoder takes c as input, together with the current transition s, a, s′, and reconstructs the reward r.
We use a (64, 32) feed-forward network to represent the encoder. The state, action, and reward inputs are
preprocessed into representations of size 32, 16, and 16, respectively, by separate single-layer networks with
ReLU activations. Both the encoder and decoder have such pre-processing layers.

Since VariBAD uses PPO to optimize its policy, we use the same network architectures and hyperparameters
for MEWA as LaSER’s task policy (see Appendix D.2 and Table 8). However, we do not use the additional
PFO objective. Finally, before passing s and c to the policy, we embed them into 64-dimensional represen-
tations using separate single-layer networks with tanh activations. Similarly to LaSER, all experiments use
the discount factor γ = 0.99.

For Meta-World and HopperMass, we use the hyperparameters proposed by Beck et al. (2023a) for ML10 as
a starting point for our tuning. In Meta-World, we use 2 PPO epochs with 8 minibatches with a learning
rate of 3 · 10−4. In HopperMass, we use batches of 2 episodes to update the VAE. For the task policy, we
have 4 PPO updates with 8 minibatches and a learning rate of 3 · 10−4. The VAE for both Meta-World
and HopperMass computes 10-dimensional latent context vectors c, which are used by a (256, 256, 128) task
policy. Moreover, we normalize the state s, the reward r, and the context c before passing them to the task
policy. The rest of the hyperparameters are the same as for the VariBAD models meta-trained on MEWA.

G.4 DREAM

We use the public code provided by Liu et al. (2021) at https://github.com/ezliu/dream to implement
DREAM. We meta-train for 100000 iterations. At each iteration, the model first collects K = 4 exploration
episodes and updates the exploration policy. Afterwards, the task policy, conditioned on the exploration
meta-episode, is used to collect an exploitation episode, and then updated.

The decoder used by DREAM takes a history of transitions of type (s, a, r, s′) as input. Each transition
is individually embedded, using layers of size 64 for states, 16 for rewards, and 16 for actions. For each
transition, we then concatenate these embeddings and apply a linear layer of size 64. Then, an LSTM with
hidden dimension 128 encodes the history of embedded transitions. Finally, the output of this LSTM is
postprocessed by a (128, 64) feed-forward network with ReLU activations.

Both the task and exploration policies are trained with dueling double Q-learning (Wang et al., 2016b;
Van Hasselt et al., 2016), parameterised as deep recurrent Q-networks. The deep Q-network (DQN) used to
train the task policy takes the current state, history, and task context as inputs. The state and task context
are separately embedded using matrices of size 64. The history is encoded using a process similar to the
one used by the encoder. However, following Liu et al. (2021), the history is composed of timesteps instead

36

https://github.com/lmzintgraf/varibad
https://github.com/ezliu/dream

Under review as submission to TMLR

of transitions (i.e., no next state s′), rewards are not embedded, actions use a 32-dimensional linear layer,
and the hidden size of the LSTM is decreased to 64. A feed-forward network of size (256, 64) with ReLU
activations is then applied to the concatenation of these output embeddings. The task DQN has two final
linear heads for computing the value and advantage functions. The exploration policy’s DQN has a similar
architecture.

Each of the two DQNs has its own replay buffer, each storing up to 16000 sequences of 50 timesteps. For
each sequence, the timesteps are stored in consecutive order. We train both DQNs using the Adam optimizer
with a learning rate of 1 × 10−4. At each iteration, we update the DQNs 4 times using batches of size 32,
clipping the norm of the gradients to 10. The DQNs are then synchronized after every 5000-th update.
Finally, in all experiments, we use the discount factor γ = 0.99.

G.5 Decision Adapters

We implement the hypernetwork-based task policy using the code provided by Beukman et al. (2024) at
https://github.com/Michael-Beukman/DecisionAdapter. The policy is a (128, 128) feed-forward network,
similar to LaSER’s task policy (see Appendix D.2). It is also meta-trained with the same hyperparameters
(see Table 8). However, this policy only takes the state s as input. Moreover, between the policy’s last hidden
layer and output layer, we introduce an additional (32, 32) network with tanh activations. The weights of
this final network are generated by a hypernetwork, which takes the task context c as input. Following
Beukman et al. (2024), we also use a skip connection between the input and output of this network with
hypernetwork-generated weights.

The hypernetwork itself is a (64, 64) feed-forward network with tanh activations. The output weights of
the hypernetwork are computed in chunks of size 16. Before passing the input c, we pre-process it into
a 4-dimensional representation using a single tanh-activated layer. Finally, the actor and the critic have
separate hypernetworks.

H Additional Results

We provide results that complement those in Sec. 5. Note that for Fig. 11, LaSER uses a pretrained
encoder and exploration policy, while the baseline algorithms are trained from scratch. The choice to display
adaptation efficiency measurements in this manner follows a similar argument to the one given in Sec. 5.2.3.

Figure 10: Encoder loss for LaSER, computed on tasks from MEWA’s meta-training distribution. We show
separate plots for each term in the encoder loss function. For 10 random seeds, we provide the standard error
as the shaded areas, average the second and fourth metrics, and report the median for the other two. We
found the median to be more appropriate, as one of the seeds was unstable towards the end of meta-training,
for approximately 0.2e8 timesteps. For this same reason, we restrict the plot of the contrastive loss to the
range [−2.5e−6, 5e−5]. To aid readability for exponential losses, the reconstruction and regularization losses
use a logarithmic scale. All metrics are smoothed using EMA with αEMA = 0.2.

37

https://github.com/Michael-Beukman/DecisionAdapter

Under review as submission to TMLR

Figure 11: Undiscounted returns of task-solving policies on tasks from MEWA’s meta-training task distri-
bution. The shaded areas report the standard error of the average return across 10 seeds. We use EMA
smoothing with αEMA = 0.6.

Figure 12: Encoder loss for PEARL, VariBAD, and DREAM on tasks from MEWA’s meta-training task
distribution. The shaded areas report the standard error of the average loss across 10 seeds. Since PEARL’s
and VairBAD’s losses decay exponentially, we use logarithmic scales.

H.1 Ablation Study: Linear vs. Non-Linear Task Reconstruction

Fig. 17 compares LaSER with a variant that adopts the non-linear approach to task reconstruction, as
introduced in Appendix E. Since the head ht-rec now acts as a hypernetwork, we increase its size from a
(256, 128, 128) to a (256, 128, 128, 320, 128) MLP, to compensate for the increase in complexity. Apart from
these changes, the linear and non-linear variants share identical hyperparameters. We model Ψψ, the output
of ht-rec, as Q distinct (16, 16) MLPs with tanh activations.

The non-linear variant achieves lower task reconstruction loss compared to linear LaSER, indicating that its
latent context vector c may capture more complex task structures. However, this increase in expressivity
does not translate to improved performance during the task-solving phase, as the task policy achieves returns
similar to those of linear LaSER. This supports our linear assumption, at least in environments similar to
MEWA. Consequently, the additional complexity in terms of implementation and computation of the non-
linear approach is unnecessary in this setting.

H.2 Ablation Study: Task Solving Alternatives

38

Under review as submission to TMLR

Figure 13: Exploration return for DREAM’s exploration policy. Shaded areas are the standard error of the
average over 10 random seeds.

Figure 14: Average per-task returns for each of the 12 meta-testing tasks in MEWA. Each agent is meta-tested
with an exploration budget of K = 4. Results are averaged over 10 seeds, with error bars indicating standard
error across seeds. The three baselines are computed on a per-task basis. We normalize returns between the
random and optimal baselines. For better visualization, we also restrict the plot to the [−0.02, 1.0] range.

Fig. 18 compares LaSER’s task policy from Sec. 5.3, optimized using meta-rewards from Eq. 2, with two
simpler alternatives to those meta-rewards. All models are trained with ground-truth contexts on a fixed
set of tasks. The penalty-only baseline, defined as rt − β w(st, c), removes the entropy bonus. It penalizes
the policy directly when the context c is underutilized (according to w), but lacks an explicit mechanism to
encourage exploration that corrects this behavior. The entropy-only baseline, defined as rt + β S[π](st, c),
encourages constant exploration, regardless of how effectively the context is being used. While the policy
still receives c as input, the meta-reward is agnostic to how effectively this context is used. Note that both
baselines in this ablation study use the same architecture and hyperparameters as the LaSER task policy,
except β is reduced by a factor of 50 in the entropy-only setting to improve stability.

Our results demonstrate that the proposed LaSER meta-reward outperforms both baselines. The penalty-
only agent eventually stabilizes but converges to a suboptimal return. We hypothesize that, while this
baseline is able to identify context misuse, it cannot correct it due to the lack of targeted exploration. The
entropy-only baseline learns well initially, but loses stability in the second half of training. This is likely
due to the non-decaying entropy bonus, which is beneficial at the start, but eventually leads to excessive

39

Under review as submission to TMLR

Figure 15: Wall clock time required to meta-train each method. We report the standard error of the mean
over 10 seeds. (left) Total meta-training time. (right) Meta-training time averaged over all timesteps.

Algorithm Parameters Component Breakdown
Meta-Training Meta-Testing Component Parameters

LaSER (ours) 78, 394, 281 8, 111, 314 Encoder gω 4, 484, 672
Encoder Heads hrec, ht-rec 70, 282, 967
Exploration Policy πexplore

ϕ 109, 193
Task Policy (No Context Extractor) πθ 141, 961

Task Policy Context Extractor 3, 375, 488
MAML 5, 676 5, 676 Task Policy 5, 676
PEARL 233, 271 233, 271 Encoder 87, 210

Task Policy 146, 061
VariBAD 186, 580 178, 243 Encoder 76, 538

Decoder 8, 337
Task Policy (No Context Extractor) 101, 001

Task Policy Context Extractor 704
DREAM 1, 080, 546 1, 080, 546 Encoder 426, 880

Exploration Policy 214, 809
Task Policy 438, 857

Table 4: Number of parameters for each algorithm. All architectures are for the MEWA benchmark. “Meta-
Training” refers to the total number of parameters required to meta-train the model, which can differ from
the final number of parameters during “Meta-Testing”. We additionally offer a component-wise breakdown.

exploration after the agent has learned to use the context. Critically, both baselines have average delta
returns close to zero. This indicates that, compared to a policy trained with the meta-rewards in Eq. 2, the
ablated agents ignore or misuse the provided context, leading to no post-adaptation improvements.

H.3 Qualitative Results for Exploration Policy

In this section, we provide a qualitative discussion with step-by-step visualizations (see Fig. 19) of the
meta-episodes collected during task exploration by three fully meta-trained agents. We use the MEWA
meta-testing tasks with indexes 5 and 7 in our evaluation (see Table 3).

Task 5 is in-distribution and has an average mistake probability of 0.563. It acts as a “middle ground”
task in the MEWA curated distribution: complex enough to allow frequent mistakes, without having almost
unavoidable mistakes.

40

Under review as submission to TMLR

Figure 16: Wall clock time results for task policy meta-training. We measure the average time per iteration
(in seconds) required to roll out episodes and optimize the policy. The results are averaged over 10 seeds.
The bars represent standard error across all seeds.

Figure 17: Performance comparison between LaSER with linear and non-linear task reconstruction on
MEWA’s meta-training task distribution. The meta-training setup and metrics are identical to those in
Fig. 5. (left) Task reconstruction loss Lt-rec for linear (Eq. 6) and non-linear (Eq. 15) variants. We use EMA
smoothing with αEMA = 0.2. (right) Undiscounted exploitation return of policy πθ. We use EMA smoothing
with αEMA = 0.6.

In Fig. 19a, VariBAD adopts a simple exploration strategy for task 5, with episodes that follow similar
patterns. Specifically, it takes only red and blue actions in the first half of each episode, then green and
orange in the second half.

The visualized episodes suggest that DREAM can achieve more diverse exploration than VariBAD, as it
experiments with three out of four mistake types. DREAM only appears to struggle at the beginning of
episodes, where the sequence of the first 5 actions is always identical, while the action at timestep 5 appears
to depend on whether a mistake has happened at timestep 4. This may suggest that the diversity seen in
this meta-episode may partially be a consequence of the environment, rather than being purely driven by
DREAM’s ability to collect distinct data.

LaSER demonstrates a structured approach to task exploration that appears on par with DREAM. While
it chooses to focus mostly on mistakes of types 3 and 4, it experiments with three distinct mistake types
in the very first episode, and eventually probes the final type in the third episode. Therefore, as opposed
to DREAM, it explores all four mistake types. It additionally avoids taking the same sequence of actions
in the first five timesteps of each episode. This is likely due to LaSER being explicitly optimized to avoid
redundancy by learning to collect episodes that are orthogonal in the latent exploration space, while DREAM
is only exploring to maximize future exploitation gains.

41

Under review as submission to TMLR

Figure 18: Ablation study on the meta-reward formulation. The experimental setup and metrics follow
those in Fig. 8 (ground-truth contexts, 12 MEWA tasks). (left) Average post-adaptation return. (right)
Average delta return.

Task 7 is an out-of-distribution task with an average mistake probability of 0.617. A special property of this
particular task is that mistakes of types 1, 2, and 3 have a relatively high chance of occurring, while mistakes
of type 4 never occur.

In Fig. 19b, VariBAD utilizes the same exploration policy in the first three episodes. Specifically, the agent
continuously attempts to avoid a mistake of type 2, then one of type 1, and finally one of type 3. This
results in three episodes that can only be distinguished based on the environment’s reactions, rather than
VariBAD’s active choices. The agent adapts its exploration strategy in the final episode. However, it never
attempts a risky action that could lead to a type 4 mistake, and thus fails to learn that these never occur.

DREAM collects a meta-episode composed of four identical episodes. Since the DREAM agent has been meta-
trained to collect episodes that maximize subsequent exploitation returns, it fails to diversify its behavior
in this task. Instead, it chooses to follow the simplest approach of exploiting the task’s type four mistake,
leading to a collapse into a deterministic policy. Consequently, the lack of experimentation with mistakes
of other types implies that this specific meta-episode is not sufficient to learn the true specifications of this
task.

LaSER avoids falling into the same pitfall as DREAM, and successfully collects a diverse meta-episode. The
first episode is similar to those of DREAM’s, quickly highlighting the low likelihood of a type 4 mistake
occurring. However, the agent then decides to also experiment with mistakes of types 2 and 3 in subsequent
episodes. This exploration strategy is likely a result of LaSER’s meta-training, where diverse task exploration
is explicitly encouraged, regardless of the task’s structure or of the optimal exploitation policy. Its exploration
policy is thus capable of ignoring distracting environmental rewards, instead collecting a set of K episodes
that, according to the agent, best approximates a large dataset constructed from this task.

I Hyperparameters

General Hyperparameters
MEWA Meta-World HopperMass Notes

Nexplore 10, 000 700 600
N initial

explore 2, 000 20 30
H 50 200 400 Horizon
K 4 2 4 Episodes per meta-episode

Table 5: LaSER hyperparameters used throughout meta-training and meta-testing.

42

Under review as submission to TMLR

(a) MEWA’s 5-th meta-testing task; 0.563 average mistake probability.

(b) MEWA’s 7-th meta-testing task; 0.617 average mistake probability.

Figure 19: Qualitative comparison of exploration behaviors on two MEWA tasks. We plot color-coded
sequences of actions for meta-episodes of K = 4 episodes. Solid colors highlight risky actions (i.e., those
that may lead to mistakes). The symbols indicate whether a mistake happened or was avoided after a risky
action, while numbers indicate the mistake type. Each episode is padded to the maximum length of its
respective meta-episode, and each episode terminates automatically after H = 50 timesteps.

43

Under review as submission to TMLR

Encoder gω
MEWA Meta-World HopperMass Notes

Learning rate 1× 10−4 5× 10−4

Nencoder 50 2 Encoder updates per iteration
Q 20 Meta-episodes per task
|B| 5 10 # of tasks per batch

Buffer size 100, 000 1, 000 2, 000 Maximum # of tasks in buffer
crec, ct-rec, ccontr, cR 0.5, 1, 1, 0.125 Coefficients for loss LLaSER; Eq. 10

ξ 0.05 Constant in Eq. 7
ν 250 25 Update delay for parameters ω̂

Table 6: LaSER hyperparameters used for meta-training the encoder.

Exploration Policy πexplore
ϕ

MEWA Meta-World HopperMass Notes
Learning rate 1× 10−5 8× 10−5

σ 0.025 0.01 0.003 Constant in Eq. 4
ϵ 0.1 PPO clipping (exploration); Eq. 13
αR 0 0.01 Environmental reward weight; Eq. 11

Table 7: LaSER hyperparameters used for meta-training the exploration policy.

Task Policy πθ
MEWA Meta-World HopperMass Notes

Learning rate 1× 10−4 6× 10−5

Ntask 10, 000 9, 000 2, 500
β 1.5 0 Coefficient in Eq. 2
ζ −0.13 0 Threshold in Eq. 3
ϵ 0.2 PPO clipping (exploitation); Eq. 13

cPFO 0.1 0 PFO coefficient
NPPO 4 2 4

minibatches 2 8
Layers (128, 128, 128) (256, 256, 128)

Context
encoder layers (128, 128, 128) (256, 256, 128, 10) Encoder for context vector c

Table 8: LaSER hyperparameters used for meta-training the task policy.

44

	Introduction
	Preliminaries
	Methods
	Task Solving
	Task Exploration Policy
	Learning to Explore by Reconstructing Tasks
	Architecture and Optimization
	Meta-Training and Meta-Testing

	Related Work
	Experiments
	Experimental Setup
	Environments
	Algorithms and Meta-Training Setup
	Complexity and Trade-offs

	Results and Analysis
	Meta-Training Convergence on MEWA
	Meta-Testing Performance on MEWA
	Meta-Testing Performance on Meta-World and HopperMass

	Ablation Study: Task Solving
	Ablation Study: Exploring and Learning Tasks

	Conclusion
	Policy Optimization in Meta-RL
	PPO Background
	PPO for Meta-RL

	Masked Self-Supervised Training
	Algorithms
	Implementation Details
	Encoder
	Policies
	Meta-Training

	Non-Linear Task Reconstruction
	Benchmarks Details
	MEWA
	Meta-World
	HopperMass

	Baseline Algorithms Details
	MAML
	PEARL
	VariBAD
	DREAM
	Decision Adapters

	Additional Results
	Ablation Study: Linear vs. Non-Linear Task Reconstruction
	Ablation Study: Task Solving Alternatives
	Qualitative Results for Exploration Policy

	Hyperparameters

