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Abstract

Machine learning craves high-quality data which is a major bottleneck during
realistic deployment, as it takes abundant resources and massive human labor to
collect and label data. Unfortunately, label noise where image data mismatches
with incorrect label exists ubiquitously in all kinds of datasets, significantly de-
grading the learning performance of deep networks. Learning with Label Noise
(LNL) has been a common strategy for mitigating the influence of noisy labels.
However, existing LNL methods either require pertaining using the memorization
effect to separate clean data from noisy ones or rely on dataset assumptions that
cannot extend to various scenarios. Thanks to the development of Multimodal
Large Language Models (MLLMs) which possess massive knowledge and hold
In-Context Learning (ICL) ability, this paper proposes NoiseGPT to effectively
leverage MLLMs as a knowledge expert for conducting label noise detection and
rectification. Specifically, we observe a probability curvature effect of MLLMs
where clean and noisy examples reside on curvatures with different smoothness,
further enabling the detection of label noise. By designing a token-wise Mix-
of-Feature (MoF) technique to produce the curvature, we propose an In-Context
Discrepancy (ICD) measure to determine the authenticity of an image-label pair.
Subsequently, we repeat such a process to find the best matching pairs to complete
our label rectification. Through extensive experiments, we carefully demonstrate
the effectiveness of NoiseGPT on detecting and cleansing dataset noise, especially
on ILSVRC12, the AUROC of NoiseGPT reached over 0.92. And by integrat-
ing with existing methods, the classification performance can be significantly
improved on noisy datasets, typically by 22.8% on 80% symmetric CIFAR-10 with
M-correction. Source code: https://github.com/drunkerWang/NoiseGPT

1 Introduction

Contemporary machine learning is greedy for high-quality datasets. However, large-scale datasets
such as human-annotated ones like ImageNet [1] and COCO [2] or internet-downloaded ones like
WebVision [3] and Instagram Datasets [4] are either resource-consuming or untrustworthy. As a
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result, practitioners often have to spend substantial time to conduct prolonged labeling process and the
results could still be undesirable. Noise still ubiquitously exist in almost all kinds of datasets. More
importantly, dataset noise has been demonstrated to be significantly harmful for training of Deep
Learning Models [5]. Consequently, it is urgent to discover efficient and transferable methodology to
identify and rectify dataset noise.

To solve this problem, Learning with Noisy Labels (LNL) aims to improve the robustness of Deep
Neural Networks (DNNs) through bridging the noise distribution and clean distribution. Existing
methodologies [6, 7] commonly leverage loss correction and loss reweighting techniques, where
transition matrix [8, 9], for example, is used to capture the noise generation process which enables end-
to-end optimization without fitting to noisy labels. Meanwhile, based on the observation that DNNs
converge faster on clean examples than noisy ones, sample-selection-based methods [10, 11, 12]
divide samples into clean and noisy during training in order to learn from confident examples while
exploiting noisy samples [13, 14, 15, 16, 17]. However, it is challenging to estimate accurate noise
transition matrix due to the complexity of real-world noise generation process. And the performance of
approximation struggles under high-level noise rate without strong dataset assumptions. Consequently,
existing methods are largely limited and require to be improved or assisted.

Thanks to the development of MLLMs [18, 19, 20, 21, 22] which have been trained on massive data
to effectively fit various real-world data distribution, we propose to leverage MLLMs as knowledge
experts to help reduce dataset noise. Based on the empirical findings that noisy data are distributed
on different MLLMs probability curvature from clean data, we propose an intuitive hypothesis that
MLLMs are inherently optimized for the matching of image-text pairs. Such hypothesis motivates
us to propose NoiseGPT which leverages a novel In-Context Discrepancy (ICD) criteria to identify
and rectify noisy examples. Particularly, given an example which is in context with its label from
dataset, if they match with each other, the MLLM output is stable under perturbation. Conversely,
if the image and label are unmatched, the MLLM output will be sensitive to input perturbations.
In circumstances where a sample is regarded as noisy, we further leverage CLIP [23] as zero-shot
classifier to generate candidate labels. ICD is also applied on these candidates to elect a corrected
label with best score. Through extensive studies on datasets such as conventional corrupted versions
of CIFAR-10, CIFAR-100 [24], ImageNet ISCVRC2012, as well as real-world grounded datasets like
CIFAR-N [25], WebVision [3], the efficacy of NoiseGPT is rigorously validated. As a zero-shot data
cleansing method, NoiseGPT demonstrates its powerful ability to scalably distill significantly cleaner
versions of noisy datasets than their original ones. Furthermore, our algorithm can be embedded into
other LNL methods to further enhance the noisy learning performance under various LNL scenarios.
To conclude, our contributions in this paper are as follows:

• We introduce MLLMs as machine experts to cope with noisy labels for the first time,
potentially mitigating the reliance on human labor.

• We propose NoiseGPT to tackle the challenge of label noise by leveraging zero-shot capa-
bility of MLLMs. We employ a novel In-Context Discrepancy (ICD) criteria combined with
the token-wise Mixture-of-Feature (MoF) technique to quantify the possibility discrepancy
and identify noisy samples. Additionally, these noisy samples are recycled after label rectifi-
cation by comparing ICD scores among candidate labels generated by zero-shot classifier
CLIP.

• We conduct intricate investigations to evaluate the effectiveness of NoiseGPT. Furthermore,
we integrate NoiseGPT as an auxiliary data cleansing method alongside existing LNL
algorithms to validate its performance improvement. Additionally, we conduct performance
analysis comprehensively understand the details of NoiseGPT.

2 Related works

2.1 Learning with noisy labels

Existing LNL methods can be categorized into three types, data cleaning, loss-adjustment based
approaches and sample-selection based approaches. Data cleaning endeavors to filter out examples
whose labels are likely to be corrupted [26, 27]. Previous works in this branch leverages various
methods [28, 29, 30] such as bagging, boosting, K-nearest neighbor, anomaly detection to exclude
falselabeled instances. However, these methods tend to over-clean samples that are even true-labeled,
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resulting in aggravation of shortage of data in many cases. Tendencies of probability curvatures
of DNNs [31, 32, 33] during training are also utilized to filter noisy examples. However, their
robustness is strongly correlative to the training setting. Loss-adjustment based approaches focus on
modifying the loss items before updating the DNNs, including loss correction and loss reweighting.
Based on the fact that DNNs using Cross Entropy(CE) loss are prone to overfit noisy data [5],
substantial researches have been conducted to design a robust corrected loss [34, 35] by leveraging
transfer learning [36, 37, 38, 39], where noise transition matrix [8, 40, 41, 42] has been utilized.
However, the performance of loss correction is highly dependent on the precisely-estimated transition
matrix, which is hard under heavy noise and large number of classes. And the correction errors
will be accumulated during training. Loss reweighting, on the other hand, aims at attributing
weighted importance to examples in a designed training scheme to separate clean and noisy examples
[43, 44, 45, 46]. Rectifying vectors [47] are also used to guide the classification network through
leveraging information from input of the logits and labels. Nonetheless, this approach requires
particular reweighting functions and hyperparameters for different noise type and datasets, limiting
its practical implementation.

Another line of work, sample-selection, endeavors to identify true-labeled examples from noisy
training datasets during training. Researches [48, 49, 13, 50] distinguish clean examples by their
early-stage loss in DNNS utilizing memorization effect [51, 52]. Multi-network learning [53, 54, 11]
simultaneously trains an additional network to guide the sample-selection. Mix-up [15] employs
a semi-supervised mixture model [55] to separate clean and noisy examples, which is integrated
into a multi-network framework in DivideMix [13]. SELF [56] leverages unsupervised loss from
unlabeled examples while maintaining a running average model called mean-teacher [57, 58]. Pro-
Mix [59] leverages the utilities of clean examples by training balanced and unbiased classifiers in a
self-supervised framework on separated sub-datasets. Recently, RoCL [60] combines supervised and
semi-supervised learning in a two-stage training strategy to exploit both selected clean examples and
relabeled examples. Despite their achievement, existing sample-selection methods are intrinsically
linked to specific classification tasks, incapable to explicitly provide cleaned versions of datasets
in various scenarios. To cope with this, our work aims to provide a transferable noise reduction
paradigm to detect and rectify noisy labels by leveraging the zero-shot capability of MLLMs.

2.2 Multi-modal models

Recent years, Large Language Models [61, 62, 63, 64, 65, 66, 67] have been successfully applied
across different tasks of natural language processing. Concurrently, the arising of Vision Transformers
(ViTs) [68] has significantly advanced the development of visual models. In order to align the
representations of image and text, CLIP [23] utilizes unsupervised learning by training separate
image and text encoders with a contrastive loss on substantial image-text pairs. Besides, researches
also endeavor to augment LLM with pretrained visual models to obtain multi-modal LLMs, known
as MLLMs [69, 70, 71]. InstructBLIP [72] focuses on equipping MLLMs with the capacity to
follow human-instructions on a natural-language interface. The mPLUG-Owl [73] introduces a
modularized multi-modal pretraining paradigm to boost its transferability. MMICL [21] proposes a
novel context training scheme, allowing the insertion of image features at any position among input
text tokens. Based on the powerful zero-shot in-context capability of MLLMs, we propose NoiseGPT,
leveraging extensive knowledge acquired from vast multi-modal training examples, to detect label
noise. Subsequently, we utilize the zero-shot classification capability of CLIP for candidate labels
and compare their matching rates with the input image to derive a rectified label.

3 Methodology

In this section, we propose NoiseGPT for label noise detection and rectification, as shown in Figure 1.
Given a classifier and an MLLM model parameterized by ψ and θ = {θenc, θdec}, respectively, and a
small clean exemplar dataset Dex with several examples per category to provide prompt for MLLMs,
we take advantage of an intriguing Probability Curvature effect of MLLM where clean examples
xclean and noisy examples xnoisy lead to different prediction discrepancies under perturbation, e.g.,
Ex̃noisy

i ∼p(x̃noisy|xnoisy)d(x
noisy; x̃noisyi ) < Ex̃clean

i ∼p(x̃clean|xclean)d(x
clean; x̃cleani ), where d(·; ·)

denotes a novel In-Context Discrepancy (ICD) measure and x̃ stands for the perturbation of an
example under distribution p(x̃|x). Based on such an effect, we can successfully detect whether a
given image-label example pair x = {x, ỹ} has clean labels, i.e., whether ỹ matches with x. By
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Figure 1: We leverage the zero-shot ability of MLLM to examine whether an example pair is noisy.
To identify the potential noise, NoiseGPT first perturbs a given example x and produces a set of
augmented versions x̃ via using a novel token-wise Mixture-of-Feature (MoF) technique. Then by
comparing the Softmax probabilities qθ between x and x̃, we can calculate an In-Context Discrepancy
(ICD) measure to further decide the authenticity of the given label ỹ.

further exploring the probable class candidates of the classifier, we can effectively find the ground
truth label y by choosing the best-matching category. Hence, our NoiseGPT can assist as a dataset
cleanser without human intervention.

Generally, NoiseGPT includes two stages: 1) Noise detection and 2) Label rectification. Next, we
first demonstrate the noise detection process in Section 3.1, and then we carefully elucidate the details
of label rectification in Section 3.2.

3.1 Noise Detection

Figure 2: We demonstrate the distinctive curvatures of clean
and noisy examples through an experiment. Ten perturbed
exemplars are generated for a clean and a noisy sample from
CIFAR-100 respectively. The MLLM output Softmax prob-
ability qθ(x̃|ỹ) of perturbed clean exemplars x̃clean ∼ p(·)
(left) reside within a convex region on the curvature; While
those of noisy exemplars x̃noisy ∼ p(·) (right) tend to cluster
around the original point, posing lower or higher probability.

In this section, we propose to con-
duct noise detection based on the
probability curvature effect. Specifi-
cally, we observe that clean examples
lie on a smooth and convex probabil-
ity curvature, and noisy examples fall
on fluctuated and non-convex curva-
ture, as shown in Figure 2. A similar
effect has also been found in Mitchell
et al. [74]. As a result, under slight
perturbation, the probability value
would change differently, which al-
lows us to identify dataset noise. To
utilize such an effect, we first con-
duct a novel token-wise Mixture-of-
Feature (MoF) to perturb each exam-
ple, then, the In-Context Discrepancy
(ICD) measure can be calculated to
assist detection.

Mixture-of-Feature aims to perturbate or augment examples at the feature level through interpo-
lation, segmentation, and partial substitution, which avoids changing in the input space as it might
cause a mismatch between modalities [75]. Since dataset noise owes to the image example possessing
some confusing features that resemble other noisy classes, we propose to mix the features between a
given query example x and exemplars xex ∈ Dex from other noisy classes to inject noisy signals.
Specifically, our MoF process is formulated as

z̃ = p(z|zex) ≜ z[I(m = 1)]⊕ zex[I(m = 0)],where p(m = 1) = w, (1)
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Figure 3: We conduct validation experiments on six noisy datasets using ICD score, namely CIFAR-
10 Sym. 50%„ CIFAR-100 Sym. 50%„ CIFAR-10N with worse labels, CIFAR-100N with noisy
labels, Webvision Sym. 40%„ ISLVRC12 Sym. 40%,. We collect scores of 10,000 clean samples and
10,000 noisy samples from each dataset, and each sample is augmented by 10 perturbed exemplars
with a MoF weight of 0.5.

where z and zex are the latent representations of input images x ∈ x and xex ∈ xex correspondingly
extracted by the vision encoders of MLLMs, z[I(·)] denotes the indexing operation that selects the
elements from z where an indexing function I(·) holds true, ⊕ stands for element-wise addition, p(·)
stands for the MoF function, and m indicates a binary mask to select feature elements, which is
controlled by probability w to trade off between z and zex, larger w reserves more information from
the original input in the mixed feature z̃.

Different from the MoF process conducted using intermediate features in Tong et al. [75] which
might break the image patterns further causing misalignment with the subsequent LLM decoder,
we propose a token-wise MoF operation that mixes the features by replacing tokens. Intuitively,
the latent embeddings z of MLLMs are sequentialized tokens, each containing specific semantic
information. Thus, we conduct MoF from the token level, which can correspondingly perturbate
semantic parts across different example pairs. In this way, the mixed feature z̃ can successfully inherit
noisy information and still be aligned with the latent MLLM feature space. After producing mixed
features z̃ as the perturbed versions of original ones z, we combine them with the embeddings of
both prompt s and label ỹ and feed them to the MLLM decoder module to obtain the final prediction
as qθdec{s, z, ỹ}. Next, we leverage the In-Context Discrepancy (ICD) criteria to detect dataset noise.

In-Context Discrepancy is based on the probability curvature effect where perturbation affects
the prediction probabilities of clean and noisy examples differently. Formally, our ICD criteria is
calculated as

d(s, z, ỹ; s, z̃, ỹ) ≜ qθdec(s, z, ỹ)− Ez̃∼p(z̃|z)qθdec(s, z̃, ỹ), (2)

where d(·; ·) denotes the ICD function calculated between two entries, and p(z̃|z) is the perturbation
distribution for generating z̃. Intuitively, MLLMs are convexly optimized to associate visual features
with corresponding text labels. If an example pair x is clean, i.e., image x and label ỹ are matched, it
will reside in an extrema where its local probability curvature is smooth and convex. On the other
hand, if x is a noisy point where the x and ỹ are mismatched, it might fall on unstable and non-convex
curvature.

By injecting a little perturbation as done by the previous MoF process, we observe that the MLLM
prediction qθ of clean examples will gradually decrease, but for noisy examples, qθ would seriously
oscillate to a random value around its original one, as depicted in Figure 2. Therefore, our ICD
results for clean examples are always positive and relatively larger than noisy ones, further effectively
validating the authenticity of input example pairs. To rescale the ICD score of different examples, we
further conduct normalization by dividing the results of Eq. 2 by a standard deviation of qθdec(s, z̃, ỹ):

d̄(s, z, ỹ; s, z̃, ỹ) ≜
qθdec(s, z, ỹ)− Ez̃∼p(z̃|z)qθdec(s, z̃, ỹ)√

Ez̃∼p(z̃|z)
[
qθdec(s, z̃, ỹ)− Ez̃∼p(z̃|z)qθdec(s, z̃, ỹ)

]2 . (3)

As a result, we can effectively divide clean examples and noisy ones based on the distribution of
d̄(z, z̃) as illustrated in Figure 3. Moreover, the effectiveness of such an effect is carefully validated
on various datasets under MMICL [76], a state-of-the-art MLLM that supports effective image-text
in-context learning (ICL) in Section 4. In practice, we set a threshold τ to decide whether an example
pair is noisy or not: those with discrepancy scores larger than τ are considered as clean, otherwise,
we further conduct label rectification.

3.2 Label Rectification
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Algorithm 1 NoiseGPT: noise identification and rectifi-
cation.
Input: sample x and label y from dataset Dset, MLLM qθ ,

pretrained multi-classifier qcv , perturbation function p,
weight of MoF w, number of perturbations n, number of
candidate labels C, threshold τ

1: Uniformly sample ρC examplers with ground truth labels
from Dset to construct a tiny support set Dex;

2: for x in Dset do
3: xi ∼ p(x|x̃ex

i ), i ∈ [1, n] ▷ token-wise MoF

4: µ̃← 1
n

n∑
i=1

qθ(xi, ỹ) ▷ approximate expectation in

Eq. 2
5: dx ← qθ(xi, ỹ)− µ̃

6: σ̃2
x ← 1

n

n∑
i=1

(qθ(x̃i, ỹ)− µ̃)2

7: d̄x ← dx√
σ̃2
x

▷ normalization

8: if d̄x > τ then
9: Accept current ỹ as correct label

10: else
11: {ypred

j }C1 ← qcv(x) ▷ acquire candidate labels
12: for j ∈ 0, 1, · · · , c do
13: d̄j ∼ d̄(x, ỹ; x̃, ypred

j ), j ∈ [1, C]

14: y ← argmax{d̄(z, ỹ; z̃,ypred
j )}Cj=0

15: end for
16: end if
17: end for

Thanks to the previous noise detection pro-
cess, we can effectively validate the authen-
ticity of a given example pair x = {x, ỹ}.
Moreover, we hope to find potentially cor-
rect labels y to rectify the noisy ones ỹ.
Particularly, we repeat the noise detection
process for C probable noisy categories to
find the most likely label y, formally

y ≜ argmax{d̄(s, z, ỹ; s, z̃,ypredj )}Cj=0,
(4)

where ypred indicates the most proba-
ble candidate labels of x selected by the
classifier ψ where the subscript denotes
the j-th entry. Since various datasets
have different numbers of classes, it is
infeasible to traverse all classes. Hence,
we leverage the predictions of classi-
fier models such as CLIP [23] and se-
lect top-C classes as the candidate labels
i.e., ypred = [argsort(gψ(x))]0:C where
[argsort(·)]0:C finds the index of top-C el-
ements.

Additionally, to ensure the MLLM output
is mapped to a certain probability space in
order to provide unified measurement for
every example, we conduct prompting to restrict the output to only binary words, i.e., True or False.
Moreover, our prompt leverages the ICL ability of MLLMs by providing both correct and incorrect
matching exemplars. Our prompt is shown below:

Question: This image <IMG_label#i > shows a photo of <label#i >, True or False? Answer: True;
Question: This image <IMG_label#j > shows a photo of <label#i >, True or False? Answer: False;
Question: This image <IMG_query> shows a photo of <label#i >, True or False? Answer:

Specifically, for a query example x = {IMG_query, label#i} whose label prediction from classifier
is i := [argsort(gψ(x))]0, we choose one image IMG_label#i ∈ Dex to match with label label#i as
a True exemplar. Moreover, we choose another image IMG_label#j ∈ Dex where j ∈ {0, · · · , C}
and j ̸= i as a False exemplar. As shown in Huang et al. [77], such prompt design can effectively
teach MLLMs what kind of image-label combination is True or False. As a result, the prediction qθ
for the query example is based on both the inherent knowledge of MLLMs and the demonstration
provided by the prompt. Furthermore, our NoiseGPT restricts qθ to binary values which significantly
stabilizes the MLLM outputs. As revealed by existing studies [77, 78], providing a set of class
candidates and asking which one is the ground truth shows sub-optimal performance. The reason is
that current MLLMs cannot effectively conduct multi-class classification and it gets easily confused
when facing various choices. Therefore, we only require MLLMs to output binary prediction
under demonstrative exemplars which unleashes the power of ICL and benefits making trustworthy
inferences. We summarize our methodology in Algorithm 1. Next, we empirically validate the
proposed NoiseGPT.

4 Experiments

In this section, we first introduce the specifics of our experiment setup. Then we validate the
efficacy of our method through an investigation with regard to noise identification and rectification.
Furthermore, we undertake a quantitative analysis to demonstrate the enhancing effects of NoiseGPT
as data cleansing method through comparing contemporary state-of-the-art LNL models with their
combined counterparts with our methodology. Finally, we conduct ablation studies to fully explore
the performance of our approach.
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4.1 Experiments setup

Datasets In our experiments, we leverages re-annotated noisy datasets CIFAR-10N and CIFAR-
100N [25] which contain real-world human annotation errors. We also generate noisy versions of
CIFAR-10, CIFAR-100 [24], WebVision [3] and ImageNet ILSVRC2012 for our studies. The details
are as follows:

CIFAR-10N and CIFAR-100N [25]: We adopt Aggregate, Rand1 and Worst versions of CIFAR-
10N whose noise rates are 9.03%, 17.23% and 40.21% respectively and Noisy-Fine version of
CIFAR-100N whose noise rate is 40.20%.

CIFAR-10 and CIFAR-100 [24]: The CIFAR-10 contains 50,000 labeled images of 10 different
classes, while CIFAR-100 contains 100 classes, each with 500 images. We mannually inject 20%,
50%, 80%, 90% symmetric and 40% asymmetric noise into CIFAR-10 and CIFAR-100 respectively.

WebVision [3]: We utilize its validation subset which contains 50,000 images for the 40% symmetric
noise condition. Moreover, in order to verify the capacity of NoiseGPT under the real-world
circumstance where samples are collected without careful annotation, we utilize mini-Webvision,
a subset of Webvision, for noise detection and rectification experiments and test the classification
performance on the validation set of Webvision.

ImageNet ILSVRC2012: We utilizes the validation subset which contains 50,000 images and generate
symmetric noise for 50% examples in it.

Models Primarily, we leverage original CLIP models [23] as our multi-classifier. For MLLM
backbone, we employ MMICL [76] which adopts vision encoder of BLIP-2 [70] and FLAN-T5-XXL
[79] as the LLM. For comparison with previous LNL works, we consider two methods Pro-Mix [59]
and M-correction [35] which train an 18-layer PreAct Resnet for classification tasks.

Figure 4: The noise detection ROC curves.

Evaluation settings For exemplars that are
used in the in-context learning process, we select
3 images per category to construct a tiny ground-
truth support set {xe} to simulate the scarceness
of examples in real-world condition. examples
are also selected from this support set to gen-
erate perturbed sample features. Specifically,
for each query sample, we construct n = 10
perturbed features with different perturbing re-
sources from {xe}. For pseudo labels, we em-
ploy the top C = 3 prediction of CLIP to con-
duct label rectification process.

4.2 Performance analysis

Table 1: Noise detection and rectification performance.

Dataset Noise type AUROC Rectification

CIFAR-10N
Aggregate 0.8333 81.4%

Rand1 0.8467 83.9%
Worst 0.8508 84.9%

CIFAR-100N Noisy 0.7899 59.3%
Webvision Sym. 40% 0.8935 43.2%
ILSVRC12 Sym. 40% 0.9253 43.3%

In this section, we aim to demonstrate
the radical capability of NoiseGPT in de-
tecting and rectifying label noise. Our
experiments are conducted on 6 datasets:
CIFAR-10N Aggregate, Rand1, Worst,
CIFAR-100N Noisy, Webvisin Sym.
40% and ILSVRC12 Sym. 40%. The
results of classification and rectifica-
tion are recorded to evaluate the perfor-
mance.

Effectiveness of noise detection For evaluation metrics, we utilize Area Under the Receiver
Operating Characteristic curve (AUROC) to reflect the noise detection performance. AUROC is
commonly used to evaluate the performance of binary classification models. Generally, a higher
AUROC score (closer to 1) indicates better discrimination ability, while 0.5 suggests random guessing.
For label rectification performance, we compare corrected labels of query examples with their true
labels to obtain a rectification accuracy.
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Table 1 shows the performance of NoiseGPT in noise detection and rectification, the first column
shows AUROC scores and the second shows the label correction accuracy. Figure 4 shows the
AUROC curves. Our NoiseGPT achieves over 0.83 and 0.78 AUROC score on CIFAR-10N and
CIFAR-100N datasets. Especially for Webvision and ILSVRC12, their score reaches over 0.89,
which demonstrates the efficacy of filtering out noisy examples. In terms of rectification, NoiseGPT
achieves over 80% accuracy on CIFAR-10N datasets. To sum up, NoiseGPT is evident to detect label
noise and further recycle most of the noisy examples by rectifying noisy labels to ensure the dataset
quantity and quality.

Table 2: Detection performance comparison.

Method Precision Recall F1
DivideMix* 94.36% 92.63% 93.49%
Proto-Mix* 96.59% 93.78% 94.57%
NoiseGPT 97.80% 94.39% 96.07%

Comparison with baselines We compare the
detection performance with the baselines in
a binary-classification manner with evaluation
metrics such as Precision, Recall rate and F1
score with baseline methods. Experiments are
conducted on CIFAR-10 sym. 80% dataset,
where instances are categorized into 4 types:
true-clean, false-clean, true-noisy, and false-
noisy. Table 2 shows the results. Note that the detection scores of baselines are from their own
detection modules. And the hyperparameters of NoiseGPT are fine-tuned to get the best scores.

4.3 Quantitative comparison

While NoiseGPT primarily focuses on zero-shot noise detection and rectification, existing research
in Learning with Noisy Labels (LNL) has delved into training noise-robust Deep Neural Networks
(DNNs) for classification tasks. To effectively showcase the advantages of our approach, we integrate
NoiseGPT as a data cleansing method with two LNL baselines, namely Pro-Mix and M-correction,
constituting "NoiseGPT+Pro-Mix" and "NoiseGPT+M-correction", respectively. The classification
models are trained under the same settings of as specified in papers of baselines.

Table 3: Noise rectification results.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. Asym. Sym.
Before 20% 50% 80% 90% 40% 20% 50% 80% 90%
After 7.4% 13.6% 19.3% 24.4% 9.4% 16.1% 28.0% 40.2% 44.6%
NoC 46279 43206 40335 37807 45282 41940 35985 29918 27716

Comparison with classic noisy labels Our experiments are conducted on the CIFAR-10 and
CIFAR-100 datasets, considering varying levels of symmetric and asymmetric noise. Table 3
shows the noise reduction effects of NoiseGPT, which is capable of improving the clean proportion
within datasets. Note that the last row shows the number of clean examples after rectification.
The improvement is particularly substantial for CIFAR-10 datasets with high noise rate. And for
more challenging datasets of CIFAR-100, NoiseGPT still keeps its effectiveness across varing noise
conditions.

Table 5: Classification on Webvision.

Method Accuracy
F-correction 61.12
D2L 62.68
Co-teaching 63.58
DivideMix 77.32
NoiseGPT+DivideMix 78.10

Subsequently, we transfer cleaned datasets into clas-
sification training. We compare the performance of
"NoiseGPT+" with their baseline counterparts and other
representative works in this field. Note that we re-produce
the aforementioned Proto-Mix and M-correction. Due to
the lack of detailed training setting information proposed
in their papers, some of the re-produced results are not
as fine-tuned as what in papers. Nonetheless, we conduct
experiments of "NoiseGPT+" with same hyperparameters
with their baseline counterparts on each dataset. Thus they
objectively demonstrate the effect of NoiseGPT. Table 4 shows experimental results. NoiseGPT poses
enhancing effects to LNL works in most noise conditions. Especially in high noise levels, the im-
provement of classification accuracy is increased by over 20% and 14% respectively for M-correction
and Pro-Mix in CIFAR-10 Sym. 0.9.
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Table 4: Classification accuracy comparisons.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. Asym. Sym.
Noise level 20% 50% 80% 90% 40% 20% 50% 80% 90%
Cross-Entropy 82.7 57.9 26.1 16.8 85.0 61.8 37.3 8.8 3.5
F-correction 83.1 59.4 26.2 18.8 87.2 61.4 37.3 9.0 3.4
Co-teaching+ 88.2 84.1 45.5 30.1 - 64.1 45.3 15.5 8.8
Mixup 92.3 77.6 46.7 43.9 - 66.0 46.6 17.6 8.1
P-correction 92.0 88.7 76.5 58.2 88.5 68.1 56.4 20.7 8.8
Meta-Learning 92.0 88.8 76.1 58.3 89.2 67.7 58.0 40.1 14.3
M-correction* 93.7 92.0 87.6 68.7 91.5 68.6 59.4 47.3 12.9
NoiseGPT+M-correction 89.2 93.7 92.6 91.5 92.8 67.0 64.3 58.1 39.4
Pro-Mix* 95.9 94.6 83.1 75.0 80.5 79.6 74.6 55.4 28.9
NoiseGPT+Pro-Mix 96.2 94.9 88.8 89.6 92.3 76.3 71.5 63.9 47.4

Comparison with real-world noisy labels In the real-world situation, some datasets prevailing
recently are collected from the Internet, such as Webvision. Thus, they contain label noises that
represent different patterns from the symmetric. In this paper, we utilize mini-Webvision, a smaller
subset of Webvision to verify the capacity of NoiseGPT to combat label noises of this kind. Due
to the lack of ground-truth annotations, we directly compare the classification performance with
baselines. Following previous works [13], we use the Inception-ResNet v2 [80] as the classification
backbone.The results in Table 5 demonstrate that NoiseGPT remains effective on real-world noisy
datasets like Webvision. The “NoiseGPT+” denotes that the training set is first cleaned by NoiseGPT.

4.4 Sensitivity study

Figure 5: Trend of performance under changing perturbation
number.

Effect of perturbation number
Since we approximate the expectation
in Eq. 2 with a sequence of perturba-
tions, theoretically increasing the per-
turbation number n will make the nor-
malized ICD score more robust and
effective in distinguishing clean and
noisy examples. However, there is a
marginal effect when n increases to an
extent and becomes computationally
unworthy. Figure 5 shows the trend
of noise rectification performance un-
der a changing hyperparameter n in
the attachment. In our experiments,
we select the number of perturbations
in order to balance the computational
cost and performance.

4.5 Ablation study

The existence of curvatures on different datasets We further demonstrate the quality of possibility
curvature by conducting experiments where query examples from noisy dataset are augmented by a
series of perturbed exemplars with varying perturbation strength. According to Section 3.1, we can
control the perturbation strength by adjusting token-wise MoF weight w, a larger w indicates higher
proportion of information coming from query example. We conduct this experiment on four datasets:
CIFAR-10 Sym. 50%, CIFAR-100 Sym. 50%, Webvision Sym. 40%, and ILSVRC Sym. 40%.

Figure 6 shows the curvatures of output Softmax probability under changing MoF weights. We
calculate the averaged qθ(x) of clean and noisy examples in each dataset respectively. It is investigated
that on for clean examples, the output Softmax probability qcleanθ (x) tends to descend as the MoF
weight w decreases. Conversely however, the curvature of noisy examples fluctuates optionally
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Figure 6: Output possibility curvatures of clean and noisy examples under different perturbation
strength.

unconcerned with the change of weight w. This phenomenon is confirmed on all datasets, firmly
backing up our method, NoiseGPT, which utilizes the discrepancy of output Softmax probability
qθ(x) under perturbation to distinguish between clean and noisy examples.

Figure 7: Clean categories that are easier to be mistaken as noisy.

Clean classes that are easier
to be considered noisy At-
tributing to the fact that clean
and noisy examples have differ-
ent ICD score distributions, our
NoiseGPT is capable to detect
and rectify noise. However, the
ICD score distribution does not
remain unchanged among differ-
ent categories. Some categories
of clean examples tend to have
relatively higher ICD scores than
others, which, in other words, are
easier to be mistaken as noisy
during the process of NoiseGPT.
We investigate such categories
over different datasets, their average ICD scores are recorded as a indication of to what extent
they tend to be mistaken. Note that for clean examples, lower score indicates easier to be mistaken.
Figure 7 shows which classes are easy to be mistaken for noisy. Further exploration of detection
biases are provided in Section 5 in our Appendix.

5 Conclusion

Contribution In this work, we propose a novel label noise solution via leveraging MLLMs as
experts to reduce and recycle noisy instances in datasets. Specifically, we investigate the probability
curvature of MLLMs under input perturbation. Through a token-wise Miture-of-Feature technique,
we can calculate ICD scores of input examples and divide them into clean and noisy. By conducting
extensive quantitative and qualitative experiments on different datasets, our method is validated to
sustain effective over varying noise conditions. Moreover, it surpasses previous LNL methods in
noise detection and poses substantial potential to cope with other deep learning models to improve
their performance. In the future, our method can be further explored for insights into more probelms
like OOD detection, weakly-supervised learning, etc.

Limitation Despite its adaptability to various datasets and noise levels, the performance of
NoiseGPT is constrained by the capabilities of the underlying machine expert it relies on. Re-
search [75] has highlighted the bottleneck effect in vision models within MLLMs. Furthermore, the
instruction-following capability of MLLMs significantly influences the distributions of ICD scores,
which are closely tied to the confidence of MLLM answers. Enhancing the proficiency of these
machine experts can lead to improved performance of NoiseGPT in its tasks.
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Appendix

In this section, we first introduce implementations details and computational usage of our experiment.
Then, we demonstrate more supplementary experiments to fully explore the qualities of NoiseGPT.

Implementation details

Table 6: NoiseGPT hyperparameters.

Hyperparameters CIFAR-10N
MoF weight 0.5
Number of exemplars per class 3
Number of perturbations per query 10
Threshold 0.7
Number of candidate labels 3

Among all hyperparameters, MoF
weight w, number of perturbation ex-
emplars n and number of candidate
classes C are of most significance.
Theoretically, a larger n avails the ap-
proximation in Eq. 2, and for datasets
with more complicated classes a larger
C is suitable to search for appropriate
label. Table 6 shows hyperparameters
pf our NoiseGPT experiments. Note
that in some of the experiments, we fine-tune the threshold for better noise detection performance.

Compute resources

Our noise detection and rectification experiments of NoiseGPT are powered by GeForce RTX 4090,
taking up about 28.5 GiB memory in total for CIFAR datasets. The runtime (hours) of experiments
are recorded under n = 10, C = 3, w = 0.5, and illustrated in Table 7.

Table 7: Runtime of NoiseGPT.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. Asym. Sym.
Noise level 20% 50% 80% 90% 40% 20% 50% 80% 90%
Runtime (hour) 67.5 94.2 116.4 125.8 88.3 70.2 103.7 126.5 130.9

More classification training performance

In Section 4.3, we have compared the classification performance of "NoiseGPT+" and baselines on
CIFAR-10/100 Sym./Asym. datasets. Here we expand this experiment on more datasets: CIFAR-10N
Worst and CIFAR-100N Noisy. Table 8 shows the effects of NoiseGPT as a dataset cleansing method.
And Table 9 shows the results of classification accuracy.

Table 8: Noise rectification results of CIFAR-N datasets.

Dataset CIFAR-10N CIFAR-100N
Noise type Aggregate Rand1 Worst Noisy
Noise Rate (before) 9.03% 17.23% 40.21% 40.20%
Noise Rate (after) 7.92% 8.07% 14.84% 28.45%
Clean number 46038 45963 42578 35774

Table 9: Classification accuracy on CIFAR-N datasets.

Dataset CIFAR-10N CIFAR-100N
Noise type Aggregate Rand1 Worst Noisy
M-correction* 95.12 94.81 86.09 64.19
NoiseGPT+M-correction 95.16 94.79 90.36 68.20
ProtoMix* 97.95 97.17 95.73 72.84
NoiseGPT+ProtoMix 97.66 97.48 96.90 73.24

More noise detection and rectification performance
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Table 10: NoiseGPT performance on CIFAR datasets.

Dataset Noise type AUROC Correction accuracy

CIFAR-10

Sym. 20% 0.9175 82.8%
Sym. 50% 0.9203 83.4%
Sym. 80% 0.9225 84.2%
Sym. 90% 0.9130 84.0%

Asym. 40% 0.8183 84.9%

CIFAR-100

Sym. 20% 0.8949 56.4%
Sym. 50% 0.8969 59.9%
Sym. 80% 0.8903 61.5%
Sym. 90% 0.8848 61.9%

In section 4.2 we intro-
duce AUROC and Label
Correction Accuracy as
the evaluating metrics for
NoiseGPT noise detection
and rectification perfor-
mance. In order to better
understand the improving
impacts NoiseGPT poses
to classification tasks, we
further exhibit the evaluat-
ing results of NoiseGPT on
CIFAR-10/100 Sym./Asym.
datasets. Table 10 shows the noise detection and rectification results with AUROC score and
correction accuracy. Figure 8 shows the ROC curves of noise identification.

Figure 8: The noise detection ROC curves of CIFAR datasets.

Noisy classes that are easier to be considered noisy

In Section 4.5, we illustrate classes that are clean but easier to be mistaken for noisy. Similarly, some
categories of noisy examples are easier to be considered clean, obtaining lower ICD scores than their
fellows. Contrary to clean classes, higher score for noisy examples indicate that they are easy to be
mistaken.

Table 11: Comparison of detection bias.

Method 0 1 2 3 4 5 6 7 8 9 Var
Proto-Mix* 9.8 11.0 9.5 7.8 10.1 8.2 10.6 11.0 10.8 11.1 1.2
NoiseGPT 10.4 10.7 9.0 10.6 10.9 9.0 10.8 8.5 10.0 10.2 0.68

Comparisons on the detection biases with the baseline

The experiments in Section 4.5 indicate that there are essentially biases in the noise detection stage of
NoiseGPT, which will lead to unbalanced example quantities of different classes after rectification.
Similar phenomenon also appears in the baselines. Thus, here we compare the biases in noise
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Figure 9: Noisy categories that are easier to be mistaken as clean.

detection between NoiseGPT and Proto-Mix, and calculate the proportions of 10 classes in selected
clean data on CIFAR-10 sym. 90%. Table 11 shows the results. Our NoiseGPT exhibits significantly
lower variance in the example distributions across different classes, indicating reduced bias in noise
detection and rectification compared to Proto-Mix.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Abstract and Section 1, we discuss about previous LNL methods, and the
utilization of MLLMs in our work to detect and rectify noisy labels.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 5, we point out that our method is constrained by the performance
of visual models, as their capability to extract prioritized information limit our NoiseGPT to
work on complicated large-revolution datasets. Besides, the effects of prompt settings is
also mentioned.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We mainly propose the assumption of MLLM output probability curvature in
Section 3, guiding the definition of ICD criteria, which is further proved with experiments
in Section 3.1. The results of experiments in Section 4.5 also back up this theory.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our method is based on the zero-shot inference of backbone models. Following
the experiment settings and hyperparameters mention in Section 4.1, all results of NoiseGPT
can be reproduced. As for comparison baseline works, we follow the settings in their original
codes and papers, and re-produce some of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: So far we have not got ready for the open of our codes, due to time constraint.
We will consider it latter.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We introduce the effects of hyperparameters in Section 3 and make it clearly
demonstrated in our experiment settings in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the lack of computational resources, we are not able to conduct
statistical researches.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We introduce the running environment of our experiments and reference
execution time of NoiseGPT on different datasets in the Appendix Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully understand the NeurIPS codes of ethics provided. And we will make
it ensured from harmful consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: In Section 5 we discuss the positive impacts our work may have on the future
researches in the fields of noisy labels and machine learning.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no risk our released work could have posed.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We state the reference of all the models and data clearly in our paper, which
can be seen as cites in the main content and detailed in Reference.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not contain such new assets that includes datasets or model
frameworks.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work involves no crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work involves no crowdsourcing nor research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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