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ABSTRACT

With the rapid development of generative technology, current generative models
can generate high-fidelity digital content and edit it in a controlled manner. How-
ever, there is a risk that malicious individuals might misuse these capabilities for
misleading or unlawful activities. Although existing research has attempted to
shield photographic images from being manipulated by generative models, there
remains a significant disparity in the protection offered to video content editing.
To bridge the gap, we propose a protection method named VideoGuard, which can
effectively protect videos from unauthorized malicious editing. This protection is
achieved through the subtle introduction of nearly unnoticeable perturbation that
interferes with the functioning of the intended generative diffusion models. Dif-
ferent from images, videos consist of sequential frames, containing not only visual
content but also motion dynamics. Due to the redundancy between video frames,
and inter-frame attention mechanism in video diffusion models, simply applying
image-based protection methods separately to every video frame can not shield
video from unauthorized editing. To tackle the above challenge, rather than op-
timize perturbation in a frame-wise manner like image-based methods, we adopt
joint frame optimization, treating all the video frames as an optimization entity.
Furthermore, we extract video motion information and fuse it into optimization
objectives. Thereby, these alterations can effectively compel the models to pro-
duce outputs that are implausible and inconsistent. We provide a pipeline to op-
timize such a perturbation. Finally, we use both objective metrics and subjective
metrics to demonstrate the efficacy of our method, and the results show that the
protection performance of VideoGuard is superior to all the baseline methods.

1 INTRODUCTION

Recently, there has been great progress on generative models(Ho et al. (2020); Croitoru et al. (2023);
Song et al. (2020a); Song et al. (2020b)), and the quality of the content they create continues to
improve. Current technology can generate very realistic images(Nichol et al. (2021); Ramesh et al.
(2022); Rombach et al. (2022); Saharia et al. (2022)) and can be edited in a controlled manner(Zhang
et al. (2023); Kim et al. (2022); Zhang et al. (2023)). With the rapid development of image genera-
tion technology, video tasks have also received more and more attention(Khachatryan et al. (2023);
Wu et al. (2023); Singer et al. (2022); Brooks et al. (2024)). Nowadays, readily available open-
source models, especially diffusion-based models have simplified the process of altering and mod-
ifying visual media such as photos and videos. Such technology has brought great convenience to
film, television, entertainment, and other industries. Nevertheless, the easy use of these models has
raised concerns about their potential abuse(Shen et al. (2024); Gu (2024)). For example, someone
posts their photos or videos online, and an adversary can maliciously modify the video content to
slander or create fake news(Yu et al. (2024b); He et al. (2024); Salman et al. (2023)). Such abuse
poses a significant security risk to individuals and underscores the critical importance of studying
protection algorithms. Several prior studies have suggested methods to protect images from unau-
thorized or inappropriate use by preemptively embedding adversarial perturbation(Liu et al. (2023);
Salman et al. (2023)). This perturbation is carefully designed based on the diffusion models. When
edit models are employed by people with bad intentions, clean images can be easily and maliciously
modified, while images with protective perturbation can mislead the diffusion model and result in
distorted edit content. A standout protection method is Photoguard(Salman et al. (2023)), which
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A spider man is skiing on the snow

A dog is running on the road

A spider man is skiing on the snow

DDIM Inversion Process
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Prompt: A rabbit is 
eating an orange

Original Video

Original Video Edited Video
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Unauthorized Edit

Unauthorized Edit
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DDIM Inversion Latent

Random Latent

Motion Dynamic consistent to source video

Motion Dynamic not consistent to source video

Figure 1: Left: The overview of video editing protection. Right: The first row represents the DDIM
inversion latent obtained from the original video; the second line represents DDIM inversion latent
with the same motion prompt, we can see the motion consistent with the original video; the third row
represents random latent with the same motion prompt, which results in random motion dynamic;
the last row represents DDIM inversion latent with another motion prompt, and the resulting video
shows the motion is consistent to the original video

efficiently blocks the functionality of latent diffusion models (LDMs), forcing them to produce un-
satisfactory edits for a specific image. Furthermore, there have been parallel research efforts aimed
at safeguarding certain artistic styles or elements from being exploited in the training of generative
models(Zhai et al. (2023); Peng et al. (2023)). However, protecting videos from editing has been
less explored in our community. Similar to the image-based edit protection setting, in the video-
based edit protection task, clean videos can be easily and maliciously modified, while videos with
protective perturbation can mislead the diffusion model and result in distorted edit content. Figure
1 (left) presents the video edit protection overview. One intuitive approach to video protection is to
apply the previous image-based method(Salman et al. (2023); Li et al. (2024)) to each frame. How-
ever, video is a signal containing motion information. There exists high content redundancy between
frames. Moreover, most video edit models employ a 3D attention mechanism(Wu et al. (2023); Qi
et al. (2023); Liu et al. (2024b)) for consistency preservation. Directly applying an image-based
method neglects the similarity of frames, thus adversaries can still make successful edits. Further-
more, in an image-based protection task, the main optimization objective is to search for a nearly
unnoticeable perturbation that leads to distorted image content when edited by adversaries, while in
a video-based protection task, video consistency is also a very important visual characteristic, and
thus frame consistency should also be taken into consideration during perturbation optimization.

To raise the cost of unauthorized video editing, we propose a two-stage motion-based perturbation
method. Our method extracts not only content information but also motion information and hides
them from the edit model. When the perturbation is added to a video and the perturbed video is
fed into edit models, the frame consistency will be disrupted, thereby leading to distorted content.
Specifically, given a video V and its inversion latent Z0, in stage 1, we formulate an optimization
problem of minimizing motion loss and content loss to seek an inversion latent Zlatent in ϵ-spherical
neighborhoods of Z0, and then a projection gradient descent method(Madry (2017)) is provided to
solve the problem. In stage 2, we regard this inversion latent as a pseudo label and formulate
another optimization problem of minimizing the loss between the current inversion latent and the
target inversion latent(pseudo label), and then the Particle Swarm Optimization method(Kennedy &
Eberhart (1995)) is adopted to search for the best video perturbation. Fused with this protective video
perturbation, we can obtain an immunized video. Consequently, when doing an editing task with
the immunized video, the adversary will obtain a manipulated inversion latent from this perturbed
video, and this inversion latent will be fed into the denoise process, resulting in a distorted video
that can be easily perceived as fake. During the inversion latent optimization process, we treat all
frames’ inversion latent as a whole entity and optimize jointly with the projection gradient descent
method. Through this approach, we can take inter-frame consistency into consideration, which can
effectively destroy the original video’s motion information. Furthermore, we use the perturbation
vector searching method to optimize video perturbation in the video pixel space, which requires
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fewer computation resources. As such, videos with our protective perturbation can hinder the efforts
of video diffusion models and prevent malicious modification.

We choose pioneer video editing works including Tune-A-Video(Wu et al. (2023)), Fate-Zero(Qi
et al. (2023)), and Video-P2P(Liu et al. (2024b)), and conduct extensive experiments on subsets of
the DAVIS dataset(Wang et al. (2019)) and some real-world videos. We choose Random Noise Per-
turbation and Image-based Perturbation as baseline methods to demonstrate our method’s efficacy
and superiority. Compared to these baseline methods, our video protection method performs better,
with the frame consistency metrics dropping from 90.91 to 81.55 and text-frame alignment drop-
ping from 18.50 to 8.46 on average. In the VBench(Huang et al. (2024)) evaluation, our proposed
method demonstrates superior performance compared to the baselines across five video quality-
related metrics. Notably, Subject Consistency exhibited a reduction from 89.45 to 79.08, while Mo-
tion Smoothness decreased from 89.82 to 80.73, underscoring the efficacy of our approach. More-
over, VideoGuard has a more significant visual effect, which means the edit result of immunized
video is severely distorted and can be easily perceived as fake, thus achieving the goal of protecting
video from unauthorized editing. Contributions of our work can be summarized as follows:

• We analyze the motion characteristic in video data and introduce a motion-based video
editing protection method. To our knowledge, this is the first editing protection method
tailored for video editing tasks rather than directly applying image-based methods in a
frame-wise manner.

• We propose a novel two-stage protection pipeline for diffusion-based video edit protection.
We formulate optimization problems for latent perturbation and video perturbation respec-
tively, and we also provide an effective gradient-based algorithm at stage 1 and an efficient
gradient-free algorithm at stage 2 to solve the optimization problems. Added with nearly
imperceptible video perturbation, immunized videos can mislead the diffusion models and
lead to distorted edit results.

• We conduct a lot of experiments to evaluate VideoGuard. The results show that our method
can effectively protect video from unauthorized editing. Compared to baseline methods,
VideoGuard is superior in both qualitative and quantitative evaluations.

2 RELATED WORK

2.1 LDMS BASED VIDEO EDITING

Generative models have demonstrated impressive performance in image editing, with approaches
ranging from GANs(Gal et al. (2022); Park et al. (2019); Wang et al. (2018)) to diffusion mod-
els(Avrahami et al. (2022); Kawar et al. (2023)). Inspired by image editing techniques, an increas-
ing amount of research is dedicated to transforming latent diffusion models (LDMs) into zero-shot
image editors(Liew et al. (2023); Wu et al. (2023); Qi et al. (2023)), achieving significant advance-
ments. These strides have sparked interest in the realm of video editing, which is a specialized task
within the broader field of video generation. Unlike the standard video generation process that relies
solely on conditional prompts to direct the creation, video editing necessitates both a source video
and a guiding prompt(Geyer et al. (2023); Wang et al. (2023)). Given an edit prompt, the attributes
of the reference video can be manipulated including shape, style, and scene(Qi et al. (2023)). In ad-
dition to appearances, videos are also characterized by the motion dynamics of subjects and camera
movements across frames. Recently, the idea of customizing the motion with given reference videos
has also been emerging and evolving rapidly(Zhao et al. (2023); Jeong et al. (2024)). They extract
the motion pattern from the original video and transfer it to a new video generation process, thus
they can obtain a new video that possesses the same motion pattern.

Editing a video essentially involves manipulating a sequence of images arranged sequentially in
time. Yet, ensuring consistency across the frames of the edited video remains a challenging issue.
Directly altering each frame of the source video might result in inconsistencies such as varying
backgrounds or altered positions of the foreground objects(Shin et al. (2024); Ceylan et al. (2023)).
The latest video editing frameworks leverage various pre-trained LDMs, to maintain frame-to-frame
consistency, these frameworks commonly incorporate cross-frame global attention mechanisms(Wu
et al. (2023); Yang et al. (2023)). Additionally, some systems incorporate supplementary conditions
like depth, pose, and edge data to further enhance consistency(Khachatryan et al. (2023)). Given the
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proliferation of sophisticated techniques for producing high-fidelity videos, there is a rising concern
that these editing tools could be exploited for nefarious purposes, potentially leading to the creation
of videos that are unlawful, deceptive, or damaging. In light of this, we are pioneering research in
this domain.

2.2 PROTECTION AGAINST LDMS-BASED DIGITAL CONTENT EDITING

Latent diffusion models (LDMs) can edit images and videos based on conditional prompts, which
can potentially be exploited to generate malicious content(Chen et al. (2023); Liu et al. (2024a)). To
counter this threat, Photoguard(Salman et al. (2023)) has been introduced as a protective measure
for images, aiming to hinder the efforts of LDMs. This method incorporates adversarial pertur-
bations into images, effectively perplexing LDMs and preventing unauthorized editing. Further-
more, LDMs can quickly learn specific objects or artistic styles through personalized techniques
like DreamBooth(Ruiz et al. (2023)). To protect intellectual property or portrait rights, some works
add perturbation to images before releasing them on the Internet(Peng et al. (2023)). With such
perturbed images, the fine-tuned LDMs are only capable of producing low-quality results. Recently,
there has been great advancement in video generation and video editing techniques, though brought
convenience, the threat of malicious video editing is being taken into consideration. However, video
edit protection has been less explored in the community. One intuitive protection method is to trans-
fer the image-based method to a video protection task(Li et al. (2024)), applying the image-based
method to every single frame. Nevertheless, this method ignores the relation between video frames.
Frames’ content redundancy and inter-frame attention mechanism in video diffusion models convey
content information and motion information, which indicates that frame-wise protection manner will
not have good protection performance.

3 METHOD

3.1 THREAT MODEL

Firstly, we will clarify the threat model from the attacker’s and protector’s perspective.

Attacker’s Capability and Goal. Individuals with malevolent motives have the capability to effort-
lessly procure a pre-trained video editing model and make alterations to videos of targeted individ-
uals. As a result of the open-source characteristics of the LDM models and the ready accessibility
of videos, perpetrators can falsify identities or fabricate misinformation, subsequently leading to
potentially detrimental consequences.

Protector’s Capability and Goal. Protectors are merely endowed with access to the video, thereby
confining their operations solely to manipulating the visual content. Their task involves introducing
imperceptible perturbations to the original video. The primary objective of the protector is to raise
the cost of modifying the safeguarded video, thereby impeding video editing models from easily
altering the video content.

3.2 ADVERSARIAL PERTURBATION

For a given computer vision model and an image, an adversarial example is an imperceptible per-
turbation of that image that manipulates the model’s behavior(Goodfellow (2014)). In image clas-
sification, for example, an adversary can construct an adversarial example for a given image x that
makes it classified as a specific target label ytarget. This construction is achieved by minimizing the
loss of a classifier fθ for that image:

δadv = argmin
δ∈∆

L(fθ(x+ δ), ytarget). (1)

Here, ∆ is a set of perturbations that are small enough that they are imperceptible-a common choice
is to constrain the adversarial example to be close to the original image, i.e., ∇ = {δ : ||δ||p ≤ ϵ}.
The canonical approach to constructing an adversarial example is to solve the optimization problem
(1) via projected gradient descent(Madry (2017)).
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Figure 2: VideoGuard Pipeline. The left shows the diagram of optimization stage 1, we manipulate
the denoise process and obtain latent perturbation. The right shows the search process of stage 2.
Using latent perturbation obtained in stage 1, we can use the Particle Swarm Optimization method
to seek a video perturbation.

3.3 MOTIVATION AND OVERVIEW

Motivation. Motivated by Jeong et al. (2024), we conducted some experiments on the inversion la-
tent. As shown in Figure 1 (right), once we get the inversion latent from a video with a skiing motion
pattern, this inversion latent will be fed into the denoising process guided by the target prompt and
obtain edited video with skiing motion. At the same time, when we use the same inversion latent
and the ’running’ prompt, we can get a video with the dog running. More precisely and importantly,
the dog’s motion pattern is still consistent with the original one. However, a random inversion latent
generates a random motion pattern as illustrated on the fourth row in Figure 1 (right). The inversion
latent contains a precise motion pattern of the original video. This observation motivates us that we
may spare more attention to inversion latent in video edit protection tasks. What’s more, it indicates
that we should regard the video and its inversion as a whole.

Protect Pipeline Overview. The video editing process consists of two stages. Firstly, the initial
noise latent is obtained from the original video in the first stage through the DDIM inversion process.
Then, the start noise will be fed into the denoising process guided by target edit prompt P . Based on
this edit pipeline, we propose a corresponding protection pipeline. Figure 2 shows the pipeline. To
be specific, firstly, we optimize an initial inversion latent as a pseudo label, which has content and
motion distortion compared to the original initial inversion latent. Then we regard it as an anchor
in the following video space optimization. In the second stage, we employ the gradient-free PSO
algorithm(Kennedy & Eberhart (1995)) to search for a perturbation in video space that can make the
DDIM inversion latent obtained from the perturbed video close to the target initial inversion latent.
Thus, the perturbation in video space we found can affect the start point of the editing pipeline’s
denoising process, and finally disrupt the edit video generation.

3.4 A TWO-STAGE PROTECTION PIPELINE

Video editing is aimed at using edit prompt T to generate a new video Vedit derived from a given
source video V . The whole process can be formulated as Vedit = Edit(V, T ), and it can be divided
into two parts: (1) the initial inversion latent is obtained through DDIM inversion process; (2)
the edited video is obtained through denoise process guided by the edit prompt. Given a video
V = [x1, ...,xn] with n frames, the start noise latent Z = [z1, ..., zn] can be obtained through the
DDIM inversion process, which can be formulated as

Inversion : V → Z, Z = DDIMinversion(E(V)). (2)

With initial noise latent Z , we can get the edited video Vedit through denoise process guided by edit
prompt T

Denoise : Z → Vedit,Vedit = D(DDIMsample(Z, T )). (3)
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Here, E and D are the VAE encoder and decoder respectively. To raise the cost of editing a video,
our goal is to find such a perturbation δvideo that when the perturbation is added to the source video
V , it will mislead LDMs’ functionality and prevent the model editing the source video successfully.
At the same time, the perturbation should be as imperceptible as possible. We annotate the perturbed
video as V∗, namely V∗ = V + δvideo. Mathematically, our goal can be formulated as

arg max
δvideo≤ϵ

Distance(Edit(V, T ),Edit(V + δvideo, T )), (4)

where Distance can be l2 norm, PSNR, etc. To tackle the optimization problem above, we propose
a two-stage method to search for a video perturbation. Specifically, we decompose the whole opti-
mization objective into two parts. Firstly, we use the gradient descent method to optimize a DDIM
inversion latent as an anchor; then we use the PSO algorithm to find the final video perturbation.

Stage 1: Optimize DDIM Inversion Latent. In stage 1, we optimize an inversion latent that
can result in distorted video content after the denoise process. Let’s consider the denoise process
Denoise : Vedit = D(DDIMsample(Z, T )). In this stage, our target is to find an optimized latent Z∗

that can generate video V∗
edit with distorted content through a denoise process guided by the same

prompt. Our problem can be formulated as follows

arg max
δlatent≤ϵ

Distance(D(DDIMsample(Z + δlatent, T )),D(DDIMsample(Z, T ))). (5)

Briefly speaking, we search for an initial latent Z∗ = Z + δlatent in the ϵ-neighborhood of the
original latent Z . Problem (5) has the same formulation as (1), thus can be solved by adversarial
attack techniques(Madry (2017)). Notably, there are T denoise steps in the DDIM sample process,
so there will be T intermediate latent features. We denote the i-th step feature as Zi, thus Z =
[Z1, ...,Zn]. It is intangible to measure the distance between V∗

edit and Vedit because, we do not
know the edit prompt and the edit model, i.e. we can not get the edited video Vedit. To quantify
the objective in problem (5), we follow the strategy mentioned in PRIME(Li et al. (2024)) and
PhotoGuard(Salman et al. (2023)). Namely, rather than maximize the difference between the edited
video derived from the original one and the protected one, we choose target latent features Ztarget

i

to guide the optimization direction at every step. Ztarget
i can be any random latent, and we set

Ztarget
i zero in our experiment setting. As stated in Section 3.2, we can use PGD to solve such an

optimization problem:

arg min
δlatent≤ϵ

Distance(D(DDIMsample(Z + δlatent, T )),D(DDIMsample(Ztarget, T ))). (6)

In previous works, the perturbation is optimized in a frame-wise manner. Nevertheless, there exists
content redundancy between video frames and the 3D mechanism in video diffusion models can
propagate visual features among frames to maintain consistency when doing generation. The ig-
norance of these characteristics in frame-wise optimization will lead to obtaining perturbation with
no effect. Consequently, we propose to seek a perturbation by treating the video inversion latent
as a single vector. Specifically, for the latent Zi = [zi,1, ..., zi,n] at i-th denoise step, rather than
optimize each zi,k, k = 1, ..., n separately, we regard Zi as a whole variable to optimize, namely
optimize the whole video latent but not every separate frame image latent. Moreover, video frames
can be regarded as image time series, which means we can use the first-order difference to represent
the motion information of the video. As mentioned in Section 3.3, we can inject motion information
during optimization. To be concrete, we annotate M(Zi) = [zi,2−zi,1, ..., zi,n−zi,n−1] as motion
vector to represent video consistency information. Thus, our objective can be formulated as

arg
Z∗

0

min f(Z∗
0 ) =

T∑
i=1

(||Z∗
i −Ztarget

i ||pp + λ · ||M(Z∗
i )−M(Ztarget

i )||11)

s.t.||Z∗
0 −Z0||22 < ϵ. (7)

Note that Z∗
i is derived from Z∗

0 through the denoise process, thus the objective function in (7)
actually has only one optimization variable. In problem 7, we call the first term content loss and the
second term motion loss. λ is a trade-off between content loss and motion loss. We will discuss the
function of λ in the experiment section. Furthermore, the above T steps optimization process will
cost unaffordable computation resources. Prompt2Prompt(Hertz et al. (2022)) and MFA(Yu et al.
(2024a)) observe that the initial denoise steps are vital to the whole denoise process. To achieve joint
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Figure 3: Video editing results. Real-world scenario editing protection results.

optimization, we select the first R steps for loss calculation. Thus, our final optimization problem is
formulated as follows:

arg min
Z∗

0

f(Z∗
0 ) =

R∑
i=1

(||Z∗
i −Ztarget

i ||pp + λ · ||M(Z∗
0 )−M(Ztarget

i )||11)

s.t. ||Z∗
0 −Z0||22 < ϵ. (8)

Stage 2: Optimize Video Perturbation. The second part of our proposed method is to search for
a subtle perturbation in video space that can deviate its DDIM inversion latent from the source to
the one we optimized in part 1. In other words, we regard the optimized latent in stage 1 as the
anchor and search for video perturbation δvideo with the constraint δvideo ≤ ϵ. The problem can be
formulated as follows:

arg min
δvideo≤ϵ

L(DDIMinversion(E(V + δvideo)),Zanchor). (9)

However, it is an optimization problem in video pixel space, which means it will cost tremendous
computation resources to use a gradient algorithm to find a satisfying perturbation δvideo. To tackle
this problem, we propose to use the classical optimization method PSO to find such perturbation.
Rather than directly searching in the video pixel space RF×C×H×W , we search for a perturbation
vector ∆V ∈ RF×M , and fuse it into the original video. We annotate it as V∗ = V

⊕
∆V . We

choose L = ||DDIMinversion(V∗)−Z∗
0 ||22 as the objective function, so the optimization problem in

this stage can be formulated as follows:

arg min
∆V

f(∆V ) = ||DDIMinversion(E(V ⊕∆V))−Z∗
0 ||22

s.t. ||V∗ − V||22 ≤ ϵ, V∗ = V ⊕∆V . (10)

Furthermore, to make our protection more realistic and imperceptible, we can constrain the natural-
ness when doing optimization. More details can be found in Appendix E.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Following previous works in video editing, we evaluate our method on DAVIS(Wang et al. (2019))
videos, with various text prompts on each video to obtain diverse editing results. To further demon-
strate the performance of our method, we download 20 videos from the internet for real-world video
editing protection evaluation. Our evaluation dataset comprises 80 text-video pairs. The spatial res-
olution of the videos is 512 × 512 pixels, and every video is composed of 8 frames. More detailed
settings are listed in the Appendix A. We choose 2 methods for baseline method comparison: Pho-
toguard(Salman et al. (2023)) applied in a frame-wise manner(namely PRIME(Li et al. (2024))),
and random noise perturbation. As for video editing models, we experiment with Fatezero(Qi et al.
(2023)), Tune-A-Video(Wu et al. (2023)), and Video-P2P(Liu et al. (2024b)), which are pioneer
works in video editing tasks.
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Figure 4: Different perturbation budges’ impact on protection efficacy.

Table 1: Quantitative metric results. Vbench(Huang et al. (2024)) is a video evaluation benchmark,
and clip image-text similarity and image-image similarity are used to represent text alignment and
frame consistency.

Method
VBench↓

Frame-Con↓ Text-Align↓
Aesthetic Subject Background Motion Imaging
Quality Consistency Consistency Smoothness Quality

w/o protection 55.93 89.45 92.33 89.82 54.53 90.91 18.50
Random Noise 56.37 91.40 93.12 92.53 52.69 92.33 15.48
PhotoGuard (Salman et al., 2023) 56.12 90.83 92.94 91.41 53.34 91.82 17.68
VideoGuard(Ours) 53.20 79.08 87.10 80.73 51.52 81.55 8.46

4.2 BASELINE COMPARISONS

Qualitative Evaluation. Figure 5 shows some qualitative comparison results. As shown in the fig-
ure, videos protected by Photoguard and random noise can still be edited with consistent content.
Applying an image-based protection method in a frame-wise manner doesn’t perform well. One
of the main reasons may be that the image-based method does not consider the motion dynamics
and photoguard targets for image-based diffusion models, namely, it cannot corrupt the inflation
attention mechanism in video diffusion models. When the videos are protected by our method, the
perturbation optimized by our method can disrupt the normal edit process and lead to content dis-
tortion. This figure also shows the editing protection effect of videos with different editing prompts.
It is shown that our method is not only effective for a certain specified video-text pair but also has
a good protection effect under different editing texts with a given video, which demonstrates the
transferability across different prompts. Meanwhile, Figure 6 and results in Appendix F.1 present
the transferability across different models.

To demonstrate real-world video editing protection efficacy, we also conducted experiments on real-
world videos. Figure 3 shows the effectiveness of our method when applied in real-world scenarios.

Quantitative Evaluation. For quantitative evaluation, we calculate the average frame-wise clip
scores for text alignment, and we adopt the clip similarity of two subsequent frames to evaluate the
video’s consistency. Furthermore, for a more comprehensive evaluation, we use video evaluation
benchmark VBench(Huang et al. (2024)) to evaluate the edited videos at the dimensions of Aesthetic
Quality, Subject Consistency, Background Consistency, Motion Smoothness, and Imaging Quality.
Table 1 shows the quantitative results. As the table shows, our method has superior performance
to the baseline methods, especially with Subject Consistency dropping from 89.45 to 79.08, and
Motion Smoothness dropping from 89.92 to 80.73. To further demonstrate the effectiveness of our
method, we use human study for auxiliary evaluation, and we can conclude from the results that our
method has a more powerful protection ability. More details can be found in the Appendix D.

4.3 PERTURBATION BUDGET ANALYSIS

We analyze the impact of the perturbation budget on protection performance. As we can imagine,
the bigger the perturbation added, the more corruption there will be. However, a bigger perturbation
means the protection has a worse stealthiness. As Figure 4 shows, we can obtain a pretty well-
corrupted edit result with a big perturbation budget of 32/255, while nearly no effect with a small
budget of 4/255. An empirically promising budget will be between 8/255 and 16/255, with good
protection functionality and a bearable degree of stealthiness.
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Figure 5: Video editing results. The first row represents the original video, and the following 3 rows
represent Photoguard, Random Noise, and our method respectively.

We also conduct experiments to analyze the trade-off λ between content loss and motion loss in (7)
and the perturbation vector searching method used in stage 1. More details are listed in the Appendix
E.

5 DISCUSSION

We present a novel framework for video editing protection powered by diffusion models. We study
the motion dynamics of a video in the diffusion latent space and construct optimization objectives
accordingly. We propose joint optimization in latent space to tackle the challenge of frame informa-
tion redundancy, and we suggest applying a gradient-free search algorithm for video perturbation
optimization in a small vector space rather than in the raw pixel space, which is computationally
effective. Our method outperforms existing baselines and demonstrates its transferability between
different models and instructions.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

A jeep car is driving on the road

w
/o

 p
ro

tectio
n

 

Porsche

T
u
n

e
-A

-V
id

eo
F

ate
-Z

ero
V

id
eo

-P
2

P

Figure 6: Transferability across different models. The first row presents video editing results that
are without protection. The following 3 rows show the editing results by different editing models.

Despite the promising results, our study also has some limitations. Our method does not perform
well when applied to models with additional conditional information. The main reason might be
that when more and more control conditions are fused into the editing process, the importance of
the source video downgrades gradually, namely the downgrade of protectors’ capacity, thus down-
grading the performance of the protection. A potential solution is to incorporate the conditional
control module of the editing model into the perturbation optimization process, and thus the result-
ing perturbation can interfere with the editing model’s proper reception of the control conditions.
This perturbation subsequently affects the overall editing performance, thereby achieving the desired
protective objective. This avenue of research is left as future work.
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A IMPLEMENTATION DETAILS

Stable Diffusion. We use Stable Diffusion as a text-to-image model; we use stableDiffusion-v-1-5
provided via the official Huggingface web page. As for model inflation, we adopt the mechanism
used in tune-a-video(Wu et al. (2023)).

DDIM inversion. In all of our experiments, we use DDIM deterministic sampling with 50 steps. For
inverting the video, we follow Tumanyan et al. (2023) and use DDIM inversion with a classifier-free
guidance scale of 7.5, and the inversion step is 50.

Hyper-parameters. In equation 8, we set λ to 1, but in the experiments, the value can range from 1
to 10, which means different trade-offs are tested to get a better performance. In the first stage, we
set the δlatent to 10/255 while in the second stage, we set the δvideo to 8/255.

In the objective functions,

arg min
∆V

f(∆V ) = ||DDIMinversion(E(V ⊕∆V))−Z∗
0 ||22

s.t. ||V∗ − V||22 ≤ ϵ, V∗ = V ⊕∆V , (11)

we set parameter p to 1 when calculating motion loss, and set parameter p to 2 when calculating
content loss.

Particle Swarm Optimization. We use PSO algorithm(Kennedy & Eberhart (1995)) to search for
δvideo. We initialize the number of the particles to 40, and the total iteration is 40.
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B STABLE DIFFUSION.

Diffusion models have emerged recently as powerful tools for generating realistic images. These
models excel especially at generating and editing images using textual prompts and currently surpass
other image generative models such as GANs in terms of the quality of produced images(). Distinct
from traditional diffusion models, Stable Diffusion(Rombach et al. (2022)) functions within a low-
dimensional latent space, which is accessed via VAE autoencoder((Kingma (2013))) E ,D. Specif-
ically, once the latent representation z0 is obtained by compressing an input image f ∈ RH×W×3

through the encoder E , i.e. z0 = E(f), diffusion forward process gradually adds Gaussian noise to
z0 to obtain zt through Markov transition with the transition probability:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), t = 1, ..., T, (12)

where the noise schedule {βt}Tt=1 is an increasing sequence of t and T is the number of diffusion
timesteps. Then, the backward denoising process is given by the transition probability:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σ
2
t I), t = T, ..., 1. (13)

Here, the mean µθ(zt, t) can be represented using the noise predictor ϵθ which is learned by the
minimization of the MSE loss with respect to θ : Ef,τ,ϵ∼N (0,I),t||ϵ − ϵθ(zt, t, τ)||22, where ϵ refers
to the zero mean unit variance Gaussian noise vector, and τ = Φ(T ) is the embedding of a text
T . Specifically, a prevalent approach in diffusion-based image editing is to use the deterministic
DDIM scheme to accelerate the sampling process. Within this scheme, the noisy latent zT can be
transformed into a fully denoised latent z0:

zt−1 =

√
αt−1

αt
zt + (

√
1− αt−1

αt−1
−
√

1− αt

αt
)ϵθ, t = T, ..., 1, (14)

where αt is a reparameterized noise scheduler.

C DETAILED DESCRIPTION OF ALGORITHM

The Inflation of Attention Mechanism. Video generation models generally inflate text-to-image
models. There exists an inflated 3D attention mechanism that enables the inter-frame interaction.
Specifically, for the latent representation zit of source frame f i

t , query features are derived from
spatial features zit, while key and value features are computed from spatial features of concatenated
latent [z1t , ..., z

N
t ]. The mathematical formulation can be as follows:

Q = WQ · zit,K = WK · [z1t , ..., zNt ], V = WV · [z1t , ..., zNt ].

Particle Swarm Optimization. We use this algorithm in stage 2 to search for a video perturbation.
PSO algorithm is inspired by the social behavior of birds flocking or fish schooling. There are
some basic concepts in this algorithm. (1) Particles: these are the individual agents or solutions that
explore the search space. Each particle represents the video perturbation vector in our experimental
setting. (2) Swarm: The group of particles. It collectively explores the search space by sharing
information. Typically, the size of the swarm should cover the search variable’s dimension. (3)
Position and Velocity: Each particle has a position that represents a potential solution and a velocity
that dictates its movement through the search space. (4) Fitness Function: This function evaluates
how good a particle’s position is. The goal is to find the position that optimizes this function.

In the search process of the video perturbation vector, our search objective is the MSE loss be-
tween the current video’s inversion latent and the anchor inverted latent optimized in stage 1. Video
perturbation vectors represent particles. In our experimental setting, the video perturbation vector
V ∈ RC×F , which means we optimize a vector for every frame.

D HUMAN STUDY

This section clarifies how we do human evaluation. For frame consistency, we present normal edited
videos and videos generated by our method and two baseline methods. We ask the raters ”Please
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Figure 7: Human evaluation results. The figure reflects the human rates at the aspect of frame
consistency and content distortion

rater the frame consistency from 1-5”, where 5 represents the best frame consistency. For content
quality, we ask the raters to rate the video content’s naturalness from 1-5, where 5 represents the
best. We choose 10 video text pairs to formulate a questionnaire and recruit 10 participants to
annotate. We use the average score as the final result and it turns out that our method can effectively
protect videos. We can obtain the aforementioned conclusion based on Frame Consistency dropping
from 4.80 to 2.60, and Content Quality dropping from 3.50 to 1.60. Figure 7 visually displays the
evaluation results.

E ABLATION STUDY

------------------ ------------------ ------------------ --------------
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Figure 8: Ablation study. On the left, the first row represents the perturbed video frames without our
method, and the following 2 rows are the edit results. The results show that random perturbed video
can still be easily edited. On the right, different λ represent different trade-offs between motion and
content.

Trade-off between content loss and motion loss. In optimization stage 1, we optimize such an
objective function arg min

Z∗
f(Z∗) =

∑R
i=1(||Z∗

i − Ztarget
i ||pp + λ · ||M(Z∗) − M(Ztarget

i )||11)
to find a DDIM Inversion latent anchor. Actually, λ is the trade-off between content destruction and
motion destruction. Different λ can result in different DDIM Inversion Latent anchors optimized in
stage 1. To figure out the difference, we use the same prompt to guide the denoise process of different
anchors. As shown in Figure 8 (right), when the motion loss takes the dominant proportion, the
model will generate videos that lose motion dynamics while preserving the original video content.
On the contrary, when the content loss takes the dominant proportion, the model will generate videos
that lose content information while possessing motion dynamics.

Perturbation vector optimization. When doing optimization in video pixel space, we use the
Particle Swarm Algorithm to search for a perturbation vector and fuse it into the original video.
Figure 8 demonstrates the effectiveness of our method. When we fuse a random perturbation vector
into the original video, namely a random color shift, the editing pipeline can still generate videos
that are aligned to the target edit prompt and without any distortion.

Advanced Algorithm. To make protection more imperceptible and more natural, actually, we
can add more naturalness constraints when doing perturbation optimization. Generally, we can use
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PSNR, SSIM, and LIPIS to regularize, which can lead to a more natural immunized video. To be
specific, let Voriginal represent the original video, and δvideo represent the perturbation. We use
Lnatural to represent naturalness loss. For example, we can regard the common naturalness metrics
like PSNR and SSIM as the naturalness loss:

o1 = PSNR(Voriginal, Voriginal + δvideo), (15)
o2 = SSIM(Voriginal, Voriginal + δvideo), (16)

and

Lnat = o1 + o2. (17)

As such, the whole fitness function is

Ltotal = MSE(DDIM Inversion(Voriginal + δvideo), ztarget) + Lnat. (18)

where ztarget is the anchor latent optimized during stage 1.

F MORE RESULTS

To further demonstrate the efficacy of our method, we present more results.

F.1 TRANSFERABILITY ACROSS DIFFERENT MODELS.

A rabbit is eating watermelon
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Figure 9: Transferability across different models. The first two rows are the source video and im-
munized video respectively. The third row represents the normal edit result without any protection.
The following 3 rows show the protection effects of different models.

F.2 PROTECTION RESULTS
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A man is skiing on the snow
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Figure 10: Transferability across different models. The first two rows are the source video and im-
munized video respectively. The third row represents the normal edit result without any protection.
The following 3 rows show the protection effects of different models.
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A squirrel is eating a watermelon

A rabbit is eating a watermelon

A rabbit is eating an orange

A rabbit is eating an orange

A dog is eating an orange

Figure 11: Different edit prompt results. The first row is the source video. The caption of the
source video is ”a rabbit is eating a watermelon”, and the following lines represent different results
of different instructions.
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A camel is walking on the yard, oil painting

A camel is walking on the yard

A tiger is eating an orange

A blue camel is walking on the yard

a camel is walking on the snow

Figure 12: The first row is the source video. The caption of the source video is ”a camel is walking
on the yard”, and the following lines represent different results of different instructions.
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A pink bear is walking on the snowy alpine slope 

A brown bear is walking on the rock against a wall

A yellow bear is walking on the grass

A black bear is walking on the beach

A brown bear is walking on the court

Figure 13: The first row is the source video. The caption of the source video is ”a brown bear is
walking on the rock against a wall”, and the following lines represent different results of different
instructions.
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A red car is moving on the road, in the shadow

A white car is moving on the road, in the shadow

A white car is moving on the beach, in the shadow

A blue Porsche is moving on the road, in the shadow

A white car is moving on the road, in the shadow, Vangogh Style Painting

Figure 14: The first row is the source video. The caption of the source video is ”a white car is
moving on the road, in the shadow”, and the following lines represent different results of different
instructions.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A spiderman with black dress is walking on the road in a park

A girl with black dress is walking on the road in a park

A girl with black dress is walking on the beach

A girl with blue dress is walking on the road in a park

A girl with black dress is walking on the road in a park, Vangogh Style

Figure 15: The first row is the source video. The caption of the source video is ”A girl with a black
dress is walking on the road in a park”, and the following lines represent different results of different
instructions.
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A man is skiing on the grass

A man is skiing on the snow

A spiderman is skiing on the snow

A wonder woman, wearing a cowboy hat, is skiing

A man, wearing pink clothes, is skiing as sunset

Figure 16: The first row is the source video. The caption of the source video is ”a man is skiing on
the snow”, and the following lines represent different results of different instructions
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