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Abstract

Unlearning methods that enable models to “forget” have been studied in the context1

of privacy and copyright for LLMs/LMMs. However, evaluation for unlearning2

LMMs remains limited, as existing benchmarks primarily focus on single-step3

unlearning of fine-tuned knowledge. We introduce PULSE, a practical unlearning4

evaluation protocol for LMMs along two dimensions: (i) Pre-trained knowledge5

Unlearning and (ii) Long-term Sustainability Evaluation under sequential requests.6

Our evaluation of existing unlearning methods shows that while they often succeed7

in unlearning fine-tuned knowledge, they struggle to unlearn pre-trained knowledge.8

Furthermore, even when single-step unlearning appears effective, performance of9

unlearned model deteriorates under repeated unlearning. These findings highlight10

the need for new techniques that can selectively remove pre-trained content while11

preserving model capabilities across successive requests.12

1 Introduction13

In recent years, Large Language Models (LLMs) [1] and Large Multimodal Models (LMMs) [2]14

have advanced rapidly, but their training data raise privacy and copyright concerns. This motivates15

(approximate) unlearning, which aims to degrade performance on designated targets while retaining16

accuracy elsewhere [3, 4]. These days, methods tailored to LLMs/LMMs have also been proposed [5–17

7]. Despite recent progress, a practical, unified evaluation for LMM unlearning is lacking. MLLMU-18

Bench [8] focuses on single-step forgetting of fine-tuned knowledge, leaving two practical gaps [9, 10]:19

(1) unlearning of pre-trained knowledge and (2) handling repeated unlearning requests.20

Our Work: A practical Evaluation Framework for Unlearning in LMMs We present PULSE,21

an evaluation protocol for LMM unlearning that explicitly covers (i) Pre-trained knowledge22

Unlearning and (ii) Long-term Sustainability Evaluation (Table 1). Using PULSE to assess ex-23

isting methods, we find they can often forget fine-tuned knowledge but struggle to erase pre-trained24

knowledge and suffer substantial degradation under sequential unlearning, underscoring the need for25

more practical approaches.26

Contribution27

• We propose PULSE protocol, designed to evaluate (i) Pre-trained knowledge Unlearning28

and (ii) Long-term Sustainability Evaluation in large multimodal models.29

• Using PULSE, we find that while existing techniques perform well on fine-tuned knowledge,30

they fail to reliably remove pre-trained knowledge and suffer significant degradation under31

sequential unlearning, indicating limited practicality for real-world deployment.32
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Type of Knowledge Source

Fine-tuning Pre-training
Pre-trained
Model

Fine-tuning Unlearning

Q: What does she do? 
     A: Teacher, B: Lawyer, …
A: B

Q: Where does he live? 
     A: Tokyo, B: New York, …
A: C

Q: What does she do? 
     A: Teacher, B: Lawyer, …
A: B

Q: Where does he live? 
     A: Tokyo, B: New York, …
A: C
Q: What does she do? 
     A: Teacher, B: Lawyer, …
A: B

Pre-trained
Model

Unlearning 

Q: What does she do? 
     A: Teacher, B: Lawyer, …
A: B

Q: Where does he live? 
     A: Tokyo, B: New York, …
A: C

(a) Type of Knowledge Source: (left): As in prior work [8], we
first fine-tune the model and assess unlearning of the targeted
samples within the fine-tuned dataset. (right): We additionally
evaluate whether existing methods can unlearn the knowledge
that is obtained in the pre-trained phase.

Sustainability

Pre-trained
Model

Fine-tuning Unlearning 

Q: What does she do? 
     A: Teacher, B: Lawyer, …
A: B

Q: Where does he live? 
     A: Tokyo, B: New York, …
A: C

Q: What does she do? 
     A: Teacher, B: Lawyer, …
A: B

Q: Where does he live? 
     A: Tokyo, B: New York, …
A: C

Q: What does she do? 
     A: Teacher, B: Lawyer, …
A: B

Unlearning 

(b) Sustainability: We split the unlearning
target Dunlearn into a few subset and perform
unlearning sequentially.

Figure 1: Our PULSE Pipelines.

Table 1: Comparison with Prior Evaluation Methods. We assess not only fine-tuned knowledge
unlearning, but also (i) pre-trained knowledge unlearning and (ii) sustainable unlearning, providing
the first comprehensive evaluation protocol for unlearning in LMMs.

Target Model Unlearning of
Fine-Tuned Knowledge

Unlearning of
Pre-trained Knowledge Sustainability

MUSE [10] LLM ✓ ✓
TOFU [9] LLM ✓
Yao et al. [11] LLM ✓ ✓
MLLMU-Bench [8] LMM ✓
PULSE(Ours) LMM ✓ ✓ ✓

2 Related Work33

Methodology of Unlearning. We consider Gradient Ascent (GA) and regularized variants, in-34

cluding GA+KLR [5] and NPO [12]. These methods are widely used [7–10] and show efficacy35

on LLMs/LMMs to some extent [8, 10], but their ability to unlearn pre-trained knowledge and36

sustainability against multiple sequential unlearning requests in LMMs remains unclear. We therefore37

evaluate them in realistic settings.38

Benchmarks for Unlearning. MUSE [10] benchmarks LLM unlearning. Importantly, it introduces39

a practical metric of sustainability for handling continual unlearning requests. We adopt sustainability40

as a criterion for LMMs as well.41

For LMMs, one early benchmark is MLLMU-Bench [8], which evaluates on 500 fictional individuals.42

However, it does not put emphasis on unlearning pre-trained knowledge and on sustainability.43

Accordingly, beyond fine-tuned knowledge unlearning (Figure 1a, left), we evaluate unlearning of44

pre-trained knowledge (Figure 1a, right) and sustainability (Figure 1b).45

3 PULSE Protocol46

3.1 Problem Formulation47

Let Dunlearn be data to forget and Dretain data to retain. We assess effectiveness (performance48

on Dunlearn) and generality (accuracy on Dretain) [9] jointly since these objectives trade off; fully49

forgetting a person can lead to remove nearby knowledge, whereas preserving full generality can50

weaken forgetting.51

Fine-tuned Knowledge Unlearning. Figure 1a (left) shows our pipeline for fine-tuned knowledge52

unlearning: select a subset Dunlearn from the fine-tuning data and apply a single unlearning step.53
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Figure 2: Dataset Construction of Pre-trained Knowledge Unlearning. We selected individuals
on which LLaVA performs well to create dataset for pre-trained knowledge unlearning.

Pre-trained Knowledge Unlearning. Existing benchmarks (TOFU, MUSE, MLLMU-Bench) [8–54

10] target only fine-tuned knowledge, whereas real deployments may require removing pre-trained55

knowledge, which can differ in difficulty. We therefore evaluate pre-trained knowledge unlearning. As56

in Figure 1a (right), we treat knowledge acquired during pre-training as Dunlearn and unlearn it in one57

step. To ensure the model initially “knows” the targets, we select individuals the pre-trained model58

recognizes well from celebrity datasets. Related LLM work [11] samples Dunlearn and Dretain from the59

pre-training corpus (requiring access to it), while our behavior-based selection infers knowledge from60

model outputs, which is more practical when the corpus is undisclosed.61

Sustainability. In practice, models often undergo repeated unlearning as new requests arrive. Methods62

must remain effective under such sequences. Following MUSE’s approach to measuring LLMs’63

sustainability, Figure 1b splits Dunlearn into five subsets and unlearns them sequentially, tracking64

effectiveness and generality after each step, unlike the single-shot setting.65

4 Experiments66

4.1 Experimental Setup67

We use LLaVA-v1.5-13B [13] as the LMM. For fine-tuned knowledge unlearning and sustainability68

experiments, we apply LoRA [14] during both fine-tuning and unlearning. As metrics, effectiveness is69

accuracy on Dunlearn, and generality is accuracy on Dretain plus MMBench [15] (a standard multimodal70

capability benchmark).71

Unlearning Methods. (1) GA: update parameters on Dunlearn in the ascent direction. (2)72

GA+KLR [5]: GA with a KL penalty to keep the model close to the original. (3) NPO [12]:73

preference-tuning that treats unlearning data as negative examples without positives.74

4.2 Dataset Construction75

We use the dataset of MLLMU-Bench [8]. Each record has one face image and ten QA pairs (576

multimodal, 5 text-only) querying personal attributes (e.g., occupation, residence). Multimodal task77

includes the face image, whereas text-only task is language-only (Figure A). Per-experiment settings78

appear in Table A.79

Fine-tuned Knowledge Unlearning. LLaVA is fine-tuned on 100 fictional individuals; 50 are80

assigned to Dunlearn and 50 to Dretain, then a single unlearning step is applied.81

Pre-trained Knowledge Unlearning. To target knowledge acquired during pre-training, we select82

celebrities the base model already recognizes well (Figure 2). From 153 real famous individuals,83

we keep 45 people on which LLaVA performs well. We split them into 20 for Dunlearn and 25 for84

Dretain, then perform one-step unlearning. We note here that MLLMU-Bench uses this subset mainly85

to assess post-unlearning generality, whereas we include it in the unlearning target.86

Sustainability. As in Figure 1b, part of the fine-tuned knowledge is designated as Dunlearn, split into87

five subsets, and unlearned sequentially through five unlearning steps. We track effectiveness and88

generality after each operation.89
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Figure 3: The Effect of the Source of Unlearning Target. The Dunlearn axis shows what percentage
of pre-unlearning model’s knowledge about Dunlearn (set as 100) has been forgotten. For the Dretain
and MMBench axes, they show what percentage of pre-unlearning model’s knowledge about Dretain
and MMBench has been retained. All methods exhibit a substantial drop in MMBench score when
unlearning pre-trained knowledge.

unlearn(GA)
unlearn(GA+KLR)
unlearn(NPO)
retain(GA)
retain(GA+KLR)
retain(NPO)

MMBench(GA)
MMBench(GA+KLR)
MMBench(NPO)

Figure 4: The Transition of Accuracy Over Multiple Requests. All methods show a gradual
decrease in accuracy on Dunlearn as the number of unlearning requests increases, but at the same time
accuracy on Dretain and MMBench also drops significantly.

4.3 Main Results and Discussion90

Pre-trained Knowledge Unlearning. Figure 3 shows that accuracy on Dunlearn drops after unlearning91

for both fine-tuned and pre-trained settings, indicating that unlearning works to some degree in both92

settings. when we examine the MMBench accuracy, we find that unlearning fine-tuned knowledge93

reduces the original capability by at most about 10%, whereas unlearning pre-trained knowledge leads94

to the loss of over 90% of the original knowledge. This implies (i) pre-trained knowledge is harder95

to erase and (ii) its removal causes a severe loss of generality. A likely reason is that pre-training96

entangles the target with many related entities, hindering selective removal. Notably, accuracy on97

Dretain also falls, likely because Dunlearn and Dretain are in similar domains. This finding is consistent98

with prior work [8].99

Sustainability. In Figure 4, repeated unlearning on the same model steadily degrades both perfor-100

mance on Dunlearn and generality (Dretain and MMBench). After five operations, generality is nearly101

lost, indicating mainstream methods lack sustainability for LMMs. We hypothesize that catastrophic102

forgetting occurs because repeated unlearning updates parameters that are also essential for retention103

tasks, leading to a rapid loss of previously acquired knowledge.104

5 Conclusion105

In this study, we proposed PULSE, a new evaluation protocol for unlearning in LMMs that addresses106

scenarios not covered by previous benchmarks. Our experiments revealed that, although unlearning107

knowledge acquired via fine-tuning in a single unlearning step can be moderately successful, existing108

methods such as GA, GA+KLR, and NPO suffer significant drops in model generality when applied109

to unlearning pre-trained knowledge or when repeated unlearning is required.110
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Appendix147

A More Results and Discussion148

Performance Differences by Task Modality. In Table B, when the updated parameters include149

both the projection matrix and the language model (Proj, LLM), the accuracy on Dunlearn for “Multi”150

drops from 78.0% to 9.6%, whereas for “Text” it drops from 76.8% to 35.2%, indicating that the151

text-only task is more resistant to forgetting. One possible explanation is that including the projection152

matrix in the update target makes multimodal tasks easier to unlearn; however, even when updating153

only the LLM, “Text” still degrades less than “Multi.” Therefore, for a task such as querying the154

subject’s place of residence (Figure A), the model may fail on image-based queries but still succeed on155

text-only queries. Thus, applying existing unlearning methods to multimodal tasks may merely “break156

the alignment between image and knowledge,” casting doubt on whether the model has genuinely157

unlearned the target information.158

Interestingly, we find that updating only the LLM significantly degrades performance on MMBench,159

whereas updating both the projection matrix and the LLM leads to only a slight drop. We hypothesize160

that allowing updates to the projection matrix makes it easier for the model to unlearn target samples161

by breaking the alignment between modalities. In contrast, restricting updates to the LLM alone162

makes the unlearning task harder and more disruptive to the model’s general capabilities. A more163

rigorous investigation is left as an interesting avenue for future work.164

Figure A: Example of the Multimodal Task and the Text-only Task. The multimodal task includes
person’s face image, while the text-only task only has text prompt.

Table A: Comparison of Experimental Settings. The data used in the experiments were selected
from the publicly released MLLMU-Bench [8] dataset to match our experimental configurations.
Each individual is associated with 10 questions—half text-only and half multimodal. Therefore, the
dataset size equals the number of individuals multiplied by 10.

Type of Knowledge
to Unlearn

Number of Individuals
in Dunlearn

Unlearning Count Individuals Unlearned
per Operation

Fine-Tuned Knowledge Unlearning Fine-Tuning 50 1 50
Pre-trained Knowledge Unlearning Pre-training 20 1 20
Sustainability Fine-Tuning 50 5 10

Table B: Performance Differences by Task Modality. The “Parameter Update Target” column
indicates which parts of LLaVA’s parameters are updated during unlearning: “Proj,LLM” updates
both the projection matrix between the image encoder and the language model (Proj) and the language
model itself (LLM), while “LLM” updates only the language model. “Multi” denotes performance
on multimodal tasks, and “Text” denotes performance on text-only tasks.

Parameter
Update Target Unlearning Method Dunlearn (↓) Dretain (↑) MMBench

(↑)Multi Text Multi Text

(Pre-unlearning) 78.0 76.8 70.0 76.8 75.1
Proj,LLM GA 9.6 35.2 14.8 29.2 71.1

LLM GA 24.8 33.2 29.2 34.4 48.8
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