Under review as a conference paper at ICLR 2025

METAOPTIMIZE: A FRAMEWORK FOR OPTIMIZING
STEP SIZES AND OTHER META-PARAMETERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the challenge of optimizing meta-parameters (i.e., hyperparameters)
in machine learning algorithms, a critical factor influencing training efficiency
and model performance. Moving away from the computationally expensive tra-
ditional meta-parameter search methods, we introduce MetaOptimize framework
that dynamically adjusts meta-parameters, particularly step sizes (also known as
learning rates), during training. More specifically, MetaOptimize can wrap around
any first-order optimization algorithm, tuning step sizes on the fly to minimize a
specific form of regret that accounts for long-term effect of step sizes on training,
through a discounted sum of future losses. We also introduce low complexity
variants of MetaOptimize that, in conjunction with its adaptability to multiple
optimization algorithms, demonstrate performance competitive to those of best
hand-crafted learning rate schedules across various machine learning applications.

1 INTRODUCTION

Optimization algorithms used in machine learning involve meta-parameters (i.e., hyperparameters)
that substantially influence their performance. These meta-parameters are typically identified through
a search process, such as grid search or other trial-and-error methods, prior to training. However,
the computational cost of this meta-parameter search is significantly larger than that of training
with optimal meta-parameters (Dahl et al., 2023; Jin, 2022). Meta-parameter optimization seeks to
streamline this process by concurrently adjusting meta-parameters during training, moving away
from the computationally expensive and often sub-optimal trial and error search methods.

Meta-parameter optimization is particularly important in continual learning (De Lange et al., 2021), its
primary domain, where dynamic environments or evolving loss functions necessitate meta-parameters,
like step sizes, to adapt to optimal time-varying values rather than settling on a static value as in the
stationary case. Nevertheless, this work concentrates on the stationary scenario, demonstrating the
competitiveness of meta-parameter optimization even in this case.

In this work, we propose MetaOptimize as a framework for optimizing meta-parameters to minimize
a form of regret, specifically accounting for the long-term influence of step sizes on future loss. The
framework is applicable to a broad range of meta-parameters, however the primary focus of this paper
is on step sizes as a critical meta-parameter that is universally present.

MetaOptimize brings additional benefits beyond simplifying the search process. Firstly, it enables a
dynamic step-size adjustment during training, potentially accelerating the learning process. Tradi-
tional methods typically require manual customization of learning rate schedules for each problem,
often following an optimal pattern of initial increase and subsequent decay (Amid et al., 2022). As
our experiments show, step sizes obtained from MetaOptimize follow similar patterns automatically.

Secondly, varying step sizes across different blocks of a neural network, such as layers or neurons,
has been shown to improve performance (Singh et al., 2015; Howard & Ruder, 2018). Manually
tuning or using grid search for block-wise step-sizes is impractical in networks with numerous blocks.
MetaOptimize framework can automatically manage blockwise step-sizes.

The concept of meta step-size optimization can be traced back to (Kesten, 1958), Delta-bar-Delta
(Sutton, 1981; Jacobs, 1988), and its incremental variant, IDBD (Sutton, 1992). Over the years,
numerous methods have been developed to address this challenge, detailed further in Section 8. This
research distinguishes itself from prior work through the following key aspects:

Under review as a conference paper at ICLR 2025

* We introduce a formalization of step-size optimization as minimizing a specific form of
regret, essentially a discounted sum of future losses. We demonstrate how to handle this
minimization in a causal manner, by introducing the MetaOptimize framework.

* MetaOptimize framework is general in the sense that it can wrap around any first-order
optimization algorithm, also called base update, (such as SGD, RMSProp (Hinton, 2012),
Adam (Kingma & Ba, 2014), or Lion (Chen et al., 2023))), for which it optimizes step sizes
via an algorithm of desire (such as SGD, Adam, RMSProp, or Lion), called the meta update.

* We develop approximation methods (Section 6), that when integrated into MetaOptimize,
lead to computationally efficient algorithms that outperform state-of-the-art automatic
hyperparameter optimization methods on CIFAR10, ImageNet, and language modeling
applications (refer to experiments in Section 7).

* We show that some existing methods (like IDBD, its extension (Xu et al., 2018), and
hypergradient descent (Baydin et al., 2017)) are specific instances or approximations within
the MetaOptimize framework (see Section 5).

2 PROBLEM SETTING

We introduce a general continual optimization setting that, for a given sequence of loss functions

fi() : R" - R, t = 0,1,2,..., aims to find a sequence of weight vectors wi, wa, ws, ... to
minimize a discounted sum of future losses:
FPE(1—9) > v fr(w,), 0]
T>t

where v € [0, 1) is a fixed constant, often very close to 1, called the discount factor. As an important
special case, the above setting includes stationary supervised learning if f; are sampled from a static
distribution, for all ¢. In this case, minimizing F}’ results in rapid minimization of expected loss.

Consider an arbitrary first order optimization algorithm (including but not limited to SGD, RMSProp,
Adam, or Lion) for updating w;. At each time ¢, this algorithm takes the gradient V f;(w;) of the
immediate loss function, along with an m-dimensional vector 3, of meta-parameters, and updates
w; and possibly some internal variables (e.g., momentum in Adam or trace of gradient squares in
RMSProp), based on a fixed update rule Alg,, .., referred to as the base-update,

Ti41 = Algbase(wta vft(wt)vﬂt)v (2)

where x; o Stack(w;, &) is an 7i-dimensional vector obtained by stacking w; and all internal
variables of the algorithm that are being updated (e.g., momentum), denoted by &;. The goal of the
MetaOptimize framework is to find a sequence of meta-parameters 3,, fort = 1,2,.. ., such that
when plugged into the base update, (2), results in relative minimization of F} defined in (1).

Step-size optimization is a special case of the above framework where at each time ¢, the m di-
mensional vector 3, is used to determine the n-dimensional (weight-wise) vector c; of step sizes
(typically m < n), through a fixed function ¢ : R™ — R",

ay =a(By). 3)

A typical choice is to partition weights of the neural network into m blocks and use step-size exp(f3)
within each block for some entry 3 of 3. Depending on m, this can result in a single shared scalar
step-size, or layer-wise, node-wise, or weight-wise step sizes. It is particularly beneficial to consider a
function o of the exponential form, mentioned above, because of two reasons (Sutton, 1992). First, it
ensures that a; will always be positive. Second, a constant change in 3, would lead to a multiplicative
change in oy, making it suitable for adapting step sizes with different orders of magnitude.

3 FORWARD AND BACKWARD VIEWS

Since the definition of F}' in (1) relies on information forward into the future, minimizing it in a
causal way necessitates alternative views; discussed in this section. In order to motivate our approach,
we start by considering a hypothetical meta-parameter optimization algorithm that has oracle access

Under review as a conference paper at ICLR 2025

to future information (e.g., future loss), and updates 3, along the gradient of F,’ with respect to 3,;
thatisfort =0,1,2,...,

d
B =B —ngg F=8,—n(l—v)> v " 1—ff(wf) o
T>t

for some fixed meta step-size, n > 0. This forward-view update however requires that at time ¢,
we have access to f,(-) and w, for all 7 > ¢, which are typically unavailable. To circumvent this
problem, we adopt an idea similar to eligibility traces in reinforcement learning (Sutton, 1988; Sutton
& Barto, 2018). More specifically, instead of the forward-view update, we introduce an update of the

following type, which we call the backward-view update. Attime 7 = 0,1,2,.. ., we let
3 3 E T—t—1
(T T 5
T+1 T t<7_7 dlgtf (UJ) ()

Note that every term y™—*~! %ﬁw*) in the right hand side of (4) also appears in (5), but is applied

at time 7 instead of time ¢, which is the earliest time that all required information for computing
this term is available. Similar to the eligibility traces in RL, backward view updates are accurate
approximation of the forward view updates for sufficiently small meta-step sizes (i.e., when n — 0),
in the following sense: consider some 7' > 1 and suppose that f;(-) =0 forall¢ < Oand all ¢ > T.
Then, as — 0, it can be shown that (8% — Bo)/n — (8% — Bo)/n, where 83 and 85 are the
values of /3 at time 7" obtained from updates (5) and (4), respectively, starting from the same initial
value 3, at time 0. This is because as 7 — 0, 5 remains almost constant over the interval [0, T, and
the right hand side of (5) would be equal to the right hand side of (4) when summed over [0, T'], with
accuracy O(n?). For larger values of 7, the approximation may not be as accurate. Refer to Section 9
for a discussion on more accurate approximations.

In light of (5), the V/H\FT defined below serves as a causal proxy for d FY /d 3..;

T—1

— e d
VeF, E (1= v fr(w,). (6)
t=0 4
It follows from chain rule that o
VeF, =HIVf(w,), @)
where
T—1 d’UJ
H. def (1 o ’Y) Z,Y‘rftfli"" 8)
t=0 d B,

The dw,/d 3, in (8) denotes the Jacobian matrix of w., with respect to 3,. Therefore, H., is an
n X m matrix such that H, v, for any m x 1 vector v, equals the change in w, if we increment all
past 3, along 7"~ v, while taking into account the non-linear dynamics of 3 (i.e., the impact of
each 3, increment on 3_ of future times 7 > t).

4 METAOPTIMIZE

The general formulation of MetaOptimize framework is given in Algorithm 1. The idea is to update
3, via any first order optimization algorithm to minimize F}', while using the surrogate gradient

VgF', in place of VgF}], to preserve causality of the updates. More specifically, for ¢ = 1,2, ..., let

yt+1 = Algmeta (yta v/ﬁ\F‘t) = Algmeta (yt7 szft (wt)) (9)

be the meta update, where y, “ Stack(8,, 9,) is an m-dimensional vector obtained from stacking
(3, and all other internal variables g, of the Alg, ... algorithm (e.g., momentum), and the second
equality follows from (7). Examples of Alg, .., include SGD, RMSprop, Adam, and Lion algorithms.

Note that in all cases, we pass V/577 to the algorithm as the gradient.

In each iteration, after performing the base update (2), we compute ! V f;(w;) and plug it into (9)
to update y (and in particular 3). In the rest of this section, we present incremental updates for #;.

Under review as a conference paper at ICLR 2025

Let h; be an nm-dimensional vector obtained by stacking the columns of the n x m matrix H;. It
follows from the chain rule that for any times ¢ and 7 with ¢ > T,

Ay Ay dyy, | dyesn dze | dyyy dhy

dg. dy, dpg. dx: dB. dh; dg,’

dZBH_l _ diL‘t_H dyt dCL't_H dar:t d$t+1 dht

dg, dy, dpg. dx; dpB, dh; dg,’

dht+1 _ dht+1 dyt + dht+1 dﬂ?t + dht+1 dht

dg, dy, dp. dxy dpB, dh; dB.’

Letting
dYsi1 dyepn dyegs
dy, da, dh,

def daxiyr deegr daep
Gt - dyt dx, dhy ’ (]O)
dht+1 dht+1 dht+1
dy, dz, dhy

the above set of equations can be equivalently written as

Ay daess dhea]’ _ o dy. do. dn T
dg, dB, dB. ¢ :

It follows that
: t—7 | dYsy1 daegr dhig T -G dy, dz; dh; G t—r | dy, da: dh, T 11
DT TR IEt | =G |apt aEas| G)T |ag agtass| - (D

Let

t—1

e o dy
EQ-m) (12)
=0 d’B
det Z’Yt r— 1d$t (13)
t—1
B ___,dhy
QE (-7 Ayt (14)
=0 d'BT

Note also that d«,;/dB, = 0, dh,/dB, = 0, and dy,/dB, = d Stack(8,, 9,)/dB, =
Stack(1, 0). Plugging these into (11), we obtain

I
Yiy1 Y; { 0 }
Xiq1 | =G Xe |+(1—7) 0 . (15)
Q11 Q1 0

Matrices X;, Yz, Q¢ can be computed iteratively using (15). The matrix H; in (8) is then obtained
from the sub-matrix constituting the first n rows of X, because x; = Stack(wy, &).

To complete Algorithm 1, it only remains to compute the matrix G; in (10). In Appendix A, we
calculate GG; for common choices of base and meta updates: SGD, AdamW, and Lion. Notably, the
first row of GG; blocks depends only on Alg, ..., and the rest of GG; blocks depend only on Alg, ..
This simplifies the derivation and implementation for various base and meta algorithm combinations.

Remark 4.1. A key distinction of MetaOptimize from existing meta-parameter optimization methods
is that it accounts for the dynamics of the meta-parameters 3—specifically, how changes in the
current (3 affect future values of 3. This is captured by the Y; matrix defined in (12), whose influence
then propagates into H,; and the meta-update (see (15)). To provide more intuition, lets focus on a
simple case with one-dimensional 5 and SGD meta-updates, and consider two cases: a) If 5; has
consistently increased over the recent past trying to track the optimal 3, then Y; will grow large,
resulting in significant increments of H;. This increases the norm of H;, and improves the tracking
of optimal /3. b) If 3; has remained nearly constant, suggesting convergence to the optimal value, Y;
will shrink, leading to smaller H; increments and smaller updates to 3;. This helps stabilize 5 around
its optimal value.

Under review as a conference paper at ICLR 2025

Algorithm 1 MetaOptimize Framework (for general meta-parameters)

Given: Base-update Algy, .., meta-update Alg, ...,
Parameters: Discount-factor v < 1.

Initialize: XO = O(n+ﬁ)><ma YO = [IanL | OmXﬁL} T7 and QO = On?nXm-
fort =0,1,2,...do

T4l < Algbase(wtv vft(wt)a IBt)

‘H: = sub-matrix of X}, constituting its first n rows.

Y «— Algmeta (yt7 H?Vft (wt))

Update X, Y;, and Q; from (15), using G in (10).
end for

5 REDUCING COMPLEXITY

The matrix G; in (10) is typically large, reducing the algorithm’s practicality. We discuss two
approximations of G; for more efficient algorithms.

2x2 approximation: The vector h;, formed by stacking #,’s columns, has length mn, making G’s
last row and column of blocks very large. Moreover, as shown in Appendix A, the term dh;1/dx;
typically involves third order derivatives of f; with respect to w;, which is not practically computable.

In the 2x2 approximation, we resolve the above problems by completely zeroing out all blocks in
the last row and also in the last column of blocks of G in (10). Consequently, we can also remove
Q) from the algorithm. This appears to have minimal impact on the performance, as we empirically
observed in simple settings. Intuitively, the block d @;1/d h; in Gy is zero, as H; doesn’t affect the
base update (2). Thus, @ affects X, only indirectly, via Y.

L-approximation: Herein, we take a step further, and in addition to the last row and the last column
of blocks of G4, we also zero out the block in the first row and the second column of G;. In other
words, we let

C;Ldif d(il’;tl 0 16
t daiyr deegq | (16)
dy, dxy
and simplify (15) as
Y, Y, !
t+1 L t
= 1-— 0 . 17
B R C R Rk (1)

We have empirically observed that the resulting algorithm typically performs as good as the 2x2
approximation, and even results in improved stability in some cases.

Intuition of MetaOptimize updates: Algorithm 2 provides a 2x2 approximation of MetaOptimize
for the case where both base and meta updates use SGD, and under scalar step-size (detailed derivation
in Appendix A). It shows that H; traces past gradients, decaying at rate v(I — [a] V2 ;). This decay
ensures that if past gradients poorly approximate future ones due to large V2 f; or a, their influence
fades more rapidly. If the current gradient aligns positively with past gradients (i.e., —H} V f; > 0),
the algorithm increases the step-size a for quicker adaptation; if negatively correlated, it reduces the
step size to prevent issues like zigzagging. Y; in (12) reflects the impact of changes in past 3 on the
current value of 3, amplifying the increment in the #;; update if 3 has been consistently rising or
falling over the recent past. It is also worth noting that in Algorithm 2, under the L-approximation, Y;
remains constant, equal to /. A similar phenomenon occurs also when Adam, RMSProp, or Lion
algorithms are used instead of SGD.

Containing some existing algorithms as special cases: Special cases of the above L-approximation
method include IDBD algorithm (Sutton, 1982) and its extension (Xu et al., 2018), if we limit Algy, .
and Alg,.., to SGD algorithm. Refer to Appendix B.1 for more details and proofs.

MetaOptimize also contains the hypergradient-descent algorithm (Baydin et al., 2017) as a special
case, when using SGD for both base and meta updates of MetaOptimze with v = 0. Hypergradient-
descent updates step size towards minimizing the immediate loss f; rather than discounted sum of
future losses, F', ignoring long-term effects of step size on future loss. See Appendix B.2 for details.

Under review as a conference paper at ICLR 2025

Algorithm 2 MetaOptimize with 2 X 2 approx., (Algp,.., Alg, ..) = (SGD, SGD), and scalar step-size
Initialize: Ho = 0,41, Yo = 1.
fort=1,2,...do
oy = ePt
Base update:
Wi = we — oV fi(wy)
Hiy1 = ’Y(I - atv2ft(wt))Ht — YoV fi(wy)

Yit1 =Y + (1 - ’y) — ynHtTVth(wt)Ht # For L-approximation let Yiy1 =1
Meta update:
Bi+1 = Br — nH;Vft(wt)
end for

6 HESSIAN-FREE METAOPTIMIZE

The step-size optimization algorithms discussed so far typically involve Hessian, V2 f;(w;), of the
loss function. In particular, the Hessian matrix typically appears in the middle column of blocks
in the G; matrix; e.g., in the dwy,1/dw; block where w;; = w; — a;V fy(w;). Consequently,
the update in (15) involves a Hessian-matrix-product of the form \V& fi(wy)H;, which increases
per-step computational complexity of the algorithm. The added computational overhead would be
still manageable if m is small. In particular for m = 1 (i.e., the case that a scalar step-size is used for
update of all weights), #; would be a vector; and one can leverage efficient Hessian-vector-product
computation techniques that have the same complexity as gradient computation (Pearlmutter, 1994).

Interestingly, for certain base and meta algorithms, we can eliminate the Hessian without much
compromising the performance. An example of such (base or meta) algorithms is the Lion algorithm
(Chen et al., 2023). The Lion algorithm, when used as the base algorithm, updates w; as

M1 = pmy + (1 — p) Vfi(wy),
Wi41 = W — O Slgn (cmt + (1 — C)Vft) — RO Wy,

where p, ¢ € [0,1), is a nonnegative weight-decay parameter, and Sign(-) is the entry-wise sign
function. In the special cases of ¢ = 0 or p = 0, m; can be eliminated and the above update
simplifies to w;11 = w; — oy Sign (V ft) — koywy. In this case, it is easy to see that the derivatives
of x; in (10) are Hessian-free. The above argument can be extended to arbitrary values of ¢ and
p. In Appendix A.1.3 (respectively Appendix A.3.2), we show that if Alg, .., (Alg...) is the Lion
algorithm, then the first row (second and third rows) of blocks in G would be Hessian-free. In
summary, Algorithm 1 turns Hessian-free, if Lion is used in both base and meta updates. This
elimination of Hessian results from flatness of the Sign function when ignoring the discontinuity at 0.

For other algorithms, we may consider their Hessian-free approximation by zeroing out any Hessian
term in G;. The Hessian-free approximation turns out to be a good approximation, especially for
base and meta algorithms that involve gradient normalization, like RMSProp and Adam. Note that,
the sign function used in the Lion algorithm is an extreme form of normalization that divides a vector
by its absolute value. We could instead use softer forms of normalization, such as normalizing to
square root of a trace of squared vector, vy, as in RMSProp. Such normalizations typically result

. dw, dw
in two opposing Hessian-based terms in #;’s update (stemming from = 11:1 and dif:;,ﬂ blocks of

matrix G), aiming to cancel out, particularly when consecutive gradients are positively correlated.

The main advantage of Hessian-free methods lies in their computational congeniality. For base and
meta updates including SGD, RMSProp, AdamW, and Lion, the Hessian-free 2 x2 approximation
has low computational complexity, requiring only a few vector-products per iteration beyond the
computations required for the base and meta updates. When Hessian terms in 2 X 2 approximation of
G} are zeroed out, the blocks in G, and therefore the blocks in X; and Y;, become diagonal. Thus,
X, and Y; matrices can be simplified to vector forms, eliminating costly matrix multiplications. The
same holds for general blockwise step-sizes (e.g., layer-wise and weight-wise step-sizes), leading to
computational overheads on par with the scalar case. We note also that for the meta updates mentioned
above if we use no weight-decay in the meta update, Hessian-free 2x2 approximation becomes
equivalent to Hessian-free L-approximation. Algorithm 3 presents Hessian-free approximations for
some selected base and meta updates: SGD with momentum (SGDm), AdamW, and Lion.

Under review as a conference paper at ICLR 2025

Algorithm 3 Hessian-free MetaOptimize algorithms with 2x2 approximation used in experiments
Parameters: 1 > 0 (default 1073), v € [0, 1] (default 1)
Initialize: hg = 0,, 1.
fort=1,2,...do
oy = o(By) # exponential scalar/blockwise
myp1 = pmy + (1= p)V fi(w)
if Algy,..is SGDm then Aw = —aymy — Koyw,
if Alg,,.. is Lion then Aw = —a,; Sign (cmy + (1 —)V f) — keyw,
if Alg,,.. is AdamW then v, 1 = Av; + (1 — AV fi(w,)?
pe = V1= At
Aw = fatutmt/\ﬁ KOG Wy

Base update

W1 = Wy + Aw
ht+1 = ’)/(1 — Hat)ht + Aw
Mz = ht Vft(wt)

My = pmy + (1-p)z

if Alg.,isLionthen 3, , =3, —nSign (Eﬁl +(1-20)z)

if Alg,..is Adam then ;1 = Ao, + (1 — \) 22
fie=V1-—At/)
/6t+1 =B, —nitmi/ Vo

Meta update

end fo_r

7 EXPERIMENTS

In this section, we evaluate the MetaOptimize framework on image classification and language
modeling benchmarks. Out of several possible combinations of base and meta algorithms and
approximations, we report a few Hessian-free combinations from Algorithm 3 that showed better
performance. In all experiments, we set the initial step-sizes of MetaOptimize to one or two orders
of magnitudes smaller than the range of good fixed step-sizes, with no specific tuning. We compare
MetaOptimize against some popular baselines whose meta-parameters are well-tuned for each task
separately. Refer to Appendix C for further experiment details. Codes are available at (Anonymous,
2024).

7.1 CIFAR10 DATASET

The first set of experiments involve training ResNet-18 with batch size of 100 on the CIFAR10
(Krizhevsky et al., 2009) dataset. Fig. 1 depicts the learning curves of four combinations of (base,
meta) algorithms for Hessian-free MetaOptimize, along with the corresponding baselines with
well-tuned fixed step sizes. For MetaOptimize, in addition to scalar step-sizes, we also considered
block-wise step-sizes by partitioning layers of the ResNet18 network into six blocks (first and last
linear blocks and 4 ResNet blocks). Fig. 1 demonstrates that each tested base-meta combination of
MetaOptimize, whether scalar or blockwise, surpasses the performance of the corresponding fixed
step-size baseline.

Interestingly, as demonstrated in Fig. 2, the MetaOptimize algorithms show remarkable robustness to
initial step-size choices, even for initial step sizes that are several orders of magnitude smaller than
the optimal fixed step-size.

Fig. 3 depicts the blockwise step-sizes for (SGDm, Adam) across different blocks, showing an
increasing trend from the first to the last block (output layer), which is generally a desirable pattern.
In contrast, in the blockwise versions of (AdamW, Adam), (Lion, Lion), and (RMSProp, Adam)
updates, we empirically observed that the first five blocks exhibit similar trends and values, while the
last block follows a distinct trend, growing larger and rising at a later time.

7.2 IMAGENET DATASET

We trained ResNet-18 with batch-size 256 on ImageNet (Deng et al., 2009). We compared MetaOp-
timize with scalar step-size against four state-of-the-art hyperparamter optimization algorithms,

Under review as a conference paper at ICLR 2025

(AdamW, Adam) (Lion, Lion)

-
S
5]

©
-3

©
a

©
2

©
N

—— Fixed step size
-- Scalar
Blockwise

—— Fixed step size
---- Scalar
Blockwise

Train Accuracy (Top 1)

(RMSProp, Adam)

(SGDm, Adam)

©
-3

©
a

©
2

—— Fixed step size
---- Scalar
Blockwise

Fixed step size
Scalar
Blockwise

Train Accuracy (Top 1)

©
5

©
3

10 20 30 40 50 60 10 20 30 40 50 60
Epoch Epoch

Figure 1: Learning curves for selected
(base, meta) combinations in CIFAR10.

—— Initial alpha = 10e-6

Initial alpha = 10e-7
—— Initial alpha = 10e-8
—— Initial alpha = 10e-9

step size (alpha)
S

~

o
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le4

Figure 2: Robustness to
initial step-sizes, for (Lion,
Lion) as (base, meta) up-
date in CIFARI10.

—— alpha_block0

alpha_blockl
—— alpha_block2
—— alpha_block3

—— alpha_block4
—— alpha_blocks

o
o
@

14
o
N

step size (alpha)

0.017

0.00¢

0 1 4 5 6 7 8
Iteration le3
Figure 3: Evolution of

blockwise step-sizes dur-
ing training, for (SGDm,
Adam) as (base, meta) up-
date in CIFAR10.

namely DoG (Ivgi et al., 2023), gdtuo (Chandra et al., 2022), Prodigy (Mishchenko & Defazio, 2023),
and mechanic (Cutkosky et al., 2024), as well as AdamW and Lion baselines with fixed step-sizes,
and AdamW with a well-tuned cosine decay learning rate scheduler with a 10k iterations warmup.
Learning curves and complexity overheads are shown respectively in Fig. 4 and Table 1, showcasing
the advantage of MetaOptimize algorithms (learning curve of DoG is not depicted due to its relatively
poor performance). Unlike CIFARI10, here the blockwise versions of MetaOptimize showed no
improvement over the scalar versions. Refer to Appendix D for further details.

©
«

®
=}

—— AdamW, LR scheduler
—— AdamW, Fixed stepsize
—— Lion, Fixed stepsize

~
o

Train Accuracy (Top 5)

~
o

gdtuo
—— mechanic
—— Prodigy

— — MetaOptimize (AdamW, Lion), Scalar
— — MetaOptimize (Lion, Lion), Scalar
— — MetaOptimize (SGDm, Lion)

= 2.2

2.0

Train Loss

14

12

i ea

—— AdamW, LR scheduler

—— AdamW, Fixed stepsize

—— Lion, Fixed stepsize

— — MetaOptimize (AdamW, Lion)

— — MetaOptimize (Lion, Lion)
DoG
gdtuo

—— mechanic

—— Prodigy

~~~~~~

~SSIRITYS Ay oA
R EE

65 0 20 40 60

Epoch

Figure 4: ImageNet learning curves.

) 5000 10000

15000
Iteration

20000 25000

Figure 5: TinyStories learning curves.

30000

Table 1: Per-iteration wall-clock-time and GPU-space overhead (compared to AdamW).

ImageNet TinyStories

Time  Space Time  Space
AdamW (fixed stepsize) 0% 0% 0% 0%
DoG (Ivgi et al., 2023) +45% 14% | +268% 0%

gdtuo (Chandra et al., 2022) +85%  64% | +150% 21%
mechanic (Cutkosky et al., 2024) +42%  88% +9% 0%
Prodigy (Mishchenko & Defazio, 2023) | +42%  13% +9% 0%
MetaOptimize (AdamW, Lion) +44%  33% | +13% 0%

7.3 LANGUAGE MODELING

For language model experiments, we used the TinyStories dataset (Eldan & Li, 2023), a synthetic
collection of brief stories designed for children aged 3 to 4. This dataset proves effective for training
and evaluating language models that are significantly smaller than the current state-of-the-art, and
capable of crafting stories that are not only fluent and coherent but also diverse.

We used the implementation in (Karpathy, 2024) for training 15M parameter model with a batch
size of 128 on the TinyStories dataset. Two combinations of Hessian-free MetaOptimize with scalar



Under review as a conference paper at ICLR 2025

step sizes were tested against Lion and AdamW with well-tuned fixed step sizes, AdamW with a
well-tuned cosine decay learning rate scheduler with 1k warmup iterations, and the four state-of-the-
art step-size adaptation algorithms mentioned in the previous subsection. According to the learning
curves, shown in Fig. 5, MetaOptimize outperforms all baselines (with an initial delay due to small
initial step-sizes), except for the well-tuned learning rate scheduler within 30k iterations.

7.4 SENSITIVITY ANALYSIS

Here, we briefly discussion the sensitivity of MetaOptimize to its meta-meta-parameters.

For the meta-stepsize 1 in MetaOptimize, there is generally no need for tuning, and the default value
n = 103 works universally well in stationary supervised learning. All experiments in this section
used this default value with no sweeping required. The rationale for this choice is that when using
Adam, Lion, or RMSProp for meta-updates, the absolute change in 3 per iteration is approximately
7 x O(1) ~ 1073, Unless the current stepsize « is already near its optimal value, most 3 updates will
consistently move toward the optimal 3. Within 1,000 steps, 5 can change by O(1), nearly doubling
or halving o = exp(3). Over 10,000 iterations, a can adjust to stepsizes that are ¢! > 20,000
times larger or smaller, allowing 1 ~ 1073 to efficiently track optimal stepsizes while minimizing
unnecessary fluctuations in a.

Regarding the discount factor ~y, we used the default value v = 1 in all experiments and observed
minimal sensitivity to -y for values v > 0.999 in a series of preliminary tests. However, performance
begins to degrade with smaller values of .

8 RELATED WORKS

Automatic adaptation of step sizes, has been an important research topic in the literature of stochastic
optimization. Several works aimed to remove the manual tuning of learning rates via adaptations of
classical line search (Rolinek & Martius, 2018; Vaswani et al., 2019; Paquette & Scheinberg, 2020;
Kunstner et al., 2023) and Polyak step size (Berrada et al., 2020; Loizou et al., 2021), stochastic
proximal methods (Asi & Duchi, 2019), stochastic quadratic approximation (Schaul et al., 2013),
hyper-gradient descent (Baydin et al., 2017), nested hyper-gradient descent (Chandra et al., 2022),
distance to a solution adaptation (Ivgi et al., 2023; Defazio & Mishchenko, 2023; Mishchenko &
Defazio, 2023), and online convex learning (Cutkosky et al., 2024). A limitation of most of these
methods is their potential underperformance when their meta-parameters are not optimally configured
for specific problems (Ivgi et al., 2023). Moreover, the primary focus of most of these methods is on
minimizing immediate loss rather than considering the long-term effects of step sizes on future loss.

Normalization techniques proposed over past few years, such as AdaGrad (Duchi et al., 2011),
RMSProp, and Adam have significantly enhanced the training process. While these algorithms show
promise in the stationary problems, these normalization techniques do not optimize effective step
sizes and are prone to have sub-optimal performance especially in the continual learning settings
(Degris et al., 2024).

An early practical step-size optimization method was the Incremental-Delta-Bar-Delta (IDBD)
algorithm, introduced in (Sutton, 1992), which aimed to optimize the step-size vector to minimize a
specific form of quadratic loss functions in a continual setting. This algorithm was later extended for
neural networks in (Xu et al., 2018; Donini et al., 2019), and further adapted in (Mahmood et al., 2012;
Javed, 2020; Micaelli & Storkey, 2021) for different meta or base updates beyond SGD. However, the
development of IDBD and its extensions included some implicit assumptions, notably overlooking
the impact of step-size dynamics on the formulation of step-size update rules. These extensions are,
in essence, special cases of the L-approximation within the MetaOptimize framework. The current
work extends the IDBD research, significantly broadening the framework and establishing a solid
basis for the derivations. IDBD and its extensions have been used in various machine learning tasks
including independent component analysis (Schraudolph & Giannakopoulos, 1999), human motion
tracking (Kehl & Van Gool, 2006), classification (Koop, 2007; Andrychowicz et al., 2016), and
reinforcement learning (Xu et al., 2018; Young et al., 2018; Javed et al., 2024). Refer to (Sutton,
2022) for a comprehensive history of step-size optimization.



Under review as a conference paper at ICLR 2025

A related line of work is gradient-based bilevel optimization, initially introduced by Bengio (2000)
and later expanded in (Maclaurin et al., 2015; Pedregosa, 2016; Franceschi et al., 2018; Gao et al.,
2022). Recent advances, such as (Lorraine et al., 2020), enable the optimization of millions of hyper-
parameters. While bilevel optimization focuses on tuning hyperparameters to minimize validation
loss through repeated full training runs of the base algorithm, MetaOptimize diverges significantly.
Designed for continual learning, MetaOptimize optimizes meta-parameters on-the-fly during a single
streaming run, without relying on validation loss. Instead, it minimizes online loss (or regret) directly,
aligning with the continual learning framework where no validation or test sets exist, and data arrives
sequentially.

There is also a line of research on the so-called parameter-free optimization that aims to remove
the need for step-size tuning with almost no knowledge of the problem properties. Most of these
methods are primarily designed for stochastic convex optimization (Luo & Schapire, 2015; Orabona
& Pdl, 2016), while more recent ones (Orabona & Tommasi, 2017; Ivgi et al., 2023) were applied to
supervised learning tasks with small or moderate sample sizes.

9 LIMITATIONS AND FUTURE WORKS

Our work represents a step toward unlocking the potential of meta-parameter optimization, with
substantial room for further exploration, some of which we outline here:

Hessian: We confined our experiments to Hessian-free methods for practicality, though Hessian-
based algorithms could offer superior performance. These methods, however, face challenges
requiring additional research. The Hessian matrix is notably noisy, impacting H,; multiplicatively,
necessitating smoothing and clipping techniques. Additionally, the Hessian approximates the loss
landscape’s curvature but fails to account for non-differentiable curvatures, such as those from ReLU
unit breakpoints, significant at training’s end. From a computational perspective, developing low-
complexity methods for approximate Hessian matrix products, especially for adjusting step-sizes at
the layer and weight levels, is essential.

More accurate traces: As discussed in Section 3, accuracy of the backward approximation (5) may
degrade for larger values of the meta-stepsize 7. Eligibility traces in RL suffer from a similar problem,
to resolve which more-sophisticated traces (e.g., Dutch traces) have been developed (see Chapter 11
of (Sutton & Barto, 2018)). Developing more accurate backward approximations for meta-parameter
optimization can result in considerable improvements in performance and stability.

Blockwise step-sizes: While step sizes can vary much in granularity, our experiments focused on
scalar and blockwise step-sizes. While increasing the number of step sizes is anticipated to enhance
performance, our experimental findings in Section 7 reveal that this improvement is not consistent
across the MetaOptimize approximations evaluated. Further investigation is needed in future research.

Other approximations: We explored a limited set of MetaOptimize’s possible approximations,
leaving a comprehensive analysis of various approximations for future research.

Other meta-parameters: Our study was limited to differentiable meta-parameters, not covering
discrete ones like batch size or network layer count. We also did not investigate several significant
differentiable meta-parameters beyond step-sizes, deferring such exploration to future work.

Automatic Differentiation: While certain versions of MetaOptimize, such as the L-Approximation,
could be implemented using standard automatic differentiation software, its applicability to the
general case of MetaOptimize remains unclear. Unlike updates for w and 3 (base and meta param-
eters), the H matrix lacks an explicit incremental formula that can be easily handled by automatic
differentiation. For some versions of MetaOptimize, including the Hessian-free approximations used
in our experiments, automatic differentiation is unnecessary, as meta updates do not require additional
differentiation. Exploring the scope and applicability of automatic differentiation across different
MetaOptimize instances is an interesting direction for future research.

Continual learning: Although continual step-size optimization is primarily aimed at continual
learning, this study focused on the stationary case, demonstrating MetaOptimize’s competitiveness in
a context that is particularly challenging for it. Investigating the framework within continual learning
presents a promising direction for future research.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Ehsan Amid, Rohan Anil, Christopher Fifty, and Manfred K Warmuth. Step-size adaptation using
exponentiated gradient updates. arXiv preprint arXiv:2202.00145, 2022.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Anonymous.  Metaoptimize framework. https://anonymous.4open.science/r/
MetaOptimize—-2690, 2024.

Hilal Asi and John C Duchi. The importance of better models in stochastic optimization. Proceedings
of the National Academy of Sciences, 116(46):22924-22930, 2019.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. arXiv preprint arXiv:1703.04782,
2017.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):
1889-1900, 2000. doi: 10.1162/089976600300015187.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Training neural networks for and by
interpolation. In International Conference on Machine Learning, pp. 799-809. PMLR, 2020.

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient descent: The ultimate
optimizer. Advances in Neural Information Processing Systems, 35:8214-8225, 2022.

X Chen, C Liang, D Huang, E Real, K Wang, Y Liu, H Pham, X Dong, T Luong, CJ Hsieh, et al.
Symbolic discovery of optimization algorithms. arxiv 2023. arXiv preprint arXiv:2302.06675,
2023.

Ashok Cutkosky, Aaron Defazio, and Harsh Mehta. Mechanic: A learning rate tuner. Advances in
Neural Information Processing Systems, 36, 2024.

George E Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, et al. Bench-
marking neural network training algorithms. arXiv preprint arXiv:2306.07179, 2023.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, AleS Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366-3385, 2021.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Interna-
tional Conference on Machine Learning, pp. 7449-7479. PMLR, 2023.

Thomas Degris, Khurram Javed, Arsalan Sharifnassab, Yuxin Liu, and Richard Sutton. Step-size
optimization for continual learning. arXiv preprint arXiv:2401.17401, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248-255. IEEE, 2009. doi: 10.1109/CVPR.2009.5206848.

Michele Donini, Luca Franceschi, Massimiliano Pontil, Orchid Majumder, and Paolo Frasconi.
Marthe: Scheduling the learning rate via online hypergradients. arXiv preprint arXiv:1910.08525,
2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

11


https://anonymous.4open.science/r/MetaOptimize-2690
https://anonymous.4open.science/r/MetaOptimize-2690

Under review as a conference paper at ICLR 2025

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Bilevel programming
for hyperparameter optimization and meta-learning. In International Conference on Machine
Learning, volume 80, pp. 1568-1577, 2018.

Boyan Gao, Henry Gouk, Hae Beom Lee, and Timothy M Hospedales. Meta mirror descent:
Optimiser learning for fast convergence. arXiv preprint arXiv:2203.02711, 2022.

Geoffrey Hinton. Neural networks for machine learning, lecture 6.5 — rmsprop,
2012. URL https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf. Coursera Lecture.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146, 2018.

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465-14499. PMLR,
2023.

Robert A Jacobs. Increased rates of convergence through learning rate adaptation. Neural networks,
1(4):295-307, 1988.

Khurram Javed. Step-size adaptation for rmsprop. Technical Report, 2020. URL https://
khurramjaved.com/reports/idbd_rmsprop.pdf.

Khurram Javed, Arsalan Sharifnassab, and Richard S Sutton. Swifttd: A fast and robust algorithm for
temporal difference learning. In Reinfocement Learning Conference, 2024.

Honghe Jin. Hyperparameter importance for machine learning algorithms. arXiv preprint
arXiv:2201.05132, 2022.

Andrej Karpathy. llama2.c: Inference llama 2 in one file of pure c, 2024. URL https://github.
com/karpathy/l1lamaZ2.c. GitHub repository.

Roland Kehl and Luc Van Gool. Markerless tracking of complex human motions from multiple views.
Computer Vision and Image Understanding, 104(2-3):190-209, 2006.

Harry Kesten. Accelerated stochastic approximation. The Annals of Mathematical Statistics, pp.
41-59, 1958.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

A Koop. Investigating Experience: Temporal Coherence and Empirical Knowledge Representation.
University of Alberta MSc. PhD thesis, thesis, 2007.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Frederik Kunstner, Victor S Portella, Mark Schmidt, and Nick Harvey. Searching for optimal
per-coordinate step-sizes with multidimensional backtracking. arXiv preprint arXiv:2306.02527,
2023.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pp. 1306—-1314. PMLR, 2021.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In Proceedings of the 23rd International Conference on Artificial
Intelligence and Statistics, volume 108, pp. 1540-1552. PMLR, 2020.

Haipeng Luo and Robert E Schapire. Achieving all with no parameters: Adanormalhedge. In
Conference on Learning Theory, pp. 1286—1304. PMLR, 2015.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International Conference on Machine Learning, pp. 2113-2122.
PMLR, 2015.

12


https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://khurramjaved.com/reports/idbd_rmsprop.pdf
https://khurramjaved.com/reports/idbd_rmsprop.pdf
https://github.com/karpathy/llama2.c
https://github.com/karpathy/llama2.c

Under review as a conference paper at ICLR 2025

Ashique Rupam Mahmood, Richard S Sutton, Thomas Degris, and Patrick M Pilarski. Tuning-free
step-size adaptation. In International Conference on Acoustics, Speech and Signal Processing, pp.
2121-2124. IEEE, 2012.

Paul Micaelli and Amos J Storkey. Gradient-based hyperparameter optimization over long horizons.
In Advances in Neural Information Processing Systems, pp. 10798—-10809, 2021.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Francesco Orabona and Déavid Pal. Coin betting and parameter-free online learning. In Advances in
Neural Information Processing Systems, volume 29, 2016.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. In Advances in Neural Information Processing Systems, volume 30, 2017.

Courtney Paquette and Katya Scheinberg. A stochastic line search method with expected complexity
analysis. SIAM Journal on Optimization, 30(1):349-376, 2020.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160,
1994.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
Conference on Machine Learning, pp. 737-746. PMLR, 2016.

Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning. In
Advances in Neural Information Processing Systems, 2018.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International
conference on machine learning, pp. 343-351. PMLR, 2013.

Nicol Schraudolph and Xavier Giannakopoulos. Online independent component analysis with local
learning rate adaptation. Advances in neural information processing systems, 12, 1999.

Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-specific
adaptive learning rates for deep networks. In International Conference on Machine Learning and
Applications, pp. 364-368. IEEE, 2015.

Richard S. Sutton. Adaptation of learning rate parameters. Wright-Patterson Air Force Base, Ohio,
1981. Technical Report AFWAL-TR-81-1070.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3:
9-44, 1988.

Richard S Sutton. Adapting bias by gradient descent: An incremental version of delta-bar-delta. In
AAAI volume 92, pp. 171-176. San Jose, CA, 1992.

Richard S Sutton. A history of meta-gradient: Gradient methods for meta-learning. arXiv preprint
arXiv:2202.09701, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

RS Sutton. A theory of salience change dependent on the relationship between discrepancies on
successive trials on which the stimulus is present. Unpublished working paper, 1982.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. Advances in
Neural Information Processing Systems, 2019.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
Advances in neural Information Processing Systems, 2018.

Kenny Young, Baoxiang Wang, and Matthew E Taylor. Metatrace: Online step-size tuning by
meta-gradient descent for reinforcement learning control. arXiv preprint arXiv:1805.04514, 2018.

13



Under review as a conference paper at ICLR 2025

Appendices

A STEP-SIZE OPTIMIZATION FOR DIFFERENT CHOICES OF BASE AND META
UPDATES

In this appendix, we derive G defined in (10) for different choices of algorithms for base and meta
updates, and propose corresponding step-size optimization algorithms.

Consider the following partitions of Gy,

meta def [ dy,qy dy,y; dy,y
G _[ dy, dz. dh, |’ (18)

deiyr daeypr deega

base def dy, dx dhy
G = | dheos dheir dhus | - (19)
dy, dx: dhy

Then,
dYsi1 dyeyn dyeg
dy, daxy dh,
o deiyr daeypr degg
Gy = dy, dzy dhy
dht+1 dht+1 dht+1
dy, daxy dh,

meta
Gy

base
Gy

(20)

| S

In the sequel, we study base and meta updates separately, because Alg,,.. and Alg, .., impact disjoint
sets of blocks in G;. In particular, as we will see, the choice of Algy,,. only affects G**¢ while the
choice of Alg,,.., only affects G™".

Notation conventions in all Appendices: For any vector v, we denote by [v] a diagonal matrix with
diagonal entries derived from v. We denote by o’(3,) the Jacobian of a; with respect to 3,.

Before delving into computing G%*¢ and G'™* for different base and meta algorithms, we further
simplify these matrices.

A.1 DERIVATION OF GME™ FOR DIFFERENT META UPDATES

We start by simplifying G™", and introducing some notations.

Note that the meta update has no dependence on internal variables, &, of the base algorithm. As a
result,

d
S . @1)
d Tt
Then,
Gmeta — [ dy,qs dy, dyt+1} — [ dy, iy dy,11 dyea dyt+1i| — |: dy, Ay, 0 dy, s
t dy, d=; dh dy, dw; dz; dh; dy, dw; dh; |’
(22)
where the third equality is due to (21). Let
Vft (wt)T 0 0 0
V fi(wy)” 0 0
def
0 0 0 Vft(wt)T
and recall that h; is a vectorization of H;. Then,
’HtVft(wt) = Ltht. (24)

We now proceed to derivation of G™* for different choices of Alg, ...

14



Under review as a conference paper at ICLR 2025

A.1.1 Meta SGD

Here, we consider SGD for the meta update (9),

Bri1 =By —VpF, = B, —nHi V fi(wy), (25)
where 1) is a scalar, called the meta step size. In this case, y, = 3,. It then follows from (25) that
dBi1 d T d
= —N— = —np——(L¢hy) = —nL 26
dh, ndht (Ht Vft('wt)) ndht( t t) nLt, (26)

where the second equality is due to (24). Consequently, from (22), we obtain

Gmeta: dy, dy, 4 0 dyyq
t dy, dw; dhy

_ | d8 dg dg
= [ A g 0] @7

- [I —nHI V2 fi(wy) 0 fnLt}v

where the last inequality follows from (26) and simple differentiations of (25). Here, V> fi(wy)
denotes the Hessian of f; at w;.

A.1.2 Meta Adam
The meta update based on the Adam algorithm is as follows,
M1 = pmy + Hi Vfi(w,
By = Avy + (H7 V fi(w,

’
)

_ (1-p 1—A 73
m—()/l_M, (8)

)
)

my

Bit1 =B — nit——
\/ Ut

where m, is the momentum vector, v, is the trace of squared surrogate-meta-gradient. Since Adam
algorithm needs to keep track of 3,, m,, and v;, we have

By
Y= | ™t |. (29)
Uy

Recall the following notation convention at the end of the Introduction section: for any k£ > 1, and

any k-dimensional vector v = [v1, ..., vg], we denote the the corresponding diagonal matrix by [v]:
’Z_}l DY O

W= | (30)
0 Vi

Consequently, from (22), we obtain

Gltneta _ [ dyt+1

dy,py 0 ‘dyt+1:|

dy, dw; dhy
[ dBiys dBeyr dBita| dBiya 0 dBi11
dg, dm; do; dw; dhy
_ dmiya d'ﬁlt+1 d'ﬁlt+1 d'ﬂlt+1 0 d'ﬂlt+1
= dB, “dm; do, dw, dh,
doitl dot+l dot+l| dot+l () | dot+l 31
| dB, “dm, dw, dw, dh,
_ - L R
o =] e ] 0 o o
vy t
- = T\72 dmii
0 p[ 0 Ht \% ft 0 “dh, )
3 T T2 dviqa
| 0 0 A AHIVLIHIVA e 0] S5t

15



Under review as a conference paper at ICLR 2025

where the last equality follows by calculating derivatives of (28). For the two remaining terms in the
last column of G, we have

dmyiq d T d
= —(H; V =n—
dh = ap, M Viw)) =g
where the first equality follows from the update of m; in (28), and the second equality is due to
(24). In the same vein,

— (HIV fy(wy))? =

d
dh,

d
dh;

dog1

dh; dh (Luha)” = 2[Lib] 7

(Lihy) = 2[Lihy| Ly = 2[H] Vfi(wy)] Ly,

(33)
where the first equality follows from the update of v;; in (28), the second equality is due to (24),
and the last equality is again from (24).

Plugging (32) and (33) into (31), we obtain

G =10  pI 0 A 0 0Ly )
0 0 A 2[RIV I HTVA S 0| 2[HT V1] L

A.1.3 Meta Lion

The meta update based on the lion algorithm is as follows

M1 = pmy + (1 —p) V/,'E‘t’ (35)
Bii1 = B; —nSign (cmt +(1- C)V/B\Ft), (36)

where 7 is a scalar, called the meta step size, and p, ¢ € [0,1). Note that the meta algorithm operates
on a low dimensional space. Therefore, we drop the regularizers like weight-decay in the meta
updates, as they are primarily aimed to resolve the overfitting problem in high dimensional problems.

Substituting Vg F', with HI'V fi(w;) we obtain the following meta updates

M1 = pmy + (1= p) H V fi(wy), 37)
Biy1 = B; — nSign (cmt +(1- c)’H?Vft(wt)). (38)
In this case,
B
yt = |: mtt )
and
ks d t+1 d t d t
Gpen = [ S Sen o ]
dﬁt+1 dﬁf,+1 dﬁt+1 0 d5t+1
_ 4B, dm; dw, dhy
dmipr dmepr dmggs 0 dmiga 39

dpg, dm; dw; dh

I 0 0 0 0
= dmip1 dmyypr dmgg 0 dmyq |
dpg, dm, dw, dh,

where the last equality follows from (38). Consider the following block representation of Y;:
_| B
Y, = [ Y ] . (40)

Since the base algorithm, does not take m as input, as we will see in (42) and (43) of next subsection

(Appendix A.2), d mt“ is the only non-zero block of G in its column of blocks (i.e., ddsfgl = 0 for

every variable s other than ). Consequently, it follows from (15) that Y;™ as defined in (40), has no
impact on the update of X1, By41, and Q41. Therefore, we can zero-out the rows and columns of
G™" that correspond to derivative of 7. As such we obtain the following equivalent of G™* in (39)
from an algorithmic perspective:

(41)

G;neta = |: Im><m O:|

0 0f

As aresult, we get B; = I for all times ¢.

16



Under review as a conference paper at ICLR 2025

A.2 DERIVATION OF G®*SE FOR DIFFERENT BASE UPDATES

We now turn our focus to computation of G**¢ . Let us start by simplifying G®*¢, and introducing
some notations.
Note that the base update has no dependence on internal variables, ¢, of the meta update. As a result,
dxs g
dy,
Moreover, it follows from the definition of H; in (8) that

=0. (42)

dHeis ‘L, d (dth) Lo d [dwyy L, d
= =0NP AT = (= | =0 T T ) =) ) T
a5, 02 g s, ) S0 Ty, ) T2 g,
where the third equality follows from (42). Therefore,
dh
=l . 43)
dy,
Note also that Alg, .. does not take 7, as input, and therefore,
dxii
=0. 44
dh, (44)
Consequently, we can simplify G as follows,
daiyq daiyr deig daiyr dxig deiyr dzeg dxiy 0 daiyq 0
ghwe — | dve Tdw, dhe | _ | A, dy, dwy  dhe | _ | dB, day
T | dhe dhegy dhegs | T | dhepn dheg dheg dbess | 0| dhas g dheny dheg |
dy, do, dh, d@, ~dg, dw, dhy dg, de, dh,
(45)
where the last equality is due to (42), (43), and (44).
On an independent note, consider the following block representation of Y;,
B, — =27
Y: = el 46
t |: }/; :| ’ ( )
Therefore, )
1| | B
measa[1]=[ %]
It then follows from (20) and (15) that
- [ Bt
Xt+1 base f/t
= . 47
|: Qt+1 :| 7Gt Xt ( )
L Q
Moreover, from the definition of Y; in (12), we have
d B, d <~ 4B, _ d [dpB, Lo, d
= 1 — —_— T - v — 1 _ T_ & 0 —
i, = v)dwt;:;)v a5, 27 15 \dm ) = 7);7 a0
d B, d <« ,_.dg, L, d [dB, L, d
= =0==F D vV =0 YV g5 ) =1 = YT ) =
a6~ Vag 20 as, T 2 g s, ) < )TZO dﬁT()
t t
dB; b dﬂt iy d d g, —
1 _ -7 —(1— T Mt T
dh, dhtTZ:O ( 7);7 a8. \dh, TZOV dﬁ
(48)
Finally, recall the definition
rda
/ def t
= 49
a (Igt) d,@t ( )

as the Jacobian of o; with respect to 3,.

We now proceed to derivation of G for different choices of Algy,..

17



Under review as a conference paper at ICLR 2025

A.3 BASE SGD

Base SGD algorithm makes the following base update in each iteration:

Wi41 = Wy — atvft(wt)~ (50)
In this case, x; = w; and X; = H;. Then, G}s’ase in (45) can be simplified to
i daxigr dxiy
Gbase _ d B, 0 dx, 0
t - dht+1 O dht+1 d ht+1
| dB. dz; dhy
[ dwigs dwiyy
_ | s O e O 51)
- dht+1 O dh{,+1 dht+1
| dB. dw; dhy
—[Vf(w)]o'(By) 0 I—[e] V2 fi(w) 0
= dhitr 0 dhiiq dhiyr |
i ds, dw; dh;

where the last equality follows by computing simple derivatives of w1 in (50).

We proceed to compute the three remaining entries of G?ase, ie,dhyy1/dB,, dhyyr/dw,, and
dhyy1/d hy. Note that by plugging the first row of G, given in (51), into (47), and noting that

H; = X;, we obtain
Hirr = (I — o] V2 fo(we))He — 7 [V fe(we)] o’ (8,) By, (52)
for all ¢ > 0. By vectorizing both sides of (52) we obtain
(1= [eu] V2£i) 1) — [V£] o'(8,) B
I — V2 7_[[2] / B[Q]
hiyy = o ( (o] f) . [Vfi] o'(B,) By 53)
(I =[] V21) H™ — [Vfi] o (B,) B

Note that for any pair of same-size vectors a and b, we have [a] b = [b] a where [a] and [b] are
diagonal matrices of @ and b, respectively. Therefore, (53) can be equivalently written in the following
form

(I =[] V21) 1 = ['(8) BI"] V 1y
hiv1 =~ : (54)
(1 =[] V2R) 7™ = [o'(B) B V 1
By taking the derivative of (53) with respect to h;, we obtain
[ I~ [ou] V2 fi(w:) 0 0 0 ]
0 I— [Oéf] Vth('wt) 0 0
dhiyr
dhy 0 0 0
L 0 0 0 I- [at] V2ft(wt) i
(55)

In the above equation, note that d B;/d h; = 0 due to (48). Let S3;[i] and w;[j] denote the ith and

jth entries of 3, and wy, fori =1,...,mand j = 1,...,n, respectively. It then follows from (53)
and (48) that
da; oy 20’ (B,) pll] day (1] 90" (By) plil
e | Vel + (9150 588 Bl 235 | V2Rl + (V5 55 Bl
dhiyq _ . .
B, -
. m do'( B m o0’ (B, m
|| el + [vf] 2B Bl | |35 A ™ + 194 5584 B
(56)

18



Under review as a conference paper at ICLR 2025

where % stands for the entry-wise partial derivative of a matrix with respect to a scalar variable 3.
In the same vein, (54) and (48) imply that

24, (10,) 11U
(] AV Selw) ¥y ) [o'(By) BP]] V2 fi(ws)

dw;
dh
ﬁ =5 : . (57)
2 w Em] m
[o] %wt)ﬂ) + [U,(/Bt) B£ }] V2 £, (w;)

Finally, Gb*¢ is obtained by plugging (55), (56), and (57) into (51).

In the special case that 3 is a scalar (equivalently m = 1), and furthermore o = o/(3) = €, matrix
GY*¢ would be simplified to

1 —nh{ V2 fy(w,) -V fe(we)”
G}Zase (scalar) _ —ant(wt) I— aVth(wt) 0
d(V2f(wy)h,
—VQVth(wt)ht — By aV fi(w;) —7@% — By avzft(wt) ’Y(I - aszt('wt))

A.3.1 Base AdamW

The base update according to the AdamW algorithm (Loizou et al., 2021) is as follows,
myi1 = pmy + Vfi(we),
Vi41 = )\’Ut + Vft(wt)Q,

1—-p 1-A
e = »

my
Wit = Wy — atutﬁ — RO Wy,
t
where m; is the momentum vector, v; is the trace of gradient square used for normalization, and
K > 01is a weight-decay parameter. Therefore the base algorithm needs to keep track of w,, m, v,

ie.,
wy
Ty = my . (59)
Ut
It then follows from (45) that
i daiyr daiyr
Ghase — dg, 0 dz, 0
t - dht+l 0 dht+1 dht+1
| "5, de, dh,
r dwiy 0 dwipr dwigr dwiqa 0
dg, dw; dm, dwv
dmiys 0 dmyqq dmiq dmiq O
_ dg, dw; dm, d v,
- dvigs 0 dviga dvigs dvigs 0
dﬁt dw, dm, d v
dhiy o dhis dhoa dheg | dhe
L dgB, dw; dm, dwv dhy
M _ my / _ _ [e 77 Kt | gy
Mt{ﬁ‘f‘ﬁwt}a(,@t) 0 I—rloy Nt[\/ﬁ} 5 [U},S } 0
_ 0 0 V2§, ol 0 0
0 0| 2[Vfi] V*f, 0 V4 0
dht+1 0 dht+1 dht+1 dhf,+1 dht+1
L dgB, dw; dmy d vy dh;
(60)

where the last equality follows from simple derivative computations in (58).

We proceed to compute the terms in the last row of the G above. Consider the following block
representation of X,

Hy
Xt = [ X" ] ; (61)
Xy

19



Under review as a conference paper at ICLR 2025

Plugging the first row of G%, given in (60), into (47), implies that

Hivr = =y [%"‘ﬁwt} o'(B,)B: + W(I_“ [o] )Ht — VMt [%} X"+ 7% {C::;;t} ¢

(62)
for all ¢ > 0. Note that for any pair of same-size vectors a and b, we have [a] b = [b] @ where [a] and
[b] are diagonal matrices of a and b, respectively. Therefore, the ith column in the matrix equation
(62) can be equivalently written as

HiLL = =o' (8,)BY] L bt xy ] 25

m i m[i]] &
T ws (T o] VI =y | X7 L 44 2L i

VUt Voe 2 ¢
(63)

where Btm, H,[fi], X" (] and X, (1 stand for the ith columns of B;, H,, X, and X7, respectively.
Following similar arguments as in (48), it is easy to show that

dXp  dXy

dg, N d g, =0,

AxXp_dxe

d'wt dwt ’

d X" d Xy

dm, :m:(), (64)
axr _dxy

d v, dv, ’

d X" _ d Xy —0

dh; dh; '

Note that h, is an nm-dimensional vector derived from stacking the columns of ;. Therefore, we
consider a block representation of h, consisting of m blocks, each of which corresponds to a column
of H;. By taking the derivative of (62) with respect to h;, and using (64), we obtain

[ 1 — ko] 0 0 0 |
0 I — ko] 0 0
Rkl B A I 3
L 0 0 0 I — Koy
Let (3;[i] and w;[j] denote the ith and jth entries of 3, and wy, fori =1,...,mand j =1,...,n,

respectively. Note that d h;y1/d 3, is a block matrix, in the form of an m x m array of n x 1
(il

blocks, d(j‘[;tl i, 5] & ‘ji’gttm, fori,j7 = 1,...,m. It then follows from (62) and (64) that, for
ij=1,....m,
ag, ' d B4[4]
my 80’(@)) [l ( doy ) 0
= — | —= 4+ kwy | [ L) B A (T—k _[ )1 66)
VMLﬂz t](a@m o [d@m] '
L yrdas 1 omp pefme) [ dos 1 ol
- — X B2 =2 x
Fy‘ut|:g/'l)t:| |:d/8t[j]:| t +’Y2 |:’U%'5i| [dﬁtb]} t ’

where % stands for the entry-wise partial derivative of a matrix with respect to a scalar variable .

In the same vein, it follows from (63) and (64) that
o8B!
o8B

dhigq
dwt

20



Under review as a conference paper at ICLR 2025

[atx,” o a'(ﬁt)BP]]

2015 NOT
dh
T = ; , (68)
t
{atx: ml a'(ﬁt)B,F'"”}
2v;° Vo
m 3aimy tv[l]
[35] [(/80 By + 371 — 2ot
dhipr v
_ M 69
d’Ut 2 : - ( )
[ﬁ} [(Ul(ﬁt)BtM)mt + o X{" i %}
Finally, G'gase is obtained by plugging (65), (66), (67), (68), and (69) into (60).
A.3.2 Base Lion
The lion algorithm, when used for base update, is as follows
M1 = pmy+ (1 — p) Vfi(wy), (70)
Wi41 = W — O Slgn (cmt + (1 — C)Vft) — RO Wy, (71)

where m; is called the momentum, x > 0 is the weight-decay parameter, p, ¢ € [0, 1) are constants,
and Sign(-) is a function that computes entry-wise sign of a vector. Let

w
T = [ ¢ } ) (72)
my
It then follows from (45) that
[ dai deig
Ghase — dg, 0 dz 0
t dht+1 0 dht+1 dht+1
| dB, dw, dhy
[ dwiqs 0 dwipr dwegs 0
dﬂt dw; dmy
. dmiyq 0 dmyqq dmyiq 0
- dg, dw; dm, (73)
dhiy 0 dhig dhir1 dhig
L dg, dw; dmy dh;
[ —[Sign (cmy + (1—¢)Vfi) +rkwi]o’(B,) 0 I—klow] 0 0
dmipa 0 dmggg dmgga 0
= dgB, dwy dmy
dhiys 0 dhiyr dhiy1  dhey
L 4B, dw, dmy dhy

where the second equality is due to (72) and the last equality follows from (71). Consider the
following block representation of X,

X, = { X ] (74)

Plugging the first row of G, given in (73), into (47), implies that
Ht+1 = —’Y[Slgn (C my; + (1 — C)Vft) + I'iwt] U/(ﬂt) Bt + ’}/(I — K [at] )Ht (75)
For simplicity of notation, we define the diagonal matrix S; as
S = [Sign (emy + (1 — )V ) + rw,]. (76)

Then,
~S0'(8) Bl + (I = o] )1

hip1 =7 : )
—S10'(B,) BI"™ + y(I — ki [a] ) HY™

21



Under review as a conference paper at ICLR 2025

It follows that ih
s g (78)
dmt
and
le] o(8,) B)"| -+ | len] o'(8,) B)Y
dhiyq S N ’ (79)
d'wt )
le] o(B,) BI™| -+ | len] o'(B,) B™

where e; is the ith unit vector (i.e., an n-dimensional vector whose ith entry is 1 and all other

entries are zero). Let 5;[i] and ”HM be the ith entry of 3, and ith column of H;, respectively, for
i =1,...,m. Then,

doy o’ (By) plil do (1] o' (By) pnlil
’Y’f[dﬂtm} H + 8, 5 a5 Bi VK [dﬁf[m]} Hi' + 5, aamt Bi
dhiyi
d g, ’
doy [m] 9’ (By) plml| . doay m] 30 (Bt) [m]
VK[dmm}Ht + St Zg,nf Be R {dﬁf[m]}H + S mr Be
(80)
and
I — ki oy] 0 0 0 1
0 I—kla] | 0 0
h
d t+1 _ (81)
dh. 0 0 - 0
i 0 0 0 I — "i[at] ] ,

It follows from (22), (73), and (78) that in the G; matrix, m”trl is the only non-zero block in its
corresponding column of blocks. Consequently, it follows from (15) that X}, as defined in (74), has
no impact on the update of H; 1, Y41, and (QQ;41. Therefore, the rows and columns of Gb¢ that
correspond to derivative of m can be completely removed from G®*¢, By removing these rows and
columns from G?, the matrix update (15) simplifies to

dy, d
Y1 dyt ddyfutl ilyif?tl Y,
Hiv1 | =7 [ —[Sign (cmy + (1 =)V f)]|d'(B,) 0] I—rley] 0 Hy
Qt+1 dhi 0 dhiyr  dhe Q:
dﬁt d’lﬂt dht
(82)

where d hyy1/d B,, dhiy1/dwy, and d hyy/d h, are given in (80), (79), and (81), respectively;
and the blocks in the first row depend on the meta update.

B EXITING STEP-SIZE OPTIMIZATION ALGORITHMS AS SPECIAL CASES OF
METAOPTIMIZE

In this appendix we show that some of the existing step-size optimization algorithms are special cases
of the MetaOptimize framework. In particular, we first consider the IDBD algorithm (Sutton, 1992)
and its extension (Xu et al., 2018), and then discuss about the HyperGradient algorithm (Baydin et al.,
2017).

B.1 IDBD AND ITS EXTENSIONS

Sutton (1992) proposed the IDBD algorithm for step-size optimization of a class of quadratic loss
functions. In particular, it considers loss functions of the form

1
Ji(wy) = 2(% wy — bt) ; (83)

22



Under review as a conference paper at ICLR 2025

for a given sequence of feature vectors a; and target values by, for ¢t = 1,2, .... Moreover, Sutton
(1992) assumes weight-wise step sizes, in which case 3, has the same dimension as w;. The update
rule of IDBD is as follows:

g, — (alw, — b;) ay, (84)
Biy1 < By —nhi gy, (85)
Qupy1 — exp (,Bt+1), (86)
Wiy < Wy — g1 Gy, (87)
hiiq (1 - at+1a§)+ hy — o119, (88)

where (-) clips the entries at zero to make them non-negative, aimed to improve stability. Here,
g, is the gradient of f;(w;) and a? in the last line is a vector that contains diagonal entries of the
Hessian of f;. The updated values of 3 and w would remain unchanged, if instead of the vector hy,
we use a diagonal matrix H, and replace (85) and (88) by

Bii1 < By —nHegy,
Hipr + (1— [Ott+1a2])+ Hi — [ 1194] -

Note that [aﬂ is a matrix that is obtained from zeroing-out all non-diagonal entries of the Hessian
matrix of f;. It is easy to see that the above formulation of IDBD, equals the L-approximation of
MetaOptimize framework when we use SGD for both base and meta updates, and further use a
diagonal approximation of the Hessian matrix along with a rectifier in the update of ;.

(89)

An extension of IDBD beyond quadratic case has been derived in (Xu et al., 2018). Similar to IDBD,
they also consider weight-wise step sizes, i.e., m = n. The update of step sizes in this method is as
follows:

Big1 < By — MV fi(wy)

Q1 < eXP(IBtH)a

Wiy Wy — app Vfir(wy),

Hip1 (I — [oveq1] Vth(wt) ) Hy — [Ott+1 Vft(’wt)]

Similar to IDBD, it is straightforward to check that the above set of updates is equivalent to the
L-approximation of MetaOptimize framework that uses SGD for both base and meta updates, except
for the fact that the above algorithm uses o1 in wy1 and H;, updates whereas MetaOptimize
uses a;. This however has no considerable impact since o, varies slowly.

B.2 HYPER-GRADIENT DESCENT

HyperGradient descent was proposed in (Baydin et al., 2017) as a step-size optimization method. It
considers scalar step size with straightforward extensions to weight-wise step sizes, and at each time
t, updates the step size in a direction to minimize the immediate next loss function. In particular, they
propose the following additive update for step sizes, that can wrap around an arbitrary base update:

a; = By 11,

d fi(wy) r dw, (90)
=B —n2LTY g pv ,
Brv1 =B —n 46 B =V fi(wy) 48,1
The last update can be equivalently written as
Ber1 = Be —nH{ V fi(wy),
d Wit1 (91)

=0x —
Ht+1 0 Ht + d Bt
The step-size update in (91) can be perceived as a special case of MetaOptimize in two different
ways. First, as a MetaOptimize algorithm that uses SGD as its meta update and approximate the G
matrix in (10) by zeroing out all of its blocks except for the top two blocks in the first column. From
another perspective, the additive HyperGradient descent in (91) is also equivalent to a MetaOptimize
algorithm that uses SGD as its meta update and sets v = 0. Note that setting v equal to zero would
eliminate the dependence of H;41 on X, and ()¢, as can be verified from (15). This would also render
the 8 updates ignorant about the long-term impact of step size on future losses.

23



Under review as a conference paper at ICLR 2025

C EXPERIMENT DETAILS

In the appendix, we describe the details of experiments performed throughout the paper. In our
experiments on CIFAR10 and ImageNet dataset, we used a machine with four Intel Xeon Gold
5120 Skylake @ 2.2GHz CPUs and a single NVIDIA V100 Volta (16GB HBM2 memory) GPU.
For TinyStories dataset, we used a machine with four AMD Milan 7413 @ 2.65 GHz 128M cache
L3 CPUs and a single NVIDIA A100SXM4 (40 GB memory) GPU. In all experiments, the meta
step size 7 is set to 1073, The meta-parameters used in the considered optimization algorithm for
CIFAR10, ImageNet, and TinyStories are given in Table 2, Table 3, and Table 4, respectively. In
the experiments, we performed a grid search for p, 5 € {0.9,0.99,0.999}, A\, A € {0.99,0.999},
and ¢,¢ € {0.9,0.99}. Regarding baselines with fixed step sizes, we did a grid search for the
learning rate in the set {1075,107%4,1073,1072,1071}. We set ~y equal to one in all experiments.
Moreover, in ImageNet (respectively TinyStories) dataset, for AdamW with the learning rate scheduler,
we considered a cosine decay with 10k (respectively 1k) steps warmup (according to extensive
experimental studies in (Chen et al., 2023) (respectively (Karpathy, 2024))) and did a grid search for
the maximum learning rate in the set {107°,10~4,1073}.

Regarding other baseline algorithms, for DoG, although it is a parameter-free algorithm, its per-
formance is still sensitive to the initial step movement. We did a grid search for the initial step
movement in the set {1072,107%,1077,107%} and reported the performance for the best value.
In all experiments of DoG, we considered the polynomial decay averaging. For Prodigy, we used
the default values of parameters as suggested by the authors in github repository. For gdtuo, we
considered the following (base, meta) combinations: (RMSprop, Adam), (Adam, Adam), and (SGD
with momentum, Adam) and chose the best combination. For mechanic, we did experiments for
the base updates of SGDm, Lion, and Adam and considered the best update. In order to have a fair
comparison, in mechanic and gdtuo, we used the same initial step size as MetaOptimize.

Regarding the complexity overheads reported in Table 1, for AdamW with fixed step-size we used
the Pytroch implementation of AdamW. For all other baselines, we used the implementation from the
Github repository provided along with (and cited in) the corresponding paper. For MetaOptimize, we
used the implementation in (Anonymous, 2024). Note that the implementation of MetaOptimize in
(Anonymous, 2024) is not optimized for time or space efficiency, and smaller complexity overheads
might be achieved with more efficient codes. For each algorithm, the wall-clock time overhead
and GPU space overhead are computed by (Ta1g — Tadamw)/Tadamw and (BYEX ./ Bgﬁx) -1,
respectively; where T'a1g and T'Agamw are per-iteration runtimes of the algorithm and AdamW, and
BRfy and B3, w are the maximum batch-sizes that did not cause GPU-memory outage for the
algorithm and AdamW.

Base Update | Meta Update (if any) p A K c p A c Qg n 0%
Fixed step size 09 10999 [ 0.1 ] - - - - 107 - 1

AdamW Adam, Scalar 09 | 0999 | 0.1 - 0.9 | 0.999 - 1007510731
Adam, Blockwise 09 | 0999 | 0.1 - 0.9 | 0.999 - 1007 1073 | 1

Fixed step size 0.99 - 0109 - - - [107% - 1

Lion Lion, Scalar 0.99 - 0.1]1091099 - 09110710731
Lion, Blockwise 0.99 - 0.1 1 09 | 0.99 - 09110710731

Fixed step size - 1099 [ 0.1 ] - - - - 1073 - 1

RMSprop Adam, Scalar - 0.999 | 0.1 - 0.9 | 0.999 - 101071
Adam, Blockwise - 0.999 | 0.1 - 0.9 | 0.999 - 1007 1107% |1

Fixed step size 0.9 - 01| - - - - 1073 - 1

SGDm Adam, Scalar 0.9 - 0.1 - - - - 107 T 107% | 1
Adam, Blockwise 0.9 - 0.1 - - - - 10771073 ] 1

Table 2: The values of meta-parameters used in CIFAR10 dataset.

D FURTHER EXPERIMENTAL RESULTS

ImageNet dataset: In Figure 6, we depict the train accuracy (top 1) and test accuracy (top 1)
of the considered algorithms in ImageNet dataset. As can be seen, in the train accuracy (top

24




Under review as a conference paper at ICLR 2025

Base Update Meta Update P A K c p Al ¢ Qo n v
Fixed step size | 0.9 | 0.999 | 0.1 | - - - - 107 - 1
AdamW Lion, Scalar 09 1099 [01] - 099 -]09[10°°[10°° 1
Lion, Blockwise | 0.9 [ 0999 [ 0.1 | - [099 ] - 09 [10°° 1073 |1
Fixed step size | 0.99 - 0109 - - - 107 - 1
Lion Lion, Scalar 0.99 - 01709[099]-]109]105]10°[1
Lion, Blockwise | 0.99 - 011091099 -]09][10°[10°3 1
SGDm Lion, Scalar 0.9 - 0.1 |09 - - - 10103 |1
Table 3: The values of meta-parameters used in ImageNet dataset.
Base Update | Meta Update (if any) o A K c p A c Qg n 5y
AdamW Fixed stepsize 09 10999 | 0.1 | - - - - 1073 - 1
Adam, Scalar 09 1099 | 0.1 ] - 09 0999 | - [10°[107 7|1
Fixed stepsize 0.99 - 0.1 09| - - - | 107% - 1
Lion Lion, Scalar 0.99 - 0.1 109|099 - 09]107% 1072 |1

Table 4: The values of meta-parameters used in TinyStories dataset.

1), MetaOptimize (SGDm, Lion) and MetaOptimize (AdamW, Lion) have the best performance.

Moreover, in the test accuracy (top1), these two combinations of MetaOptimze outperform other
hyperparameter optimization methods and only AdamW with a handcrafted learning rate scheduler
has a slightly better performance at the end of the training process.

70
70 e
60 60
’i a
[-%
€50 g0
§ = AdamW, LR scheduler g‘ = AdamW, LR scheduler
5 —— AdamW, Fixed stepsize 5 40 —— AdamW, Fixed stepsize
:td 40 —— Lion, Fixed stepsize S —— Lion, Fixed stepsize
< — — MetaOptimize (AdamW, Lion), Scalar f — — MetaOptimize (AdamW, Lion), Scalar
'g 30 — = MetaOptimize (Lion, Lion), Scalar @ 30 — — MetaOptimize (Lion, Lion), Scalar
— — MetaOptimize (SGDm, Lion) — — MetaOptimize (SGDm, Lion)
gdtuo I gdtuo
—— mechanic f —— mechanic
20 +
—— Prodigy 20 —— Prodigy
0 20 40 60 80 0 20 40 60 80
Epoch Epoch
(a) Train Accuracy (Top 1) (b) Test Accuracy (Top 1)

Figure 6: ImageNet learning curves.
In Figure 7, we provide the test loss of considered algorithms for the TinyStories datasets. As can be
seen, the learning curves have the same trends as the training loss in Figure 5.

Figure 8 shows the results for the blockwise version of MetaOptimize for two combinations of
(AdamW, Lion) and (Lion, Lion). As can be seen, they showed no improvement over the scalar
version.

25




Under review as a conference paper at ICLR 2025

2.2
—— AdamW, LR scheduler
—— AdamW, Fixed stepsize
2.0 —— Lion, Fixed stepsize
— — MetaOptimize (AdamW, Lion)
— — MetaOptimize (Lion, Lion)
1.8 DoG
@ gdtuo
S —— mechanic
k) 1.6 —— Prodigy
i)
1.4
1.2
0 5000 10000 15000 20000 25000 30000
Iteration
Figure 7: TinyStories learning curves.
85 e ==
- —_—— T memmmmt
- —— Tt
e e
// Bt ot N S
>80 / /_, SR ENSPREEECL, o -
2 VRGPSt
© / /et
=1 /7 0
9 | 47"
< l/,"
n 75 L1
Q .'[’,’
2 I}
II,.'
70 I: — — MetaOptimize (AdamW, Lion), Scalar
I'l — — MetaOptimize (Lion, Lion), Scalar
:.' -=== MetaOptimize (AdamW, Lion), Blockwise
! -===- MetaOptimize (Lion, Lion), Blockwise
65 —*%
20 40 60 80

Figure 8: Comparison of blockwise version of MetaOptimize with the scalar version in ImageNet

dataset.

Epoch

26




	Introduction
	Problem Setting
	Forward and Backward Views
	MetaOptimize
	Reducing Complexity
	Hessian-Free MetaOptimize
	Experiments
	CIFAR10 dataset
	ImageNet dataset
	Language modeling
	Sensitivity analysis

	Related Works
	Limitations and Future Works
	Step-size Optimization for Different Choices of Base and Meta updates
	Derivation of Gmeta for Different Meta Updates
	Meta SGD
	Meta Adam
	Meta Lion

	Derivation of Gbase for Different Base Updates
	Base SGD
	Base AdamW
	Base Lion


	Exiting Step-size Optimization Algorithms as Special Cases of MetaOptimize
	IDBD and Its Extensions
	Hyper-gradient Descent

	Experiment Details
	Further Experimental Results

