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Abstract

Recently, paired single-cell sequencing technologies have allowed the measurement
of multiple modalities of molecular data simultaneously, at single-cell resolution.
Along with the advances in these technologies, many methods based on variational
autoencoder have been developed aiming at integrating paired single-cell multi-
omics data. However, how to incorporate prior biological understanding of data
properties into such models remains an open question in the field. Here, we propose
a novel probabilistic learning framework that explicitly incorporates conditional
independence relationships between multi-modal data as a directed acyclic graph
using a generalized hierarchical variational autoencoder. Applying our approach
to single-cell ATAC and RNA-seq data, we find that our method can identify cell
clusters with distinct expression profiles that are not driven by chromatin state. We
anticipate that our proposed framework can help construct flexible graphical models
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that reflect biological hypotheses with ease and unravel the interactions between
different biological data types, such as different modalities of paired single-cell
multi-omics data. The implementation of the proposed framework can be found in
the repository https://github.com/kuijjerlab/CAVACHON.

1 Introduction

In the past decade, the emergence of high throughput single-cell single-omics technologies has enabled
the profiling of snapshots of gene and protein expression [1, 2, 3], chromatin accessibility [4, 5, 6] and
transcription factor binding [7] occurring in each individual cell. Single-cell datasets generated with
these technologies have broaden our understanding of, for example, stochasticity of gene expression
[8], expression dynamics during cell differentiation [9], and differences in chromatin states between
cells from healthy and diseased tissues [10, 11]. However, as regulatory elements work cooperatively
to mediate biological processes in cells, single-omics technologies may fail to fully capture the
complex molecular mechanisms involving multiple dimensions or modalities of regulatory elements
[12].

Thanks to recent advances in single-cell multi-omics sequencing technology such as CITE-Seq [13],
scNMT-Seq [14], SNARE-Seq [15], SHARE-Seq [16] and 10X Multiome [17], it is now possible
to capture multiple modalities of molecular data simultaneously at single-cell resolution. However,
integrating and deriving biological insights from multiple modalities is challenging, as each modality
requires distinct data processing, normalization, modeling and interpretation [12]. To address
this, various data analysis tools and computational methods have been proposed. For instance,
Seurat [18], Harmony [19], Scanpy [20] and MUON [21] all provide unified frameworks for quality
control, data exploration and downstream analysis of single-cell data. Other methods such as
scMVAE [22], Cobolt [23], scMM [24] and TotalVI [25] integrate multiple modalities of single-cell
data by applying variational autoencoders to embed the observed data into a joint low-dimensional
latent space. However, using a joint latent space renders it difficult to interpret the model and unravel
the interactions between different modalities. Moreover, most of these published methodologies
aim at direct multi-omics data integration. How to incorporate prior biological understanding of the
properties of data into the existing model remains an open question in the field.

Recently, GLUE [26] was proposed to incorporate a prior knowledge graph between biological
features to link the generative process between different modalities. However, this approach required
constructing specific interactions between regulatory elements in advance, which might render it
difficult to apply when the understanding of the detailed underlying regulatory network is lacking.
Complementary, we propose a novel probabilistic learning framework that incorporates the conditional
independence relationships on the modality-level (e.g. state of chromatin accessibility may influence
gene expression in general, as opposed to specific chromatin region may influence specific gene
expression) using a generalized variational ladder autoencoder [27]. Specifically, our proposed
framework takes as input the observed data sets and a directed acyclic graph (optional) representing
the relationships between modalities. Then, the model is sequentially trained based on the topological
order in the provided graph to optimize the evidence lower bound of the data likelihood of each
modality. Applying to the SNARE-Seq data from the cerebral cortex of an adult mouse, we showed
that our model is capable of isolating explained variability of gene expression from chromatin
accessibility signals. We anticipate that our proposed framework will help users to construct flexible
graphical models that reflect biological hypotheses with ease and unravel the interactions between
different biological data types, such as different modalities of paired single-cell multi-omics data.

2 Methods

2.1 Problem Definition

Consider M multiple modalities of data with the same anchor, and a directed acyclic graph G = (V, E),
where V = {vm | m = 1, 2...M} is the set of vertices representing the data modalities, and
E ⊆ V ×V is the set of unweighted directed edges specifying our prior knowledge on the conditional
independence relationships between different modalities. Conditional independence relationships
between different modalities are provided as follows: If there exists a directed edge from modality
A to modality B, then modality A and modality B are conditionally independent given the latent
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representation of modality A (see Figure 1). Our proposed method aims to learn the generative
process of the observed data set given the dependency between the latent distributions across different
modalities by creating and training a hierarchical variational autoencoder explicitly based on G.

For paired single-cell multi-omics sequencing data, each modality represents a single molecular
assay anchored by the barcodes of cells. The graphical prior knowledge provided to our method
could, for example, be given by the states of chromatin accessibility that may facilitate regulation
of gene expression [28] (Figure 1b). Note that although we mainly present our proposed method in
the context of paired single-cell multi-omics data, it can also be applied to single-omics data derived
from single-cells or bulk tissues, e.g. time series data analysis (Figure 1c). For other potential use
cases, please refer to Figure 1.

Figure 1: Examples of relational graphs and graphical models. (a)-(d) Schematic diagrams of input
graphs representing conditional independent relationships (left) between modalities of data and the
graphical models created by our method (right). Note that the batch information is omitted in (a)-(d).
The numbers under the names of the rectangle boxes are the topological orders used for sequential
training. The nodes in the graphical model are colored by the type of molecular assays. The dashed
arrows denote the recognition model for posterior approximation while the solid arrows denote
the generative process. The figure shows examples with (a) joint learning, (b) states of chromatin
accessibility that may influence the expression of genes, (c) gene expression of later time points in a
time series experiment are dependent on earlier time points, (d) the states of chromatin accessibility
may control how transcription factors and microRNAs regulate gene expression, and eventually
affect the abundance of surface proteins. (e) The architecture of the created hierarchical variational
autoencoder for the graphical model of (b).
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2.2 Probabilistic Generative Model

Inspired by a recently published method designed for multi-facet clustering in computer vision [29],
we applied a generalized version of a variational ladder autoencoder to incorporate prior knowledge
of the conditional independence relationships between biological data into a probabilistic learning
framework. This approach allows multiple cluster assignments that conditionally separate the abstract
features of each modality of the data, based on a provided relational graph. This is particularly
helpful for identifying new clusters of cell types. Our proposed model approximates the generative
process of the observed multimodal data explicitly based on the given prior conditional independence
relationships between modalities (Equation 1).

cm ∼ Categorical(πm)

zm ∼ IndependentNormal(µ(cm),Σ(cm))

z̃m = f (r)
m (zm; θ(r)m )

ẑm = IncorporateParents(m)

ρm = f (d)
m ([ẑm; b]; θ(d)m )

xm ∼ Dist(ρm),

(1)

where cm is the cluster assignment for the mixture of independent Gaussian distributions with the
corresponding mean µ(cm) and standard deviation Σ(cm) and b is the batch information that needs
to be corrected for the anchors. We correct for batch effects by conditioning the decoder on b [30, 31].
zm is the latent representation of modality m. IncorporateParents is a function that incorporates
the latent representations of the parents of the m-th modality P(m) = {p|(p,m) ∈ E} into the
posterior approximation considering the prior conditional independence relationships specified in G.
Here, we concatenate the latent representations of the parent modalities and condition the posterior
distribution on them as follows:

IncorporateParents(m) = f (b)
m ([ẑP ; z̃m]; θ(b)m ), (2)

where f
(b)
m and f

(r)
m are linear transformations with parameters θ

(b)
m and θ

(r)
m . f

(d)
m is the de-

coder neural network used to parameterize the specified data distribution. ρm is the set of pa-
rameters of user-defined data distributions Dist used to compute the data likelihood. A more
detailed description of the framework and neural architecture of f

(b)
m , f

(r)
m , f

(e)
m and f

(d)
m is

shown in Appendix Table S1. The generative process of m-th modality can be structured as
p
(m)
θ (xm) = p

(m)
θ (xm|zm, zA(m), b)p

(m)
θ (zm|cm)p

(m)
θ (cm), where A(m) is the set of ancestors

of modality m (Appendix A).

2.3 Training Strategy

Previous studies have shown that progressive training improves the ability of the model to learn
disentangled representations across layers in hierarchical variational autoencoders [29, 32]. We
found that this is particularly helpful to prevent the offspring modality from learning redundant
representations that have been encoded in the latent representations of their ancestors.

We applied sequential training [33] based on the order of modalities (e.g. the numbers shown
under the names of the components in Figure 1) after the topological sort of the provided graph G.
Specifically, when training the model of the m-th modality with its ancestors A(m) and their offspring
O(m), we fixed the trainable weights in f

(e)
A(m)∪O(m), f

(d)
A(m)∪O(m), f

(r)
A(m)∪O(m) and f

(b)
A(m)∪O(m).

This way, the posteriors and the generative processes for the ancestor and offspring modalities remain
unchanged (Figure 2). This complements progressive training and prevents ancestor modalities from
learning representations that are only relevant to the offspring. As shown in previous research [33],
sequential training also improves the training stability and reduces the memory usage.

For the analysis presented in this study, we trained the model for 1,500 epochs in each stage with
early stopping using the Adam optimizer [34] with a learning rate of 1e-4. The model is trained
by maximizing the evidence lower bound (ELBO) of the conditional data likelihood. For the set
consisting of all modalities V , the ELBO is computed as follows:
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log p(xV |b) ≥ Eqϕ(zV ,cV |xV ,b)[log(
pθ(xV , zV , cV |b)
qϕ(zV , cV |xV , b)

)] = L(xV , b; θ, ϕ), (3)

where qϕ(zV , cV |xV , b) is parameterized by encoder neural networks f (e)
V . For multi-facet online

clustering, we applied the single-facet VaDE trick [29, 35] sequentially to identify the cluster
assignments of each data point. For a more detailed derivation, see Appendices A and B. For the
analysis shown in this study, the dimensionalities of the latent distribution is set to dim(z) = 20. To
ensure the model is identifiable, we set the number of components in the mixture of independent
Gaussian priors to K = 2× dim(z) + 1 = 41 [36, 37].

Figure 2: Sequential training strategy. (a) the first stage and (b) the second stage of sequential
training. On the left panel, the purple box suggests the component to optimize, while the red box
is the component with frozen trainable weights in each stage. On the right panel, the purple arrows
suggest regular forward and backpropagation, while the red arrows suggest the gradients of the ELBO
with respect to the trainable weights in these functions that are frozen during backpropagation.

2.4 Datasets

For the analysis presented in this study, we used SNARE-Seq data from the cerebral cortex of an
adult mouse (accession number GSE126074) [15]. These data include modalities on both chromatin
state and gene expression in the same cell. We binarized the chromatin accessibility data and used
the Bernoulli distribution to model the data distribution. For the gene expression data, we used the
zero-inflated negative binomial distribution, similar to what was done in previous studies [30, 31].
We annotated cell types using marker genes from the single-cell transcriptomic reference data set
of the mouse visual cortex from the Allen Brain Atlas [38]. We identified these genes using the
FindTransferAnchors function in Bioconductor package Seurat (version 4.1.0) [18]. More details on
the parameters we used during preprocessing can be found in Appendix D.

3 Results

3.1 Conditional Latent Representation

Here, we present some use cases of our framework. As an example, we hypothesize that chromatin
accessibility states influence the regulation of gene expression. Therefore, the corresponding hier-
archical variational autoencoder is explicitly created based on our hypothesis between modalities
(Figure 1b, e). We applied the created model to SNARE-Seq data obtained from the cerebral cortex of
an adult mouse, which includes paired chromatin accessibility states and gene expression information
in each single cell (see Method 2.4 for more details). We showed that our method is capable of
isolating the source of variability based on the prior knowledge graph between modalities, and that the
latent representation of gene expression would only capture the residual of the explained variability
considering the states of chromatin accessibility. (Figure 3c, 3d). In particular, our model identifies
distinct clusters of astrocytes (Astro), nucleus pulposus cells (NP) and Pvalb neurons (Pvalb) in
the conditional latent representations of gene expression data that consider the observed chromatin
accessibility (Figure 3b). This implies that the distinction of these cells from other cell types is
not only caused by changes in the states of chromatin accessibility, but involves other regulatory
mechanisms. Compared to the latent representations identified from other prior relational graphs
that embed the chromatin accessibility and gene expression data into a shared latent space or into
two independent latent spaces, our model can highlight clusters of interest based on the biological
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hypothesis of interactions between modalities (Appendix Section E Figure S3a, b). As the conditional
latent representation of gene expression aims at modeling the variability that chromatin accessibility
data falls short to model, the ability to identify the distinction between cell types using the conditional
latent representation is usually limited. By combining latent representations of chromatin accessibility
and conditional latent representations of gene expression, our model is also capable of modeling the
distinctions between most cell types (Appendix Section E Figure S3c, d).

Figure 3: Conditional latent representations for SNARE-Seq cerebral cortex of an adult mouse
dataset. (a) The posterior mean q

(atac)
ϕ (zatac|xatac). (b) the posterior mean q

(rna)
ϕ (zrna|xrna),

with red circles highlighting the Astro, NP and Pvalb cell types. (c) The proportion of 20-nearest
neighbors with the same cell type for the posterior mean q

(atac)
ϕ (zatac|xatac), and (d) the proportion

of 20-nearest neighbors with the same cell type for the posterior mean q
(rna)
ϕ (zrna|xrna). The data

points are colored by the annotated cell types.

3.2 Unsupervised Multi-facet Clustering

The analysis shown in Method 3.1 can only be achieved when the cell type annotation is available
for each cell. When this additional information is not available, unsupervised multi-facet clustering
can be used to cluster the cells. Note that the clustering strategy for each modality is learned during
the training process; therefore, no additional adjustment of the clustering algorithm is required. In
addition, conditional attribution scores can be used to identify cell clusters of interests. Conditional
attribution scores represent the attribution of each dimension in the conditional latent distributions to
the generated data. In our proposed framework, conditional attribution scores are computed using
integrated gradients [39] while considering the dependencies between latent distributions (Appendix
Section G) .
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Here, we show that the model is capable of learning clustering assignments conditionally in an
unsupervised way for different modalities (Appendix Figure S4). Using the conditional attribution
scores, we can highlight the cluster of interests (Figure 4). The clusters with high conditional
attribution scores are (a) Cluster 17, which corresponds to Astro cells (F1 score: 0.669, precision:
0.873), (b) Cluster 20, which corresponds to NP cells (F1 score: 0.669, precision: 0.625), (c) Cluster
30, which corresponds to part of the Pvalb cells (F1 score: 0.338, precision: 0.789), and (d) Cluster
19, which corresponds to mixed cell types of the Vimp/Lamp5 (F1 scores: 0.219, precision: 0.344)
and L6 IT.2 (F1 scores: 0.183, precision: 0.279). Using the clusters identified with either annotated
cell types or unsupervised multi-facet clustering, Bayesian differential analysis can be used to identify
differentially expressed genes or chromatin accessibility region (Appendix H).

Figure 4: Conditional attribution scores can be used to identify clusters of interests. (a) The posterior
mean q

(rna)
ϕ (zrna|xrna). (b) The conditional attribution scores of the latent distribution of gene

expression conditioned on chromatin accessibility data to the generated gene expression data. The
clusters with high conditional attribution scores are highlighted.

4 Discussion

4.1 Posterior Approximation

Many multi-modal data integration methods applied either the product-of-expert (PoE) [40, 22, 23]
qϕ(zV |xV) =

∏
v∈V q

(v)
ϕ (zv|xv) or (additive) mixture-of-expert (MoE) [41, 24] factorization to

approximate the posterior qϕ(zV |xV) =
∑

v∈V
1
|V|q

(v)
ϕ (zv|xv). Here, we mainly discussed the

posterior approximation of our created model in the context of PoE. However, as previous studies
suggested, MoE factorization might be more suitable for multi-modal data integration [41].

In addition, the Gaussian posterior may limit the expressiveness of the generative model. To address
this, we could further exploit the hierarchical structure of variational autoencoder and approximate L

layers of posterior distributions for each modality qϕ(zV |xV) =
∏

v∈V
∏L

l=1 q
(v,l)
ϕ (zv,l|zv,l+1), with

zv,L = xv . Alternatively, we can incorporate normalizing flows [42, 43] or diffusion models [44] to
approximate tighter lower bounds. We leave the exploration and evaluation of different strategies to
approximate the posterior for future research and improvement.

4.2 Incorporating Prior Knowledge of Multi-modal Data

Recently, GLUE [26] was proposed to incorporate a prior knowledge graph that represents regula-
tory interactions between features in different molecular assays to integrate information between
modalities. The prior knowledge graph is then used to link latent representations between modalities.
Although this approach shows potential for integrative regulatory inference, it may be demanding to
construct the prior knowledge graph, since our understanding of the interactions between regulatory
elements is often insufficient. Our method complements GLUE as we simply expect the graph which
represents the dependency between modalities (e.g. state of chromatin accessibility may influence
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gene expression in general, as opposed to specific chromatin region may influence specific gene
expression) and can identify clusters of cells that show non-canonical regulatory patterns. This is
particularly useful when understanding of a detailed regulatory network is lacking, for instance, in
cancer data analysis. Moreover, although we mainly describe our method in the context of single-cell
data integration, our method can be applied to more general settings where the provided dependency
is based on modality-level (e.g. time dependency in time-series data analysis). In the future, it may
be possible to combine prior knowledge on potential gene regulation with multi-modal data relational
graphs.

5 Conclusions

We propose a novel probabilistic learning framework that incorporates prior biological understanding
of the relationships between different data modalities, creating a hierarchical variational autoencoder
explicitly based on the provided relational graph. The main distinction with our proposed method and
the previous studies is that the generative process for each modality uses only the latent distribution of
the ancestors modality in the graph. In this way, our method is capable of integrating multi-modal data
and modeling the generative process of each modality based on the provided conditional properties.

We showed that our method can integrate paired single-cell multi-omics datasets and identify cell
clusters of interest. Specifically, it can distinguish between cell types that cannot be explained through
observing a single modality (i.e. chromatin accessibility) of the data. To facilitate downstream
analysis, our framework provides conditional attribution score for model interpretation, batch correc-
tion, online multi-facet clustering, Bayesian differential analysis, and enrichment analysis. In the
future, we plan to further characterize the identified cell clusters through differential gene expression
analysis. Followed by identifying differentially expressed genes that cannot be modeled with the
states of chromatin variability using the conditional attribution score. We foresee that, in the future,
our method will be applied to other paired single-cell multi-omics datasets from, for example, 10X
Multiome and CITE-Seq.
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Appendix

A Decomposition of ELBO

Consider M multiple modalities of data with the same anchor and a directed acyclic graph G = (V, E),
where V = {vm | m = 1, 2...M} is the set of vertices representing the data modalities and E ⊆ V×V
the set of unweighted directed edges specifying prior knowledge on the conditional independent
relationships between the different modalities. We denote a directed walk from vertex vi to vj as
w(i, j) and the set of all directed walks in the graph as W . The set of ancestors of a vertex j can then
be defined as A(j) = {i|w(i, j) ∈ W}. The evidence lower bound (ELBO) of the conditional data
likelihood can be derived as follows:

log p(xV |b) = Eqϕ(zV ,cV |xV ,b)[log(
pθ(xV , zV , cV |b)
qϕ(zV , cV |xV , b)

)] + Eqϕ(zV ,cV |xV ,b)[log(
qϕ(zV , cV |xV , b)

pθ(zV , cV |xV , b)
)]

= Eqϕ(zV ,cV |xV ,b)[log(
pθ(xV , zV , cV |b)
qϕ(zV , cV |xV , b)

)] +DKL(qϕ(zV , cV |xV , b)||pθ(zV , cV |xV , b))

≥ Eqϕ(zV ,cV |xV ,b)[log(
pθ(xV , zV , cV |b)
qϕ(zV , cV |xV , b)

)] = L(xV , b; θ, ϕ)

(S1)

, where qϕ(zV , cV |xV , b) are parameterized by encoder neural networks f (e)
V . Assuming independence

for priors across modalities, the generative model (Equation 1) can be structured as:

pθ(xV , zV , cV , b) = pθ(b)
∏
v∈V

p
(v)
θ (xv|zv, zA(v), b)p

(v)
θ (zv|cv)p(v)θ (cv)

= pθ(b)
∏
v∈V

p
(v)
θ (xv|zv, zA(v), b)p

(v)
θ (cv|zv)p(v)θ (zv)

pθ(xV , zV , cV |b) =
∏
v∈V

p
(v)
θ (xv|zv, zA(v), b)p

(v)
θ (cv|zv)p(v)θ (zv)

(S2)

Assuming conditional independence between the posterior of the latent representation and cluster
assignment given xV and b, the the posterior distribution can be further decomposed:

qϕ(zV , cV |xV , b) = qϕ(zV |xV , b)qϕ(cV |xV , b)

=
∏
v∈V

q
(v)
ϕ (zv|xv, b)q

(v)
ϕ (cv|xv, b) (S3)

. Substituting Equation S2 and S3 back to Equation (S1), we can rewrite the ELBO as:

Eqϕ(zV ,cV |xV ,b) =[log(

∏
v∈V p

(v)
θ (xv|zv, zA(v), b)p

(v)
θ (cv|zv)p(v)θ (zv)∏

v∈V q
(v)
ϕ (zv|xv, b)q

(v)
ϕ (cv|xv, b)

)]

=Eqϕ(zV ,cV |xV ,b)[
∑
v∈V

log(p
(v)
θ (xv|zv, zA(v), b))]−

Eqϕ(cV |xV ,b)DKL(qϕ(zV |xV , b)||pθ(zV))−
Eqϕ(zV |xV ,b)DKL(qϕ(cV |xV , b)||pθ(cV |zV))

(S4)

B Multi-facet Clustering

To identify the optimal cluster assignment for the posterior distribution qϕ(cV |xV , b), we applied
the single-facet VaDE trick [29, 35] to each vertex to derive the optimal posterior approximation
q∗ϕ(cV |xV , b) that minimizes DKL(qϕ(cV |xV , b)||pθ(cV |zV)):
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argmin
qϕ(cV |xV ,b)

DKL(qϕ(cV |xV , b)||pθ(cV |zV)) =
exp (Eqϕ(zV |xV ,b)[log p(cV |zV)])

Z(qϕ(zV |xV , b))

, Z(qϕ(zV |xV , b)) =

K∑
k=1

exp (Eqϕ(zV |xV ,b)[
∑
v∈V

log p(cv = k|zv)])
(S5)

, where K is the number of components in the mixture of independent Gaussian priors.

C Implementation Details

The input and output formats of our proposed framework are compatible with widely used packages
in the field of computational biology, such as AnnData [45], Scanpy and MUON (Figure S1). The
created graphical model is implemented using Tensorflow 2.8.0 sequential and functional APIs [46].
Each data modality is handled by a component module with custom data preprocessor, encoder f (e)

v ,
hierarchical encoder (f (r)

v and f
(b)
v ) and decoder f (d)

v (Figure S2). The framework also allows the
user to use one component that takes multiple modalities as input, so that the component can also be
used as a standalone multi-modal variational autoencoder with a shared latent space across modalities
(see Figure 1a).

Figure S1: Data flow with the our proposed framework. The framework takes data matrix, cell
annotation, and feature annotation (or alternatively h5ad files) as inputs, constructs Modality objects
(which is compatible with AnnData), and merges these into a MultiModality object (which is
compatible with MuData). Finally, a Tensorflow Dataset used to load the data into the model is
created from the MultiModality object.

Note that the decoder of view f
(d)
v takes the sampling values from the latent representations of its

parents ẑP(v) as inputs, where ẑP(v) also incorporates the latent representations of their parents⋃
i∈P(v) P(i) (see Equation C). These dependencies may propagate back to the root (i.e. the

modalities without parent). In other words, the posterior qϕ(zv, cv|xv, b) would be conditioned on
the latent representations of all its ancestors. To make the framework more flexible, we also allow
the posterior of a specific modality to be conditioned only on the latent representations of its parents
zP(v) instead of all the ancestors zA(v), using the AlternativeIncorporateParents function:

AlternativeIncorporateParents(m) = f (b)
m ([zP ; z̃m]; θ(b)m )

To facilitate the future development and broaden the applications of this framework, we further
aim to provide high-level APIs as command line tools for researchers, mid-level APIs that allow
programmers to customize the model with parameters in the constructor functions, and low-level
APIs for developers who wish to design their own data distribution, preprocessing steps, loss function
or architecture of the neural network. The default neural network architecture used in the analysis
presented in this study is shown in Table S1.
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Figure S2: Modules in each component. Every base module, including Preprocessor, Encoder,
Hierarchical Encoder and Decoder, can be inherited and extended to create custom modules.

Table S1: Default neural network architecture

Name Shape of Trainable Weights Activation Function

f
(e)
m dim(xm)× 1024 linear

1024× 512 Swish [47], layer normalization [48]
512× 256 Swish, layer normalization
256× 128 Swish, layer normalization
128× (2× dim(zm)) µ (linear), σ2 (softplus)

f
(b)
m dim([ẑP ; z̃m])× dim(zm) linear
f
(r)
m dim(zm)× dim(zm) linear
f
(d)
m dim([zm; b])× 128 Swish, layer normalization

128× 256 Swish, layer normalization
256× 512 Swish, layer normalization
512× (dim(xm)× number of parameters) custom 1

1 with specific activation functions according to the properties of parameters.

D Filtering Parameters

For the gene expression data, we excluded cells with less than 20 expressed genes. Cells with more
than 20% of total read count in genes from the External RNA Control Consortium (ERCC) [49] or
mitochondria genes are also excluded. For gene expression data, we only preserved genes that had
minimum count of 10 across all cells, and that were expressed in at least five cells. For the chromatin
accessibility data, we preserved chromatin regions with non-zero counts in at most 10% of the cells
and at least 5 cells. The resulting data consisted of 10,309 cells, 19,259 genes and 225,333 chromatin
accessibility regions.

E Independent and Joint Modeling

As a comparative analysis, we applied our framework in two different ways: (1) Embedding the single-
cell gene expression data from the SNARE-Seq datasets into latent distributions independently without
using chromatin accessibility data (Figure S3a), (2) embedding both single-cell gene expression
and chromatin accessibility data into a shared joint latent space (Figure S3b). We can observe that
independently embedding the gene expression data can better separate cell types in the latent space.
This is expected, as the cell type annotation is merely derived from the gene expression data. Since
we use the same number of latent dimensions (dim(z) = 20), considering an additional modality (i.e.
chromatin accessibility) may limit the expressiveness of the generative process of gene expression
data. While we can observe distinct clusters for each cell types using independent embeddings, we
can only conclude that this distinction is because of the expression profiles—the connection between
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Figure S3: Independent and joint modeling of SNARE-Seq data obtained from cerebral cortex
of an adult mouse. (a) The posterior mean qϕ(zrna|xrna) using independent embeddings without
considering chromatin accessibility data. (b) The posterior mean qϕ(zjoint|xrna, xatac) using joint
embeddings. (c) The posterior mean qϕ(ẑrna|xrna, xatac) (not parameterized) using hierarchical
embedding. (d) The proportion of 20-nearest neighbors with the same cell type for the posterior mean
qϕ(ẑrna|xrna, xatac). The data are colored by the annotated cell types.

differential expression and chromatin accessibility remains unknown. On the other hands, embedding
the data into a shared latent space cannot isolate the source of variability between data modalities.
As our created model decomposes the generative data distributions of gene expression into two
conditional distributions pθ(xrna|ẑrna) = pθ(xrna|zatac, zrna) = pθ(xrna|zrna)pθ(xrna|zatac), it
is possible to isolate the source of variability (Figure 3) while modeling the distinction between cell
types (Figure S3c, d).
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F Unsupervised Multi-facet Clustering

Figure S4: Multi-facet clustering of SNARE-Seq cerebral cortex of an adult mouse dataset. (a) The
posterior mean qϕ(zatac|xatac). (b) The posterior mean qϕ(zrna|xrna). The data points are colored
by the unsupervised cluster assignments.

G Conditional Attribution Analysis

We use a conditional attribution score with integrated gradient [39] to identify clusters of interests in
the conditional settings, which provides better interpretation of the model. The conditional attribution
score for modality m is defined as:

ConditionalAttributionScore(m) = (ρm − ρ(baseline)m )

∫ 1

α=0

∂ρ
(α)
m

∂zm
dα (S6)

, where ρ
(α)
m = f

(d)
m ([f

(b)
m ([ẑP ;αz̃m]; θ

(b)
m ), b]; θ

(d)
m ) and ρ

(baseline)
m = ρ

(0)
m . The higher the condi-

tional attribution score, the more relevant the latent distributions of modality zm is to generate the
observed modality xm. On the contrary, a low conditional attribution score implies that the latent
distributions of the ancestors zA is sufficient to model the generative process of the observed modality
xm. By computing the expected conditional attribution score for each cluster, it allows us to identify
clusters of interests in an unsupervised manner.

H Bayesian Differential Analysis

Finally, we implemented an approach to perform differential analysis between the identified clusters.
To identify differentially expressed genes or chromatin regions, we compute the Bayesian factor of
two hypotheses H1 and H2 (see Equation S7) following previous research [30]. Specifically, consider
all possible batches B, two groups of anchors I,J and the pairs of anchors (i, j) ⊆ I × J , where
i ∈ I, j ∈ J . The Bayesian factor K to evaluate whether the modality xm is differentially expressed
between group I and J is computed as:

H1 : EB[pθ(x
(i)
m |z(i)B , b(i)m )] > EB[pθ(x

(j)
m |z(j)B , b(j)m )]

H2 : EB[pθ(x
(i)
m |z(i)B , b(i)m )] ≤ EB[pθ(x

(j)
m |z(j)B , b(j)m )]

K = log
p(H1|x(i)

m , x
(j)
m )

p(H2|x(i)
m , x

(j)
m )

(S7)

. To derive the Bayesian factor K, we use naive Monte Carlo sampling to approximate
EB[pθ(x

(i)
m |z(i)B , b

(i)
m )] and EB[pθ(x

(j)
m |z(j)B , b

(j)
m )]. As shown in previous research [30], Bayesian
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differential analysis allows our model to identify genes (or chromatin regions) that are consistently
differentially expressed across batches. Using the identified differentially expressed genes (or chro-
matin regions), gene set enrichment analysis (GSEA) [50], can be performed with integrated tools
to identify enriched pathways or biological functions [51]. The differentially expressed genes and
enriched pathways between Pvalb cells and other cells are shown in Figure S5.

Figure S5: (a) Volcano plot depicting log fold change (logFC) and Bayesian Factors from the
differentially expressed gene analysis comparing Pvalb cells against other available cell types.
Significant genes are highlighted with red. (b) Ringplot illustrating enriched Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways [52] obtained from applying GSEA on the ranked Bayesian
factors. NES: Normalized Enrichment Score from GSEA. (c) Enrichment scores for genes in the
most enriched pathway—“glycine, serine and threonine metabolism".
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