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Abstract

Suppose Alice trains an open-weight language model and Bob uses a blackbox
derivative of Alice’s model to produce text. Can Alice prove that Bob is using
her model, either by querying Bob’s derivative model (query setting) or from the
text alone (observational setting)? We formulate this question as an independence
testing problem—in which the null hypothesis is that Bob’s model or text is
independent of Alice’s randomized training run—and investigate it through the
lens of palimpsestic memorization in language models: models are more likely
to memorize data seen later in training, so we can test whether Bob is using
Alice’s model using test statistics that capture correlation between Bob’s model
or text and the ordering of training examples in Alice’s training run. If Alice has
randomly shuffled her training data, then any significant correlation amounts to
exactly quantifiable statistical evidence against the null hypothesis, regardless of
the composition of Alice’s training data. In the query setting, we directly estimate
(via prompting) the likelihood Bob’s model gives to Alice’s training examples and
their training order; we correlate the likelihoods of over 40 fine-tunes of various
Pythia and OLMo base models ranging from 1B to 12B parameters with the base
model’s training data order, achieving a p-value on the order of at most 1× 10−8

in all but six cases. In the observational setting, we try two approaches based on
estimating 1) the likelihood of Bob’s text overlapping with spans of Alice’s training
examples and 2) the likelihood of Bob’s text with respect to different versions of
Alice’s model we obtain by repeating the last phase (e.g., 1%) of her training run
on reshuffled data. The second approach can reliably distinguish Bob’s text from as
little as a few hundred tokens; the first does not involve any retraining but requires
many more tokens (several hundred thousand) to achieve high power.

1 Introduction

Definition 1. A palimpsest is a “writing material (such as a parchment or tablet) used one or more
times after earlier writing has been erased” [1].

∗Equal contribution.
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(a) Log-likelihoods of pythia-6.9b-deduped. (b) Log-likelihoods of pythia-6.9b.

Figure 1: We regress the negative log-likelihoods of pythia-6.9b-deduped and pythia-6.9b
on pythia-6.9b-deduped training examples against its training order, which is independent of
pythia-6.9b training order. Though the log-likelihoods of individual examples are noisy, the overall
trend is clear over many examples: pythia-6.9b-deduped exhibits significant correlation, while
the independently trained pythia-6.9b exhibits near zero correlation.

Suppose Alice trains an open-weight language model and Bob produces text using a derivative of
Alice’s model. Can Alice prove that Bob is using her model? We ground this question with a few
motivating examples. Alice may be a model developer who suspects Bob of hosting a chat interface
that violates Alice’s terms of service.3 Can Alice prove via querying Bob’s interface that it is built
(e.g., fine-tuned) from her model? Alternatively, Alice may suspect Bob of operating a social media
bot using her model. Can she prove from the account’s post history that it is using her model?

We formulate the question as an independence testing problem: the goal is to test whether Bob’s
text (or equivalently, the model producing it) is statistically independent of Alice’s training run. The
inherently randomized nature of language model training—due in part to the shuffling of training
examples—allows us to treat the training outcome as a random variable. We assume access to the
ordered sequence of training examples from Alice’s training run and consider two variations of the
problem depending on the type of access permitted to Bob’s model. In the query setting, we are able
to directly prompt Bob’s model; in the observational setting, we merely observe text generated by
Bob’s model from an unknown prompt (or multiple prompts). We aim to design tests that are

1. effective—the test should have high power;
2. transparent—it should not rely on keeping model training or implementation details private;
3. noninvasive—it should not require Alice to modify her original training data or model.

In the query setting, prior work fails to achieve these three desiderata, compromising either
transparency or noninvasiveness in order to retain effectiveness. For example, inserting canaries into
Alice’s model (e.g., by having it memorize a random binary string) [3] enables effective testing (based
on whether Bob’s model has memorized the canary) but requires modifying Alice’s model. Using a
small held-out test set [4] (and testing if Bob performs worse on the test data than Alice’s training
data) is only effective if the test set is private (since otherwise Bob can evade detection by training
on the test set). In the observational setting, we are not aware of any effective tests (let alone those
achieving all three desiderata). We defer a more thorough discussion of related work to Section 2.

The main insight underpinning the design of our tests is that language models tend to memorize
their training data, and these memorization effects are stronger for more recent training examples.
In this sense, language models exhibit palimpsestic memorization: all training examples influence
the final trained model, but later examples diminish the effects of previous examples. Thus, we can
test whether Bob’s model or text derives from Alice’s by designing test statistics that correlate its
behavior with the ordering of examples in Alice’s training run (Figure 1). In the query setting, we
can directly evaluate the likelihood Bob’s model gives to Alice’s training examples (by evaluating his
model on these examples to obtain token probabilities) and measure the correlation between example

3For example, Meta’s terms of service require those using their models within a product to acknowledge that
the product is “Built with Meta Llama 3” [2].
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likelihood and training order. In the observational setting, we use various notions of n-gram overlap
between a training example and Bob’s text as proxies for its likelihood under Bob’s model; we also try
retraining copies of Alice’s model on reshuffled data (from an intermediate checkpoint) to determine
whether Bob’s text has higher likelihood under Alice’s original model versus the retrained copies.
In both settings, if Alice has randomly shuffled her training data—as is common practice4—and
Bob’s model is independent of Alice’s training run, then there is guaranteed to be no (statistically
significant) correlation between likelihood (i.e., either the likelihood of Alice’s training examples
under Bob’s model or the likelihood of Bob’s text under Alice’s model versus the retrained copies)
and training order. Thus, our tests yield provable control over false positive errors.

We formalize our problem formulation and the implementation of our tests in Section 3. We
empirically validate our tests in Section 4 using the Pythia (trained on pythia and pythia-deduped,
the deduped and non-deduped Pile datasets used to train Pythia models) and OLMo (trained on OLMo,
OLMo-1.7, and OLMo-2, the Dolma and OLMo-Mix datasets) model families, as well as small-scale
models we train on TinyStories [5, 6, 7]. Finally, we conclude with a discussion of key takeaways
and directions for future work in Section 5. We release code and data for reproducing experiments.5

2 Related Work

Our work develops methods for establishing the provenance of two types of artifacts that may derive
from a language model: the model itself (in the query setting) and text (in the observational setting).
We presently focus on the work most relevant to ours; see Oliynyk et al. [8], Wu et al. [9], Jawahar
et al. [10], and Suvra et al. [11] for a more comprehensive surveys on model and text provenance. We
also discuss prior work studying properties of memorization in language models.

Model provenance. Maini et al. [4] propose a method they term dataset inference that enables testing
whether Bob’s model is independent of Alice by measuring the difference in performance of Bob’s
model on Alice’s training set versus a small i.i.d. held-out test set. Crucially, their method is only
effective if the test set is kept private, thus precluding transparency. Though in principle it may be
possible to achieve transparency by scaling up the size of the test set (e.g., to be commensurate with
Alice’s training set), doing so would necessarily be more invasive: it would not only require Alice to
plan in advance for this specific scenario when launching her training run but moreover would also
limit the amount of available training data. Finally, their method does not apply to the observational
setting since it requires querying Bob’s model on the held-out test set.

A line of work under the umbrella of model fingerprinting has developed a multitude of ways to
perturb a language model in some subtle way (e.g., by planting a backdoor trigger [12, 13] or by
embedding a pattern into the model’s output [14, 15, 16]) so as to enable downstream identification
of derivative models. Due to the perturbation step, these methods all fail to satisfy our noninvasive
criterion. Model fingerprinting is also inapplicable to the observational setting since it requires
querying Bob’s model on the fingerprint trigger.

Another line of work on model provenance develops heuristic techniques for predicting whether
two models are independent or not based on the similarity of their outputs [17, 18]; however, these
methods are not always reliable and thus fail to satisfy our effectivity criterion. In particular, we
show in Appendix C that independently trained models trained on similar data can behave more
similarly to each other than actual derivative models. Finally, we remark that recent work developing
independence tests for language models based on their weights is inapplicable to our setting [19, 20],
since we do not assume access to the weights of Bob’s model.

Text provenance. The problem of detecting whether a text derives from a language model has
drawn considerable attention in the literature. While there exist a number of heuristic techniques
for predicting whether text derives from a language model [21, 22], these heuristic techniques are
inexact and often unreliable [10]; furthermore, often the focus is on determining whether a text
derives from any language model (i.e., versus a human) rather than attributing text to a particular

4Language models are typically trained on randomly shuffled data; in particular, training consists of a
sequence of gradient steps taken on batches of data sampled randomly from some large pool. While it is common
to have distinct phases of training (e.g., pretraining, mid-training, and post-training), so long as data is still
shuffled within a particular phase (e.g, pretraining) our tests will still be applicable (by considering the ordering
specifically for that phase).

5https://github.com/RohithKuditipudi/blackbox-model-tracing.
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language model. In contrast to these heuristic methods, our techniques provide provable control
over false positives via exact p-values and enable attribution of text to (derivatives of) a particular
language model. Finally, we remark that inference-time watermarks [23, 24, 25, 26]—i.e., techniques
for detecting text downstream by applying watermarks to generated text—are inapplicable to our
setting since we allow Bob (an untrusted party) to directly sample text himself. Other work has also
shown that fine-tuning often destroys watermarks from the base model [27].

Characterizing memorization in language models. Our work crucially leverages properties of
memorization in language models inspired by previous work, in particular that language models
tend to memorize sequences seen in training and assign high likelihood to these sequences [28, 29].
However, with large-scale pre-training, models also forget examples seen earlier in training [30, 31].
Recent work studies the combined effects of memorization and forgetting by tracking which sequences
occurred at a given step across training [31, 32, 33], where the sequence likelihood typically increases
sharply after the first exposure and gradually decreases towards the mean. Building on top of these
observations, we show that LLMs not only memorize more data seen later in training, but also, to an
extent that is detectable, retain a finer-grained pre-training data order. Of particular relevance to our
observational setting is that language models tend to regurgitate memorized phrases (from training
data) even in contexts different from the ones seen in training [34, 35, 36, 37, 38], making traces of
training data and order detectable from samples as well.

3 Methods

3.1 Problem formulation and testing framework

Let X be the vocabulary. We define a language model µ ∈ ∆(X ∗) as a distribution over strings of
text. We abstract a training algorithm A ∈ ∆(T ) as a distribution over transcripts α ∈ T , which
capture the full execution trace of a training run. We adopt the following setup:

1. Alice runs a training algorithm that produces a transcript α, i.e., α ∼ A;
2. Bob produces an artifact β; and
3. Alice tests whether α ⊥ β.

The type of artifact determines the problem setting. In the query setting, Bob produces a language
model β ∈ ∆(X ∗); in the observational setting, Bob merely produces text β ∈ X ∗. Note that the
observational setting is harder than the query setting since it provides strictly less information to
Alice. In particular, if Alice has Bob’s model then she can always generate text (given any prompt of
her choosing) from the model herself. We will disambiguate the two cases by using µβ ∈ ∆(X ∗) to
denote Bob’s model and xβ ∈ X ∗ to denote Bob’s text.

Throughout the remainder of the paper, we equate a transcript with a set of strings indexed by their
training order, i.e., α = {(xi, ti)}ni=1 ∈ (X ∗ × [N ])n for n,N ∈ N, since this is the only part of
the training outcome relevant to our tests. We assume that Alice trains on randomly shuffled data,
producing a shuffled transcript (Assumption A1).

Assumption A1. A transcript α = {(xi, ti)}ni=1 ∈ (X ∗ × [N ])n is shuffled if for any permutation
σ : [N ]→ [N ] the random variables {(xi, ti)}ni=1 and {(xi, σ(ti))}ni=1 are identically distributed.

Algorithm 1 abstracts a framework for obtaining exact p-values from arbitrary test statistics under
Assumption A1, thus enabling provably exact control over false positive errors (Theorem 1). We will
give concrete instantiations of various choices of test statistics for both the query and observational
settings in Sections 3.2 and 3.3 respectively. A good test statistic should produce low p-values when
Bob’s artifact is not independent of Alice’s transcript; in particular, we would like ϕ(α, β) to be
abnormally large when α and β are not independent. Typically, we do not actually run Algorithm 1
in practice; rather, we efficiently simulate it (either exactly or approximately, depending on the test
statistic) for large m to enable obtaining small p-values at no additional computational cost.

Theorem 1. Let A satisfy Assumption A1. Let α ∼ A and β ⊥ α. Then the output of Algorithm 1 is
uniformly distributed over {(j + 1)/(m+ 1)}mj=0.

Proof. From our assumption on A, it follows that the collection {αj}mj=1 comprises m exchangeable
copies of α. The independence of α and β thus implies {(αj , β)}mj=1 comprises m exchangeable
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Algorithm 1: Obtaining p-values from arbitrary test statistics

Input: Transcript α = {(xi, ti)}ni=1; artifact β
Parameters : test statistic ϕ; number of permutations m
Output: p-value p̂ ∈ (0, 1]

1 for j ∈ 1, . . . ,m do
2 σj ∼ Unif([N ]→ [N ]); αj = {(xi, σj(ti))}Ni=1
3 ϕj ← ϕ(αj , β)

4 p̂← 1− 1
m+1 (1 +

∑m
j=1 1{ϕj < ϕ(α, β)}) // break ties randomly

5 return p̂

copies of (α, β). Because we break ties randomly, by symmetry it follows that ϕ(α, β) will have
uniform rank among {ϕj}mj=1 and thus p̂ is uniformly distributed over { j+1

m+1}
m
j=0.

In practice, we generally do not use the full transcript, which may comprise billions of training
examples; instead, to save time we typically randomly subsample elements of the transcript (without
replacement) and run our tests using the subsampled transcript. So long as the subsampled transcript
satisfies Definition A1 (which will be the case if Alice shuffled her data and we take a random
subsample), our tests remain valid.

3.2 Query setting

In the query setting, we assume Alice can directly obtain log-likelihoods from Bob’s model µβ for
each training example. (Recall Bob’s artifact β = µβ in the query setting.) She can then correlate
these log-likelihoods with the ordering of examples in the transcript α = {(xi, ti)}ni=1 to test for
independence. In particular, with ρ denoting the Spearman rank correlation coefficient [39], let

ϕquery(α, µβ) := ρ({logµβ(x
i)}ni=1, {ti}ni=1) (1)

We expect later-seen training examples to have higher likelihood according to Bob’s model if it
derives from Alice’s training run, so we expect the statistic ϕquery to be positive if Bob’s model is not
independent and close to zero if it is independent of Alice’s training run.

The null distribution of the Spearman correlation coefficient is a known quantity—in particular, if
α ⊥ µβ then ϕ(α, µβ) from equation (1) follows a t-distribution with n − 2 degrees of freedom.
Thus, in our experiments instead of explicitly running Algorithm 1, we instead directly convert ϕ to a
p-value using the closed form cumulative distribution function for the t-distribution. This enables us
to obtain extremely low, exact p-values without being computationally bottlenecked.

We can increase the power of our test by controlling for natural variation in text likelihoods (some texts
are inherently less predictable than others) using an independent reference model µ0. In particular, let

ϕref
query(α, µβ) := ρ

({
log

(
µβ(x

i)/µ0(x
i)
)}n

i=1
, {ti}ni=1

)
(2)

The idea is to reduce the variance of the test statistic by subtracting the log-likelihood of the
independent reference model. We can also regress the log-likelihood of Bob’s model onto the
reference model (and other features of text that may correlate with log-likelihood but are independent
of Alice’s training order) to better control for natural variation in text likelihood.

Finally, we can extend all of the test statistics in this section to the case where Alice only receives
token predictions from Bob (instead of token probabilities) by first estimating token probabilities
from Bob’s predictions and then using these probabilities to apply the test statistics.

3.3 Observational setting

In the observational setting, we make no assumptions on how Bob generated the text xβ that Alice
observes. (Recall Bob’s artifact β = xβ in the observational setting.) Even if Bob did generate
the text using a language model, we do not have access to the model and thus cannot compute its
likelihood on her training examples as in the query setting. Instead, what we can do is compute the
likelihood of Bob’s text (or proxies thereof) under a collection of language models that we construct
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to elicit correlations between Bob’s text and Alice’s example ordering. We take two approaches to
constructing the collection by training models on either partitions or shuffles of Alice’s transcript.

For the first approach (Algorithm 2, or ϕpart
obs ), we train language models on different contiguous

partitions of Alice’s original ordered training data and correlate (some measure of) the likelihood of
Bob’s text under these models with their relative ordering. Motivated by previous work observing
that language models sometimes regurgitate text verbatim from their training data [28, 29] and in
particular are more likely to regurgitate text seen more recently in training [31, 32, 33], we use n-gram
models and take χ to be either the likelihood of Bob’s text under the model or the number of exact
n-gram matches among Bob’s text with the n-gram index underlying each model.

Algorithm 2: Training models on partitioned transcript (ϕpart
obs )

Input: Transcript α = {(xi, ti)}ni=1; text xβ ∈ X ∗

Parameters : number of models k; metric χ
Output: test statistic ϕpart

obs (Γ, β)
1 Sort examples x by indices t
2 Split sorted x into x1, ..., xk contiguous partitions and train models µ1, ..., µk on partitions
3 return ρ({χ(µj , x

β), {j}kj=1)

For the second approach (Algorithm 3, or ϕshuff
obs ), we train neural language models on different

shuffles of Alice’s original ordered training data to determine whether Bob’s text has abnormally
high likelihood under the original ordering. In practice, we use the same model architecture as Alice
(so that µ0 is Alice’s model itself); we also repeat only a small fraction of her training run (e.g., the
last 1-10%) to reduce computational costs. In our experiments, we take χ(µi, x

β) to either be the
likelihood of Bob’s text xβ under the model µi itself or the likelihood after finetuning each µi on
Bob’s text, with the motivation of the latter approach being to improve the robustness of our test to
Bob finetuning or otherwise modifying Alice’s model.

Algorithm 3: Training models on shuffled transcript (ϕshuff
obs )

Input: Transcript α = {(xi, ti)}ni=1; text xβ ∈ X ∗

Parameters : number of models k; metric χ
Output: test statistic ϕshuff

obs (Γ, β)
1 Sort examples x by indices t
2 Train model µ0 on x (in sorted order) and models µ1, ..., µk on independent reshuffles of x

3 µ← (1/k)
∑k

i=1 χ(µi, x
β); σ ←

√
(1/(k − 1))

∑k
i=1(χ(µi, xβ)− µ)2

4 return
(
χ(µ0, x

β)− µ
)
/σ

Unlike the previous statistics, ϕshuff
obs does not apparently have a closed form output distribution under

the null hypothesis. Obtaining exact p-values from ϕshuff
obs is possible via Algorithm 1 but would

require retraining many models. Instead, in our experiments we report approximate p-values by
treating the output of ϕshuff

obs as a z-score, and as a sanity check we report the degree to which these
p-values empirically deviate from exact p-values under the null.

4 Experiments

4.1 Setup

Transcript (α). We use the ordered pretraining data from various open-source language models as
Alice’s transcript. We consider five families of models, each corresponding to a different pretraining
dataset ranging from 300B to 4T tokens: (1) pythia: The Pile dataset used for training Pythia
models [5]; (2) pythia-deduped: The deduped version of The Pile used for training Pythia-deduped
models; (3) OLMo: Dolma v1.5 dataset used for training OLMo models [6]; (4) OLMo-1.7: Dolma
v1.7 dataset used for training OLMo-0424 and OLMo-0724 models; and (5) OLMo-2: OLMo-Mix
used for training the stage1 of OLMo-2-1124 models [7]. Additionally, we use TinyStories [40] to
train small-scale models for ablations that would otherwise be prohibitively expensive, such as trying
multiple epochs of training. We subsample sequences from each dataset to conduct our test (see
Appendices A and B regarding sampling details for the query and observational settings respectively).
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(a) Evaluating a model on its own transcript. (b) Evaluating OLMo derivative models.

(c) Evaluating Pythia derivative models. For pythia-deduped, we try restricting queries to each epoch.

Figure 2: We report results (all p-values in log10) from ϕref
query for 40 Pythia and OLMo derivative

models in the query setting. We label each derivative model as {model size}-{post-training
method}-{post-training dataset}.

Artifact (β). For Bob’s artifact β, we use models that derive from one of the five families above
or from our own TinyStories models. We vary the following factors when selecting the derivative
models: (1) number of tokens on which the derived model has been finetuned, and (2) the type of
finetuning, including supervised fine-tuning, preference optimization, and model souping.

4.2 Query setting

Test statistic (ϕ). We report p-values using ϕquery and ϕref
query as we describe in Section 3.2.

Reference model (µ0). To implement ϕref
query, we consider three types of reference models µ0: (1)

models pre-trained on an (almost) identical training dataset as Alice’s, but using a different order,
such as using Pythia models trained on the non-deduped version of Pile as references for Pythia
models trained on the deduped version; (2) models pre-trained on other training datasets, e.g., using
OLMo models as references for Pythia models; and (3) an ensemble of models from (1) and (2). In
particular, µ0 must be known to be independent from Γ, in order to correctly test the indepenedence
of µ and Γ. We present ablations on the type of reference model in Appendix A.5, and we find type
(1) reference models yield the lowest p-values.

Results. Figure 2a displays the p-values we obtain over the number of tokens we query from the
model (i.e., the size of the subsampled transcript multiplied by the number of tokens per example)
when testing a model on its own training data (supposing Bob is using Alice’s model without
modification). For each of the five families, we use up to 1M 64-token sequences randomly sampled
from the first epoch as our transcript α and evaluate the 7B-scale model checkpoint at the end
of the first epoch. Crucially, though the actual correlation is typically small (between 0.001 and
0.1), the accuracy of the test increases with the number of queries; in other words, the effect size
is small but statistically significant. Both ϕquery and ϕref

query obtain extremely small p-values with
enough queries, but using a reference model allows us to reduce the query amount by an order of
magnitude while still obtaining comparable p-values. Incidentally, our results strongly suggest that
pythia-2.8b-deduped,6 a model commonly used by the research community to study training

6https://huggingface.co/EleutherAI/pythia-2.8b-deduped
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dynamics, was actually trained on the non-deduped version of Pile (with a p-value of 10−60) rather
than the deduped version, contrary to its documentation.

Based on these results, we fix the number of tokens we query to be 100k for pythia and 5M for
OLMo, OLMo-1.7, and OLMo-2. In Figures 2b and 2c, we respectively test 12 HuggingFace models
that are fine-tuned from an OLMo checkpoint and 29 models that are fine-tuned from a Pythia
checkpoint. These models cover common post-training techniques including supervised finetuning,
preference optimization, and model souping (i.e., averaging multiple finetuned model weights); see
Appendix A.2 for details. For Pythia finetunes, whose base models were trained for between one and
two epochs (with independently shuffled data for each epoch), we test using random subsamples of the
full transcript as well as each epoch’s transcript. For all but four of these finetunes, we obtain p-values
of at most 10−8 with at least one or both epochs (we can straighforwardly correct for multiple-testing
by multiplying the p-values by 3). Notably, the four exceptions are all models at the smallest scale
we test (1.4B), and the three models with p-values larger than 10−5 all incur significantly higher
pretraining loss (ranging from 4.5 to 5.6) relative to their underlying base model (3± 0.1); in these
cases, Bob evades detection at the cost of significantly degrading the quality of his model relative
to Alice. For OLMo finetunes, we obtain p-values less than 10−4 in every case and less than 10−13

in all but three cases. In all cases, we expect (based on Figure 2a) to be able to obtain even lower
p-values with more queries.

Figure 2c already shows we are able to obtain low p-values for various Pythia derivatives by correlating
their log-likelihood with the transcript of the first training epoch despite the fact that these models
underwent a second (partial) epoch of training on reshuffled data. To further evaluate the effectiveness
of our test on models trained for multiple epochs, we conduct a similar test with the OLMo and
OLMo-1.7 7B models by using the first epoch’s transcript to test the final checkpoints, which have
respectively continued pretraining from the first epoch for 544B and 2300B tokens. We obtain a
p-value below 10−10 using 64M query tokens for OLMo and below 10−4 using 256M tokens for
OLMo-1.7. Furthermore, to stress test the effectiveness of our methods on models trained for many
epochs, in Appendix A.4 we try training our own models on the Tinystories dataset for up to 10
epochs (reshuffling the data for each epoch). We observe that the final models’ log-likelihood exhibits
statistically significant correlation with the transcripts of many (though not all) previous epochs; like
a palimpsest, the ordering of previous epochs are inscribed into the model along with later ones.

Finally, we conduct additional experiments to simulate the case where Alice only receives next
token predictions from Bob instead of token probabilities (e.g., supposing Bob maintains an API
that returns text responses to arbitrary prompts) in Appendix A.6. We find we are able to obtain low
p-values even when using just a single query to (roughly) estimate token probabilities, thus incurring
minimal overhead in this more challenging setting. We perform a cost analysis of running our tests in
Appendix D for various existing model APIs.

4.3 Observational Setting

Recall we consider two approaches in the observational setting based on partitioning (ϕpart
obs ) or

reshuffling (ϕshuff
obs ) Alice’s original training data, training language models on these data and evaluating

these models on Bob’s text.

4.3.1 Partitioning the transcript

Test statistic (ϕ). We report p-values using ϕpart
obs (Algorithm 2) as we describe in Section 3.3. We

primarily experiment with a version of ϕpart
obs using n-gram models (n = 8) wherein we let χ count the

number of exact matches among Bob’s text with the n-gram index underlying each model and let
k be the total number of minibatches in Alice’s training run; in other words, we count the number
of matching n-grams among Bob’s text per each minibatch of training examples and correlate these
counts with the minibatch order. See Appendix B.1 for additional implementation details.

Sampling text. Because the models we experiment with have limited context windows or are
otherwise incapable of generating long, coherent texts, to obtain Bob’s text xβ we independently
generate short texts then group these texts together (i.e., we treat xβ as a collection of distinct
documents and use |xβ | to denote the total number of tokens across all documents). We generate
these texts as continuations of prefixes from The Pile [41] dataset and vary the sampling temperature.
Each prefix has 16 tokens and each continuation is at most 128 tokens.

8



Results. We experiment with Pythia models, whose n-gram training index (the dictionary mapping
n-grams to batches) we can build with reasonable disk space (1.4TB) and query efficiently with the
infini-gram code base [42]. We index a subsample of the transcript for the first 100K training batches
and run our test on text we sample from subsequent training checkpoints up to the full 143K batches
(treating the later checkpoints as finetunes). Because the test is costly to run for large numbers of
tokens, we do not evaluate the full set of Pythia derivative models from earlier.

step |xβ| = 640K 1.28M 3.20M 6.40M 12.8M 19.2M
100K 3.0× 10−1 2.5× 10−2 2.2× 10−2 2.0× 10−3 6.3× 10−4 2.6× 10−4

(8.6× 10−2, 5.4× 10−1) (1.2× 10−2, 5.3× 10−2) (3.7× 10−3, 1.1× 10−1) (1.1× 10−3, 4.0× 10−3) (8.2× 10−5, 1.3× 10−3) (1.4× 10−4, 3.0× 10−4)

110K 3.7× 10−1 2.6× 10−1 1.3× 10−1 9.3× 10−2 6.9× 10−2 4.4× 10−2
(1.7× 10−1, 7.1× 10−1) (1.1× 10−1, 6.3× 10−1) (6.7× 10−2, 2.4× 10−1) (8.7× 10−2, 2.8× 10−1) (3.9× 10−2, 8.3× 10−2) (3.3× 10−2, 6.4× 10−2)

120K 4.5× 10−1 3.0× 10−1 3.9× 10−1 8.4× 10−2 7.4× 10−2 8.7× 10−2
(1.9× 10−1, 5.9× 10−1) (1.4× 10−1, 6.4× 10−1) (1.3× 10−1, 5.1× 10−1) (2.8× 10−2, 1.7× 10−1) (1.2× 10−2, 1.2× 10−1) (3.5× 10−2, 1.4× 10−1)

130K 1.7× 10−1 5.1× 10−1 4.7× 10−1 1.7× 10−1 1.0× 10−1 4.4× 10−2
(3.3× 10−2, 4.5× 10−1) (4.6× 10−1, 6.2× 10−1) (1.7× 10−1, 8.5× 10−1) (1.0× 10−1, 4.2× 10−1) (4.8× 10−2, 1.5× 10−1) (4.1× 10−2, 1.1× 10−1)

143K 5.9× 10−1 5.6× 10−1 3.9× 10−1 4.2× 10−1 4.3× 10−1 2.9× 10−1
(2.9× 10−1, 7.8× 10−1) (3.3× 10−1, 7.0× 10−1) (3.2× 10−1, 6.7× 10−1) (2.4× 10−1, 6.0× 10−1) (2.8× 10−1, 6.6× 10−1) (2.0× 10−1, 5.9× 10−1)

Table 1: We report median p-values and interquartile ranges over 10 trials from applying ϕpart
obs to text

sampled from pythia-6.9b-deduped checkpoints. Because sampling is expensive, for each trial
we resample generations with replacement from an initial sample of 800K generations (i.e., 25.6M
tokens), so the reported ranges are likely narrow.

In Table 1, even when testing the checkpoint corresponding to the end of the transcript (i.e., supposing
Bob uses Alice’s model directly) we require several hundred thousand tokens before we begin to
observe consistently low p-values. These results suggest it is infeasible to use this test to detect when
Bob is generating short snippets of text (e.g., social media posts) using Alice’s model. However,
we posit the test may be useful for larger-scale, ecosystem level analyses such as allowing Alice to
estimate the total fraction of text on a social media platform that derives from her model. Moreover,
the test is able to withstand a substantial amount of finetuning: with enough tokens, we observe
decreasing p-values even after 30K steps (i.e., when Bob continues training Alice’s model for up to
30% of its original pretraining budget).

We report additional results in Appendix B, varying the sampling parameters and token count. We
find the p-values we obtain are somewhat sensitive to temperature. Notably, the power of our test
diminishes substantially when generating text unconditionally with low temperature, which we
attribute to low diversity among the generated texts.

4.3.2 Shuffling the transcript

Test statistic (ϕ). We report p-values using ϕshuff
obs (Algorithm 2) as we describe in Section 3.3. We

use the same model architecture as Alice and continue training from an intermediate checkpoint. We
let χ be the likelihood of Bob’s text under each model, either with or without finetuning the model on
Bob’s text. See Appendix B.2 for additional implementation details.

Sampling text. As before, to obtain Bob’s text xβ we independently generate short texts then group
these texts together. We generate these texts as continuations of prefixes from the TinyStories test set.
Each prefix has 20 tokens and each continuation is at most 32 tokens long.

Results. Running ϕshuff
obs requires retraining many models on reshuffled data, which is costly at scale.

Thus, we conduct most of our experiments with small (3M) models we train ourselves on 500K
documents from the Tinystories dataset. We vary three main factors: 1) the amount of data on
which we retrain (ranging from the last 10-50K documents—i.e., the last 2-10% of training); 2)
the amount of data (also sampled from the TinyStories dataset) on which Bob finetunes; and 3) the
amount of text Bob generates. Unlike the tests in the previous section, the output of ϕshuff

obs is not
an exact p-value but rather a z-score; nonetheless, for the sake of comparison to previous results,
we report approximate p-values we obtain by converting z-scores to p-values under the assumption
that the score distribution is normal. We defer the full details of our training and finetuning setup to
Appendix B.2. We demonstrate the validity of our approximate p-values by empirically estimating
their null distribution in Appendix B.5.

Even with retraining on as little as the last 2% of Alice’s pretraining data, we are able to obtain
p-values less than 10−3 from as few as 320 tokens in Bob’s text (Figure 3, left panel). Moreover,
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Figure 3: We report approximate p-values from applying ϕshuff
obs to TinyStories models, varying the

number of tokens in Bob’s text. (Left) We vary the amount of data we use to retrain the test models;
we let χ be the log-likelihood of Bob’s text under each model (no finetuning) and assume Bob
uses Alice’s model without modification. (Right) We fix the amount of retraining at 2% of Alice’s
pretraining data and vary the amount of data on which Bob finetunes Alice’s model; we try ϕshuff

obs with
(solid) and without (dashed) finetuning on Bob’s text.
finetuning the retrained test models on Bob’s text before evaluating their log-likelihood substantially
improves the robustness of the test to Bob finetuning Alice’s model (Figure 3, right panel); however,
we require substantially more tokens in order to see a tangible benefit, and even with 32000 tokens
both versions of the test lose power once Bob finetunes on as many documents as 1% of Alice’s
pretraining run. We include additional sweeps and ablations in Appendix B.4; notably, we find
retraining the test models on more tokens improves the robustness of the test to finetuning.

To extend beyond toy experiments, we leverage existing OLMo 2 checkpoints—from the cooldown
phase of their pretraining run—trained on different random shuffles of the same 50B tokens
(representing roughly 1% of the pretraining data). In particular, there are three such checkpoints for
both OLMo-2-0425-1B and OLMo-2-1124-7B. We use these checkpoints to simulate running ϕshuff

obs
with k = 2 (and no finetuning on Bob’s text) by generating text from one of the checkpoints (using
the same setup and prompt distribution as in the previous experiment on TinyStories) and treating the
other two checkpoints as test models. Given 640 tokens of Bob’s text, we obtain median p-values
(with interquartile ranges parenthesized) of 6.25× 10−3 (6.44× 10−5, 1.44× 10−1) at the 1B scale
and 1.44× 10−3 (1.01× 10−6, 6.00× 10−2) at the 7B scale; using only two test models makes the
p-values more volatile. Additional results are in Appendix B.6.

5 Discussion
We develop exact tests that enable language model providers and developers to determine: 1) whether
another language model is trained independently of their model and 2) whether a text is generated
independently of their model. Our tests are transparent and noninvasive by design, and we evaluate
their effectiveness with a number of models across a range of scales and training recipes. We presently
remark on some limitations and directions for future work.

Recall that we assume the role of Alice, so we have access to Alice’s training data in order to carry
out our tests. In practice, model developers (including developers of open-weight models) may be
reluctant to disclose their training data due to concerns around copyright liability or competitive
advantage (of course, any model developer can still use our tests internally). To enable independent
third-party verification of test results under these circumstances, we propose running our tests using a
subset of the transcript that the model developer is willing to disclose (e.g., the relative ordering of
Wikipedia documents in the pretraining data).

All our tests are somewhat costly to run, either because they require many tokens from Bob to be
effective or retraining a collection of language models. Bringing these costs down is an important
direction for future work. Particularly in the observational setting, where Alice cannot simply spend
more queries to obtain more tokens, designing more lightweight tests than ϕshuff

obs with similar token
complexity is an important open problem.

Finally, beyond our specific problem setting, our experiments yield new insights into memorization
in language models. Exploring the implications of these findings on issues of privacy and copyright
and for designing more effective models an exciting direction for future work.
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Technical Appendices and Supplementary Material

A Query Setting Experimental Details and Additional Results

A.1 Query distribution

When sampling sequences from Alice’s training dataset to construct queries from her transcript α, we
vary the following hyperparameters: (1) the length of the sequence L, (2) the training step s at which
the sequence occurs (the last training step in case a sequence occurs multiple times in training), and
(3) the start token position t of the sequence in the original training example.

All three hyperparameters affect the computation of likelihood used in ϕref
query. Specifically, given

a sequence of L tokens xs,t, . . . , xs,t+L, we compute the average language modeling loss ℓ (i.e.,
negative log-likelihood) across all tokens as:

ℓ =
1

L− 1

∑
t<i≤t+L

− log(µ(xs,i|xs,t . . . xs,i−1))

We provide the experiment details below on OLMo-7B. Overall, we observe that for a fixed number of
sampled tokens (i.e., the number of sampled sequences × the length of the sequence), sampling from
the first few tokens of each training example, i.e., t = 0, and using sequences that occur closer to the
testing checkpoint provide the strongest memorization signals. As we discussed in Section 5, these
results also provide insights into LLM memorization behaviors, characterizing which sequences are
more likely to be memorized by the model.

Figure 4: We vary the sequence length and number of sequences in the transcript Γ in computing
ϕref

query for OLMo-7B. P-values are affected by the total number of tokens Γ and the training step at
which the sequence occurs, i.e., Epoch 1 sequences provide more signals than Epoch 0 sequences.

Sequence length. We measure how sequence length affects our test results using ϕref
query in Figure 4.

Given a fixed number of sequence samples, increasing the sequence length L leads to a smaller
p-value, i.e., for each column, p-value decreases as we move from top to bottom. However, given
a fixed budget of tokens, sequence length has no significant effect on the p-value. We can see the
diagonal trend of low p-values from the Epoch 1 samples (and slightly in the Epoch 0 samples).
Hence, the total number of tokens in α is most relevant in the value of ϕref

query, rather than the number
of sequences or sequence length individually.

Training step. Comparing Figure 4 Left and Right, we show that samples from Epoch 1 yield smaller
p-values given the same sample size, suggesting sequences seen later in training are more likely to be
memorized by the model.

Start token position. OLMo-7B uses a context window of 2048 tokens, so we can ablate the
position of the tokens of sampled text. We sample 64-token sequences starting at position
t = 0/256/512/1024/1536/1920. Figure 5 shows that sampling sequences at position 0 have
the strongest memorization signals across all sampling sizes.

A.2 Finetuning results

We provide the raw results for the fine-tuned models shown in Section 4.2, Figure 2b and 2c.
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Figure 5: We vary the sample token position and number of queries in computing ϕref
query for OLMo-7B

models. Sampling from the start of an sequence consistently yields smaller p-value across all sample
size.

We evaluate ϕref
query on models from HuggingFace against the pythia and pythia-deduped

models of different sizes. For each of the listed models, we use transcripts (training orders) of
pythia, pythia-deduped, pythia-deduped Epoch 0, and pythia-deduped Epoch 1. In Table
2,3 we evaluate Pythia model derivatives and in Table 4 we evaluate non-derivatives, such as
OLMo family models. In Table 5, we evaluate OLMo fine-tuned models using transcripts of
OLMo, OLMo-1.7, OLMo-2. The transcript α consists of 100k randomly sampled sequences of length
64 for Pythia and 1M sequences for OLMo (except for OLMo-1.7, for which we use 5M sequences
since the training order of the second epoch is not available. Instead we must use samples from the
first epoch, which have weaker memorization effects).

p-value w.r.t. different training data order
Model Name pythia pythia-deduped Epoch 0 Epoch 1

Base Models Trained on pythia
EleutherAI/pythia-1.4b 9.6× 10−24 1.5× 10−1 9.3× 10−1 3.3× 10−1

EleutherAI/pythia-2.8b 5.1× 10−62 3.5× 10−1 8.2× 10−1 7.8× 10−1

EleutherAI/pythia-6.9b 4.2× 10−142 – – –
EleutherAI/pythia-6.9b-v0 2.0× 10−67 1.6× 10−2 1.3× 10−1 8.0× 10−2

EleutherAI/pythia-12b 1.3× 10−184 9.5× 10−1 4.1× 10−1 4.8× 10−1

Base Models Trained on pythia-deduped
EleutherAI/pythia-1.4b-deduped 9.6× 10−1 5.4× 10−23 9.3× 10−13 1.8× 10−14

EleutherAI/pythia-1.4b-deduped-v0 3.6× 10−1 1.0× 10−12 2.7× 10−10 4.4× 10−5

EleutherAI/pythia-2.8b-deduped 1.2× 10−60 9.1× 10−1 9.1× 10−1 8.1× 10−1

EleutherAI/pythia-2.8b-deduped-v0 7.3× 10−1 3.3× 10−79 7.1× 10−54 1.4× 10−34

EleutherAI/pythia-6.9b-deduped – 7.7× 10−135 1.8× 10−173 1.2× 10−38

EleutherAI/pythia-6.9b-deduped-v0 7.4× 10−1 9.3× 10−60 1.3× 10−236 5.7× 10−228

EleutherAI/pythia-12b-deduped 9.3× 10−1 7.6× 10−158 2.5× 10−233 4.3× 10−23

EleutherAI/pythia-12b-deduped-v0 4.5× 10−1 2.5× 10−86 0.0× 100 3.7× 10−301

Table 2: We compute p-values using ϕref
query for different Pythia base model variants [5].

The p-values of running ϕref
query with the different transcripts are reported in Tables 3, 4, and 5. The

blue boxes highlight p-values that are less than 10−2.

As we discussed in Section 4.2, pythia-2.8b-deduped has a non-significant p-value with the
pythia-deduped training order, but a p-value of 1.2× 10−60 with the pythia transcript, i.e., the
non-deduped data used to train pythia-2.8b, which suggests there is likely mislabeling of the
HuggingFace model.
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p-value w.r.t. different training data order
Model Name pythia pythia-deduped Epoch 0 Epoch 1

Fine-tuned Models with Base Models Trained on pythia
herMaster/pythia1.4B-finetuned-on-
lamini-docs

7.4× 10−9 3.2× 10−1 2.5× 10−1 5.9× 10−1

LinguaCustodia/fin-pythia-1.4b 6.4× 10−1 6.0× 10−1 6.1× 10−1 5.9× 10−1

lomahony/pythia-1.4b-helpful-sft 3.8× 10−16 5.6× 10−2 2.9× 10−1 8.4× 10−1

Leogrin/eleuther-pythia1b-hh-sft 1.9× 10−9 1.7× 10−1 1.0× 10−1 4.1× 10−1

kykim0/pythia-1.4b-tulu-v2-mix 3.3× 10−1 3.0× 10−1 4.3× 10−1 4.8× 10−1

lomahony/pythia-1.4b-helpful-dpo 9.4× 10−20 1.4× 10−2 1.2× 10−1 9.0× 10−1

lomahony/eleuther-pythia6.9b-hh-sft 4.9× 10−125 2.0× 10−1 4.2× 10−1 9.0× 10−1

allenai/open-instruct-pythia-6.9b-tulu 4.8× 10−27 2.5× 10−1 8.6× 10−1 5.4× 10−1

pkarypis/pythia-ultrachat 1.3× 10−58 2.4× 10−1 6.5× 10−1 5.9× 10−1

lomahony/eleuther-pythia6.9b-hh-dpo 1.5× 10−132 6.3× 10−1 4.9× 10−1 4.2× 10−1

usvsnsp/pythia-6.9b-ppo 6.4× 10−96 6.5× 10−1 6.6× 10−1 2.7× 10−1

lomahony/eleuther-pythia12b-hh-sft 4.9× 10−144 8.4× 10−1 4.4× 10−1 7.7× 10−1

lomahony/eleuther-pythia12b-hh-dpo 2.6× 10−161 9.0× 10−1 5.0× 10−1 6.0× 10−1

Fine-tuned Models with Base Models Trained on pythia-deduped
naxautify/pythia-1.4b-deduped-8k 9.4× 10−1 4.9× 10−6 2.9× 10−3 4.7× 10−2

HWERI/pythia-1.4b-deduped-sharegpt 8.3× 10−1 1.7× 10−16 2.2× 10−5 1.2× 10−5

lambdalabs/pythia-1.4b-deduped-
synthetic-instruct

8.5× 10−1 2.7× 10−2 9.5× 10−2 1.5× 10−1

trl-lib/pythia-1b-deduped-tldr-sft 4.2× 10−1 3.4× 10−15 4.3× 10−3 4.0× 10−9

lambdalabs/pythia-6.9b-deduped_alpaca 9.4× 10−1 7.8× 10−24 2.5× 10−34 4.1× 10−4

EleutherAI/pythia-intervention-6.9b-
deduped

6.4× 10−2 5.1× 10−137 4.0× 10−170 6.1× 10−34

cc0de/EleutherAI-pythia-6.9b-deduped-
full-ft-clinical-bsz16-lr5e-06

5.6× 10−1 3.0× 10−96 2.0× 10−106 3.3× 10−32

pszemraj/pythia-6.9b-HC3 9.4× 10−1 2.3× 10−3 1.6× 10−9 6.1× 10−16

dvruette/oasst-pythia-6.9b-4000-steps 8.8× 10−1 2.4× 10−8 1.0× 10−20 1.4× 10−24

CarperAI/pythia-6.9b-deduped-4k 8.9× 10−1 9.0× 10−56 3.4× 10−129 5.8× 10−1

lambdalabs/pythia-6.9b-deduped-
synthetic-instruct

5.3× 10−1 1.6× 10−12 2.1× 10−31 1.9× 10−31

HuggingFaceH4/EleutherAI_pythia-
6.9b-deduped__sft__tldr

3.0× 10−1 1.2× 10−69 4.2× 10−79 3.6× 10−18

trl-lib/pythia-6.9b-deduped-tldr-
offline-dpo

1.6× 10−1 1.1× 10−83 7.3× 10−92 2.6× 10−20

OpenAssistant/pythia-12b-sft-v8-7k-steps5.7× 10−1 3.8× 10−53 1.4× 10−90 3.9× 10−5

lambdalabs/pythia-12b-deduped-
synthetic-instruct

9.6× 10−1 5.9× 10−36 3.6× 10−115 2.4× 10−108

OpenAssistant/pythia-12b-sft-v8-rlhf-
2k-steps

4.8× 10−1 7.1× 10−54 2.9× 10−88 2.0× 10−5

Table 3: We compute p-values using ϕref
query for different Pythia fine-tuned model variants [5, 43, 44].

Fine-tuned models are listed in the same order as in Figure 2c from left to right.

P-Value w.r.t. Different Training Data Order
Model Name pythia pythia-deduped Epoch 0 Epoch 1

Base Models Trained on Neither of the Two Orders
EleutherAI/pythia-6.9b-deduped-v0
-seed42

5.9× 10−1 5.4× 10−1 8.5× 10−1 4.9× 10−1

allenai/OLMo-7B-hf 7.9× 10−1 5.8× 10−1 6.4× 10−1 6.5× 10−1

allenai/OLMo-7B-0424-hf 7.6× 10−1 5.7× 10−1 5.9× 10−1 2.8× 10−1

allenai/OLMo-7B-0724-hf 8.8× 10−1 6.3× 10−1 6.6× 10−1 3.1× 10−1

allenai/OLMo-2-1124-7B 1.5× 10−1 2.9× 10−1 6.1× 10−1 2.3× 10−1

meta-llama/Meta-Llama-3-8B 2.3× 10−1 1.3× 10−1 7.8× 10−1 5.4× 10−1

Table 4: We compute p-values using ϕref
query for models that are not trained on pythia or

pythia-deduped. All p-values are above 0.1, indicting the null hypothesis is true, which matches
the ground truth.

A.3 Continued pretraining results

We provide additional analysis for continued pretraining in Section 4.2 on Pythia models. Specifically,
we choose a base checkpoint A of pythia-deduped (e.g., the step100000 checkpoint) and a finetune
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P-Value w.r.t. Different Training Data Order
Model Name OLMo OLMo-1.7 OLMo-2

Fine-tuned Models with Base Models Trained on OLMo
allenai/OLMo-7B-SFT-hf 1.9× 10−27 3.8× 10−1 7.9× 10−1

allenai/OLMo-7B-Instruct-hf 1.3× 10−23 9.3× 10−1 9.6× 10−1

Fine-tuned Models with Base Models Trained on OLMo-1.7
allenai/OLMo-7B-0424-SFT-hf 8.2× 10−1 7.7× 10−24 6.5× 10−1

allenai/OLMo-7B-0424-Instruct-hf 8.4× 10−1 4.0× 10−24 7.9× 10−1

allenai/OLMo-7B-0724-SFT-hf 7.6× 10−1 4.4× 10−6 9.6× 10−1

allenai/OLMo-7B-0724-Instruct-hf 8.4× 10−1 1.5× 10−5 7.8× 10−1

Fine-tuned Models with Base Models Trained on OLMo-2
allenai/OLMo-2-1124-7B 4.2× 10−1 7.0× 10−1 5.4× 10−15

allenai/OLMo-2-1124-7B-SFT 6.3× 10−1 1.5× 10−1 1.9× 10−15

allenai/OLMo-2-1124-7B-DPO 4.7× 10−1 1.2× 10−1 1.8× 10−14

allenai/OLMo-2-1124-7B-Instruct 4.9× 10−1 1.3× 10−1 3.1× 10−14

Neelectric/OLMo-2-1124-7B-Instruct_SFT 7.1× 10−2 5.4× 10−1 1.7× 10−7

Neelectric/OLMo-2-1124-7B-Instruct_GRPO 4.8× 10−1 2.1× 10−1 2.2× 10−14

Table 5: We compute p-values using ϕref
query for different OLMo model variants.

checkpoint B after it (e.g., the step120000 checkpoint), and evaluate B on A’s data and ordering
(only samples seen before step100000). We compute ϕref

query 40K samples with 64 tokens each for all
valid base and checkpoint model pairs from step70000 to step140000, in Figure 6. We use pythia as
the reference model. Even after the step70000 checkpoint was trained for an additional 70000 steps,
the p-value between the step70000 and step140000 models is very small (2.23e-66). We can also see,
as perhaps expected, that the p-values are much lower for the 6.9b-parameter models than the 1.4b,
1b, and 410m-parameter models—i.e., the larger model memorizes its training data more.

A.4 Training for multiple epochs on TinyStories

We train a Transformer-architecture model (d_model = 256, d_ffn = 512, num_layers = 4,
approximately 3M parameters) on the TinyStories dataset [40] for 10 epochs of 50k samples. We
run ϕref

query with the Spearman correlation p-value on the training dataset between the model trained
at Epoch i for i = 0, . . . , 9 (model_epoch) on the data ordering of Epoch j for j = 0, . . . , 9
(order_epoch). The results when using N = 50K and 20K samples are shown in Figure 7. Although
variable, memorization effects are strong in general for at least 3 epochs, and the p-value is low in
general for the recent 4 or 5 epochs. We use a reference model that uses the same architecture and
training strategy but a different training order seed.

A.5 Reference model ablations

For our experiments, we have used reference models very similar to the candidate model
being audited—for example, the pythia-6.9b model as the reference model for testing
pythia-6.9b-deduped. We ablate the reference model µ0 used in ϕref

query and compare the p-values
we get in Table 6. The averaged Llama models are:

• meta-llama/Meta-Llama-3-8B;
• meta-llama/Llama-2-7b-hf; and
• huggyllama/llama-7b,

and the averaged Pythia models are

• EleutherAI/pythia-6.9b;
• EleutherAI/pythia-2.8b;
• EleutherAI/pythia-1.4b;
• EleutherAI/pythia-1b;
• EleutherAI/pythia-410m;
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(a) ϕref
query on pythia-6.9b-deduped across

checkpoints.
(b) ϕref

query on pythia-1.4b-deduped across
checkpoints.

(c) ϕref
query on pythia-1b-deduped across

checkpoints.
(d) ϕref

query on pythia-410m-deduped across
checkpoints.

Figure 6: We run ϕref
query using 40k samples on pythia-6.9b-deduped, pythia-1.4b-deduped,

pythia-1b-deduped, and pythia-410m-deduped checkpoints. We find p-values are low even
after significant continued pre-training (70k more steps after the 70k checkpoint), and also that
memorization effects are smaller for smaller models.

• EleutherAI/pythia-160m;

• EleutherAI/pythia-2.8b-deduped;

• EleutherAI/pythia-1.4b-deduped;

• EleutherAI/pythia-1b-deduped;

• EleutherAI/pythia-410m-deduped; and

• EleutherAI/pythia-160m-deduped.

We can see that there is little signal without using a reference model to account for inherent variations
in perplexity of text (the first row). For the later rows, based off the p-values, we conclude that the
best reference models are models from the same family, and of similar capability. With 20M tokens,
we get p-values significant at 1e-2 for all reference models (and combinations) tested.

A.6 Estimating logprobs from generated text

Let’s consider the case where Bob’s API only provides access to the generated text without token
probabilities. We show that Alice can still approximate logprobs by repeatedly querying Bob’s model.
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(a) ϕref
query between order epoch and model epoch for

50k eval samples.
(b) ϕref

query between order epoch and model epoch for
20k eval samples.

Figure 7: We train a Transformer model on TinyStories samples for 10 epochs (of 50k sequences),
each of a random data ordering. We report p-values from the 10 epochs on the 10 data orders, which
remain small even after 10 epochs.

Reference Model 20M Tokens 12M Tokens 4M Tokens

None 2.1× 10−1 5.9× 10−1 8.6× 10−2

EleutherAI/pythia-6.9b 8.0× 10−20 3.1× 10−15 2.6× 10−5

EleutherAI/pythia-2.8b 1.0× 10−15 7.0× 10−12 3.7× 10−3

EleutherAI/pythia-1.4b 8.1× 10−12 3.4× 10−9 1.3× 10−2

EleutherAI/pythia-1b 7.3× 10−10 6.4× 10−7 5.5× 10−2

EleutherAI/pythia-410m 2.5× 10−6 2.0× 10−4 2.3× 10−1

EleutherAI/pythia-160m 1.2× 10−3 1.2× 10−2 9.0× 10−1

Averaged Pythia models 1.7× 10−7 1.3× 10−5 4.2× 10−4

meta-llama/Meta-Llama-3-8B 7.9× 10−3 9.2× 10−3 1.6× 10−1

Averaged Llama models 3.9× 10−3 1.2× 10−2 7.4× 10−1

Table 6: We compute p-values using different reference models µ0 with ϕref
query, with

EleutherAI/pythia-6.9b-deduped as the candidate model. Reference models of similar
capability (like EleutherAI/pythia-6.9b or EleutherAI/pythia-2.8b) yield the lowest p-
values.

Our approach follows a simple idea—given a prefix, we can sample multiple generations to estimate
the next token probability. Moreover, Alice does not need to have an accurate probability estimation
to compute the test statistics ϕref

query, as long as the ranking of the estimated probability is highly
correlated with the ranking of the actual probability for each sequence. Specifically, we estimate the
next token probability of prefix x by random sampling model output N times:

P (ygt|x) ≈ E1≤i≤N

[
1[ypred,i = ygt]

]
where ygt is the ground truth continuation of x in the transcript α and ypred,i is the predicted next
token for the ith sample. Once we computed the estimated probability, We can apply a reference
model as in Eq 2.

We conduct experiments on OLMo-7B, using 3M samples from the Epoch 1 transcript with a prefix
length of 16. For each prefix, we repetitively sample up to 16 times. We use OLMo-7B-0724 as our
reference model.

Results. We first verify that the Spearman correlation between the ranking of actual logprob and
the ranking of estimated logprob is high. When the number of repeated samples is N = 1/4/16,
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the correlation is 0.7068/0.8483/0.9165 respectively. For our test using ϕref
query, the corresponding

p-value is 1.6× 10−4/5.6× 10−7/6.4× 10−6.

B Observational Setting Experimental Details and Additional Results

B.1 Implementation Details for ϕpart
obs

We build the index over a subset (18.75%) of n-grams of the pythia-deduped training set, up to the
100k training checkpoint. (Note that following our problem formulation, this n-gram index can be
fully constructed from Alice’s transcript (or subset of) α.)

For each of Bob’s texts in xβ , we count the number of n-gram matches with each of the training
documents in our n-gram index, and keep a count of how many matches are at each training step. In
particular, each µi is the list of n-grams seen at training step i (e.g. between the i-th and i + 1-th
checkpoint) and the metric χ is the number of matches between xβ and µi. Since we index the first
100k checkpoints, we have the number of models k = 100, 000. We count n-grams up to n = 8.

When counting n-grams, we first start with a series of 8 tokens, then decrease down to one token until
a match is found. We also use a time-out feature for practicality, if searching the index for a particular
n-gram takes more than 0.01 seconds on our machines, due to the high number of n-grams to index.
We believe this does not impact the test effectiveness significantly.

B.2 Implementation Details for ϕshuff
obs

We treat Bob’s text xβ as a collection of shorter documents and let χ be the average log-likelihood of
these documents under each model, either before or after finetuning. In the case where we do finetune
on xβ , we do so for one epoch with a learning rate of 1× 10−5 with 4 documents per batch.

On TinyStories, we use the same model architecture (d_model = 256, d_ffn = 512, num_layers =
4, approximately 3M parameters) as in the multiple epoch experiments. For the observational setting
experiments, we train for a single epoch on 500K documents with a constant learning rate of
1× 10−5 and 4 documents per batch. We save checkpoints every 10k documents starting at 450K
documents, which we use to resume training on reshuffled data to obtain the models µ1, ..., µk in our
implementation of ϕshuff

obs .

We obtain Bob’s model by continuing to train on additional documents from the TinyStories training
set (distinct from the 500K documents we use to train Alice’s model). Unlike when we resume
training from an intermediate checkpoint in ϕshuff

obs , we reinitialize the optimizer state for Bob’s model.

B.3 Sampling Parameter Ablations for ϕpart
obs

We report p-values computed from ϕpart
obs for the pythia-6.9b-deduped-step100000 model and

generated texts, which are prefixed with random sequences from The Pile. We vary sampling
temperature and top_p (with temperature) in Figure 8.

We find that the results are somewhat sensitive to temperature; in particular, our test is less effective
at lower temperatures, potentially due to the lack of text diversity limiting the effective sample size.

B.4 TinyStories Ablations for ϕshuff
obs

We report additional results on TinyStories with the ϕshuff
obs statistic. We vary the amount of retraining

and finetuning together (Figure 9), the sampling temperature (Figure 10) and model size (Figure 11).
We find that increasing the amount of retraining improves robustness to finetuning (as expected). Our
test generally works well across a range of sampling temperatures, and notably works unexpectedly
well at temperature 0.9 for enough tokens (recall we report results at temperature 1.0 for all other
experiments). Finally, our test is more effective when scaling up the model size.

B.5 Validity of ϕshuff
obs

We plot the empirical distribution of output of ϕshuff
obs under the null in Figure 12. We generate samples

of text from the null by training an independent copy of Alice’s model from scratch (i.e., we keep all
training hyperaparameters the same but use a different random seed). The output empirically behaves
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(a) We vary Bob’s sampling temperature and number
of total tokens.

(b) We vary Bob’s top_p sampling parameter and fix
the 6.4M total tokens.

Figure 8: We report median p-values and interquartile ranges over 10 trials of ϕpart
obs using n-gram

counts for pythia-6.9b-deduped-step100000 while varying sampling parameters of Bob’s
model. Because sampling is expensive, for each trial we resample generations with replacement from
an initial sample of 50K generations (i.e., 6.4M tokens), so the reported ranges are likely narrower
than true confidence bands.

Figure 9: We report approximate p-values from applying ϕshuff
obs to TinyStories models, varying the

amount of retraining in the test and the amount of finetuning by Bob.

like a conservative p-value, in the sense that the probability it is less than x for x ∈ [0, 1] is at most x
(whereas for a true p-value the probability would be equal to x). Concretely, this implies that the
approximate p-values we report from ϕshuff

obs are typically larger than true p-values.

B.6 Additional OLMo Results for ϕshuff
obs

In Table 7, we evaluate ϕshuff
obs on OLMo-2-0425-1B and OLMo-2-1124-7B for different sizes of Bob’s

text, using the same protocol described in Section 4.3.2 but for smaller token counts. Notably, even
evaluating a single generation (i.e., |xβ | = 32) we observe p-values on the order of 10−3 and 10−5

roughly a quarter of the time at the 1B and 7B scales respectively.

C Discussion of Related Work [17, 18]

We discuss two related works in the query setting. Both Nikolic et al. [17] and Jin et al. [18] try to
determine whether two models are independently trained versus not based on the similarity of their
outputs. Neither approach yields exact p-values, and moreoever we show that they can be unreliable
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Figure 10: We report approximate p-values from applying ϕshuff
obs to TinyStories models, varying the

sampling temperature of Bob’s model.

Figure 11: We report approximate p-values from applying ϕshuff
obs to TinyStories models of different

scales. We obtain the 24M parameter model using the exact same procedure as for the 3M model,
except we increase all intermediate activation sizes (i.e., both for self-attention and MLP layers) and
the number of layers each by a factor of two. The total parameter counts are rough estimates. (Left)
We vary the number of tokens in Bob’s text and do not finetune on Bob’s text. (Right) We finetune on
Bob’s text and vary the amount of finetuning by Bob, with results for the smaller model in solid.

in practice for models independently trained on similar data. By using specific prompts to generate
responses, both methods also do not work for the observational setting.

Nikolic et al. [17] count token matches in outputs between two models µα and µβ (i.e., Alice and
Bob’s models) over prompts xj , and compare a similarity score based on these counts between µα

and µβ versus between µβ and a class of reference models (see Algorithm 1 in [17]). In particular,
this does not yield provably exact p-values for independently trained models.

We run an experiment involving Pythia models to show a failure mode of their test—the test indicates
that pythia-1.4b and pythia-1.4b-deduped are not independent, even though they were two
independent runs trained on two different transcripts. Specifically, we use the reference models given
in their Bench A and compute similarity of Pile sequence prompts (which likely all the models were
trained on) with pythia-1.4b, shown in Table 8.

We see that the similarity between the independent pythia-1.4b and pythia-1.4b-deduped
models (0.7976) is higher than the similarity between the finetune pair pythia-1.4b and
pythia1.4B-finetuned-on-lamini-docs (0.7714). Using a z-test with the given reference
models from [17] would yield a p-value of 9.622e-06 for the independence between pythia-1.4b
and pythia-1.4b-deduped, when in fact they are independent, meaning there is potentially a very
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Figure 12: We plot the distribution of the output by ϕshuff
obs under the null.

Model Size |xβ| = 32 96 160 320
1B 1.7× 10−1 9.7× 10−2 1.1× 10−1 1.3× 10−1

(4.4× 10−3, 4.6× 10−1) (1.0× 10−6, 3.3× 10−1) (3.4× 10−5, 2.2× 10−1) (6.5× 10−3, 2.8× 10−1)

7B 3.7× 10−1 1.3× 10−1 9.9× 10−2 4.5× 10−3
(2.7× 10−5, 7.5× 10−1) (5.4× 10−3, 3.0× 10−1) (3.0× 10−5, 3.2× 10−1) (1.0× 10−6, 4.9× 10−2)

Table 7: Median p-values (with interquartile ranges) across 10 trials from applying ϕshuff
obs to

OLMo-2-0425-1B and OLMo-2-1124-7B.

high false positive rate. In contrast, our methods yield provably exact p-values (see Theorem 1) where
we can control for Type-I error.

Jin et al. [18] craft prompts for models and compare the similarity of outputs. Like Nikolic et al.
[17], they use a metric “target response rate" (TRR) that measures similarity of responses, and they
identify two models as fine-tunes if their TRR is higher compared to the values for non fine-tunes.
However, they find that independently trained models from the same model developer may have
similar responses, and they classify such models as “related" (e.g. may share training data, for
example). As such, in Table III of their paper, they find the TRR between Mistral-7B-v0.1
and Mistral-7B-v0.2 is 0.70 and higher than the TRR with any Mistral-7B-v0.1 fine-tunes,
although the first two are independent.

D Compute and Cost

D.1 Audits and Cost Analysis

Auditing and cost. We give cost estimates of running the query-setting test for current language
model APIs. For our test under the query setting, we observe that logprob over 64M token samples is
typically enough to achieve a p-value below 10−3. Thus, we estimate the cost using a sample of 8M
sequences, each with 8 tokens.

As of May 2025, the cost of querying 1M inference tokens for OpenAI GPT-4.1 mini is $0.40 per
1M input tokens and $1.60 per 1M output tokens7. Computing an average over a window size of
7 (8 × 8/2 = 32 tokens per sequence) with one output token per window would have a cost of
$0.40× 8× (1 + 2 + · · ·+ 7) + $1.60× 8× 7 =$179.20. Some models may require fewer tokens,
such as the Pythia family.

Note that some APIs only give top-k logprobs or text output. In this case, one can estimate logprobs
using the method described in Appendix A.6.

7https://platform.openai.com/docs/pricing
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model fine-tuned? µ with pythia-1.4b

meta-llama/Llama-3.2-1B-Instruct × 0.5451
meta-llama/Llama-3.2-3B-Instruct × 0.5408
microsoft/Phi-3-mini-4k-instruct × 0.6137
microsoft/phi-2 × 0.6453
google/gemma-2b × 0.6322
google/gemma-2-2b × 0.6148
Qwen/Qwen2-1.5B × 0.6126
Qwen/Qwen2.5-1.5B-Instruct × 0.4875
deepseek-ai/deepseek-coder-1.3b-base × 0.5473
TinyLlama/TinyLlama-1.1B-Chat-v1.0 × 0.6050

EleutherAI/pythia-1.4b ✓ 1.0000
nnheui/pythia-1.4b-sft-full ✓ 0.8205
herMaster/pythia1.4B-finetuned-on-lamini-docs ✓ 0.7714

EleutherAI/pythia-1.4b-deduped × 0.7976

Table 8: We compute model output similarities µ following Nikolic et al. [17] between pythia-1.4b
and other models on HuggingFace. The similarity with the independent pythia-1.4b-deduped is
higher than the similarity with a pythia-1.4b fine-tune.

The observational setting does not require querying an API, as Alice passively observes text generated
by Bob’s model.

D.2 Compute Resources

We run our experiments on an internal cluster using NVIDIA A100 and A6000 GPUs. The primary
compute use for our methods is getting the perplexity of samples for different models. For a 6.9b-
parameter language model (the majority of our experiments), computing the perplexity on 1M
sequences of length 64 tokens per sequence takes around 75 mins on a single A100 GPU.

For the observational setting, we build the n-gram to training steps index for Pythia’s pre-training
data using the infini-gram package [42]. We index 18.75% of the training data, which takes 258G
disk space. To run the test ϕpart

obs once all the documents are processed, which involves getting the
counts of n-gram matches at each train step, takes around 1 minute for 100000 texts (12.8M tokens),
and scales approximately linearly with number of tokens (most processing time is disk IO).

Training the TinyStories models described in Appendix A.4 for 50000 sequences [40] takes around
10 minutes on a A6000 machine.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We clearly state our claims and assumptions in our problem formulation (Section
3.1). We prove the validity of our tests in Theorem 1, and present emprical evidence (Section 4)
supporting the main claims that our methods can determine provenance for fine-tuned models
and generated text. We discuss our limitations in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss limitations in our discussion section (see Section 5).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: Yes, we have one theoretical result (Theorem 1), and we provide its proof in the
main text. Assumptions are clearly stated in the theorem statement.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide sufficient details about our experiments to reproduce them (see the
section on Experimental Setup, Section 4.1). We also plan to release code prior to publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: We do not yet provide our code or experimental data, but we plan to release all
relevant artifacts before publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Yes we describe details for our experiments (Section 4.1), such as which models we
test from HuggingFace and the datasets used. We have more details for experiments discussed in
the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes; our main results all yield exact p-values (see Theorem 1). These p-values
allow for false positive control, and we report results for fine-tuned and non-fine-tuned model
pairs. We also describe a classification task and our accuracy.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: Yes, in Appendix D we discuss compute resources used for our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We use public models and datasets on HuggingFace, do not involve human subjects,
and don’t believe our work has harmful consequences or impacts.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impact of our work in the introduction, and how it is
important for IP protection for model developers. We do not believe our work has negative
societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We cite existing code packages (and the associated papers where applicable) that
we use for our methods. The language models we test are public from HuggingFace (Apache 2.0
licenses) and we cite relevant original papers if they are online.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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