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Abstract

Event detection (ED), aiming to detect events
from texts and categorize them, is vital to un-
derstanding the messages. Recently, ED with-
out triggers has been proposed and gained
benefits since it relieves the tedious effort
of data labeling. However, it still suffers
from several formidable challenges: multi-
label, insufficient clues, and imbalanced event
types. We, therefore, propose a novel Derange-
ment Question-Answering (DQA) framework
on top of BERT to tackle the above challenges.
More specially, we treat the input text as a
question and directly concatenate it with all
event types, who are deemed as answers. Thus,
by utilizing the original information, we can
facilitate the power of self-attention in BERT
to absorb the semantic relation between the
original input text and the event types. More-
over, we design a simple yet effective derange-
ment mechanism to relieve the issue of imbal-
anced event types. By including such pertur-
bation, we can train a more robust model to
promote the semantic information in the ma-
jor events while recording the position of the
minor events than the vanilla QA framework.
The empirical results show that: (1) our pro-
posed DQA framework attains state-of-the-art
performance over previous competitive mod-
els. (2) Our model can automatically link the
triggers with the event types while signifying
the corresponding arguments.

1 Introduction

Event detection (ED), aiming to spot the appear-
ance of predefined event types from texts and clas-
sify them, is an important step towards understand-
ing the message (Edouard, 2017). Taking a sen-
tence from ACE (Automatic Context Extraction):

S: And they sent him to Baghdad and
killed.

This sentence consists of two events, Transport
and Die. A capable event detection system should

correctly identify these two events simultaneously.
At first glance, this task can be arduous because
event types implicitly exist in one sentence.

In the literature, researchers first mainly tackle
this problem by recognizing the event triggers and
classifying the events accordingly (Li et al., 2013;
Chen et al., 2015). An event trigger is a word or
phrase that gives the most clear indication of an
event occurrence. For example, in the above ex-
ample, “sent” and “killed” are the event triggers
for the events of Transport and Die, respectively.
Various methods have been proposed to exploit
event triggers for event detection, such as extract-
ing syntactic, discourse, and other hand-engineered
features as inputs for structured prediction (Li et al.,
2013; Yang and Mitchell, 2016; Liu et al., 2018b)
and neural architecture for joint tasks optimiza-
tion (Nguyen et al., 2016; Nguyen and Nguyen,
2019; Wadden et al., 2019; Liu et al., 2018a). How-
ever, these methods usually require tedious manual
effort on annotating both triggers and event types
for training. After discovering event triggers are
nonessential to event detection, a Type-aware Bias
Neural Network with Attention Mechanisms (TBN-
NAM) has been explored to detect events without
triggers (Liu et al., 2019).

In this paper, we focus on event detection with-
out triggers due to the light need of data label-
ing. Especially, we aim at tackling the follow-
ing formidable challenges: (1) Multi-label issue:
Each input sentence may hold zero or multiple
events, which can be formulated into a challenging
machine learning task, or multi-label classification
task. (2) Insufficient clues: It is observed that trig-
gers are of significance to attain good performance
on event detection (Zhang et al., 2020; Ebner et al.,
2020). Without explicit triggers, we lack sufficient
clues to identify the event types and need to dig
deeply to promote the connection between the key-
words and the corresponding event types. (3) Im-
balanced event distribution: As shown in Fig. 2,



the events may follow the Matthew effect: some
events dominate in the data while other events may
contain only several pieces of samples. The imbal-
anced event distribution brings more obstacles in
identifying the minor events.

To tackle the above challenges, we propose a
Derangement Question Answering (DQA) frame-
work to learn the semantic relation between the
input texts and the event types. Figure 1 illus-
trates our proposed framework with three main
modules: a QA encoder, the event derangement
module (EDM), and the multi-label classifier. In
the QA encoder, an input sentence is deemed as
a “Question” and all event types are set as “An-
swers”. Following by the “[CLS]” token, they are
concatenated with the “[SEP]” token and fed as the
input of BERT. Our setup is different from existing
QA architectures (Du and Cardie, 2020; Liu et al.,
2020) and seems more elegant because we only
keep the original information and do not introduce
extra tokens. The semantic relation between the
input texts and event types are then learned by the
powerful self-attention mechanism in BERT (De-
vlin et al., 2019). In EDM, when the target (or
ground truth) event is a major event, we deliver the
derangement procedure with probability ¢q. That
is, only r other events (possibly major events) are
selected and shuffled. By appending such pertur-
bation, we can train a more robust model to pro-
mote the semantic information in the major events
while recording the position information of the mi-
nor events. The learned representations are then
fed into a multi-label classifier to produce the fi-
nal prediction. Our development is more efficient
than (Liu et al., 2019).

In summary, the contribution of our work is
threefold: (1) To the best of our knowledge, this
is the first work to explore the QA framework for
multi-label event detection without triggers. It uti-
lizes BERT to directly learn the semantic relation
between input texts and event types without intro-
ducing extra tokens or discarding any original infor-
mation. (2) The proposed derangement mechanism
is simple yet effective in resolving the imbalanced
event distribution issue. Furthermore, it can en-
hance representation learning by promoting the se-
mantic information in the major events and record-
ing the position in the minor events. (3) We re-
port state-of-the-art performance on the benchmark
dataset. Our model also demonstrates the power
of linking the triggers with the event types and

simultaneously signifying the related arguments.

2 Related Work

Event Detection More recent research has fo-
cused on jointly extracting triggers and arguments
for event detection. For example, in (Nguyen
et al., 2016) and (Li et al., 2013), triggers and ar-
guments have been extracted by bidirectional re-
current neural networks and structured Perceptron,
respectively. In (Zhang et al., 2019), reinforcement
learning has been deployed with generative adver-
sarial networks for entity and event detection. Fur-
thermore, with the success of the attention mecha-
nism, many approaches have tried to integrate this
mechanism into the proposed models. For example,
in (Liu et al., 2018b), syntactic contextual represen-
tations have been learned by graph convolutional
networks to extract triggers and arguments jointly
by self-attention. In (Wadden et al., 2019), a BERT-
based model has been proposed to learn multiple
tasks, including named-entity recognition, relation
extraction, and event extraction.

Conventional methods require time-consuming
annotation of triggers, limiting the application of
these approaches to scenarios without abundant la-
beled data. Therefore, researchers explore other
methods to detect events without triggers. For ex-
ample, a Type-aware Bias Neural Network with At-
tention Mechanisms (TBNNAM) (Liu et al., 2019)
has been proposed by utilizing the attention mech-
anism. However, it still contains several insuffi-
ciency: (1) It turns the problem of event detec-
tion into a binary classification problem, which
results in the domination of negative classes. (2)
It does not consider the imbalanced event distribu-
tion issue. (3) It relies on the traditional LSTM and
does not utilize more powerful pre-trained language
models. These may limit the ability of TBNNAM
to solve the task.

Question Answering With powerful pre-trained
language models (PLMs) as encoders, we can sim-
ply represent the questions and passages by PLMs
and get the answer by predicting the start and
end index for a Machine Reading Comprehension
(MRC) problem. Several pieces of work (Boros
et al., 2021; Du and Cardie, 2020; Liu et al., 2020)
have formulated the event detection task as a MRC
or Question Answering (QA) task by generating
questions for event extraction. However, they need
to design suitable questions specifically and intro-
duce extra tokens, which may disturb the model
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Figure 1: Our proposed DQA is on top of BERT. It consists of three main modules: QA encoder, the event
derangement module (ETM), and the multi-label classifier. The ETM is amplified in the upper-left corner for

better illustration; see more description in the main text.

learning.

3 Methodology

3.1 Task Definition

Following previous work (Ahn, 2006; Ji and Grish-
man, 2008; Liu et al., 2019), we are given a set of
training data, {(;,v;)}\,, where N is the num-
ber of sentence-event pairs. z; = W wW;g . . . Wi|y,|
is the i-th sentence consisting of |x;| tokens and
y; € S is an event set, which records the corre-
sponding event type(s). S = {ej, ea,...,e,} con-
sists of all n events. Here, we also add an addi-
tional label “negative” to specify those sentences
that do not contain any events. Our goal is to train a
model to detect the corresponding event type(s) as
accurate as possible given an input sentence. This
can be formulated as the multi-label classification
task in machine learning. Our tasks here lie in (1)
how to learn more precise representations to embed
the semantic information between texts and event
types? (2) How to deliver the multi-task classifica-
tion task effectively?

Major Events vs. Minor Events Imbalanced
event distribution is a major issue that we are tar-
geted. Traditionally, Imbalance Ratio (IR) (Galar
et al., 2012) is a typical metric to estimate the
imbalance of the data. However, IR provides lit-
tle information about the classes in the middle
classes (Ortigosa-Herndndez et al., 2017). Due

to non-standard definition of major classes and mi-
nor classes in the multi-class cases and the simple
setting in (Dong et al., 2018), we borrow its defini-
tion to distinguish the major events and the minor
events. We first define a sorted sequence of all
event types with respect to the number of instances
in each class in the descending order:

ey

Here, e; represents the i-th event type with |e;|
instances.

Then, we define the set of major events as the top-
k elements in S, while the remaining elements as
the minor events:

EMajor = {62‘ ‘ 1= 1,2, ]{7},
Evinr ={€i |i=k+1,..n}.

Ssa =€1...e,, Where |e;| > |e;y1].

2
3)

Now, we set « to indicate the percentage of the
major events in all /V sentence-event pairs:

k
ax N = Z lei].
i=1

This definition will be used in our proposed de-
rangement procedure.

“

3.2 Our Proposal

Figure 1 outlines the overall structure of our pro-
posed DQA, which consists of three main modules:
(1) a QA encoder, (2) the event derangement mod-
ule (EDM), and (3) the multi-label classifier.



QA Encoder Our proposed DQA is based on
BERT due to its power in learning the contextual
representation in the sequence of tokens (Devlin
et al., 2019). We then follow the standard BERT-
style format and treat the original sentence as the
<question> with all event types as the <answers>:

[CLS] <question> [SEP] <answers>

It is noted that our setting is different from exist-
ing QA models (Liu et al., 2020; Du and Cardie,
2020), which will generate extra tokens or relevant
questions to describe an event. Our design tries to
maintain the original texts as much as possible and
let BERT automatically learn the semantic infor-
mation between texts and event types.

Algorithm 1 Event Derangement

Require: Input sentence x; The initial event se-
quence Si,; The descending sorted sequence
of all event types Ssa; Possibility ¢; Number r
Ensure: Deranged sequence of event tokens S,
1: Initialize E; to the set of the ground truth
event types implied by x
2: Initialize E';, with r elements in the beginning
of Sg, that are not in Eg

3: Initialize Ey,,, = () as a helper set

4: Initialize Sy = |]

5: Generate rand uniformly from [0, 1]

6: if Eqr N Eyjor # 0 and rand < g then

7. for ecyrr in Sy do

8: if e in E, then

9: Randomly select e from E, and e #
€curr and e ¢ Etmp

10 Append e to S,

11: Add e to Etyy

12: else

13: Append ey to So

14: end if

15:  end for

16: else

17: S0 = Sinit

18: end if

19: Return S,

Specifically, given a training set, we first gen-
erate an event index [i,; = S1...Sy,, Which is a
permutation of {1,...,n}, and obtain its event se-
quence Siyix = €, - .- €5, We need this sequence
because we will fix it for the <answer> part during
inference. Hence, given a sentence x = wy . . . Wig|s
we produce the input for our DQA as:

Input=[CLS]w; ... wyy [SEPe, ... €5,. (5)

Via BERT, we learn the hidden representations:

h[CLS]> h’iva s ah|ug);‘7 h[SEP}’ hﬁa SR hfl
=BERT (Input), (6)

where 1" is the hidden state of the i-th input to-
ken and A is the hidden state of the corresponding
event type, namely e;,. In the implementation, we
treat e; as a new word by placing a square bracket
around it, i.e., the event Transport is converting to
“[Transport]”. This allows us to enrich the event
tokens in the original BERT vocabulary and yield
better performance in the evaluation; see more anal-
ysis in Appendix. A.1.

EDM Since event types are converted as in-
put tokens of BERT, it raises a critical question:
whether we need to add the position embeddings
on the event type during training? An observation
in (Pham et al., 2021) shows that BERT is position-
insensitive and can attain more similarity on the
Quora QQP task when shuffling some words. How-
ever, in our test, we discover that position embed-
dings can also provide hints for distinguishing the
event types; see more verification in Sec. 5.2. We
conjecture that in the imbalance data, our proposed
QA framework tends to memorize the position in-
formation rather the semantic information.

In order to alleviate this effect, we introduce the
derangement mechanism on the event tokens to
add perturbation during training. Derangement is a
classical permutation term in combinatorics, where
a permutation of the elements of a set makes no
element appear in its original position. We conduct
the derangement procedure only when the target
(or the ground truth) event is a major event as de-
fined in Eq. (4). After that, we only deliver it with
probability ¢. This is similar to the procedure of
Masked LM in BERT and allows us to balance the
position memorizing and semantic information ab-
sorption. In implementation, we randomly select r
other (usually major) events from Es, except the
target event for derangement. This procedure is
summarized in Algorithm 1 and yields a deranged
sequence with the same size of n for training. In
Algorithm 1,

e In line 2, E, selects r events, which is not in
FEqr and whose size is relatively large, i.e., in
the beginning of Ssa.

* In line 5, the procedure is conducted only
when the target event is a major event and
is performed with probability of g.
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Figure 2: The distribution of event main types and event subtypes on the ACE2005 training data.

* In lines of 6-14, usually the major events are
deranged because the elements in /|, are se-
lected from the top elements in the sorted se-
quence, Sga.

Multi-label Classifier After we learn the contex-
tualized representations of x and .Si,;; from the pro-
posed QA structure, we turn to construct the multi-
label classifier. Different from traditional method
to encode the [CLS] token, we feed the event tokens
to a Multi-Layer Perception (MLP) for classifica-
tion because we can obtain better performance; see
more supporting results in Appendix A.2. Hence,
we compute the predicted probability of an input
sentence x to the corresponding events by

ﬁ:MLP( t1?7-'-ahsz)' (7

During inference, we determine the event labels
when p > 0.5.

The model parameters of our DQA can then be
attained by minimizing the following loss function:

N n
Lo — Z Z(pij log(pij)+(1—pij) log(1—pij))

i=1 j=1

®)
where p;; = 1 represents the corresponding event
for the i-th input text. Different from (Liu et al.,
2019), which converts the multi-label classification
task into a binary classification task, our proposed
DQA can directly train the model to output the
multi-label results simultaneously.

4 Experiments

4.1 Experimental Setups

Dataset and Evaluation We conducted exper-
iments on the ACE2005 English corpus. The

ACE2005 corpus consists of 8 event main types
and 33 subtypes. As shown in Fig. 2, the corpus
follows the imbalanced event distribution and is
more imbalanced (IR=605.5) for the event sub-
types than that (IR~13.1) in the event main types.
For example, the types of Attack, Transport, and
Die account for over half of the total training data.
For fair comparison, we follow the evaluation of (Li
et al., 2013; Liu et al., 2019, 2020), i.e., randomly
selecting 30 articles from different genres as the
validation set, subsequently delivering a blind test
on a separate set of 40 ACE2005 newswire doc-
uments, and using the remaining 529 articles as
the training set. The standard metrics: Precision
(P), Recall (R), and F1 scores (F1), are applied to
evaluate the model performance.

Implementation Details Our implementation is
in PyTorchl. The BERT base model (uncased)
from Hugging Face (Wolf et al., 2019) is adopted
as the backbone model, which consists of 12 layers,
768 hidden units, and 12 attention heads. The MLP
consists of two layers with the hidden size being
768 and yields an output of 34 dimension to predict
the probability of the input sentence assigned to the
corresponding 34 classes. We follow (Dong et al.,
2018) and set « to 0.5. In EDM, ¢ is 0.2 and r is
24 from empirical evaluation. The batch size is 8.
The learning rate is set as 2 x 10~°. The dropout
rate is 0.1. ADAM is the optimizer (Kingma and
Ba, 2015). We train our models for 10 epochs to
give the best performance. All experiments are
conducted on a NVIDIA A100 GPU.

"https://www.dropbox.com/s/
wgplulguéebgs6da/DOA.zip?d1l=0


https://www.dropbox.com/s/wqp1u1gu6bqs6da/DQA.zip?dl=0
https://www.dropbox.com/s/wqp1u1gu6bqs6da/DQA.zip?dl=0

Subtypes (%) Main (%)
Methods P R FI| P R Fl
TBNNAM (Liu et al., 2019) 76.2 645 699 - - -
| DYGIE++, BERT + LSTM (Wadden etal., 2019) | - - 689 | - - - |

DYGIE++, BERT Finetune (Wadden et al., 2019) - - 69.7 - - -
BERT_QA_Trigger (Du and Cardie, 2020) 71.7 7377 723 - - -
DMBERT (Wang et al., 2019) 77.6 718 74.6 - - -
RCEE_ER (Liu et al., 2020) 75.6 742 749 - - -
DMBERT + Boot (Wang et al., 2019) 779 725 775.1 - - -
BERT Finetune 72.8 68.7 70.7 | 780 70.8 74.2
Our BERT_QA 76.9 723 747 | 789 754 77.1
Our BERT_DQA 79.5 768 78.1 | 78.7 79.0 789

Table 1: Event detection results on both the event subtypes and event main types of the ACE2005 corpus.

4.2 Overall Performance

We compare our proposed BERT_QA and
BERT_DQA with several competitive baselines:
TBNNAM (Liu et al., 2019): an LSTM model
detecting events without triggers, and BERT-
based models for both trigger detection and event
detection: DYGIE++ (Wadden et al., 2019):
a BERT-based framework modeling text spans;
BERT_QA_Trigger (Du and Cardie, 2020) and
RCEE_ER (Liu et al., 2020): both BERT-based
models converting event extraction into a QA task;
DMBERT (Wang et al., 2019): a BERT-based
model leveraging adversarial training for weakly
supervised events, where DMBERT Boot stands
for bootstrapped DMBERT.

Table 1 reports the overall performance on the
ACE2005 corpus. It shows that (1) previous mod-
els only evaluate the performance on the event sub-
types. Although our proposed BERT_QA does
not access to the triggers, it attains significant bet-
ter performance than TBNNAM, DYGIE++, and
BERT_QA_Trigger. Its performance is also com-
petitive to DMBERT and RCEE_ER, with 74.7%
F1 score, only 0.4% less F1 score than that in the
best baseline, DMBERT Boot. The result shows
that our proposed QA framework is effective to
learn the semantic information between given texts
and event types. (2) After introducing the derange-
ment mechanism, our proposed BERT_DQA can
significantly outperform all compared methods in
all three metrics. Especially, it attains 3.0% more
F1 score than the best baseline. (3) To verify the
generalization of our proposal, we also conduct
experiments to evaluate the performance on event
main types. The setting of the model parameter
is the same as that on the event subtypes, except

r = 3 for DQA. The results show that our pro-
posed BERT_QA and BERT_DQA gain further
improvement, i.e., 2.9% and 4.7% F1 score over
the finetuned BERT, respectively. The results show
the consistence of our proposal and it seems that
BERT_DQA can attain better performance when
the dataset (the event subtypes) is more imbalanced;
see more supporting results in Appendix A.3.

Position Embedding | P R F1
Fixed 757 71.6 173.6
Learnable 76.9 723 74.7

Table 2: Evaluation results by applying fixed or learn-
able position embeddings on the same event sequence.

P R F1
BERT_QA_Shuffle Both | 68.2 70.6 66.4
BERT_QA 769 723 74.7
BERT_QA_Shuffle_Test 182 92 122
BERT_DQA_Shuffle_Test | 66.0 45.1 53.6
BERT_DQA 79.5 768 78.1
Table 3: Evaluation results on different event se-

quences.

5 More Analysis

We conduct more detailed analysis to verify the
effect of our proposal.

5.1 Effect of Position Embeddings

We test the effect of the position embeddings on
our proposed BERT_QA. Here, we test two cases,
fixed position embeddings and learnable position
embeddings for the given event sequence. Results
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For better illustration, we only show parts of events and set the label segmentation to 2.

in Table 2 show that BERT_QA is a position-aware:
via a learnable position embedding, it can gain
better performance, around 1% improvement on
the F1 score.

5.2 Effect of Event Sequences

Table 3 reports the results of BERT_QA and
BERT_DQA with different event sequences. Here,
“BERT_QA_Shuffle_Both” stands for a BERT_ QA
trained and tested on randomly shuffled event
sequences. It can be deemed as a baseline
of BERT_QA because it only absorbs the se-
mantic information between texts and event
types while totally forgetting the position in-
formation. “BERT_QA_Shuffle_Test” defines a
BERT_QA trained on a given event sequence
while testing on a shuffled event sequence.
“BERT_DQA_Shuffle_Test” tests the case of a
BERT_QA trained on a given event sequence
and the derangement mechanism while testing
on a shuffled event sequence. The results show
that (1) “BERT_QA_Shuffle_Both” attains satis-
factory performance, which shows the power of
our BERT_QA in absorbing the semantic infor-
mation between texts and event types. (2) The
performance of “BERT_QA_Shuffle_Test” drops
significantly because BERT_QA is totally pol-
luted and confused by the randomly generated
event sequences when inference. The result im-
plies that BERT_QA leverages position informa-
tion to classify events other than semantic knowl-
edge. (3) “BERT_DQA_Shuffle_Test” attains a
closer performance to “BERT_QA_Shuffle_Both”.
This result shows that the derangement mecha-

nism can effectively avoid BERT_QA from ex-
cessively memorizing positions and increase the
model’s learning of semantic knowledge. How-
ever, since we only shuffle parts of events, the
semantic relationship is not fully absorbed as
that in “BERT_QA_Shuffle_Both”. (4) Overall,
BERT_QA can attain good performance while
BERT_DQA can further improve it and achieves
the best performance.

5.3 Effect of EDM

Figure 3(a) shows the extreme case when ¢ = 1.0,
where EDM fails to identify major events but still
recognizes the minor events during inference. An
underlying observation is that during training, the
target events remain in the original position while
other events are deranged, this will disturb the in-
formation forwarding on the deranged events. Ac-
cordingly, it makes the target events stand out and
can be easily recognized, as shown in the results
of the validation set. Therefore, there is little loss
on the target events during training, which prevents
the model from learning information for the target
events via backpropogation.

Figure 3(b) shows that setting a suitable ¢ (=
0.2) can prevent the model’s overfitting on major
events while enhancing the recognition on the mi-
nor events. This is similar to under-sampling on the
major events, which leads to a more balanced updat-
ing on BERT_DQA. Our EDM may echo the mech-
anism in response to sensory deprivation (Merabet
and Pascual-Leone, 2010): neurons in human brain
are reorganized to functioning regions, which, for
instance, makes the blind have stronger hearing.
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5.4 Effect of g and r

We select ¢ from {0.1, 0.2, 0.4, 0.5, 0.7} and r
from {3,6,...,33}, i.e., equally dividing all event
types into 10 buckets. We ignore larger q’s because
they usually fail the model on major events; see
results when ¢ = 1.0 in Fig. 3(a). Figure 4 shows
the performance with respect to r for different ¢. It
is shown that the best performance is attained when
q = 0.2 and » = 24. The trends also show that
a smaller ¢ can usually yield better performance
while 7 is selected in the range of 15 and 25 because
r can indicate the scale of perturbation. A smaller
r may cause negligible perturbation and a larger r
may affect the disturbance of the minor events.
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Figure 5: Gradient visualization of words in a sentence
with respect to five typical event types; see more de-
scription in the main text.

5.5 Gradient Explanation

The gradient explanation is a more stable method
to explain the model (Adebayo et al., 2018) than
the attention weights in BERT because the atten-
tion weights may be misleading (Jain and Wallace,
2019) or are not directly interpretable (Brunner
et al., 2020). We then compute the gradient with

respect to the token embeddings, which quantifies
the influence of changes in the tokens on the pre-
dictions. Here, we pick the example in Sec. 1 and
select five typical events: “Die” and “Transport”
are the target events; “Negative” and “Attack” are
two common event types; and “Execute” is a minor
event. Figure 5 clearly shows that (1) For the event
of “Die”, our BERT_DQA can automatically fo-
cus on its trigger word “killed” while for the event
“Transport”, the trigger “sent” is also noticed by
model. But for non-target events, our BERT_DQA
attains low gradients on the triggers or gets high
gradients on unrelated tokens, such as “to” and “.”.
(2) More importantly, our BERT_DQA can surpris-
ingly spot the related arguments for the events. For
example, for the event of “Die”, “Baghdad” yields
a significant higher gradient, which corresponds to
the argument of PLACE. Similarly, for the event of
“Transport”, “they” and “him” also yield relatively
larger gradients, which exactly correspond to the
argument of ARTIFACT and AGENT, respectively.
The observations shows the power of our proposed
DQA framework in not only linking triggers to
the corresponding events, but also highlighting the
event arguments, which is better than those tradi-
tional event extraction methods with only trigger
extraction.

6 Conclusion and Future Work

In this paper, we propose a novel Derangement
Question Answering (DQA) framework on top of
BERT to detect events without triggers and under
the imbalanced setting. By treating the input text
as a question and directly concatenating it with
all event types as answers, we utilize the power
of self-attention in BERT to absorb the semantic
relation between the original input text and the
event type(s). Moreover, the proposed event de-
rangement module is simple yet effective to relieve
the imbalanced event types. By introducing such
perturbation, we can train a more robust model
than the vanilla BERT_QA framework. We con-
duct intensive evaluation and show that our pro-
posed DQA framework attains state-of-the-art per-
formance over previous methods and can automat-
ically link the triggers with the event types while
signifying the related arguments. In the future, we
would like to test how to generate the optimal ini-
tial event sequence and adapt our proposal to other
information extraction tasks to study its application
scope.
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A Appendix

We provide more analysis to support our proposal.

Conversion P R F1
Original 752 67.6 T1.7
New 773 682 725

Table 4: Results of different conversion ways of event
tokens.

A.1 Effect of Event Tokens Conversion

There are two intuitive ways to treat the event to-
kens in our proposed DQA framework. One is to
treat them as old words in the BERT dictionary,
so that we can initialize the event representations
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by utilizing BERT’s pre-trained word embeddings.
The other way is to treat them as new words, so
that we can learn the event representations from
scratch. Hence, we can directly feed the original
event words in the DQA framework or add a square
bracket around the event words to convert them into
new words, e.g., “Transport” to “[Transport]”, in
the BERT dictionary.

Table 4 reports the compared results and shows
that converting event types into new words can at-
tain substantial improvement in all three metrics
than treating them as the original words in BERT
dictionary. We conjecture that it may arise from
WordPiece (Wu et al., 2016) in BERT implemen-
tation because BERT will separate an event word
into several pieces when it is relatively long. This
brings the difficulty in precisely absorbing the se-
mantic relation between the words in input texts
and event types. On the contrary, when we treat
an event word as a new word, BERT will deem
them as a whole. Though BERT learns the event
representations from scratch, it is still helpful to
establish the semantic relationship between words
and event types.

A.2 Inputs for the Multi-label Classifier

There are two kinds of inputs for the multi-label
classifier: the representation of the [CLS] token, or
the event representations. We feed these two inputs
into the same MLP to predict the probability of an
input sentence x to the corresponding events.

P R F1
773 682 725
76.9 723 747

Input
[CLS]
All event tokens

Table 5: Results of different inputs for the multi-label
classifier.

Table 5 reports the performance of different in-
puts for the multi-label classifier and shows that by
feeding the event representations as the input, our
BERT_QA can significantly improve the perfor-
mance on Recall and the F1 score with competitive
Precision score than only using the representation
of the [CLS] token. We conjecture that the event
representations have injected more information into
the multi-label classifier than only using the repre-
sentation of the [CLS] token.

A.3 Limitation of EDM

‘We conduct evaluation on a more balanced dataset
to investigate the limitation of EDM. We first select
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Figure 6: Data distribution of seven balanced event sub-
types.

seven relatively balance event types, yielding an
imbalance ratio around 1.8, from the subtypes of
the ACE2005 corpus; see the data distribution in
Fig. 6. In the experiment, we set ¢ to 0.2 and r to 6
for good performance on BERT_DQA.

Model P R F1
BERT_QA 764 778 77.1
BERT_DQA | 75.0 763 75.6

Table 6: The performance of our BERT_QA and
BERT_DQA on a more balanced dataset.

Table 6 reports the comparison results of
BERT_QA and BERT_DQA and shows that
BERT_QA attains satisfactory results and beats
BERT_DQA in all three metrics. The results imply
that the derangement procedure plays an important
role when the dataset is more imbalanced. When
the dataset is relatively balanced, we can turn to
BERT_QA and attain good performance due to the
power of self-attention in BERT.

A.4 Error Analysis

We conduct error analysis on test dataset in this

section. There are three main kinds of errors:

— The main error comes from event mis-
classification, accounting for 52.9% of the total
errors. The error also includes that BERT_DQA
detects more event types than the ground truth.
The most event type that BERT_DQA over-
predicts is the event of Attack. A typical example
is given below:

S: The officials, who spoke on ... 26
words omitted ... on the U.S.-backed
war resolution.
BERT_DQA deems this sentence belonging to
the event of Artack, where the ground truth is



the event of Meet. This error is normal be-
cause the word “war” is a common trigger to the
event of Artack, which yields BERT_DQA mis-
classifying it. In this dataset, the event of Attack
is the most dominating event type, which makes
it likely to classify the texts of other events as
Attack when the texts hold some similar words
to the triggers of Attack.

The second type of errors is that BERT_DQA
outputs fewer event types than the ground truth,
which accounts for 28.9% of errors. The fre-
quently missing event types are Transfer-Money
and Transfer-Ownership. One typical example is

S: Until Basra, U.S. and British troops

6 words omitted... they seized
nearby Umm Qasr ... 3 words omit-
ted... secure key oil fields.

BERT_DQA fails to identify the event of
Transfer-Ownership, which is indicated by the
trigger, “secure”, while recognizing the event
of Attack, implied by the trigger if “seized”.
On the one hand, the Imbalanced Ratio of Ar-
tack and Transfer-Ownership is 14.2. There are
much fewer training data for BERT_DQA to
learn the patterns of Transfer-Ownership than
those of Attack. On the other hand, deeper se-
mantic knowledge is needed for understanding
the event of Transfer-Ownership, whose trigger
words are more diverse and changeable. The trig-
gers for Transfer-Ownership may include “sold”,
“acquire”, and “bid”, etc.

The third type of errors lies in outputting none-
event sentences. When there are no event types
in a sentence, BERT_DQA may fail to classify it
as the type of negative. This is because there is
no sufficient clues for BERT_DQA to learn the
patterns from the type of negative. BERT_DQA
also turns out to give low predicted probabilities
on all event types.
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