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Abstract

Event detection (ED), aiming to detect events001
from texts and categorize them, is vital to un-002
derstanding the messages. Recently, ED with-003
out triggers has been proposed and gained004
benefits since it relieves the tedious effort005
of data labeling. However, it still suffers006
from several formidable challenges: multi-007
label, insufficient clues, and imbalanced event008
types. We, therefore, propose a novel Derange-009
ment Question-Answering (DQA) framework010
on top of BERT to tackle the above challenges.011
More specially, we treat the input text as a012
question and directly concatenate it with all013
event types, who are deemed as answers. Thus,014
by utilizing the original information, we can015
facilitate the power of self-attention in BERT016
to absorb the semantic relation between the017
original input text and the event types. More-018
over, we design a simple yet effective derange-019
ment mechanism to relieve the issue of imbal-020
anced event types. By including such pertur-021
bation, we can train a more robust model to022
promote the semantic information in the ma-023
jor events while recording the position of the024
minor events than the vanilla QA framework.025
The empirical results show that: (1) our pro-026
posed DQA framework attains state-of-the-art027
performance over previous competitive mod-028
els. (2) Our model can automatically link the029
triggers with the event types while signifying030
the corresponding arguments.031

1 Introduction032

Event detection (ED), aiming to spot the appear-033

ance of predefined event types from texts and clas-034

sify them, is an important step towards understand-035

ing the message (Edouard, 2017). Taking a sen-036

tence from ACE (Automatic Context Extraction):037

S: And they sent him to Baghdad and038

killed.039

This sentence consists of two events, Transport040

and Die. A capable event detection system should041

correctly identify these two events simultaneously. 042

At first glance, this task can be arduous because 043

event types implicitly exist in one sentence. 044

In the literature, researchers first mainly tackle 045

this problem by recognizing the event triggers and 046

classifying the events accordingly (Li et al., 2013; 047

Chen et al., 2015). An event trigger is a word or 048

phrase that gives the most clear indication of an 049

event occurrence. For example, in the above ex- 050

ample, “sent” and “killed” are the event triggers 051

for the events of Transport and Die, respectively. 052

Various methods have been proposed to exploit 053

event triggers for event detection, such as extract- 054

ing syntactic, discourse, and other hand-engineered 055

features as inputs for structured prediction (Li et al., 056

2013; Yang and Mitchell, 2016; Liu et al., 2018b) 057

and neural architecture for joint tasks optimiza- 058

tion (Nguyen et al., 2016; Nguyen and Nguyen, 059

2019; Wadden et al., 2019; Liu et al., 2018a). How- 060

ever, these methods usually require tedious manual 061

effort on annotating both triggers and event types 062

for training. After discovering event triggers are 063

nonessential to event detection, a Type-aware Bias 064

Neural Network with Attention Mechanisms (TBN- 065

NAM) has been explored to detect events without 066

triggers (Liu et al., 2019). 067

In this paper, we focus on event detection with- 068

out triggers due to the light need of data label- 069

ing. Especially, we aim at tackling the follow- 070

ing formidable challenges: (1) Multi-label issue: 071

Each input sentence may hold zero or multiple 072

events, which can be formulated into a challenging 073

machine learning task, or multi-label classification 074

task. (2) Insufficient clues: It is observed that trig- 075

gers are of significance to attain good performance 076

on event detection (Zhang et al., 2020; Ebner et al., 077

2020). Without explicit triggers, we lack sufficient 078

clues to identify the event types and need to dig 079

deeply to promote the connection between the key- 080

words and the corresponding event types. (3) Im- 081

balanced event distribution: As shown in Fig. 2, 082
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the events may follow the Matthew effect: some083

events dominate in the data while other events may084

contain only several pieces of samples. The imbal-085

anced event distribution brings more obstacles in086

identifying the minor events.087

To tackle the above challenges, we propose a088

Derangement Question Answering (DQA) frame-089

work to learn the semantic relation between the090

input texts and the event types. Figure 1 illus-091

trates our proposed framework with three main092

modules: a QA encoder, the event derangement093

module (EDM), and the multi-label classifier. In094

the QA encoder, an input sentence is deemed as095

a “Question” and all event types are set as “An-096

swers”. Following by the “[CLS]” token, they are097

concatenated with the “[SEP]” token and fed as the098

input of BERT. Our setup is different from existing099

QA architectures (Du and Cardie, 2020; Liu et al.,100

2020) and seems more elegant because we only101

keep the original information and do not introduce102

extra tokens. The semantic relation between the103

input texts and event types are then learned by the104

powerful self-attention mechanism in BERT (De-105

vlin et al., 2019). In EDM, when the target (or106

ground truth) event is a major event, we deliver the107

derangement procedure with probability q. That108

is, only r other events (possibly major events) are109

selected and shuffled. By appending such pertur-110

bation, we can train a more robust model to pro-111

mote the semantic information in the major events112

while recording the position information of the mi-113

nor events. The learned representations are then114

fed into a multi-label classifier to produce the fi-115

nal prediction. Our development is more efficient116

than (Liu et al., 2019).117

In summary, the contribution of our work is118

threefold: (1) To the best of our knowledge, this119

is the first work to explore the QA framework for120

multi-label event detection without triggers. It uti-121

lizes BERT to directly learn the semantic relation122

between input texts and event types without intro-123

ducing extra tokens or discarding any original infor-124

mation. (2) The proposed derangement mechanism125

is simple yet effective in resolving the imbalanced126

event distribution issue. Furthermore, it can en-127

hance representation learning by promoting the se-128

mantic information in the major events and record-129

ing the position in the minor events. (3) We re-130

port state-of-the-art performance on the benchmark131

dataset. Our model also demonstrates the power132

of linking the triggers with the event types and133

simultaneously signifying the related arguments. 134

2 Related Work 135

Event Detection More recent research has fo- 136

cused on jointly extracting triggers and arguments 137

for event detection. For example, in (Nguyen 138

et al., 2016) and (Li et al., 2013), triggers and ar- 139

guments have been extracted by bidirectional re- 140

current neural networks and structured Perceptron, 141

respectively. In (Zhang et al., 2019), reinforcement 142

learning has been deployed with generative adver- 143

sarial networks for entity and event detection. Fur- 144

thermore, with the success of the attention mecha- 145

nism, many approaches have tried to integrate this 146

mechanism into the proposed models. For example, 147

in (Liu et al., 2018b), syntactic contextual represen- 148

tations have been learned by graph convolutional 149

networks to extract triggers and arguments jointly 150

by self-attention. In (Wadden et al., 2019), a BERT- 151

based model has been proposed to learn multiple 152

tasks, including named-entity recognition, relation 153

extraction, and event extraction. 154

Conventional methods require time-consuming 155

annotation of triggers, limiting the application of 156

these approaches to scenarios without abundant la- 157

beled data. Therefore, researchers explore other 158

methods to detect events without triggers. For ex- 159

ample, a Type-aware Bias Neural Network with At- 160

tention Mechanisms (TBNNAM) (Liu et al., 2019) 161

has been proposed by utilizing the attention mech- 162

anism. However, it still contains several insuffi- 163

ciency: (1) It turns the problem of event detec- 164

tion into a binary classification problem, which 165

results in the domination of negative classes. (2) 166

It does not consider the imbalanced event distribu- 167

tion issue. (3) It relies on the traditional LSTM and 168

does not utilize more powerful pre-trained language 169

models. These may limit the ability of TBNNAM 170

to solve the task. 171

Question Answering With powerful pre-trained 172

language models (PLMs) as encoders, we can sim- 173

ply represent the questions and passages by PLMs 174

and get the answer by predicting the start and 175

end index for a Machine Reading Comprehension 176

(MRC) problem. Several pieces of work (Boros 177

et al., 2021; Du and Cardie, 2020; Liu et al., 2020) 178

have formulated the event detection task as a MRC 179

or Question Answering (QA) task by generating 180

questions for event extraction. However, they need 181

to design suitable questions specifically and intro- 182

duce extra tokens, which may disturb the model 183
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[SEP]

E51 E52

E[injure] E[attack]

E0 E1 E2

And they[CLS]

E[CLS] Eand Ethey …

…

…

…

…
Position  
Emb.

Input

h’34

BERT

Event Derangement q

E52

E[negative]

h’34

[elect] [transport] [convict] … [injure] [attack] [negative]

…

…

…

…
Major  
Event

Major  
Event

Target  
Event

Event Derangement

[elect] [transport] [convict] [injure]

Target  
Event

Major  
Event

[attack] [negative]

Derange 𝑟 event tokens

Output deranged tokens

Input Event tokens

Minor  
Event

Token
Emb.

Figure 1: Our proposed DQA is on top of BERT. It consists of three main modules: QA encoder, the event
derangement module (ETM), and the multi-label classifier. The ETM is amplified in the upper-left corner for
better illustration; see more description in the main text.

learning.184

3 Methodology185

3.1 Task Definition186

Following previous work (Ahn, 2006; Ji and Grish-187

man, 2008; Liu et al., 2019), we are given a set of188

training data, {(xi, yi)}Ni=1, where N is the num-189

ber of sentence-event pairs. xi = wi1wi2 . . . wi|xi|190

is the i-th sentence consisting of |xi| tokens and191

yi ⊆ S is an event set, which records the corre-192

sponding event type(s). S = {e1, e2, . . . , en} con-193

sists of all n events. Here, we also add an addi-194

tional label “negative” to specify those sentences195

that do not contain any events. Our goal is to train a196

model to detect the corresponding event type(s) as197

accurate as possible given an input sentence. This198

can be formulated as the multi-label classification199

task in machine learning. Our tasks here lie in (1)200

how to learn more precise representations to embed201

the semantic information between texts and event202

types? (2) How to deliver the multi-task classifica-203

tion task effectively?204

Major Events vs. Minor Events Imbalanced205

event distribution is a major issue that we are tar-206

geted. Traditionally, Imbalance Ratio (IR) (Galar207

et al., 2012) is a typical metric to estimate the208

imbalance of the data. However, IR provides lit-209

tle information about the classes in the middle210

classes (Ortigosa-Hernández et al., 2017). Due211

to non-standard definition of major classes and mi- 212

nor classes in the multi-class cases and the simple 213

setting in (Dong et al., 2018), we borrow its defini- 214

tion to distinguish the major events and the minor 215

events. We first define a sorted sequence of all 216

event types with respect to the number of instances 217

in each class in the descending order: 218

SSA = e1 . . . en, where |ei| ≥ |ei+1|. (1) 219

Here, ei represents the i-th event type with |ei| 220

instances. 221

Then, we define the set of major events as the top- 222

k elements in SSA while the remaining elements as 223

the minor events: 224

EMajor = {ei | i = 1, 2, ...k}, (2) 225

EMinor = {ei | i = k + 1, ...n}. (3) 226

Now, we set α to indicate the percentage of the 227

major events in all N sentence-event pairs: 228

α ∗N =

k∑
i=1

|ei|. (4) 229

This definition will be used in our proposed de- 230

rangement procedure. 231

3.2 Our Proposal 232

Figure 1 outlines the overall structure of our pro- 233

posed DQA, which consists of three main modules: 234

(1) a QA encoder, (2) the event derangement mod- 235

ule (EDM), and (3) the multi-label classifier. 236
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QA Encoder Our proposed DQA is based on237

BERT due to its power in learning the contextual238

representation in the sequence of tokens (Devlin239

et al., 2019). We then follow the standard BERT-240

style format and treat the original sentence as the241

<question> with all event types as the <answers>:242

[CLS] <question> [SEP] <answers>243

It is noted that our setting is different from exist-244

ing QA models (Liu et al., 2020; Du and Cardie,245

2020), which will generate extra tokens or relevant246

questions to describe an event. Our design tries to247

maintain the original texts as much as possible and248

let BERT automatically learn the semantic infor-249

mation between texts and event types.250

Algorithm 1 Event Derangement

Require: Input sentence x; The initial event se-
quence Sinit; The descending sorted sequence
of all event types SSA; Possibility q; Number r

Ensure: Deranged sequence of event tokens SO

1: Initialize EGT to the set of the ground truth
event types implied by x

2: Initialize ED with r elements in the beginning
of SSA that are not in EGT

3: Initialize Etmp = ∅ as a helper set
4: Initialize SO = []
5: Generate rand uniformly from [0, 1]
6: if EGT ∩ EMajor 6= ∅ and rand < q then
7: for ecurr in Sinit do
8: if ecurr in ED then
9: Randomly select e from ED and e 6=

ecurr and e /∈ Etmp

10: Append e to SO

11: Add e to Etmp

12: else
13: Append ecurr to SO

14: end if
15: end for
16: else
17: SO = Sinit

18: end if
19: Return SO

Specifically, given a training set, we first gen-251

erate an event index Iinit = s1 . . . sn, which is a252

permutation of {1, . . . , n}, and obtain its event se-253

quence Sinit = es1 . . . esn . We need this sequence254

because we will fix it for the <answer> part during255

inference. Hence, given a sentence x = w1 . . . w|x|,256

we produce the input for our DQA as:257

Input=[CLS]w1 . . . w|x| [SEP] es1 . . . esn . (5)258

Via BERT, we learn the hidden representations: 259

h[CLS], h
w
1 , . . . ,h

w
|x|, h[SEP], h

e
1, . . . , h

e
n 260

=BERT(Input), (6) 261

where hwi is the hidden state of the i-th input to- 262

ken and hei is the hidden state of the corresponding 263

event type, namely esi . In the implementation, we 264

treat ei as a new word by placing a square bracket 265

around it, i.e., the event Transport is converting to 266

“[Transport]”. This allows us to enrich the event 267

tokens in the original BERT vocabulary and yield 268

better performance in the evaluation; see more anal- 269

ysis in Appendix. A.1. 270

EDM Since event types are converted as in- 271

put tokens of BERT, it raises a critical question: 272

whether we need to add the position embeddings 273

on the event type during training? An observation 274

in (Pham et al., 2021) shows that BERT is position- 275

insensitive and can attain more similarity on the 276

Quora QQP task when shuffling some words. How- 277

ever, in our test, we discover that position embed- 278

dings can also provide hints for distinguishing the 279

event types; see more verification in Sec. 5.2. We 280

conjecture that in the imbalance data, our proposed 281

QA framework tends to memorize the position in- 282

formation rather the semantic information. 283

In order to alleviate this effect, we introduce the 284

derangement mechanism on the event tokens to 285

add perturbation during training. Derangement is a 286

classical permutation term in combinatorics, where 287

a permutation of the elements of a set makes no 288

element appear in its original position. We conduct 289

the derangement procedure only when the target 290

(or the ground truth) event is a major event as de- 291

fined in Eq. (4). After that, we only deliver it with 292

probability q. This is similar to the procedure of 293

Masked LM in BERT and allows us to balance the 294

position memorizing and semantic information ab- 295

sorption. In implementation, we randomly select r 296

other (usually major) events from ESA except the 297

target event for derangement. This procedure is 298

summarized in Algorithm 1 and yields a deranged 299

sequence with the same size of n for training. In 300

Algorithm 1, 301

• In line 2, ED selects r events, which is not in 302

EGT and whose size is relatively large, i.e., in 303

the beginning of SSA. 304

• In line 5, the procedure is conducted only 305

when the target event is a major event and 306

is performed with probability of q. 307
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Figure 2: The distribution of event main types and event subtypes on the ACE2005 training data.

• In lines of 6-14, usually the major events are308

deranged because the elements in ED are se-309

lected from the top elements in the sorted se-310

quence, SSA.311

Multi-label Classifier After we learn the contex-312

tualized representations of x and Sinit from the pro-313

posed QA structure, we turn to construct the multi-314

label classifier. Different from traditional method315

to encode the [CLS] token, we feed the event tokens316

to a Multi-Layer Perception (MLP) for classifica-317

tion because we can obtain better performance; see318

more supporting results in Appendix A.2. Hence,319

we compute the predicted probability of an input320

sentence x to the corresponding events by321

p̂ = MLP (he1, ..., h
e
n) . (7)322

During inference, we determine the event labels323

when p̂ ≥ 0.5.324

The model parameters of our DQA can then be325

attained by minimizing the following loss function:326

327

L ∝ −
N∑
i=1

n∑
j=1

(pij log(p̂ij)+(1−pij) log(1−p̂ij))

(8)328

where pij = 1 represents the corresponding event329

for the i-th input text. Different from (Liu et al.,330

2019), which converts the multi-label classification331

task into a binary classification task, our proposed332

DQA can directly train the model to output the333

multi-label results simultaneously.334

4 Experiments335

4.1 Experimental Setups336

Dataset and Evaluation We conducted exper-337

iments on the ACE2005 English corpus. The338

ACE2005 corpus consists of 8 event main types 339

and 33 subtypes. As shown in Fig. 2, the corpus 340

follows the imbalanced event distribution and is 341

more imbalanced (IR≈605.5) for the event sub- 342

types than that (IR≈13.1) in the event main types. 343

For example, the types of Attack, Transport, and 344

Die account for over half of the total training data. 345

For fair comparison, we follow the evaluation of (Li 346

et al., 2013; Liu et al., 2019, 2020), i.e., randomly 347

selecting 30 articles from different genres as the 348

validation set, subsequently delivering a blind test 349

on a separate set of 40 ACE2005 newswire doc- 350

uments, and using the remaining 529 articles as 351

the training set. The standard metrics: Precision 352

(P), Recall (R), and F1 scores (F1), are applied to 353

evaluate the model performance. 354

Implementation Details Our implementation is 355

in PyTorch 1. The BERT base model (uncased) 356

from Hugging Face (Wolf et al., 2019) is adopted 357

as the backbone model, which consists of 12 layers, 358

768 hidden units, and 12 attention heads. The MLP 359

consists of two layers with the hidden size being 360

768 and yields an output of 34 dimension to predict 361

the probability of the input sentence assigned to the 362

corresponding 34 classes. We follow (Dong et al., 363

2018) and set α to 0.5. In EDM, q is 0.2 and r is 364

24 from empirical evaluation. The batch size is 8. 365

The learning rate is set as 2× 10−5. The dropout 366

rate is 0.1. ADAM is the optimizer (Kingma and 367

Ba, 2015). We train our models for 10 epochs to 368

give the best performance. All experiments are 369

conducted on a NVIDIA A100 GPU. 370

1https://www.dropbox.com/s/
wqp1u1gu6bqs6da/DQA.zip?dl=0
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Methods Subtypes (%) Main (%)
P R F1 P R F1

TBNNAM (Liu et al., 2019) 76.2 64.5 69.9 - - -
DYGIE++, BERT + LSTM (Wadden et al., 2019) - - 68.9 - - -
DYGIE++, BERT Finetune (Wadden et al., 2019) - - 69.7 - - -
BERT_QA_Trigger (Du and Cardie, 2020) 71.7 73.7 72.3 - - -
DMBERT (Wang et al., 2019) 77.6 71.8 74.6 - - -
RCEE_ER (Liu et al., 2020) 75.6 74.2 74.9 - - -
DMBERT + Boot (Wang et al., 2019) 77.9 72.5 75.1 - - -
BERT Finetune 72.8 68.7 70.7 78.0 70.8 74.2
Our BERT_QA 76.9 72.3 74.7 78.9 75.4 77.1
Our BERT_DQA 79.5 76.8 78.1 78.7 79.0 78.9

Table 1: Event detection results on both the event subtypes and event main types of the ACE2005 corpus.

4.2 Overall Performance371

We compare our proposed BERT_QA and372

BERT_DQA with several competitive baselines:373

TBNNAM (Liu et al., 2019): an LSTM model374

detecting events without triggers, and BERT-375

based models for both trigger detection and event376

detection: DYGIE++ (Wadden et al., 2019):377

a BERT-based framework modeling text spans;378

BERT_QA_Trigger (Du and Cardie, 2020) and379

RCEE_ER (Liu et al., 2020): both BERT-based380

models converting event extraction into a QA task;381

DMBERT (Wang et al., 2019): a BERT-based382

model leveraging adversarial training for weakly383

supervised events, where DMBERT Boot stands384

for bootstrapped DMBERT.385

Table 1 reports the overall performance on the386

ACE2005 corpus. It shows that (1) previous mod-387

els only evaluate the performance on the event sub-388

types. Although our proposed BERT_QA does389

not access to the triggers, it attains significant bet-390

ter performance than TBNNAM, DYGIE++, and391

BERT_QA_Trigger. Its performance is also com-392

petitive to DMBERT and RCEE_ER, with 74.7%393

F1 score, only 0.4% less F1 score than that in the394

best baseline, DMBERT Boot. The result shows395

that our proposed QA framework is effective to396

learn the semantic information between given texts397

and event types. (2) After introducing the derange-398

ment mechanism, our proposed BERT_DQA can399

significantly outperform all compared methods in400

all three metrics. Especially, it attains 3.0% more401

F1 score than the best baseline. (3) To verify the402

generalization of our proposal, we also conduct403

experiments to evaluate the performance on event404

main types. The setting of the model parameter405

is the same as that on the event subtypes, except406

r = 3 for DQA. The results show that our pro- 407

posed BERT_QA and BERT_DQA gain further 408

improvement, i.e., 2.9% and 4.7% F1 score over 409

the finetuned BERT, respectively. The results show 410

the consistence of our proposal and it seems that 411

BERT_DQA can attain better performance when 412

the dataset (the event subtypes) is more imbalanced; 413

see more supporting results in Appendix A.3. 414

Position Embedding P R F1
Fixed 75.7 71.6 73.6
Learnable 76.9 72.3 74.7

Table 2: Evaluation results by applying fixed or learn-
able position embeddings on the same event sequence.

P R F1
BERT_QA_Shuffle_Both 68.2 70.6 66.4
BERT_QA 76.9 72.3 74.7
BERT_QA_Shuffle_Test 18.2 9.2 12.2
BERT_DQA_Shuffle_Test 66.0 45.1 53.6
BERT_DQA 79.5 76.8 78.1

Table 3: Evaluation results on different event se-
quences.

5 More Analysis 415

We conduct more detailed analysis to verify the 416

effect of our proposal. 417

5.1 Effect of Position Embeddings 418

We test the effect of the position embeddings on 419

our proposed BERT_QA. Here, we test two cases, 420

fixed position embeddings and learnable position 421

embeddings for the given event sequence. Results 422
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Figure 3: Effect of EDM: In Fig. 3(a), the blue color denotes the F1 score on the validation set and the red color for
the test set. When evaluating the model at validation set during training, event derangement is applied in this case.
In Fig. 3(b), the blue color denotes the F1 score of BERT_QA on the test set and the red color for BERT_DQA.
For better illustration, we only show parts of events and set the label segmentation to 2.

in Table 2 show that BERT_QA is a position-aware:423

via a learnable position embedding, it can gain424

better performance, around 1% improvement on425

the F1 score.426

5.2 Effect of Event Sequences427

Table 3 reports the results of BERT_QA and428

BERT_DQA with different event sequences. Here,429

“BERT_QA_Shuffle_Both” stands for a BERT_QA430

trained and tested on randomly shuffled event431

sequences. It can be deemed as a baseline432

of BERT_QA because it only absorbs the se-433

mantic information between texts and event434

types while totally forgetting the position in-435

formation. “BERT_QA_Shuffle_Test” defines a436

BERT_QA trained on a given event sequence437

while testing on a shuffled event sequence.438

“BERT_DQA_Shuffle_Test” tests the case of a439

BERT_QA trained on a given event sequence440

and the derangement mechanism while testing441

on a shuffled event sequence. The results show442

that (1) “BERT_QA_Shuffle_Both” attains satis-443

factory performance, which shows the power of444

our BERT_QA in absorbing the semantic infor-445

mation between texts and event types. (2) The446

performance of “BERT_QA_Shuffle_Test” drops447

significantly because BERT_QA is totally pol-448

luted and confused by the randomly generated449

event sequences when inference. The result im-450

plies that BERT_QA leverages position informa-451

tion to classify events other than semantic knowl-452

edge. (3) “BERT_DQA_Shuffle_Test” attains a453

closer performance to “BERT_QA_Shuffle_Both”.454

This result shows that the derangement mecha-455

nism can effectively avoid BERT_QA from ex- 456

cessively memorizing positions and increase the 457

model’s learning of semantic knowledge. How- 458

ever, since we only shuffle parts of events, the 459

semantic relationship is not fully absorbed as 460

that in “BERT_QA_Shuffle_Both”. (4) Overall, 461

BERT_QA can attain good performance while 462

BERT_DQA can further improve it and achieves 463

the best performance. 464

5.3 Effect of EDM 465

Figure 3(a) shows the extreme case when q = 1.0, 466

where EDM fails to identify major events but still 467

recognizes the minor events during inference. An 468

underlying observation is that during training, the 469

target events remain in the original position while 470

other events are deranged, this will disturb the in- 471

formation forwarding on the deranged events. Ac- 472

cordingly, it makes the target events stand out and 473

can be easily recognized, as shown in the results 474

of the validation set. Therefore, there is little loss 475

on the target events during training, which prevents 476

the model from learning information for the target 477

events via backpropogation. 478

Figure 3(b) shows that setting a suitable q (= 479

0.2) can prevent the model’s overfitting on major 480

events while enhancing the recognition on the mi- 481

nor events. This is similar to under-sampling on the 482

major events, which leads to a more balanced updat- 483

ing on BERT_DQA. Our EDM may echo the mech- 484

anism in response to sensory deprivation (Merabet 485

and Pascual-Leone, 2010): neurons in human brain 486

are reorganized to functioning regions, which, for 487

instance, makes the blind have stronger hearing. 488
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Figure 4: Effect of q and r.

5.4 Effect of q and r489

We select q from {0.1, 0.2, 0.4, 0.5, 0.7} and r490

from {3, 6, . . . , 33}, i.e., equally dividing all event491

types into 10 buckets. We ignore larger q’s because492

they usually fail the model on major events; see493

results when q = 1.0 in Fig. 3(a). Figure 4 shows494

the performance with respect to r for different q. It495

is shown that the best performance is attained when496

q = 0.2 and r = 24. The trends also show that497

a smaller q can usually yield better performance498

while r is selected in the range of 15 and 25 because499

r can indicate the scale of perturbation. A smaller500

r may cause negligible perturbation and a larger r501

may affect the disturbance of the minor events.502
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Figure 5: Gradient visualization of words in a sentence
with respect to five typical event types; see more de-
scription in the main text.

5.5 Gradient Explanation503

The gradient explanation is a more stable method504

to explain the model (Adebayo et al., 2018) than505

the attention weights in BERT because the atten-506

tion weights may be misleading (Jain and Wallace,507

2019) or are not directly interpretable (Brunner508

et al., 2020). We then compute the gradient with509

respect to the token embeddings, which quantifies 510

the influence of changes in the tokens on the pre- 511

dictions. Here, we pick the example in Sec. 1 and 512

select five typical events: “Die” and “Transport” 513

are the target events; “Negative” and “Attack” are 514

two common event types; and “Execute” is a minor 515

event. Figure 5 clearly shows that (1) For the event 516

of “Die”, our BERT_DQA can automatically fo- 517

cus on its trigger word “killed” while for the event 518

“Transport”, the trigger “sent” is also noticed by 519

model. But for non-target events, our BERT_DQA 520

attains low gradients on the triggers or gets high 521

gradients on unrelated tokens, such as “to” and “.”. 522

(2) More importantly, our BERT_DQA can surpris- 523

ingly spot the related arguments for the events. For 524

example, for the event of “Die”, “Baghdad” yields 525

a significant higher gradient, which corresponds to 526

the argument of PLACE. Similarly, for the event of 527

“Transport”, “they” and “him” also yield relatively 528

larger gradients, which exactly correspond to the 529

argument of ARTIFACT and AGENT, respectively. 530

The observations shows the power of our proposed 531

DQA framework in not only linking triggers to 532

the corresponding events, but also highlighting the 533

event arguments, which is better than those tradi- 534

tional event extraction methods with only trigger 535

extraction. 536

6 Conclusion and Future Work 537

In this paper, we propose a novel Derangement 538

Question Answering (DQA) framework on top of 539

BERT to detect events without triggers and under 540

the imbalanced setting. By treating the input text 541

as a question and directly concatenating it with 542

all event types as answers, we utilize the power 543

of self-attention in BERT to absorb the semantic 544

relation between the original input text and the 545

event type(s). Moreover, the proposed event de- 546

rangement module is simple yet effective to relieve 547

the imbalanced event types. By introducing such 548

perturbation, we can train a more robust model 549

than the vanilla BERT_QA framework. We con- 550

duct intensive evaluation and show that our pro- 551

posed DQA framework attains state-of-the-art per- 552

formance over previous methods and can automat- 553

ically link the triggers with the event types while 554

signifying the related arguments. In the future, we 555

would like to test how to generate the optimal ini- 556

tial event sequence and adapt our proposal to other 557

information extraction tasks to study its application 558

scope. 559
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A Appendix 769

We provide more analysis to support our proposal. 770

Conversion P R F1
Original 75.2 67.6 71.7
New 77.3 68.2 72.5

Table 4: Results of different conversion ways of event
tokens.

A.1 Effect of Event Tokens Conversion 771

There are two intuitive ways to treat the event to- 772

kens in our proposed DQA framework. One is to 773

treat them as old words in the BERT dictionary, 774

so that we can initialize the event representations 775
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by utilizing BERT’s pre-trained word embeddings.776

The other way is to treat them as new words, so777

that we can learn the event representations from778

scratch. Hence, we can directly feed the original779

event words in the DQA framework or add a square780

bracket around the event words to convert them into781

new words, e.g., “Transport” to “[Transport]”, in782

the BERT dictionary.783

Table 4 reports the compared results and shows784

that converting event types into new words can at-785

tain substantial improvement in all three metrics786

than treating them as the original words in BERT787

dictionary. We conjecture that it may arise from788

WordPiece (Wu et al., 2016) in BERT implemen-789

tation because BERT will separate an event word790

into several pieces when it is relatively long. This791

brings the difficulty in precisely absorbing the se-792

mantic relation between the words in input texts793

and event types. On the contrary, when we treat794

an event word as a new word, BERT will deem795

them as a whole. Though BERT learns the event796

representations from scratch, it is still helpful to797

establish the semantic relationship between words798

and event types.799

A.2 Inputs for the Multi-label Classifier800

There are two kinds of inputs for the multi-label801

classifier: the representation of the [CLS] token, or802

the event representations. We feed these two inputs803

into the same MLP to predict the probability of an804

input sentence x to the corresponding events.

Input P R F1
[CLS] 77.3 68.2 72.5
All event tokens 76.9 72.3 74.7

Table 5: Results of different inputs for the multi-label
classifier.

805
Table 5 reports the performance of different in-806

puts for the multi-label classifier and shows that by807

feeding the event representations as the input, our808

BERT_QA can significantly improve the perfor-809

mance on Recall and the F1 score with competitive810

Precision score than only using the representation811

of the [CLS] token. We conjecture that the event812

representations have injected more information into813

the multi-label classifier than only using the repre-814

sentation of the [CLS] token.815

A.3 Limitation of EDM816

We conduct evaluation on a more balanced dataset817

to investigate the limitation of EDM. We first select818

0
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Figure 6: Data distribution of seven balanced event sub-
types.

seven relatively balance event types, yielding an 819

imbalance ratio around 1.8, from the subtypes of 820

the ACE2005 corpus; see the data distribution in 821

Fig. 6. In the experiment, we set q to 0.2 and r to 6 822

for good performance on BERT_DQA. 823

Model P R F1
BERT_QA 76.4 77.8 77.1
BERT_DQA 75.0 76.3 75.6

Table 6: The performance of our BERT_QA and
BERT_DQA on a more balanced dataset.

Table 6 reports the comparison results of 824

BERT_QA and BERT_DQA and shows that 825

BERT_QA attains satisfactory results and beats 826

BERT_DQA in all three metrics. The results imply 827

that the derangement procedure plays an important 828

role when the dataset is more imbalanced. When 829

the dataset is relatively balanced, we can turn to 830

BERT_QA and attain good performance due to the 831

power of self-attention in BERT. 832

A.4 Error Analysis 833

We conduct error analysis on test dataset in this 834

section. There are three main kinds of errors: 835

– The main error comes from event mis- 836

classification, accounting for 52.9% of the total 837

errors. The error also includes that BERT_DQA 838

detects more event types than the ground truth. 839

The most event type that BERT_DQA over- 840

predicts is the event of Attack. A typical example 841

is given below: 842

S: The officials, who spoke on ... 26 843

words omitted ... on the U.S.-backed 844

war resolution. 845

BERT_DQA deems this sentence belonging to 846

the event of Attack, where the ground truth is 847
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the event of Meet. This error is normal be-848

cause the word “war” is a common trigger to the849

event of Attack, which yields BERT_DQA mis-850

classifying it. In this dataset, the event of Attack851

is the most dominating event type, which makes852

it likely to classify the texts of other events as853

Attack when the texts hold some similar words854

to the triggers of Attack.855

– The second type of errors is that BERT_DQA856

outputs fewer event types than the ground truth,857

which accounts for 28.9% of errors. The fre-858

quently missing event types are Transfer-Money859

and Transfer-Ownership. One typical example is860

S: Until Basra, U.S. and British troops861

... 6 words omitted... they seized862

nearby Umm Qasr ... 3 words omit-863

ted... secure key oil fields.864

BERT_DQA fails to identify the event of865

Transfer-Ownership, which is indicated by the866

trigger, “secure”, while recognizing the event867

of Attack, implied by the trigger if “seized”.868

On the one hand, the Imbalanced Ratio of At-869

tack and Transfer-Ownership is 14.2. There are870

much fewer training data for BERT_DQA to871

learn the patterns of Transfer-Ownership than872

those of Attack. On the other hand, deeper se-873

mantic knowledge is needed for understanding874

the event of Transfer-Ownership, whose trigger875

words are more diverse and changeable. The trig-876

gers for Transfer-Ownership may include “sold”,877

“acquire”, and “bid”, etc.878

– The third type of errors lies in outputting none-879

event sentences. When there are no event types880

in a sentence, BERT_DQA may fail to classify it881

as the type of negative. This is because there is882

no sufficient clues for BERT_DQA to learn the883

patterns from the type of negative. BERT_DQA884

also turns out to give low predicted probabilities885

on all event types.886
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