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ABSTRACT

Machine unlearning has raised significant interest with the adoption of laws en-
suring the “right to be forgotten”. Researchers have provided a probabilistic
notion of approximate unlearning under a similar definition of Differential Pri-
vacy (DP), where privacy is defined as statistical indistinguishability to retrain-
ing from scratch. We propose Langevin unlearning, an unlearning framework
based on noisy gradient descent with privacy guarantees for approximate un-
learning problems. Langevin unlearning unifies the DP learning process and the
privacy-certified unlearning process with many algorithmic benefits. These in-
clude approximate certified unlearning for non-convex problems, complexity sav-
ing compared to retraining, sequential and batch unlearning for multiple unlearn-
ing requests. We verify the practicality of Langevin unlearning by studying its
privacy-utility-complexity trade-off via experiments on benchmark datasets, and
also demonstrate its superiority against gradient-decent-plus-output-perturbation
based approximate unlearning.

1 INTRODUCTION

With recent demands for increased data privacy, owners of these machine learning models are re-
sponsible for fulfilling data removal requests from users. Certain laws are already in place guaran-
teeing the users’ “Right to be Forgotten”, including the European Union’s General Data Protection
Regulation (GDPR), the California Consumer Privacy Act (CCPA), and the Canadian Consumer
Privacy Protection Act (CPPA) (Sekhari et al., 2021). Merely removing user data from the training
data set is insufficient, as machine learning models are known to memorize training data informa-
tion (Carlini et al., 2019). It is critical to also remove the information of user data subject to removal
requests from the machine learning models. This consideration gave rise to an important research
direction, referred to as machine unlearning (Cao & Yang, 2015).

Naively, one may retrain the model from scratch after every data removal request to ensure a “per-
fect” privacy guarantee. This approach, however, is prohibitively expensive in practice when ac-
commodating frequent removal requests. To avoid complete retraining, various machine unlearning
methods have been proposed, including exact (Bourtoule et al., 2021; Ullah et al., 2021; Ullah &
Arora, 2023) as well as approximate approaches (Guo et al., 2020; Sekhari et al., 2021; Neel et al.,
2021; Gupta et al., 2021; Chien et al., 2023). Exact approaches ensure that the unlearned model
would be identical to the retraining one in distribution. Approximate approaches, on the other hand,
allow for slight misalignment between the unlearned model and the retraining one in distribution
under a similar definition to Differential Privacy (DP) (Dwork et al., 2006).
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Figure 1: The geometric interpretation of relations between learning and unlearning. (Left) RDP
guarantee of the learning process induces a regular polyhedron. Smaller ε0 implies an “easier”
unlearning problem. (Right) Learning and unlearning processes on adjacent datasets. It illustrates
our main idea and results. More learning iteration gives worse privacy (privacy erosion (Chourasia
et al., 2021)) while more unlearning iteration gives better privacy, which we termed this phenomenon
as privacy recuperation.

1.1 OUR CONTRIBUTIONS

Learning with noisy gradient methods, such as DP-SGD (Abadi et al., 2016), is widely adopted for
privatizing machine learning models with DP guarantee. However, it is unclear if fine-tuning with it
on the updated dataset subject to the unlearning request provides an approximate unlearning guaran-
tee and computational benefit compared to retraining. In this work, we provide an affirmative answer
for the empirical risk minimization problems with smooth objectives. We propose Langevin unlearn-
ing, an approximate unlearning framework based on projected noisy gradient descent (PNGD). Our
core idea can be interpreted via a novel unified geometric view of the learning and unlearning pro-
cesses in Figure 1, which naturally bridges DP and unlearning. Given sufficient learning iterations
via the learning process M, we first show that PNGD converges to a unique stationary distribution
νD for any dataset D (Theorem A.1). Comparing νD with the stationary distribution νD′ for any of
its adjacent dataset D′, the learning process shows Rényi DP with privacy loss1 ε0. Given a particular
unlearning request D → D′, the unlearning process U can be interpreted as moving from νD to νD′

from ε0-close to ε-close. In practice, due to the unlearning process, the unlearning privacy loss ε can
be set much smaller than ε0, while on the other hand, a stronger initial RDP guarantee, i.e., smaller
ε0, allows for less unlearning iterations to achieve the desired ε. Besides the above DP-unlearning
bridge, this framework also brings many algorithmic benefits including (1) a capability of dealing
with non-convex problems, which to the best of our knowledge, no previous approximate unlearning
framework can tackle, (2) a provably computational benefit compared with model retraining, and (3)
a friendly extension to sequential and batch settings with multiple unlearning requests.

We prove the intuition in Fig. 1 formally in Theorem 3.1. We show that K unlearning iterations
lead to an exponentially fast privacy loss decay ε ≤ exp(− 1

α

∑K−1
k=0 Rk)ε0, where α is the order of

Rényi divergence and Rk is the strict privacy improving rate depends on the problem settings with
a iteration independent strictly positive lower bound R̄ > 0. Our result is based on convergence
analysis of Langevin dynamics (Vempala & Wibisono, 2019). The sampling essence of PNGD
allows for a provable unlearning guarantee for non-convex problems (Ma et al., 2019; Lamperski,
2021). Our characterization of ε0 allows an extension of the recent results that PNGD learning
satisfies Rényi DP for convex problems (Chourasia et al., 2021; Ye & Shokri, 2022; Altschuler
& Talwar, 2022a) to non-convex problems as summarized in Theorem 3.2. Our key technique is
to carefully track the constant of log-Sobolev inequality (Gross, 1975) (LSI) along the learning
and unlearning processes and leverage the boundedness property of the projection step via results
of Chen et al. (2021).

Regarding the computational benefit compared to model retraining, we may show iteration complex-
ity saving by comparing two Rényi differences, the one between initialization ν0 and νD′ , which is
at least Ω(1) in the worst case versus the other one between the learning convergent distribution νD
and νD′ , i.e., ε0 which is shown to be O(1/n2) for a dataset of size n. Such a gap demonstrates

1We refer privacy loss as two-sided Rényi divergence of two distributions, which is defined as Rényi differ-
ence in Definition 2.1.
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that Langevin unlearning is more efficient than retraining from scratch, especially for the dataset
with large n. For sequential unlearning with multiple unlearning requests, we composite the privacy
loss bound for single-step requests via the weak triangle inequality of Rényi divergence (Mironov,
2017), which yields a sequential unlearning procedure that achieves privacy loss ε for each request
(Corollary A.2). For batch unlearning, ε0 is changed to incorporate the batch size (Theorem 3.2).

We also conduct experiments to verify the trade-off between utility, privacy, and complexity, through
logistic regression tasks on benchmark datasets following a similar setting of Guo et al. (2020).
Compared with the state-of-the-art gradient-based approximate unlearning solution (Neel et al.,
2021), we achieve a superior privacy-utility trade-off under the same unlearning complexity.

The rest of the paper is organized as follows. In Section 2, we provide preliminaries and problem
setup. The theoretical results of Langevin unlearning are in Section 3. We conclude with experi-
ments in Section 4. Due to the space limit, all missing results and proofs are deferred to Appendices.

2 PRELIMINARIES AND PROBLEM SETUP

We consider the empirical risk minimization (ERM) problem. Let D = {di}ni=1 be a training dataset
with n data points di taken from the universe X . Let fD(x) = 1

n

∑n
i=1 f(x;di) be the objective

function. We aim to minimize with learnable parameter x ∈ CR, where CR = {x ∈ Rd | ∥x∥ ≤ R}
is a closed ball of radius R. We denote ΠCR

: Rd 7→ CR to be an orthogonal projection to CR.
The norm ∥ · ∥ is standard Euclidean ℓ2 norm if not specified. P(C) is denoted as the set of all
probability measures over a closed convex set C. Standard definitions such as convexity and log-
Sobolev inequality (Gross, 1975) can be found in Appendix A.6. Finally, we use x ∼ ν to denote
that a random variable x follows the probability distribution ν.

2.1 PRIVACY DEFINITION FOR LEARNING AND UNLEARNING

We say two datasets D = {di}ni=1 and D′ = {d′
i}ni=1 are adjacent if they “differ” only in one index

i0 ∈ [n] so that di = d′
i for all i ̸= i0 unless otherwise specified. Furthermore, we say two datasets

D and D′ are adjacent with a group size of S ≥ 1 if they differ in at most S indices. We next
introduce a useful idea termed Rényi difference.

Definition 2.1 (Rényi difference). Let α > 1. For a pair of probability measures ν, ν′ with the same
support, the α Rényi difference dα(ν, ν′) is defined as dα(ν, ν′) = max (Dα(ν||ν′), Dα(ν

′||ν)) ,
where Dα(ν||ν′) is the α Rényi divergence Dα(ν||ν′) defined as

Dα(ν||ν′) =
1

α− 1
log

(
Ex∼ν′

[
ν(x)

ν′(x)

]α)
.

We are ready to introduce the formal definition of differential privacy and unlearning.

Definition 2.2 (Rényi Differential Privacy (RDP) (Mironov, 2017)). Let α > 1. A randomized
algorithm M : Xn 7→ Rd satisfies (α, ε)-RDP if for any adjacent dataset pair D,D′ ∈ Xn, the α
Rényi difference dα(ν, ν′) ≤ ε, where M(D) ∼ ν and M(D′) ∼ ν′.

It is known to the literature that an (α, ε)-RDP guarantee can be converted to the popular (ϵ, δ)-
DP guarantee (Dwork et al., 2006) relatively tight (Mironov, 2017). As a result, we will focus on
establishing results with respect to α Rényi difference (and equivalently α Rényi divergence). Next,
we introduce our formal privacy definition of unlearning.

Definition 2.3 (Rényi Unlearning (RU)). Consider a randomized learning algorithm M : Xn 7→ Rd

and a randomized unlearning algorithm U : Rd×Xn×Xn 7→ Rd. We say (M,U) achieves (α, ε)-
RU if for any α > 1 and any adjacent datasets D,D′, the α Rényi difference dα(ρ, ν′) ≤ ε, where
U(M(D),D,D′) ∼ ρ and M(D′) ∼ ν′.

Notably, our Definition 2.3 can be converted to the standard (ϵ, δ)-unlearning definition (Guo et al.,
2020; Sekhari et al., 2021; Neel et al., 2021), similar to RDP-DP conversion (Mironov, 2017). Since
we work with the replacement definition of dataset adjacency, to “erase” a data point di we can
simply replace it with any data point d′

i ∈ X for the updated dataset D′ in practice.
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3 LANGEVIN UNLEARNING: MAIN RESULTS

We propose to leverage projected noisy gradient descent for our learning and unlearning algorithm
M and U . For M, we propose to optimize the objective fD(x) with PNGD:

xt+1 = ΠCR

(
xt − η∇fD(xt) +

√
2ησ2Wt

)
, (1)

where Wt
iid∼ N (0, Id) and η, σ2 > 0 are hyperparameters of step size and noise variance respec-

tively. The initialization x0 can be chosen arbitrarily in CR unless specified. We assume the learning
procedure will train the model until convergence x∞ = M(D) for simplicity, where we prove in
Theorem A.1 that the law of this learning process equation 1 indeed converges to a unique station-
ary distribution when ∇fD is continuous. A similar “well-trained” assumption has been also used
in prior unlearning literature (Guo et al., 2020; Sekhari et al., 2021) and we will discuss the case of
insufficient training later. After we obtain a learned parameter M(D), an unlearning request arrives
so that the training dataset changes from D to D′. For the unlearning algorithm U , we propose to
fine-tune the model parameters on the new objective fD′(y) with K iterations of the same PNGD.

yk+1 = ΠCR

(
yk − η∇fD′(yk) +

√
2ησ2W̄k

)
, (2)

where W̄k
iid∼ N (0, Id) and y0 = x∞, which starts from the convergent point of the learning proce-

dure. Throughout our work, we assume f(x;d) is M -Lipschitz and L-smooth in x for any d ∈ X .
Nevertheless, one can apply per-sample gradient clipping in equation 1 and equation 2 so that the
M -Lipschitz assumption can be dropped. In this case, our learning and unlearning processes admit
the popular DP-SGD (Abadi et al., 2016) without mini-batching. For the rest of the paper, we de-
note νt, ρk as the laws of the processes xt, yk respectively. Recall that we also denote the limiting
distribution of the learning process equation 1 as νD for training dataset D.

General Idea. If M is known to be (α, ε0)-RDP for a α > 1, by definition we know that for
all adjacent dataset D,D′, dα(νD, νD′) ≤ ε0. In the space of P(CR), this RDP guarantee gives
a “regular polyhedron”, where vertices are νD, νD′ and all adjacent vertices are of “lengths” ε0 at
most in Rényi difference. We caveat that Rényi difference is not a metric but the idea of the regular
polyhedron is useful conceptually. As a result, the RDP guarantee of the learning process controls
the “distance” between distribution induced from adjacent dataset D and D′. Once we finish the
learning process, we receive an unlearning request so that our dataset changes from D to an adjacent
dataset D′. We need to move from νD to νD′ at least ε close for a (α, ε)-RU guarantee. Intuitively,
if the initial RDP guarantee is stronger (i.e., ε0 is smaller), unlearning becomes “easier” at the cost
of larger noise. When ε0 = ε, we automatically achieve (α, ε)-RU without any unlearning update.
One of our main contributions is to characterize how many PNGD unlearning iteration is needed to
reduce dα(ρk, νD′) from ε0 to ε, where ρ0 = νD. For the unlearning process, note that the initial
Rényi difference between ρ0, νD′ is provided by the RDP guarantees of the learning process. As
a result, we are left to characterize the convergence of the process yk to its stationary distribution
νD′ in Rényi difference (Theorem 3.1). Since the privacy loss ε gradually decays with respect to
unlearning iterations, we refer to this phenomenon as privacy recuperation. This is in contrast to
the learning process, where prior work (Chourasia et al., 2021) has shown the worse privacy loss ε0
with respect to learning iterations and refers to that phenomenon as privacy erosion.

3.1 UNLEARNING GUARANTEES

Our first Theorem shows that (M,U) achieves (α, ε)-RU, where ε decays monotonically in K
unlearning iterations starting from ε0, condition on M being (α, ε0)-RDP. We provide the proof
sketch in Appendix C.1 and formal proofs are deferred to Appendix C.2.

Theorem 3.1 (RU guarantee of PNGD unlearning). Assume for all D ∈ Xn, fD is L-smooth, M -
Lipschitz and νD satisfies CLSI-LSI. Let the learning process follow the PNGD update equation 1.
Given M is (α, ε0)-RDP and y0 = x∞ = M(D), for α > 1, the output of the Kth unlearning

iteration along equation 2 (i.e., yK) achieves (α, ε)-RU, where ε ≤ exp
(
− 1

α

∑K−1
k=0 Rk

)
ε0 and

Rk > 0 depends on the problem settings specified as follows:
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1) For a general non-convex fD, we have Rk = 1
2

(
1

((1+ηL)2Ck)2
− 1

((1+ηL)2Ck+2ησ2)2

)
, where

Ck+1 ≤ min((1 + ηL)2Ck + 2ησ2, C̃), C̃ = 6(4(R + ηM)2 + 2ησ2) exp( 4(R+ηM)2

2ησ2 ), where
C0 = CLSI and R is the radius of the projected set CR.

2) Suppose fD is m-strongly convex. Let σ2

m < CLSI and choosing η ≤ min( 2
m (1 − σ2

mCLSI
), 1

L ).

Then, Rk = 2σ2η
CLSI

.

The above theorem states that fine-tuning with PNGD can decrease the privacy loss dα(ρK , νD′)
exponentially fast with the unlearning iteration K. This is because Rk is lower bounded away from
0 by a constant, thanks to the iteration independent upper bound on Ck. Stronger assumptions on
the objective function fD lead to a better rate, which implies fewer unlearning iterations are needed
to achieve the same RU guarantee. There are several remarks for our Theorem 3.1. First, note that
the result is dimension-free, which is favorable for problems with many parameters to be learned.
Second, note that the M -Lipschitzness assumption can be dropped by clipping the gradient to norm
M in the PNGD update equation 1 and equation 2 instead. As a result, our Theorem 3.1 applies
to neural networks with smooth activation functions in theory. Finally, our result gives an upper
bound on the LSI constants along the unlearning process (i.e., Ck) which may be improved with
more advanced analysis. We note that the exponential dependence in R for the bound of Ck can
be loose. It is possible to have a better constant with either more structural assumptions or working
with different isoperimetric inequalities such as (weak) Poicaré inequality (Mousavi-Hosseini et al.,
2023). A more detailed discussion is in Appendix A.5.

Initial RDP guarantees and LSI constant. Since Theorem 3.1 relies on M being (α, ε0)-RDP
and the νD satisfies LSI, the theorem below provides such results for the learning process, where the
formal proof is relegated to Appendix D.

Theorem 3.2 (RDP guarantee of PNGD learning). Assume f(·;d) be L-smooth and M -Lipschitz
for all d ∈ X . Also assume that the initialization of PNGD equation 1 satisfies C0-LSI. Then the
learning process equation 1 is (α, ε(S)

0 )-RDP of group size S ≥ 1 at T th iteration with

ε
(S)
0 ≤ 2αηS2M2

σ2n2

T∑
t=1

t−1∏
t′=0

(1 +
ησ2

Ct′,1
)−1,

where Ct,1 ≤ min
(
(1 + ηL)2Ct + ησ2, C̄

)
, C̄ = 6(4(R + ηM)2 + ησ2) exp( 4(R+ηM)2

ησ2 ) and
Ct+1 ≤ min

(
Ct,1 + ησ2, C̄

)
. Furthermore, νt satisfies Ct-LSI.

When we additionally assume f(·;d) is m-strongly convex, by choosing 0 < η ≤ min( 2
m (1 −

σ2

mC0
), 1

L ) with a constant C0 >
σ2

m , we have ε(S)
0 ≤ 4αS2M2

mσ2n2 (1 − exp(−mηT )). Furthermore, νt
satisfies C0-LSI for all t ≥ 0.

Note that any initialization x0 ∈ CR can be viewed as sampling from N (x0, cId) with c→ 0, which
corresponds to C0-LSI for any C0 > 0. By taking T → ∞, Theorem 3.2 provides the initial (α, ε0)-
RDP guarantee and the LSI constant needed in Theorem 3.1. Since there is an iteration-independent
upper bound for Ct,1, one can show that ε0 ≤ 2αηS2M2

σ2n2c for some T -independent constant c ∈ (0, 1)
due to the finiteness of geometric series. Similar to our discussion for Theorem 3.1, the bound of Ct

may be loose and it is possible to further improve the LSI constant analysis. The goal of our results
is to demonstrate that it is possible to derive (finite) RDP and (arbitrarily small) RU guarantees even
for general non-convex problems.

4 EXPERIMENTS

Benchmark datasets. We consider binary logistic regression with ℓ2 regularization. We focus on
this strongly convex setting since the non-convex unlearning bound in Theorem 3.1 currently is not
tight enough to be applied in practice due to its exponential dependence on various hyperparam-
eters. However, we emphasize its significant theoretical implication due to the lack of a certified
non-convex approximate unlearning framework in previous studies. At the same time, the existing
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Figure 2: Main experiments, where the top and bottom rows are for MNIST and CIFAR10 re-
spectively. (a) Compare to D2D for unlearning one point using limited unlearning iteration. (b)
Compare to D2D for unlearning 100 points, where all methods achieve (ϵ, 1/n)-unlearning guaran-
tee with ϵ = 1. (c) A detailed investigation of the privacy-utility-complexity trade-off of Langevin
unlearning with unlearning S = 100 points at once. For each σ, we report the corresponding ϵ0
(black dash line) for the initial (ϵ0, 1/n)-DP guarantee and the utility after unlearning to ϵ = 1.

baseline approach (Neel et al., 2021) also only applies to strongly convex problems. We conduct ex-
periments on MNIST (Deng, 2012) and CIFAR10 (Krizhevsky et al., 2009), which contain 11,982
and 10,000 training instances respectively, and we follow the similar setting of Guo et al. (2020).

Baseline methods. Our baseline method is Delete-to-Descent (D2D) (Neel et al., 2021), the state-
of-the-art gradient-based approximate unlearning method. All experimental details can be found
in Appendix I, including how to convert (α, ε)-RU to the standard (ϵ, δ)-unlearning guarantee.
Throughout this section, we choose δ = 1/n for each dataset and require all tested unlearning
approaches to achieve (ϵ, δ)-unlearning with different ϵ. We report test accuracy for all experiments
as the utility metric. All results are averaged over 100 independent trials with standard deviation
reported as shades in all figures.

Unlearning one data point with K = 1 iteration. We first consider the setting of unlearning one
data point using onlyK = 1 unlearning iteration for both Langevin unlearning and D2D (Figure 2a).
Since D2D cannot achieve a privacy guarantee with only 1 unlearning iteration without a non-private
internal state, we allow D2D to have it in this experiment. Even in this case, our Langevin unlearning
significantly outperforms D2D in utility for ϵ from 0.1 to 5 under the same unlearning complexity
(K = 1), but also achieves similar accuracy to retraining from scratch. We also show that D2D can
achieve better utility at the cost of a larger unlearning iteration K = 2, 5. Our Langevin unlearning
exhibits both smaller unlearning complexity and better utility compared to D2D in these cases.

Unlearning multiple data points. We now consider the scenario of unlearning 100 data points,
where the results are in Figure 2b. We let all methods achieve the same (1, 1/n)-unlearning guar-
antee for a fair comparison. Since D2D only supports sequential unlearning, we directly apply its
sequential unlearning results (Neel et al., 2021). On the other hand, since Langevin unlearning sup-
ports both sequential and batch unlearning, we vary the number of points per unlearning request
S = 5, 10, 20 and report the accumulated unlearning iterations for σ = 0.03. All methods achieve
a similar utility, with an accuracy of roughly 0.9 and 0.98 for MNIST and CIFAR10 respectively.
Langevine unlearning can achieve a significantly better unlearning complexity compared to D2D if
one allows for a larger unlearning batch size. For instance, when we are allowed to unlearn S = 20
points at once, Langevine unlearning saves 40% unlearning iteration compared to D2D. Neverthe-
less, we note that due to the use of weak triangle inequality of Rényi divergence in our analysis,
Langevin unlearning can be more expensive in complexity compared to D2D when one only al-
lows for unlearning a small batch of points (i.e, S = 5). We leave the improvement of Langevin
unlearning analysis in this direction as the future work.
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Privacy-utility-complexity trade-off. We further examine the inherent privacy-utility-complexity
trade-off provided by our Langevin unlearning with two experiments. In the first experiment, we
aim to achieve (ϵ, 1/n)-unlearning guarantee with ϵ = 1 for batch unlearning of 100 points. We
vary the choice of σ from 0.05 to 1.0. A smaller σ leads to a worse initial ϵ0 and thus requires more
unlearning iteration K to recuperate it to ϵ = 1. It is interesting to see that even if we choose a
small σ so that the initial (ϵ0, 1/n)-DP guarantee is extremely weak (i.e, ϵ0 ≈ 100 for σ = 0.05),
our unlearning iteration can recuperate ϵ0 to ϵ = 1.0 efficiently. On the other hand, a larger σ leads
to a worse utility which is the inherent privacy-utility-complexity trade-off of Langevin unlearning.
The results are illustrated in Figure 2c. Compared to retraining until convergence (T = 10, 000), we
achieve a similar utility but with much lower unlearning complexity with K roughly up to 1500.
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in chi-squared and rényi divergence. In International Conference on Artificial Intelligence and
Statistics, pp. 8151–8175. PMLR, 2022.

Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy amplification by
iteration. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 521–532. IEEE, 2018.

Shaopeng Fu, Fengxiang He, Yue Xu, and Dacheng Tao. Bayesian inference forgetting. arXiv
preprint arXiv:2101.06417, 2021.

Arun Ganesh and Kunal Talwar. Faster differentially private samplers via rényi divergence analysis
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A APPENDIX

A.1 RELATED WORKS

Unlearning with privacy guarantees. Prior approximate unlearning works require (strong) convex-
ity of the objective function (Guo et al., 2020; Sekhari et al., 2021; Neel et al., 2021). Their analysis
is based on the sensitivity analysis of the optimal parameter. Since the optimal parameter is not
even unique in the non-convex setting, it is unclear how their analysis can be generalized beyond
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convexity. In contrast, we show that the law of our PNGD learning process admits a unique sta-
tionary distribution even for non-convex problems. Guo et al. (2020); Sekhari et al. (2021) leverage
a second-order update which requires computing Hessian inverse and thus is not scalable for high-
dimensional problems. While they only require one unlearning iteration, we show in our experiment
that one PNGD unlearning iteration is sufficient for strongly convex loss to achieve satisfied pri-
vacy with comparable utility to retraining as well. Neel et al. (2021) leverage PGD for learning
and unlearning, and achieve the privacy guarantee via publishing the final parameters with addi-
tive Gaussian noise. We show in our experiment that our Langevin unlearning strategy provides a
better privacy-utility-complexity trade-off compared to this approach. Ullah et al. (2021) focus on
exact unlearning by leveraging variants of noisy (S)GD. Their analysis is based on total variation
stability which is different from our analysis based on Rényi divergence. Also, their analysis does
not directly generalize to approximate unlearning. Several works focus on extending the unlearning
problems for adaptive unlearning requests (Gupta et al., 2021; Ullah & Arora, 2023; Chourasia &
Shah, 2023). While we focus on the non-adaptive setting, it is possible to show that Langevin un-
learning is also capable of adaptive unlearning requests as we do not keep any non-private internal
state. We left a rigorous discussion on this as future work. Chourasia & Shah (2023) also leverage
Langevin dynamic analysis in their work. However, their unlearning definition is different from the
standard literature as ours2.

Differential privacy of noisy gradient methods. A pioneer work (Ganesh & Talwar, 2020) studied
the DP properties of Langevin Monte Carlo methods. Yet, they do not propose to use noisy GD for
general machine learning problems. A recent line of work (Chourasia et al., 2021; Ye & Shokri,
2022; Ryffel et al., 2022) shows that projected noisy (S)GD training exhibits DP guarantees based
on the analysis of Langevin dynamics (Vempala & Wibisono, 2019; Chewi, Sinho, 2023) under the
strong convexity assumption. In the meanwhile, Altschuler & Talwar (2022a) also provided the DP
guarantees for projected noisy SGD training but with analysis based on Privacy Amplification by
Iteration (Feldman et al., 2018) under the convexity assumption. None of these works study how
PNGD can be leveraged for machine unlearning or DP guarantees for non-convex problems.

Sampling literature. Non-asymptotic convergence analysis for Langevin Monte Carlo has a long
history (Dalalyan & Tsybakov, 2012; Durmus & Moulines, 2017). The seminal works (Vem-
pala & Wibisono, 2019; Ganesh & Talwar, 2020) proved non-asymptotic convergence analysis
in Rényi divergence under strong convexity. Many works improve upon them by either working
with weaker isoperimetric inequalities or different notions of convergence (Erdogdu et al., 2022;
Mousavi-Hosseini et al., 2023). See Chewi, Sinho (2023) for a more thorough review along this
direction. While these works mainly focus on convergence to the unbiased limit (i.e., the limiting
distribution for an infinitesimal step size), we have biased limits (i.e., the limiting distribution for a
constant step size, such as our νD) in machine unlearning problems. Recently Altschuler & Talwar
(2022b) initiated the question of studying the properties and convergence to the biased limit. Our
work provides a new important application, machine unlearning, for these astonishing theoretical
results in the sampling literature.

Bayesian Unlearning. Due to the relation between Langevin Monte Carlo and Bayes learning
approaches, our Langevin unlearning is also loosely related to the Bayesian unlearning literature.
See Nguyen et al. (2020; 2022); Rawat et al. (2022) for a series of empirical results. Along this line
of work, Fu et al. (2021) is the only one that provides a certain unlearning guarantee in terms of KL
divergence. However, they only provide a bound for one direction of KL (similar to D1(ρk||ν′D))
which makes it fail to be directly connected to the differential privacy. Note that it is crucial to
ensure the bidirectional bound for KL or Rényi divergence for the purpose of privacy. Otherwise,
we cannot ensure the sufficiently large type I and type II errors of the best possible attacker in
membership inference attack Kairouz et al. (2015). Also, it is essential to have a (relatively) tight
conversion to DP, where the general α order in Rényi divergence is crucial.

2Their unlearning privacy definition does not compare with retraining and they only discuss one-side Rényi
divergence. As a result, their unlearning guarantee is less compatible with DP and cannot control both type I
and II errors simultaneously against the best possible adversary (Kairouz et al., 2015).
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Figure 3: Illustration of (a) sequential unlearning and (b) batch unlearning. For sequential unlearn-
ing, we can leverage the weak triangle inequality of Rényi divergence to connect all the error terms.
For batch unlearning, only the initial RDP guarantee changes with a general group size. Notably,
unlearning more samples at once implies ε0 being larger (Theorem 3.2), and thus we need more
unlearning iteration to recuperate the privacy loss to a desired ε.

A.2 LIMITING DISTRIBUTION

A key component of the Langevin unlearning is the existence, uniqueness, and stationarity of the
limiting distribution νD of the training process. We start with proving that νD exists, is unique, and
is a stationary distribution.

Theorem A.1. Suppose that the closed convex set CR ⊂ Rd is bounded with CR having a positive
Lebesgue measure and that ∇fD : CR → Rd is continuous. The Markov chain {xt} in equation 1
admits a unique invariant probability measure νD on the Borel σ-algebra of CR. Furthermore, for
any x ∈ CR, the distribution of xt conditioned on x0 = x converges weakly to νD as t→ ∞.

Our proof is relegated to Appendix B, which is based on showing the ergodicity of the process equa-
tion 1 by leveraging results in (Meyn & Tweedie, 2012).

A.3 EMPIRICAL ASPECTS OF LANGEVIN UNLEARNING

Insufficient training. While our theorem assumes the learning process runs until convergence, this
assumption can be relaxed by the geometric view of Langevin unlearning illustrated in Figure 1.
Assume the learning process M(D) ∼ νT terminate with finite step T instead and we only have
dα(νT , νD) ≤ εT (α) for all possible D ∈ Xn. One can still apply the weak triangle inequality
of Rényi divergence (Mironov, 2017) twice to bound dα(ρk, ν′T ) with d4α(ρk, νD′), εT (2α), and
εT (4α) with additional factors (α − 0.5)/(α − 1) and (2α − 0.5)/(2α − 1). In practice, it is
reasonable to require the model parameters to be sufficiently trained so that εT is negligible and a
tighter weak triangle inequality can be employed.

The computational benefit compared to retraining. While our Theorems 3.1 and 3.2 together pro-
vide the privacy guarantee of Langevin unlearning, it is critical to check if our approach provides a
computational benefit compared to retraining from scratch as well. Let ν0 be the (data-independent)
initialization distribution of the learning process. Intuitively, starting with νD instead of ν0 (i.e.,
retraining) should converge faster to νD′ , since dα(νD, νD′) ≤ ε0 is likely to be much smaller than
dα(ν0, νD′). Thus, our Langevin unlearning needs less iterations than retraining for most cases,
except for a corner case when ν0 is already close to νD. From Theorem 3.1 we know that the num-
ber of PNGD iterations we need to approach ε-close in dα to the target distribution νD′ is roughly
O(log( εIε )), where εI is the Rényi difference between the initial distribution and the target distri-
bution νD′ . From Theorem 3.2, we know that the initial Rényi difference of Langevin unlearning
is at most ε0 = O(1/n2) for any datasets D,D′ and any smooth Lipchitz loss. In contrast, even if
both the target distribution νD′ and the initialization of retraining ν0 are Gaussian distributions with
the same variance but mean difference Ω(1), their Rényi difference is Ω(1) (Mironov, 2017). As a
result, computational saving offered by Langevin unlearning is significant for sufficiently large n. A
more thorough discussion is in Appendix A.7.
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Sequential and batch unlearning. Langevin unlearning naturally supports sequential and batch un-
learning for unlearning multiple data points thanks to our geometric view of the unlearning problem,
see Figure 3 for a pictorial example. For sequential unlearning, we show that fine-tuning the current
model parameters on the updated datasets for sequential S ≥ 1 unlearning requests can achieve
(α, ε)-RU simultaneously. The formal proof is deferred to Appendix E.
Corollary A.2 (Sequential unlearning). Assume the unlearning requests arrive sequentially such
that our dataset changes from D0 → D1 → . . . → DS , where Ds,Ds+1 are adjacent. Let y(s)k be
the unlearned parameters for the sth unlearning request with k unlearning update following equa-
tion 2 on Ds and y(s+1)

0 = y
(s)
Ks

∼ ν̄Ds
, where y(1)0 = x∞ and Ks is the unlearning steps for

the sth unlearning request. Suppose we have achieved (α, ε(s)(α))-RU for the sth unlearning re-
quest, the learning process equation 1 is (α, ε0(α))-RDP and ν̄Ds

satisfies CLSI-LSI, we achieve
(α, ε(s+1)(α))-RU for the (s+ 1)th unlearning request as well, where

ε(s+1)(α) ≤ exp(− 1

α

Ks+1−1∑
k=0

Rk)

× α− 1/2

α− 1

(
ε0(2α) + ε(s)(2α)

)
,

ε(0)(α) = 0 ∀α > 1 and Rk are defined in Theorem 3.1.

As a result, one can leverage Corollary A.2 to recursively determine needed unlearning iterations for
each sequential unlearning request. For the batch unlearning setting, it only affects the initial Rényi
difference in Theorem 3.1. We can simply adopt Theorem 3.2 with a group size of S ≥ 1 for the
RDP guarantees of the learning process ε(S)

0 .

Utility-privacy-efficiency trade-off. An interesting aspect of the Langevin unlearning is its strong
connection to the initial RDP guarantee. From Theorem 3.2, we know that increasing σ leads to
smaller Rényi difference ε0 and thus better unlearning efficiency. However, this intuitively is at the
cost of the utility of νD, see for example the discussion in Section 5 of Chourasia et al. (2021) under
the strong convexity assumption. To achieve the same (α, ε)-RU guarantee, one can either ensure
smaller ε0 at the cost of worst utility or run more unlearning iterations at the cost of unlearning
efficiency. We investigate how utility trade-off with privacy and unlearning complexity empirically
in Section 4.

A.4 EXPERIMENTS (FULL)

Benchmark datasets. We consider binary logistic regression with ℓ2 regularization. We focus on
this strongly convex setting since the non-convex unlearning bound in Theorem 3.1 currently is not
tight enough to be applied in practice due to its exponential dependence on various hyperparam-
eters. However, we emphasize its significant theoretical implication due to the lack of a certified
non-convex approximate unlearning framework in previous studies. At the same time, the existing
baseline approach Neel et al. (2021) also only applies to strongly convex problems. We conduct
experiments on MNIST Deng (2012) and CIFAR10 Krizhevsky et al. (2009), which contain 11,982
and 10,000 training instances respectively. We follow the setting of Guo et al. (2020) to distinguish
digits 3 and 8 for MNIST so that the problem is a binary classification. For the CIFAR10 dataset,
we distinguish labels 3 (cat) and 8 (ship) and leverage the last layer of the public ResNet18 He et al.
(2016) embedding as the data features, which follows the public feature extractor setting of Guo
et al. (2020).

Baseline methods. Our baseline methods include Delete-to-Descent (D2D) Neel et al. (2021), the
state-of-the-art gradient-based approximate unlearning method, and retraining from scratch using
PNGD. For D2D, we leverage Theorem 9 and 28 in Neel et al. (2021) for privacy accounting de-
pending on whether we allow D2D to have an internal non-private state. Note that allowing an
internal non-private state provides a weaker notion of privacy guarantee Neel et al. (2021) and our
Langevin unlearning by default does not require it. We include those theorems for D2D and a de-
tailed explanation of its possible non-privacy internal state in Appendix J for completeness. All
experimental details can be found in Appendix I, including how to convert (α, ε)-RU to the stan-
dard (ϵ, δ)-unlearning guarantee. Throughout this section, we choose δ = 1/n for each dataset and
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Figure 4: Trade-off between privacy (ϵ), unlearning complexity (K), and the number of points to be
unlearned (S) in the batch unlearning setting. The left and right figures are for MNIST and CIFAR10
respectively. We fix σ = 0.03 so that K can be determined given (ϵ, S) based on our Theorem 3.2
and 3.1. Since σ is fixed the utility is roughly the same.

require all tested unlearning approaches to achieve (ϵ, δ)-unlearning with different ϵ. We report test
accuracy for all experiments as the utility metric. For the initialization, we sample from Gaussian
distribution with mean 1000. This simulates the case that the initial distribution is in a reasonable dis-
tance away from the convergent distribution νD. We set the learning iteration T = 10, 000 to ensure
all approaches converge. For Langevin unlearning, we leverage Theorems 3.1, 3.2 and Corollay A.2
for privacy accounting under different settings. All results are averaged over 100 independent trials
with standard deviation reported as shades in all figures.

Unlearning one data point with K = 1 iteration. We first consider the setting of unlearning one
data point using onlyK = 1 unlearning iteration for both Langevin unlearning and D2D (Figure 2a).
Since D2D cannot achieve a privacy guarantee with only 1 unlearning iteration without a non-private
internal state, we allow D2D to have it in this experiment. Even in this case, our Langevin unlearning
significantly outperforms D2D in utility for ϵ from 0.1 to 5 under the same unlearning complexity
(K = 1), but also achieves similar accuracy to retraining from scratch. Since retraining requires
T = 10, 000 PNGD iterations, Langevin unlearning is indeed much more efficient. We also show
that D2D can achieve better utility at the cost of a larger unlearning iterationK = 2, 5. Our Langevin
unlearning exhibits both smaller unlearning complexity and better utility compared to D2D in these
cases.

Unlearning multiple data points. We now consider the scenario of unlearning 100 data points,
where the results are in Figure 2b. We let all methods achieve the same (1, 1/n)-unlearning guar-
antee for a fair comparison. Since D2D only supports sequential unlearning, we directly apply its
sequential unlearning results Neel et al. (2021). Also, we do not allow D2D to have an internal non-
private state in this experiment for a fair comparison. On the other hand, since Langevin unlearning
supports both sequential and batch unlearning, we vary the number of points per unlearning request
S = 5, 10, 20 and report the accumulated unlearning iterations for σ = 0.03. All methods achieve
a similar utility, with an accuracy of roughly 0.9 and 0.98 for MNIST and CIFAR10 respectively.
Langevine unlearning can achieve a significantly better unlearning complexity compared to D2D if
one allows for a larger unlearning batch size. For instance, when we are allowed to unlearn S = 20
points at once, Langevine unlearning saves 40% unlearning iteration compared to D2D. Neverthe-
less, we note that due to the use of weak triangle inequality of Rényi divergence in our analysis,
Langevin unlearning can be more expensive in complexity compared to D2D when one only al-
lows for unlearning a small batch of points (i.e, S = 5). We leave the improvement of Langevin
unlearning analysis in this direction as the future work.
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Privacy-utility-complexity trade-off. We further examine the inherent privacy-utility-complexity
trade-off provided by our Langevin unlearning with two experiments. In the first experiment, we
aim to achieve (ϵ, 1/n)-unlearning guarantee with ϵ = 1 for batch unlearning of 100 points. We
vary the choice of σ from 0.05 to 1.0. A smaller σ leads to a worse initial ϵ0 and thus requires more
unlearning iteration K to recuperate it to ϵ = 1. It is interesting to see that even if we choose a
small σ so that the initial (ϵ0, 1/n)-DP guarantee is extremely weak (i.e, ϵ0 ≈ 100 for σ = 0.05),
our unlearning iteration can recuperate ϵ0 to ϵ = 1.0 efficiently. On the other hand, a larger σ leads
to a worse utility which is the inherent privacy-utility-complexity trade-off of Langevin unlearning.
The results are illustrated in Figure 2c. Compared to retraining until convergence (T = 10, 000), we
achieve a similar utility but with much lower unlearning complexity with K roughly up to 1500.

In the second experiment, we investigate the effect of the number of points to be unlearned S in the
batch unlearning setting. In Figure 4, we can see that both larger S and smaller ϵ will require more
unlearning iterations K. It is worth noting that the resulting utility does not change significantly,
whereas Langevin unlearning always archives a similar utility compared to retraining (see Figure 5a
in Appendix I). Retraining requires T = 10, 000 PNGD iterations which is significantly larger than
the required unlearning iteration K even for ϵ = 0.5. We have shown that Langevin unlearning is a
promising unlearning solution.

A.5 FUTURE DIRECTIONS

In this section, we discuss several future directions of Langevin unlearning.

Extension to projected noisy stochastic gradient descent. It is straightforward to extend our anal-
ysis to the projected noisy SGD case. There are two possibilities for the SGD setting: 1) randomly
partition the indices [n] into a sequence of mini-batches, then fix this sequence for all the learning
and unlearning process (Ye & Shokri, 2022); 2) randomly draw a mini-batch for each update (Ryffel
et al., 2022; Altschuler & Talwar, 2022a). The analysis of (Ye & Shokri, 2022) can be combined
with our LSI constant analysis for RU guarantees, similar to the proof of our Theorem 3.1. Unfortu-
nately, the analysis (Ryffel et al., 2022) may lead to an extra large LSI constant in the intermediate
step even if R is small. We refer interested readers to Appendix C of Ye & Shokri (2022) for a
detailed discussion. The technical difficulty here is to provide a tight analysis of the LSI constant
for a mixture of distributions, where each of them corresponds to a possible choice of mini-batch.
The analysis of Altschuler & Talwar (2022a) is based on privacy amplification by iteration, which
does not directly generalize to the non-convex cases. Nevertheless, it may provide a tighter result
and thus a better unlearning complexity with a convexity assumption. We leave the SGD extension
as our primary future work.

Better convergence rate. While it is already exciting that Langevin dynamic analysis leads to
formal unlearning algorithms and guarantees even for general non-convex problems in theory, the
potential of this direction for a practical plug-and-play unlearning solution is even more interesting.
Several promising future directions can significantly improve the convergence rate and the unlearn-
ing efficiency. Developing a better LSI constant bound under additional structural assumptions for
the non-convex problems is the most straightforward one. Another direction is to work with (weak)
Poincaré inequality instead. While a weaker tail assumption leads to slower convergence (Mousavi-
Hosseini et al., 2023), the corresponding (weak) Poincaré constant may be more tightly tracked.
Finally, while we only discuss the noisy GD which corresponds to Langevin Monte Carlo, some
other advanced samplers are off-the-shelf including the Metropolis-Hastings filter (Hastings, 1970)
and Hamiltonian Monte Carlo (Neal et al., 2011). We hope our work motivates further collaborations
among the sampling and privacy communities and pushes the boundaries of learning and unlearning
with privacy guarantees.
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A.6 STANDARD DEFINITIONS

Let f : Rd 7→ R be a mapping. We define smoothness, Lipschitzsness, and strong convexity as
follows:

L-smooth: ∀ x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (3)

m-strongly convex: ∀ x, y ∈ Rd, ⟨x− y,∇f(x)−∇f(y)⟩ ≥ m∥x− y∥2 (4)

M -Lipschitzs: ∀ x, y ∈ Rd, ∥f(x)− f(y)∥ ≤M∥x− y∥. (5)

Furthermore, we say f is convex means it is 0-strongly convex.

To control the convergence behavior of (P)NGD, it is standard to check an isoperimetric condition
known as log-Sobolev inequality (Gross, 1975), described as follows.
Definition A.3 (Log-Sobolev Inequality (CLSI-LSI)). A probability measure ν ∈ P(Rd) is said to
satisfy Logarithmic Sobolev Inequality with constant CLSI if

∀ ρ ∈ P(Rd), D1(ρ||ν) ≤
CLSI

2
Ex∼ρ

∥∥∥∥∇ log
ρ(x)

ν(x)

∥∥∥∥2 ,
where D1(ρ||ν) is the Kullback–Leibler divergence.

A.7 DETAILED DISCUSSION ON COMPUTATIONAL BENEFIT AGAINST RETRAINING

In this section, we provide a more detailed discussion of the computational benefit of Langevin
unlearning against retraining from scratch. We start our discussion under strongly convex assump-
tion and then explain the non-convex case. Let us consider the case f(x;d) is m-strongly con-
vex, L-smooth and M -Lipschitz in x for all d ∈ X . Also, assume the initialization distribution
ν0 = N (x̃0,

2σ2

m Id) for some x̃0 ∈ CR. In this case, from Theorem 3.1 we know that running T
PNGD learning iteration equation 1, we have

dα(νT , νD′) ≤ exp(−2σ2ηT

αCLSI
)dα(ν0, νD′). (6)

Note that by Theorem 3.2, we know that CLSI =
2σ2

m by our choice of ν0 for an appropriate step size
η ≤ min( 1

m ,
1
L ). As a result, in order to be ε close to νD′ , we need α

mη log(dα(ν0,νD′ )
ε ) retraining

iteration. On the other hand, for Langevin unlearning we need α
mη log( ε0ε ), where ε0 ≤ 4αM2

mσ2n2 . As
a result, Langevin unlearning the computational saving for Langevin unlearning against retraining is

α

mη
log(

dα(ν0, νD′)

ε
)− α

mη
log(

ε0
ε
) =

α

mη
log(

dα(ν0, νD′)

ε0
) ≥ α

mη
log(

mσ2n2 × dα(ν0, νD′)

4αM2
).

(7)

Clearly, this saving depends on νD′ . In some rare cases, ν0 might accidentally be close to
νD′ so that retraining is more efficient. However, even if νD′ = N (x⋆(D′), 2σ

2

m Id), we have

dα(ν0, νD′) = αm∥x̃0−x⋆(D′)∥
4σ2 . That is, even if we know the target distribution is Gaussian and

choose the initialization to have the same variance, the corresponding Rényi difference is Ω(1) for
∥x̃0 − x⋆(D′)∥ = Ω(1). As a result, if we uniformly at random sample x̃0 from CR, we have
∥x̃0−x⋆(D′)∥ ≥ 1 with probability at least 1− 1

Rd . Plug this into the lower bound above we obtain
a data-independent lower bound on the computational savings with probability at least 1 − 1

Rd as
follows

α

mη
log(

dα(ν0, νD′)

ε
)− α

mη
log(

ε0
ε
) ≥ α

mη
log(

mσ2n2 × dα(ν0, νD′)

4αM2
) (8)

=
α

mη
log(

m2n2∥x̃0 − x⋆(D′)∥
16M2

) ≥ α

mη
log(

m2n2

16M2
). (9)

Here we can see that for larger problem size n, our computational benefit is more significant.

For the non-convex case, note that the convergence rate Rk in Theorem 3.1 will vary and depend on
the LSI constant of ν0 and νD in general. This makes it hard to have a direct characterization of the
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computational benefit against retraining. To simplify the situation, we assume the convergence rate
Rk is a constant R̄ > 0 that is independent of n, k. In this case, the computational saving can be
characterized as

α

R̄
log(

dα(ν0, νD′)

ε0
). (10)

In this case, one can still leverage Theorem 3.2 to provide an upper bound on ε0, yet the obtained
bound can be weak due to the inaccurate estimate of LSI constants for the non-convex case. Instead,
we propose to use unbiased limits ν̃D to approximate the biased limit νD for a rough estimate instead,
since Dα(νD||ν̃D) → 0 as η → 0 Chewi, Sinho (2023). From standard sampling literature Vempala
& Wibisono (2019), we know that ν̃D ∝ exp(− fD

σ2 ). We provide the following result for bounding
dα(ν̃D, ν̃D′).

Proposition A.4. Let ν̃D ∝ exp(−fD). Assume |f(x;d) − f(x;d′)| ≤ F for all x ∈ Rd and
d,d′ ∈ X . Then dα(ν̃D, ν̃D′) ≤ 2F

n for any adjacent dataset D,D′ and α > 1.

As a result, we know that ε0 is roughly at most 2F
σ2n when the step size η is sufficiently small. Thus

when dα(ν0, νD′) = Ω(1), we Langevin unlearning save Ω(log(n)) PNGD iterations.

B PROOF OF THEOREM A.1: CONVERGENCE OF PNGD

Theorem. Suppose that the closed convex set CR ⊂ Rd is bounded with Leb(CR) > 0 where Leb
denotes the Lebesgue measure and that ∇fD : CR → Rd is continuous. The Markov chain {xt}
in equation 1 admits a unique invariant probability measure νD on B(CR) that is the Borel σ-algebra
of CR. Furthermore, for any x ∈ CR, the distribution of xt conditioned on x0 = x converges weakly
to νD as t→ ∞.

In this section, we prove that the learning process equation 1 with general closed convex set C that
is restated as follows for the reader’s convenience,

xt+1 = ΠC

(
xt − η∇fD(xt) +

√
2ησ2Wt

)
, (11)

will converge to an invariant probability measure. One observation is that equation 11 is a Markov
chain and some ergodicity results can be applied.

Proposition B.1. Suppose that the closed convex set C ⊂ Rd is bounded with Leb(C) > 0 where
Leb denotes the Lebesgue measure and that ∇fD : C → Rd is continuous. Then the Markov chain
{xt} defined by equation 11 admits a unique invariant measure (up to constant multiples) on B(C)
that is the Borel σ-algebra of C.

Proof. This proposition is a direct application of results from Meyn & Tweedie (2012). According
to Proposition 10.4.2 in Meyn & Tweedie (2012), it suffices to verify that {xt} is recurrent and
strongly aperiodic.

1. Recurrency. Thanks to the Gaussian noise Wt, {xt} is Leb-irreducible, i.e., it holds for any
x ∈ C and any A ∈ B(C) with Leb(A) > 0 that

L(x,A) := P(τA < +∞ | x0 = x) > 0,

where τA = inf{t ≥ 0 : xt ∈ A} is the stopping time. Therefore, there exists a Borel
probability measure ψ such that that {xt} is ψ-irreducible and ψ is maximal in the sense
of Proposition 4.2.2 in Meyn & Tweedie (2012). Consider any A ∈ B(C) with ψ(A) > 0.
Since {xt} is ψ-irreducible, one has L(x,A) = P(τA < +∞ | x0 = x) > 0 for all x ∈ C.
This implies that there exists T ≥ 0, δ > 0, and B ∈ B(C) with Leb(B) > 0, such that
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P(xT ∈ A | x0 = x) ≥ δ, ∀ x ∈ B. Therefore, one can conclude for any x ∈ C that

U(x,A) :=

∞∑
t=0

P(xt ∈ A | x0 = x)

≥
∞∑
t=1

P(xt+T ∈ A | xt ∈ B, x0 = x) · P(xt ∈ B | x0 = x)

≥
∞∑
t=1

δ · inf
y∈C

P(xt ∈ B | xt−1 = y)

= +∞,

where we used the fact that infy∈C P(xt ∈ B | xt−1 = y) = infy∈C P(x1 ∈ B | x0 = y) >
0 that is implies by Leb(B) > 0 and the boundedness of C and ∇fD(C). Let us remark
that we actually have compact ∇fD(C) since C is compact and ∇fD is continuous. The
arguments above verify that {xt} is recurrent (see Section 8.2.3 in Meyn & Tweedie (2012)
for definition).

2. Strong aperiodicity. Since C and ∇fD(C) are bounded and the density of Wt has a uni-
form positive lower bound on any bounded domain, there exists a non-zero multiple of the
Lebesgue measure, say ν1, satisfying that

P(x1 ∈ A | x0 = x) ≥ ν1(A), ∀ x ∈ C, A ∈ B(C).

Then {xt} is strongly aperiodic by the equation above and ν1(C) > 0 (see Section 5.4.3 in
Meyn & Tweedie (2012) for definition).

The proof is hence completed.

Theorem B.2. Under the same assumptions as in Proposition B.1, the Markov chain {xt} admits a
unique invariant probability measure νD on B(C). Furthermore, for any x ∈ C, the distribution of
xt generated by equation 11 conditioned on x0 = x converges weakly to νD as t→ ∞.

Proof. It has been proved in Proposition B.1 that {xt} is strongly aperiodic and recurrent with an
invariant measure. Consider any A ∈ B(C) with ψ(A) > 0 and use the same settings and notations
as in the proof of Proposition B.1. There exists T ≥ 0, δ > 0, and B ∈ B(C) with Leb(B) > 0,
such that P(xT ∈ A | x0 = x) ≥ δ, ∀ x ∈ B. This implies that for any t ≥ 0 and any x ∈ C,

P(xt+T+1 ∈ A | xt = x) = P(xT+1 ∈ A | x0 = x) ≥ P(xT+1 ∈ A | x1 ∈ B, x0 = x)·P(x1 ∈ B | x0 = x) ≥ ϵ,

where
ϵ = δ · inf

y∈C
P(x1 ∈ B | x0 = y) > 0,

which then leads to
Q(x,A) := P(xt ∈ A, infinitely often) = +∞.

This verifies that the chain {xt} is Harris recurrent (see Section 9 in Meyn & Tweedie (2012) for
definition). It can be further derived that for any x ∈ C,

E(τA | x0 = x) =

∞∑
t=1

P(τA ≥ t | x0 = x) ≤ (T + 1)

∞∑
k=0

P(τA > (T + 1)k | x0 = x)

≤ (T + 1)

∞∑
k=1

(1− ϵ)k < +∞.

The bound above is uniform for all x ∈ C and this implies that C is a regular set of {xt} (see Section
11 in Meyn & Tweedie (2012) for definition). Finally, one can apply Theorem 13.0.1 in Meyn &
Tweedie (2012) to conclude that there exists a unique invariant probability measure νD on B(C) and
that the distribution of xt converges weakly to νD conditioned on x0 = x for any x ∈ C.
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C PROOF OF THEOREM 3.1

C.1 PROOF SKETCH OF THEOREM 3.1

Given M is (α, ε0)-RDP, we aim to show the upper bound of dα(ρk, νD′) decays in k starting
from ε0 at k = 0. As a warm-up, we start with the strongly convex case. The analysis is inspired
by (Vempala & Wibisono, 2019) and (Ganesh & Talwar, 2020) and formal proof can be found in
Appendix C.2. Roughly speaking, we characterize how both α Rényi divergence Dα(ρk||νD′) and
Dα(νD′ ||ρk) decay, given νD′ and ρk satisfy LSI condition for some constants. Standard sampling
literature only focuses on the part Dα(ρk||νD′) (i.e., Lemma 8 in (Vempala & Wibisono, 2019)),
where νD′ satisfies LSI implies exponential decay in Rényi divergence. The other direction is nec-
essary for meaningful privacy guarantee but more challenging as one to carefully track the LSI
constant of ρk for all k ≥ 0. We prove the following lemma for such LSI constant characteriza-
tion along the unlearning process, which specializes results of (Chewi, Sinho, 2023) to the PNGD
update.
Lemma C.1 (LSI constant characterization). Consider the following PNGD update for a closed
convex set C:

xk,1 = h(xk), xk,2 = xk,1 + σWk, xk+1 = ΠC(xk,2),

where h is any M -Lipschitz map Rd 7→ Rd, Wk ∼ N (0, Id) independent of anything before step k,
and ΠC is the projection onto a closed convex set C. Let µk,1, µk,2 and µk be the distribution of xk,1,
xk,2 and xk respectively. Then we have the following LSI constant characterization of this process.
1) If µk satisfies c-LSI, µk,1 satisfies M2c-LSI. 2) If µk,1 satisfies c-LSI, µk,2 satisfies (c+ σ2)-LSI.
3) If µk,2 satisfies c-LSI, µk+1 satisfies c-LSI.

By leveraging Lemma C.1, we can characterize the LSI constant for all ρk. One key step is to
characterize the Lipschitz constant of the gradient update h(x) = x − η∇f(x). From Lemma
2.2 in Altschuler & Talwar (2022b) we know if f is m-strongly convex, L-smooth and η ≤ 1

L ,
then h is (1− ηm)-Lipschitz. Let ρk satisfy Ck-LSI, Lemma C.1 leads to the recursion expression
Ck+1 ≤ (1−ηm)2Ck+2ησ2, C0 = CLSI.By choosing η satisfying 0 < η ≤ min( 2

m (1− σ2

mCLSI
), 1

L )

and the assumption σ2

m < CLSI, Ck is non-increasing and thus ρk is CLSI-LSI for all k ≥ 0. As a
result, the decay of both Dα(ρk||νD′) and Dα(νD′ ||ρk) can be shown.

Beyond strong convexity. To extend beyond strong convexity, one may naively apply Lemma C.1
for convex and non-convex settings. Unfortunately, both cases lead to monotonically increasing LSI
constant Ck. As a result, given an ε0, proving to achieve an arbitrarily small ε is challenging even
with K → ∞ since the LSI constant may be unbounded. More specifically, if f is convex and
η ≤ 2

L , then h(x) = x − η∇f(x) is 1-Lipschitz. If f is L-smooth only, the map h is (1 + ηL)-
Lipschitz. Applying Lemma C.1 leads to the recursions on Ck. For the convex case, we have
Ck+1 ≤ Ck + 2ησ2. For the non-convex case, we have Ck+1 ≤ (1 + ηL)2Ck + 2ησ2.

One of our contributions is to demonstrate that Ck has a universal upper bound which is independent
of the number of iterations. Hence, the exponential decay in Rényi difference still holds. The key is
to leverage the geometry of CR to establish an LSI upper bound that is independent of k using the
result of Chen et al. (2021), which has not been explored in the prior privacy literature (Chourasia
et al., 2021; Ryffel et al., 2022; Ye & Shokri, 2022).
Lemma C.2 (Corollary 1 in Chen et al. (2021)). Let µ be a probability measure supported on
CR for some R ≥ 0. Then, for each ξ ≥ 0, µ ∗ N (0, ξId) satisfy C-LSI with constant C ≤
6(4R2 + ξ) exp( 4R

2

ξ ).

Altschuler & Talwar (2022a) also leverage the geometry of CR for the DP guarantee of learning
with projected noisy (S)GD, but their analysis follows privacy amplification by iteration (Feldman
et al., 2018) and still require convexity. Our result demonstrates the potential of Langevin dynamic
analysis for unlearning guarantees of non-convex problems.

C.2 FORMAL PROOF

We will start with the proof for the strongly convex case and then extend it for convex and non-
convex cases. As indicated in our sketch of proof, there are two main parts of our proof. The first is
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to characterize the decay in Rényi divergence between two processes yk, y′k under LSI conditions.
The second is to track the LSI constant of yk, y′k throughout the unlearning process. The analysis is
a modification of the proof of Lemma 8 in Vempala & Wibisono (2019).

We first define some useful quantities and list all technical lemmas that we need to proof. For α > 0
and any two probability distribution ρ, ν with the same support, define

Fα(ρ; ν) = Eν [(
ρ

ν
)α] =

∫
ν(x)(

ρ

ν
)α(x) dx. (12)

Gα(ρ; ν) = Eν [(
ρ

ν
)α∥∇ log

ρ

ν
∥2] = Eν [(

ρ

ν
)α−2∥∇ρ

ν
∥2] = 4

α2
Eν [∥∇(

ρ

ν
)α/2∥2]. (13)

Note that Dα(ρ||ν) = 1
α−1 logFα(ρ; ν) by definition and Gα(ρ; ν) is known as the Rényi Informa-

tion, where the limit α = 1 recovers the relative Fisher information (Vempala & Wibisono, 2019).
Now we introduce all the technical lemmas we need. The first is data-processing inequality for
Rényi divergence, which is the Lemma 2.6 in Altschuler & Talwar (2022b). The second and third
lemmas are based on results in Vempala & Wibisono (2019). We note again that we use the defini-
tion of LSI in Chewi, Sinho (2023), where the LSI constant is reciprocal to those defined in Vempala
& Wibisono (2019).
Lemma C.3 (Data-processing inequality for Rényi divergence (Altschuler & Talwar, 2022b)). For
any α ≥ 1, any function h : Rd 7→ Rd and any distribution µ, ν with support on Rd,

Dα(h#µ||h#ν) ≤ Dα(µ||ν). (14)

Lemma C.4 (Lemma 18 in Vempala & Wibisono (2019), with customized variance). For any prob-
ability distribution ρ0, ν0 and for any t ≥ 0, let ρt = ρ0∗N (0, 2tσ2Id) and νt = ν0∗N (0, 2tσ2Id).
Then for all α > 0 we have

d

dt
Dα(ρt||νt) = −ασ2Gα(ρt; νt)

Fα(ρt; νt)
. (15)

Lemma C.5 (Low bound of G-F ratio, Lemma 5 Vempala & Wibisono (2019)). Suppose ν satisfy
CLSI-LSI. Let α ≥ 1. For all probability distribution ρ we have

Gα(ρ; ν)

Fα(ρ; ν)
≥ 2

α2CLSI
Dα(ρ||ν). (16)

Now we are ready to prove Theorem 3.1 under strong convexity assumption.

Proof. For brevity and to make our proof succinct, we will only prove the harder direction
Dα(νD′ ||ρk). The proof of the other direction is not only simpler (due to νD′ being the station-
ary distribution), but also the same analysis applies.

First, let us consider two processes:

yk+1 = ΠC

(
yk − η∇fD′(yk) +

√
2ησ2Wk

)
,where y0 ∼ ρ0 = νD (17)

y′k+1 = ΠC

(
y′k − η∇fD′(y′k) +

√
2ησ2Wk

)
,where y′0 ∼ νD′ . (18)

Note that yk is the process we would have during the unlearning process and y′k is an auxiliary
process. Let ρk,1, ρk,2, ρk be the probability distribution of yk,1, yk,2, yk respectively, where

yk,1 = yk − η∇fD′(yk), yk,2 = yk,1 +
√

2ησ2Wk, yk+1 = ΠC (yk,2) . (19)

Similarly, let ρ′k,1, ρ
′
k,2, ρ

′
k be the probability distribution of y′k,1, y

′
k,2, y

′
k respectively. By definition

νD′ is the stationary distribution of this process (in fact, both), we know that ρ′k = νD′ for all k ≥ 0.
Also, without loss of generality, we assume ρk satisfies Ck-LSI for some value Ck to be determined.
Notably by assumption we have C0 = CLSI.

Observe that the gradient update h(y) = y − η∇fD′(y) is a (1− ηm)-Lipschitz map for fD′ being
L-smooth and m-strongly convex due to Lemma 2.2 in Altschuler & Talwar (2022b) when η ≤ 1

L .
By Lemma C.1 we know that ρk,1 satisfies ((1− ηm)2Ck)-LSI. Next, by Lemma C.3 we have

Dα(ρ
′
k,1||ρk,1) = Dα(h#ρ

′
k||h#ρk) ≤ Dα(ρ

′
k||ρk) = Dα(νD′ ||ρk). (20)
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Next, consider ρk,1,t = ρk,1 ∗N (0, 2tσ2Id) and ρ′k,1,t = ρk,1 ∗N (0, 2tσ2Id) for t ∈ [0, η]. Clearly,
ρk,1,η = ρk,2 and ρ′k,1,η = ρ′k,2. By Lemma C.4 we have

d

dt
Dα(ρ

′
k,1,t||ρk,1,t) = −σ2α

Gα(ρ
′
k,1,t; ρk,1,t)

Fα(ρ′k,1,t; ρk,1,t)
. (21)

By Lemma C.1, we know that ρk,1,t satisfies ((1 − ηm)2Ck + 2ησ2)-LSI for all t ≤ η. By the
choice η ≤ 2

m (1− σ2

mCk
), we know that

(1− ηm)2Ck + 2ησ2 ≤ Ck. (22)

Clearly, this would require σ2

m < Ck for η > 0. Then by Lemma C.5, we have

Gα(ρ
′
k,1,t; ρk,1,t)

Fα(ρ′k,1,t; ρk,1,t)
≥ 2

α2Ck
Dα(ρ

′
k,1,t||ρk,1,t). (23)

This would imply

d

dt
Dα(ρ

′
k,1,t||ρk,1,t) ≤ − 2σ2

αCk
Dα(ρ

′
k,1,t||ρk,1,t). (24)

By Gronwall’s inequality (Gronwall, 1919), integrating over t ∈ [0, η] gives

Dα(ρ
′
k,2||ρk,2) ≤ exp(−2σ2η

αCk
)Dα(ρ

′
k,1||ρk,1). (25)

Apply Lemma C.3 for the mapping ΠC , we have

Dα(ρ
′
k+1||ρk+1) ≤ Dα(ρ

′
k,2||ρk,2). (26)

Note that by Lemma C.1, we have also shown that ρk+1 is Ck-LSI. This implies ρk is C0-LSI,
where C0 = CLSI by our assumption. Combining all results and the fact that νD′ is the stationary
distribution, we have

Dα(νD′ ||ρk+1) ≤ exp(− 2σ2η

αCLSI
)Dα(νD′ ||ρk). (27)

Iterating this over k we complete the proof.

The proof beyond strong convexity is similar, except the characterization of Ck is different. As
we mentioned in the main text, without strong convexity we can only prove an upper bound of the
LSI constant that grows monotonically with respect to the iterations. To prevent a diverging LSI
constant, we leverage the boundedness of the projected set CR to establish an iteration-independent
bound for the LSI constant. Below we give the proof of Theorem 3.1 without the strong convexity
assumption.

Proof. As before, we will only prove the decay of the direction Dα(νD′ ||ρk), since it is more chal-
lenging. We again assume ρk is Ck-LSI, where C0 = CLSI by our assumption. First, due to Hardt
et al. (2016) we know that the map h(y) = y − η∇fD′(y) is (1 + ηL)-Lipschitz for fD′ being
L-smooth. By Lemma C.1 we know that ρk,1 satisfies ((1+ ηL)2Ck)-LSI. Next, by Lemma C.3 we
have

Dα(ρ
′
k,1||ρk,1) ≤ Dα(ρ

′
k||ρk) = Dα(D′||ρk). (28)

Next, by Lemma C.4 we have

d

dt
Dα(ρ

′
k,1,t||ρk,1,t) = −σ2α

Gα(ρ
′
k,1,t; ρk,1,t)

Fα(ρ′k,1,t; ρk,1,t)
. (29)

Note that by Lemma C.1, ρk,1,t satisfies ((1 + ηL)2Ck + 2tσ2)-LSI. Then by Lemma C.5, we have

d

dt
Dα(ρ

′
k,1,t||ρk,1,t) ≤ − 2σ2

α((1 + ηL)2Ck + 2tσ2)
Dα(ρ

′
k,1,t||ρk,1,t). (30)
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By Gronwall’s inequality (Gronwall, 1919), integrating over t ∈ [0, η] gives

Dα(ρ
′
k,2||ρk,2) ≤ exp(−

∫ η

t=0

2σ2

α((1 + ηL)2Ck + 2tσ2)
dt)Dα(ρ

′
k,1||ρk,1). (31)

Note the calculation∫ η

t=0

2σ2

α((1 + ηL)2Ck + 2tσ2)
dt =

∫ η

t=0

d(2σ2t)

α((1 + ηL)2Ck + 2tσ2)
(32)

=
1

2α

(
1

((1 + ηL)2Ck)2
− 1

((1 + ηL)2Ck + 2ησ2)2

)
(33)

By applying Lemma C.3 for the projection operator and combining all results we have

Dα(ρ
′
k+1||ρk+1) ≤ exp(− 1

2α

(
1

((1 + ηL)2Ck)2
− 1

((1 + ηL)2Ck + 2ησ2)2

)
)Dα(ρ

′
k||ρk).

(34)

Iterate this over K steps, we have

Dα(νD′ ||ρK) ≤ exp(− 1

2α

K−1∑
k=0

1

2α

(
1

((1 + ηL)2Ck)2
− 1

((1 + ηL)2Ck + 2ησ2)2

)
)Dα(νD′ ||ρ0)

(35)

= exp(− 1

2α

K−1∑
k=0

1

2α

(
1

((1 + ηL)2Ck)2
− 1

((1 + ηL)2Ck + 2ησ2)2

)
)Dα(νD′ ||ρ0). (36)

To complete the proof, we establish the recursion relation of Ck. If f is convex and η ≤ 2
L , then

h(x) = x−η∇f(x) is 1-Lipschitz. If f isL-smooth only, the map h is (1+ηL)-Lipschitz. Applying
Lemma C.1 leads to the following recursions on Ck

Convex: Ck+1 ≤ Ck + 2ησ2 Non-convex: Ck+1 ≤ (1 + ηL)2Ck + 2ησ2. (37)

On the other hand, the Corollary 1 in Chen et al. (2021) states the following result.

Lemma C.6 (Corollary 1 in Chen et al. (2021)). Let µ be a probability measure on Rd supported
on CR for some R ≥ 0. Then, for each t ≥ 0, µ ∗ N (0, tId) satisfy C-LSI with constant

C ≤ 6(4R2 + t) exp(
4R2

t
). (38)

Now, consider the following PNGD process similar to Lemma C.1

xk,1 = h(xk), xk,2 = xk,1 + 2ησ2Wk, xk+1 = ΠCR
(xk,2),

where h(x) = x− η∇fD(x) and Wk ∼ N (0, Id) as before. Clearly, due to the projection ΠCR
we

know that µk is supported on CR. By assumption that fD is M -Lipschitz, we know that ∥fD(x)∥ ≤
M and thus µk,1 is supported on CR+ηM . By applying Lemma C.6 we know that µk,2 satisfies LSI
with constant upper bounded by

6(4(R+ ηM)2 + 2ησ2) exp(
4(R+ ηM)2

2ησ2
). (39)

Finally, by Lemma C.1 we know that the projection ΠCR
does not increase the LSI constant so that

the same LSI constant upper bound holds for all µk. Combining with our previous recursive result
we complete the proof.

If we further have that fD′ being convex, then by Lemma 3.7 in Hardt et al. (2016) we know that
when η ≤ 2

L the gradient map is 1-Lipchitz. As a result, the factor (1 + ηL)2 can be reduced to
1.
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D PROOF OF THEOREM 3.2

The proof is mainly modified from the analysis of Ye & Shokri (2022) with our LSI constant anal-
ysis. First, we list the all needed notations and technical lemmas adopted from Ye & Shokri (2022).
Let us start with the PNGD process with training dataset D and D′ as before

xt+1 = ΠCR

(
xt − η∇fD(xt) +

√
2ησ2Wt

)
, (40)

x′t+1 = ΠCR

(
x′t − η∇fD′(x′t) +

√
2ησ2Wt

)
, Wt

iid∼ N (0, Id), (41)

For each iteration, the above update is equivalent to the following two steps:

xt,1 = xt − η∇fD(xt) +
√
ησ2Wt, xt+1 = ΠCR

(
xt,1 +

√
ησ2Wt

)
. (42)

That is, it can be decomposed into another noisy GD update followed by a small additive noise with
projection. Let νt, νt,1, ν′t, ν

′
t,1 be the law of xt, xt,1, x′t, x

′
t,1 respectively. Finally, we introduce the

following technical lemma from Ye & Shokri (2022) specialized to PNGD case.
Lemma D.1 (Simplification of Lemma 3.2 in Ye & Shokri (2022)). For any ξt, ξ′t ∈ P(Rd) that
both satisfy Ct,1-LSI, then we have

Dα(ξt ∗ N (0, ησ2Id)||ξ′t ∗ N (0, ησ2Id))

α
≤ Dα′(ξt||ξ′t)

α′ (1 +
ησ2

Ct,1
)−1, α′ =

α− 1

1 + ησ2

Ct,1

+ 1.

(43)

The proof is an application of Lemma C.5 but with the integral involving time-dependent LSI con-
stant. Now we are ready to prove our Theorem 3.2.

Proof. We first provide a full characterization of the LSI constant of νt, νt,1 for all k ≥ 0, assuming
ν0 is C0-LSI to be chosen later. Let us denote the LSI constant of νt, νt,1 to be Ct, Ct,1 respectively.

By Lemma C.1, when fD is L-smooth we have that

Ct,1 ≤ (1 + ηL)2Ct + ησ2, Ct+1 ≤ Ct,1 + ησ2. (44)

Similarly, by leveraging the same analysis in the proof of Theorem 3.1, using Lemma C.6 with the
assumption that fD is M -Lipschitz gives the following k independent bound

Ct,1 ≤ 6(4(R+ ηM)2 + ησ2) exp(
4(R+ ηM)2

ησ2
), (45)

Ct+1 ≤ 6(4(R+ ηM)2 + 2ησ2) exp(
4(R+ ηM)2

2ησ2
). (46)

Now we establish the one iteration bound on the Rényi divergence. By composition theorem for
RDP (and equivalently Rényi divergence) (Mironov, 2017) and the assumption that fD, fD′ are M -
Lipschitz, we have

Dα(νt,1||ν′t,1)
α

≤ Dα(νt||ν′t)
α

+
2ηS2M2

σ2n2
. (47)

This is because the sensitivity of ∥∇fD(x) − ∇fD′(x)∥2 ≤ S2

n2 × (2ηM)2 for group size S ≥ 1.
More specifically, there are at most S different pairs of ∇f(x;di)−∇f(x;d′

i), and for each pair we
have ∥η∇f(x;di)− η∇f(x;d′

i)∥ ≤ 2ηM by triangle inequality and M -Lipschitzness. By triangle
inequality again, we have ∥∇fD(x) − ∇fD′(x)∥2 ≤ ( 2ηSM

n )2. On the other hand, the variance
of the added Gaussian noise in this step (from xt to xt,1) is ησ2. Leveraging the standard result
of Gaussian mechanism Mironov (2017) gives the α-Rényi divergence 4αη2S2M2/n2

2(σ2η) = 2αηS2M2

σ2n2 .
Dividing it by α gives the second term in equation 47.

Then by applying Lemma D.1, we have

Dα(νt+1||ν′t+1)

α
≤
Dα′(νt,1||ν′t,1)

α′ (1 +
ησ2

Ct,1
)−1, α′ =

α− 1

1 + ησ2

Ct,1

+ 1. (48)
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Combining these two bounds we have

Dα(νt+1||ν′t+1)

α
≤
(
Dα′(νt||ν′t)

α′ +
2ηS2M2

σ2n2

)
(1 +

ησ2

Ct,1
)−1, α′ =

α− 1

1 + ησ2

Ct,1

+ 1. (49)

Now, iterate this bound for all t and note that Dα(ν0||ν′0) = 0 for any α > 1 due to the same
initialization, we have

Dα(νT ||ν′T )
α

≤ 2ηS2M2

σ2n2

T∑
t=1

t−1∏
t′=0

(1 +
ησ2

Ct′,1
)−1. (50)

The same analysis applies to the other direction Dα(ν′
t+1||νt+1)

α . Together we complete the proof
for convex and non-convex cases. For the m-strongly convex case, it is a direct result of Theorem
D.6 in Ye & Shokri (2022), where the LSI constant analysis of Ct is exactly the same to those of
Theorem 3.1. Together we complete the proof.

E PROOF OF COROLLARY A.2

Corollary E.1 (Sequential unlearning). Assume the unlearning requests arrive sequentially such
that our dataset changes from D = D0 → D1 → . . . → DS , where Ds,Ds+1 are adjacent. Let
y
(s)
k be the unlearned parameters for the sth unlearning request with k unlearning update follow-

ing equation 2 on Ds and y(s+1)
0 = y

(s)
Ks

∼ ν̄Ds
, where y(1)0 = x∞ and Ks is the unlearning steps

for the sth unlearning request. Suppose we have achieved (α, ε(s)(α))-RU for the sth unlearning
request, the learning process equation 1 is (α, ε0(α))-RDP and ν̄Ds

satisfies CLSI-LSI, we achieve
(α, ε(s+1)(α))-RU for the (s+ 1)th unlearning request as well, where

ε(s+1)(α) ≤ exp(− 1

α

Ks+1−1∑
k=0

Rk)
α− 1/2

α− 1

(
ε0(2α) + ε(s)(2α)

)
,

ε(0)(α) = 0 ∀α > 1 and Rk are defined in Theorem 3.1.

While our main theorems only discuss one unlearning request, we can generalize it to address mul-
tiple unlearning requests. Consider the case where our learning process is trained with dataset D.
At the unlearning phase, we receive a sequence of unlearning requests so that our dataset becomes
D1,D2, . . . ,DS , where each consecutive dataset Ds,Ds+1 are adjacent (i.e., each unlearning re-
quest ask for unlearning one data point). Let us denote νDs

the output probability distribution of
M(Ds) for s ≥ 0, where we set D0 = D. Sequential unlearning can be viewed as transferring along
νD0

→ νD1
· · · → νDS

, where for each request we will stop when we are “ε” away from the target
distribution in terms of Rényi difference. As a result, our actual path is νD0

→ ν̄D1
· · · → ν̄DS

for some sequence of distribution {ν̄Ds
}Ss=1 such that the α Rényi difference dα(νDs

, ν̄Ds
) ≤ ε.

See Figure 3 for a pictorial example of the case S = 2. While we are unable to characterize the
convergence along ν̄Ds → ν̄Ds+1 directly, we can leverage the weak triangle inequality of Rényi
divergence to provide an upper bound of it.

Proposition E.2 (Weak Triangle Inequality of Rényi divergence, Corollary 4 in Mironov (2017)).
For any α > 1, p, q > 1 satisfying 1/p+ 1/q = 1 and distributions P,Q,R with the same support:

Dα(P ||R) ≤
α− 1

p

α− 1
Dpα(P ||Q) +Dq(α−1/p)(Q||R).
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Note that by choosing p = q = 2, we can also establish the weak triangle inequality for Rényi
difference dα as follows

Dα(P ||R) ≤
α− 1

2

α− 1
D2α(P ||Q) +D2α−1(Q||R) (51)

(a)

≤
α− 1

2

α− 1
d2α(P,Q) + d2α−1(Q,R) (52)

(b)

≤
α− 1

2

α− 1
d2α(P,Q) + d2α(Q,R) (53)

(c)

≤
α− 1

2

α− 1
(d2α(P,Q) + d2α(Q,R)) , (54)

(55)

where (a) is due to the definition of Rényi difference, (b) is due to the monotonicity of Rényi diver-
gence in α and (c) is due to the fact that for all α > 1, α− 1

2

α−1 ≥ 1. Repeat the same analysis for
Dα(R||P ) and combine with the bound above, one can show that

dα(P,R) ≤
α− 1

2

α− 1
(d2α(P,Q) + d2α(Q,R)) . (56)

The main idea is illustrated in Figure 3 (a). We first leverage Theorem 3.1 to upper bound the Rényi
difference dα(ν̄D2

, νD2
) in terms of the Rényi difference between dα(ν̄D1

, νD2
) (dash line) with a

decaying factor. Then by weak triangle inequality of Rényi difference we derived above, we can
further bound it with ε(1)(2α) (black line) and ε0(2α) (red line).

Proof. The proof is a direct combination of Theorem 3.1 and Proposition E.2. To achieve
(α, ε(s+1)(α))-RU for the (s + 1)th unlearning request, we need to bound dα(ν̃Ds+1 , νDs+1). As-
sume we run Ks+1 unlearning iteration, from Theorem 3.1 we have

dα(ν̃Ds+1
, νDs+1

) ≤ exp(− 1

α

Ks+1−1∑
k=0

Rk)dα(ν̃Ds
, νDs+1

), (57)

where Rk is defined in Theorem 3.1. On the other hand, by weak triangle inequality of Rényi
difference, we have

dα(ν̃Ds , νDs+1) ≤
α− 1/2

α− 1

(
d2α(ν̃Ds , νDs) + d2α(νDs , νDs+1)

)
. (58)

By the initial RDP condition, we know that d2α(νDs , νDs+1) ≤ ε0(2α). On the other hand, by the
RU guarantee of the sth unlearning request, we have

d2α(ν̃Ds , νDs) ≤ ε(s)(2α). (59)

Together we have

dα(ν̃Ds , νDs+1) ≤
α− 1/2

α− 1

(
ε0(2α) + ε(s)(2α)

)
. (60)

Hence we complete the proof.

F PROOF OF LEMMA C.1

Lemma (LSI constant characterization). Consider the following PNGD update for a closed convex
set C:

xk,1 = h(xk), xk,2 = xk,1 + σWk, xk+1 = ΠC(xk,2),

where h is any M -Lipschitz map Rd 7→ Rd, Wk ∼ N (0, Id) independent of anything before step k,
and ΠC is the projection onto C. Let µk,1, µk,2 and µk be the probability distribution of xk,1, xk,2
and xk respectively. Then we have the following LSI constant characterization of this process. 1) If
µk satisfies c-LSI, µk,1 satisfies M2c-LSI. 2) If µk,1 satisfies c-LSI, µk,2 satisfies (c+ σ2)-LSI. 3) If
µk,2 satisfies c-LSI, µk+1 satisfies c-LSI.
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Proof. The first statement is the direct result of Proposition 2.3.3. in Chewi, Sinho (2023). See also
Lemma 16 in Vempala & Wibisono (2019) but additionally require h being differentiable. The sec-
ond statement is the direct result of Lemma 17 in Vempala & Wibisono (2019). The third statement
is because ΠC is a 1-Lipchitz map. Together we complete the proof.

G PROOF OF LEMMA C.4

Lemma (Lemma 18 in Vempala & Wibisono (2019), with customized variance). For any probability
distribution ρ0, ν0 and for any t ≥ 0, let ρt = ρ0 ∗N (0, 2tσ2Id) and νt = ν0 ∗N (0, 2tσ2Id). Then
for all α > 0 we have

d

dt
Dα(ρt||νt) = −ασ2Gα(ρt; νt)

Fα(ρt; νt)
. (61)

Proof. The proof is nearly identical to that in Vempala & Wibisono (2019). Let Xt ∼ ρt, then we
have the following stochastic differential equation.

dXt =
√
2σdWt. (62)

Thus ρt evolves following the Fokker-Planck equation:

∂ρt
∂t

= σ2∆ρt. (63)

Same for νt and just plug this into the first step in the proof of Lemma 18 in Vempala & Wibisono
(2019), which gives the result.

H PROOF OF PROPOSITION A.4

The proof is a direct manipulation of the Rényi divergence. Due to symmetry, we will only show
that Dα(ν̃D, ν̃D′) ≤ 2αF

(α−1)n , as the proof for the bound of Dα(ν̃D′ , ν̃D) is identical.

Define ZD =
∫
exp(−fD(x))dx be the normalizing constant. Then we have

Dα(ν̃D, ν̃D′) =
1

α− 1
logEx∼ν̃D′

(
ν̃D(x)

ν̃D′(x)

)α

=
1

α− 1
logEx∼ν̃D

(
ν̃D(x)

ν̃D′(x)

)α−1

(64)

=
1

α− 1
log

((
ZD′

ZD

)α−1

Ex∼ν̃D

(
exp(−fD(x))
exp(−fD′(x))

)α−1
)

(65)

= log(
ZD′

ZD
) +

1

α− 1
log(Ex∼ν̃D

(
exp(−fD(x))
exp(−fD′(x))

)α−1

). (66)

Recall that D and D′ are adjacent, thus they only differ in one index. Without loss of generality,
assume the index is n so that di = d′

i for all i < n. By definition,

fD′(x) =
1

n

n−1∑
i=1

f(x;d′
i) +

1

n
f(x;d′

n) (67)

=
1

n

n−1∑
i=1

f(x;d′
i) +

1

n
f(x;dn) +

1

n
f(x;d′

n)−
1

n
f(x;dn) (68)

= fD(x) +
1

n
(f(x;d′

n)− f(x;dn)). (69)
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As a result, the ratio of the normalizing constant can be bounded as

ZD′

ZD
=

∫
exp(−fD′(x))dx

ZD
=

∫
exp(−fD′(x))dx

ZD
=

∫
exp(−fD(x) + f(x;d′

n)−f(x;dn)
n )dx

ZD
(70)

≤
∫
exp(−fD(x) + |f(x;d′

n)−f(x;dn)|
n )dx

ZD
(71)

≤
∫
exp(−fD(x) + F

n )dx

ZD
=

exp(Fn )
∫
exp(−fD(x))dx
ZD

=
exp(Fn )ZD

ZD
= exp(

F

n
). (72)

On the other hand, for the second term we have

Ex∼ν̃D

(
exp(−fD(x))
exp(−fD′(x))

)α−1

= Ex∼ν̃D exp(−(α− 1)(fD(x)− fD′(x))) (73)

≤ Ex∼ν̃D exp((α− 1)(
F

n
)) = exp((α− 1)(

F

n
)). (74)

As a result, we can further simplify equation 64 as follows

Dα(ν̃D, ν̃D′) = log(
ZD′

ZD
) +

1

α− 1
log(Ex∼ν̃D

(
exp(−fD(x))
exp(−fD′(x))

)α−1

) (75)

≤ F

n
+

(α− 1)F

(α− 1)n
=

2F

n
. (76)

Together we complete the proof.

I EXPERIMENT DETAILS

I.1 (α, ε)-RU TO (ϵ, δ)-UNLEARNING CONVERSION

Let us first state the definition of (ϵ, δ)-unlearning from prior literature Guo et al. (2020); Sekhari
et al. (2021); Neel et al. (2021).
Definition I.1. Consider a randomized learning algorithm M : Xn 7→ Rd and a randomized un-
learning algorithm U : Rd ×Xn ×Xn 7→ Rd. We say (M,U) achieves (ϵ, δ)-unlearning if for any
adjacent datasets D,D′ and any event E, we have

P (U(M(D),D,D′) ⊆ E) ≤ exp(ϵ)P (M(D′) ⊆ E) + δ, (77)

P (M(D′) ⊆ E) ≤ exp(ϵ)P (U(M(D),D,D′) ⊆ E) + δ. (78)

Following the same proof of RDP-DP conversion (Proposition 3 in Mironov (2017)), we have the
following (α, ε)-RU to (ϵ, δ)-unlearning conversion as well.
Proposition I.2. If (M,U) achieves (α, ε)-RU, it satisfies (ϵ, δ)-unlearning as well, where

ϵ = ε+
log(1/δ)

α− 1
. (79)

I.2 DATASETS

MNIST Deng (2012) contains the grey-scale image of number 0 to number 9, each with 28 × 28
pixels. We follow Neel et al. (2021) to take the images with the label 3 and 8 as the two classes for
logistic regression. The training data contains 11982 instances in total and the testing data contains
1984 samples. We spread the image into an x ∈ Rd, d = 724 feature as the input of logistic
regression.

CIFAR-10 Krizhevsky et al. (2009) contains the RGB-scale image of ten classes for image classifi-
cation, each with 32× 32 pixels. We also select class #3 (cat) and class #8 (ship) as the two classes
for logistic regression. The training data contains 10000 instances and the testing data contains 2000
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samples. We apply data pre-processing on CIFAR-10 by extracting the compact feature encoding
from the last layer before pooling of an off-the-shelf pre-trained ResNet18 model He et al. (2016)
from Torch-vision library maintainers & contributors (2016); Paszke et al. (2019) as the input of our
logistic regression. The compact feature encoding is x ∈ Rd, d = 512.

All the inputs from the datasets are normalized with the ℓ2 norm of 1.

I.3 EXPERIMENT SETTINGS

Problem Formulation Given a binary classification task D = {xi ∈ Rd, yi ∈ {−1,+1}}ni=1, our
goal is to obtain a set of parameters w that optimizes the objective below:

L(w;D) =
1

n

n∑
i=1

l(w⊤xi, yi) +
λ

2
||w||22, (80)

where the objective consists of a standard logistic regression loss l(w⊤xi, yi) = − log σ(yiw⊤xi),
where σ(t) = 1

1+exp(−t) is the sigmoid function; and a ℓ2 regularization term where λ is a hyper-
parameter to control the regularization, and we set λ as 10−6 × n across all the experiments. By
simple algebra one can show that Guo et al. (2020)

∇l(w⊤xi, yi) = (σ(yiw⊤xi)− 1)yixi + λw, (81)

∇2l(w⊤xi, yi) = σ(yiw⊤xi)(1− σ(yiw⊤xi))xixT
i + λId. (82)

Due to σ(yiw⊤xi) ∈ [0, 1], it is not hard to see that we have smoothness L = 1/4 + λ and strong
convexity λ. The constant meta-data of the loss function in equation equation 80 above for the two
datasets is shown in the table below:

Table 1: The constants for the loss function and other calculation on MNIST and CIFAR-10.

expression MNIST CIFAR10

smoothness constant L 1
4 + λ 1

4 + λ 1
4 + λ

strongly convex constant m λ 0.0119 0.0100
Lipschitz constant M gradient clip 1 1

RDP constant δ 1/n 8.3458e-5 0.0001
CLSI > σ2

m
2σ2

m
2σ2

m

The per-sample gradient with clipping w.r.t. the weights w of the logistic regression loss function is
given as:

∇clipl(w⊤xi, yi) = ΠCM

(
(σ(yiw⊤xi)− 1)yixi

)
+ λw, (83)

where ΠCM
denotes the gradient clipping projection into the Euclidean ball with the radius of M , to

satisfy the Lipschitz constant bound. According to Proposition 5.2 of Ye & Shokri (2022), the per-
sampling clipping operation still results in a L-smooth, m-strongly convex objective. The resulting
Langevin learning/unlearning update on the full dataset is as follows:

1

n

n∑
i=1

∇clipl(w
Txi, yi), (84)

Finally, we remark that in our specific case since we have normalized the features of all data points
(i.e., ∥x∥ = 1), by the explicit gradient formula we know that ∥(σ(yiw⊤xi)− 1)yixi∥ ≤ 1.

Learning from scratch set-up For the baselines and our Langevin unlearning framework, we all
sample the initial weight w randomly sampled from i.i.d Gaussian distribution N (µ0, CLSI), where
µ0 is a hyper-parameter denoting the initialization mean and we set as 1000 to simulate the situation
where the initial w has a long distance towards the optimum alike most situations in real-world
applications. For the learning methods M, we set T = 10, 000 for all the methods to converge.
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Unlearning request implementation. In our experiment, for an unlearning request of removing
data point i, we replace its feature with random features drawn from N (0, Id) and its label with a
random label drawn uniformly at random drawn from all possible classes. This is similar to the DP
replacement definition defined in Kairouz et al. (2021), where they replace a point with a special
null point ⊥.

General implementation of baseline D2D Neel et al. (2021)

• Across all of our experiments involved with D2D, we follow the original paper to set the step size
as 2/(L+m).

• For the experiments in Fig. 2a, we calculate the noise to add after gradient descent with the non-
private bound as illustrated in Theorem. J.1 (Theorem 9 in Neel et al. (2021)); For experiments
with sequential unlearning requests in Fig. 2b, we calculate the least step number and corresponding
noise with the bound in Theorem. J.2(Theorem 28 in Neel et al. (2021)).

• The implementation of D2D follows the pseudo code shown in Algorithm 1,2 in Neel et al. (2021)
as follows:

Algorithm 1 D2D: learning from scratch

1: Input: dataset D
2: Initialize w0

3: for t = 1, 2, . . . , 10000 do
4: wt = wt−1 − 2

L+m × 1
n

∑n
i=1(∇clipl(w

T
t−1xi, yi))

5: end for
6: Output: ŵ = wT

Algorithm 2 D2D: unlearning

1: Input: dataset Di−1, update ui; model wi

2: Update dataset Di = Di−1 ◦ ui
3: Initialize w′

0 = wi

4: for t = 1, . . . , I do
5: w′

t = w′
t−1 − 2

L+m × 1
n

∑n
i=1 ∇clipl((w

′
t−1)

Txi, yi))
6: end for
7: Calculate γ = L−m

L+m

8: Draw Z ∼ N (0, σ2Id)
9: Output ŵi = w′

Ti
+ Z

The settings and the calculation of I, σ in Algorithm. 2 are discussed in the later part of this section
and could be found in Section. J.
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General Implementation of Langevin Unlearning

• We set the step size η for Langevin unlearning framework across all the experiments as 1/L.

• The pseudo code for Langevin unlearning framework is as follows:

Algorithm 3 Langevin unlearning framework, learning / unlearning

1: Input: dataset D
2: if Learn from scratch then
3: Initialize w0 ∈ N (µ0, CLSIId)
4: else
5: Initialize w0 with the pre-trained parameters
6: end if
7: for t = 1, 2, . . . ,K do
8: Draw W

iid∼ N (0, Id)

9: wt = wt−1 − 1
L × 1

n

∑n
i=1(∇clipl(w

T
t−1xi, yi)) +

√
2σ2

L W

10: end for
11: Output: ŵ = wK

I.4 IMPLEMENTATION DETAILS FOR FIG. 2A

In this experiment, we first train the methods on the original dataset D from scratch to obtain the
initial weights w0. Then we randomly remove a single data point (S = 1) from the dataset to get
the new dataset D′, and unlearn the methods from the initial weights ŵ and test the accuracy on the
testing set.

we set the target ϵ̂ with 6 different values as [0.05, 0.1, 0.5, 1, 2, 5]. For each target ϵ̂:

• For D2D, we set three different unlearning gradient descent step budgets as I = 1, 2, 5, and
calculate the corresponding noise to be added to the weight after gradient descent on D according
to Theorem. J.1, where the detailed noise information is shown in the table below:

Table 2: Baseline σ details in Fig. 2a

0.05 0.1 0.5 1 2 5

CIFAR-10
1 59.5184 29.7994 6.0233 3.0504 1.5626 0.6663
2 28.1340 14.0859 2.8472 1.4419 0.7386 0.3149
5 9.4523 4.7325 0.9565 0.4844 0.2481 0.1058

MNIST
1 36.8573 18.4620 3.7310 1.8890 0.9673 0.4120
2 17.3030 8.6229 1.7507 0.8864 0.4538 0.1933
5 5.6774 2.8424 0.5744 0.2908 0.1489 0.0634

• For the Langevin unlearning framework, we set the unlearning fine-tune step budget as K̂ = 1
only, and calculate the smallest σ that could satisfy the fine-tune step budget and target ϵ̂ at the same
time. The calculation follows the binary search algorithm as follows:
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Algorithm 4 Langevin Unlearning: binary search σ that satisfy K̂ and target ϵ̂ budget

1: Input:target ϵ̂, unlearn step budget K, lower bound σlow, upper bound σhigh
2: while σlow ≤ σhigh do
3: σmid = (σlow + σhigh)/2
4: call Alg. 5 to find the least K that satisfies ϵ̂ with σ = σmid

5: if K == K̂ then
6: Return K
7: else if K ≤ K̂ then
8: σhigh = σmid
9: else

10: σlow = σmid
11: end if
12: end while

Algorithm 5 Langevin Unlearning: find the least unlearn step K that satisfies the target ϵ̂

1: Input:target ϵ̂, σ
2: Initialize K = 1, ϵ > ϵ̂
3: while ϵ > ϵ̂ do
4: ϵ = minα>1[exp(− 2Kσ2η

αCLSI
) 4αS

2M2

mσ2n2 +
log( 1

δ )

α−1 ]
5: K = K + 1
6: end while
7: Return K

The σ found is reported in the table below:

Table 3: The σ found with different target ϵ̂

ϵ̂ 0.05 0.1 0.5 1 2 5

CIFAR-10 0.2431 0.1220 0.0250 0.0125 0.0064 0.0028
MNIST 0.1872 0.094 0.0190 0.0096 0.0049 0.0021

I.5 IMPLEMENTATION DETAILS FOR FIG. 2B

In this experiment, we fix the target ϵ̂ = 1, we set the total number of data removal as 100. We show
the accumulated unlearning steps w.r.t. the number of data removed. We first train the methods from
scratch to get the initial weight w0, and sequentially remove data step by step until all the data points
are removed. We count the accumulated unlearning steps K needed in the process.

• For D2D, According to the original paper, only one data point could be removed a time. We
calculate the least required steps and the noise to be added according to Theorem. J.2.

• For Langevin unlearning, we fix the σ = 0.03, and we let the model unlearn [5, 10, 20] per time
thanks to our theory. We obtain the least required unlearning steps for each removal operation Klist
following corollary. A.2. The pseudo code is shown in Algorithm. 6.
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Algorithm 6 Langevin Unlearning: find the least unlearn step K in sequential settings

1: Input:target ϵ̂, σ, total removal S, removal batch size b per time
2: Klist = []
3: for i in range(S/b) do
4: Initialize Klist[i− 1] = 1, ϵ > ϵ̂
5: while ϵ > ϵ̂ do
6: ϵ = minα>1[ε(α, σ, b, i,Klist) + log(1/δ)/(α− 1)]
7: Klist[i− 1] = Klist[i− 1] + 1
8: end while
9: end for

10: Return Klist

Algorithm 7 ε(α, σ, b, i,Klist)

1: Input:target α, σ, removal batch size b per time, i-th removal in the sequence
2: if i==1 then
3: Return exp(−ηmKlist[0]

α )× ε0(α, b, σ)
4: else
5: Return exp(−ηmKlist[i−1]

α )× α−0.5
α−1 (ε0(2α, b, σ) + ε(2α, σ, b, i− 1,Klist))

6: end if

Algorithm 8 ϵ0(α, S, σ)

1: Return 4αS2M2

mσ2n2

I.6 IMPLEMENTATION DETAILS FOR FIG. 2C

In this study, we set the σ of the Langevin unlearning framework as [0.05, 0.1, 0.2, 0.5, 1]. For each
σ, we calculate the corresponding ϵ0. We train the Langevin unlearning framework from scratch to
get the initial weight w0. Then we remove 100 data points from the dataset and unlearn the model.
We here also call Algorithm. 5 to obtain the least required unlearning steps K.

I.7 IMPLEMENTATION DETAILS FOR FIG. 4

In this study, we set different target ϵ̂ as [0.5, 1, 2, 5] and set different number of data to remove
S = [1, 50, 100]. We train the Langevin unlearning framework from scratch to get the initial weight,
then remove some data, unlearn the model and report the accuracy. We calculate the least required
unlearning steps K by again calling Algorithm. 5.

I.8 ADDITIONAL EXPERIMENTS

J UNLEARNING GUARANTEE OF DELETE-TO-DESCENT NEEL ET AL. (2021)

Theorem J.1 (Theorem 9 in Neel et al. (2021), with internal non-private state). Assume for all
d ∈ X , f(x;d) is m-strongly convex, M -Lipschitz and L-smooth in x. Define γ = L−m

L+m and
η = 2

L+m . Let the learning iteration T ≥ I + log(2Rmn
2M )/ log(1/γ) for PGD (Algorithm 1 in Neel

et al. (2021)) and the unlearning algorithm (Algorithm 2 in Neel et al. (2021), PGD fine-tuning on
learned parameters before adding Gaussian noise) run with I iterations. Assume ϵ = O(log(1/δ)),
let the standard deviation of the output perturbation gaussian noise σ to be

σ =
4
√
2MγI

mn(1− γI)(
√
log(1/δ) + ϵ−

√
log(1/δ))

. (85)

Then it achieves (ϵ, δ)-unlearning for add/remove dataset adjacency.
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Figure 5: The utility results that correspond to Figure 4. Since σ is fixed the utility is roughly the
same.

Theorem J.2 (Theorem 28 in Neel et al. (2021), without internal non-private state). Assume for
all d ∈ X , f(x;d) is m-strongly convex, M -Lipschitz and L-smooth in x. Define γ = L−m

L+m and
η = 2

L+m . Let the learning iteration T ≥ I + log(2Rmn
2M )/ log(1/γ) for PGD (Algorithm 1 in Neel

et al. (2021)) and the unlearning algorithm (Algorithm 2 in Neel et al. (2021), PGD fine-tuning on
learned parameters after adding Gaussian noise) run with I+log(log(4di/δ))/ log(1/γ) iterations
for the ith sequential unlearning request, where I satisfies

I ≥
log

( √
2d(1−γ)−1√

2 log(2/δ)+ϵ−
√

2 log(2/δ)

)
log(1/γ)

. (86)

Assume ϵ = O(log(1/δ)), let the standard deviation of the output perturbation gaussian noise σ to
be

σ =
8MγI

mn(1− γI)(
√
2 log(2/δ) + 3ϵ−

√
2 log(2/δ) + 2ϵ)

. (87)

Then it achieves (ϵ, δ)-unlearning for add/remove dataset adjacency.

Note that the privacy guarantee of D2D Neel et al. (2021) is with respect to add/remove dataset
adjacency and ours is the replacement dataset adjacency. However, by a slight modification of the
proof of Theorem J.1 and J.2, one can show that a similar (but slightly worse) bound of the theorem
above also holds for D2D Neel et al. (2021). For simplicity and fair comparison, we directly use
the bound in Theorem J.1 and J.2 in our experiment. Note that Kairouz et al. (2021) also compares
a special replacement DP with standard add/remove DP, where a data point can only be replaced
with a null element in their definition. In contrast, our replacement data adjacency allows arbitrary
replacement which intuitively provides a stronger privacy notion.

The non-private internal state of D2D. There are two different versions of the D2D algorithm
depending on whether one allows the server (model holder) to save and leverage the model param-
eter before adding Gaussian noise. The main difference between Theorem J.1 and J.2 is whether
their unlearning process starts with the “clean” model parameter (Theorem J.1) or the noisy model
parameter (Theorem J.2). Clearly, allowing the server to keep and leverage the non-private internal
state provides a weaker notion of privacy Neel et al. (2021). In contrast, our Langevin unlearning
approach by default only keeps the noisy parameter so that we do not save any non-private internal
state. As a result, one should compare Langevin unlearning to D2D with Theorem J.2 for a fair
comparison.
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